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Abstract

Despite the empirical success of foundation mod-
els, we do not have a systematic characterization
of the representations that these models learn. In
this paper, we establish the contexture theory. It
shows that a large class of representation learning
methods can be characterized as learning from
the association between the input and a context
variable. Specifically, we show that many popular
methods aim to approximate the top-d singular
functions of the expectation operator induced by
the context, in which case we say that the repre-
sentation learns the contexture. We demonstrate
the generality of the contexture theory by proving
that representation learning within various learn-
ing paradigms—supervised, self-supervised, and
manifold learning—can all be studied from such
a perspective. We prove that representations that
learn the contexture are optimal on those tasks
that are compatible with the context. One im-
portant implication of our theory is that once the
model is large enough to approximate the top sin-
gular functions, scaling up the model size yields
diminishing returns, so further improvement re-
quires better contexts. To this end, we study how
to evaluate a context without knowing the down-
stream tasks. We propose a metric and show by
experiments that it correlates well with the actual
performance of the encoder on many real datasets.

1. Introduction
Representation learning underpins the modern deep learning
revolution, leading up to the remarkable recent successes
of foundation models (Bommasani et al., 2021). But a
critical question that has remained unanswered to a satis-
factory extent is: why are these models learning anything
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useful, or perhaps even what representations are these mod-
els learning? Unlike classical statistical learning theory,
where there is no mystery regarding the statistical estimand,
the very target itself is unclear in representation learning.
For example, what are the representations that BERT (De-
vlin et al., 2019)—trained to do cloze tests—is learning, and
why are they useful in understanding the sentiment of user
reviews on Netflix? What representations do deep neural
networks learn, and why are they useful if they cause neural
collapse (Papyan et al., 2020), where deep representations
could collapse to a few clusters? Do the many different
self-supervised learning methods (Balestriero et al., 2023)
all learn similar or disparate representations?

The responses to these questions are often muddled. Many
analyses are conflated with the mystery of deep learning
generalization—the ability of large neural networks to learn
function approximations that generalize to unseen points.
However, this is a different problem from the mechanism
of representation learning. Our focus is on what representa-
tion learning (or “pretraining” in the context of foundation
models) aims to capture, and why it can be applied to tasks
completely different from the objectives used to train the
representations. Another way this question is muddled is by
recourse to scaling. A popular viewpoint argues that even
if the encoder performs poorly on one task, increasing the
model size while keeping everything else the same could
allow better performance to “emerge” (Wei et al., 2022).
However, substantial evidence suggests that certain abilities
cannot emerge solely from scaling. Additional training sig-
nals, such as alignment (Ouyang et al., 2022), are necessary.

The above questions are naturally interesting to learning
theorists, but why should the broader machine learning
community care about understanding the mechanism of
representation learning, if empirical success seems to be
always achievable with existing approaches by scaling up
the model size, an empirical observation known as scaling
laws (Kaplan et al., 2020)? This is because sustainable suc-
cess or progress is not always guaranteed. Ilya Sutskever
recently remarked that “pretraining as we know it will end”
(Sutskever, 2024), largely because the current pretraining
paradigm is producing diminishing returns. Understanding
what representations are learned by foundation models is
crucial for designing future generations of pretraining meth-
ods, and this is how this field can make scientific progress.
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In this work, we establish the contexture theory, which
provides a unified lens for inspecting a large class of rep-
resentation learning methods. The central argument of this
theory is that representations are learned from the associ-
ation between the input X and a context variable A. This
framework is general enough to encompass a wide variety
of learning paradigms, as we demonstrate in Section 3.

Now, suppose we are given a context variable A along with
X , how should we learn the representation? In Section 4
we prove that the optimal method is to approximate the top
singular functions of the expectation operator induced by
the context, in which case we say that the encoder “learns
the contexture”. Such an encoder is optimal as long as the
task is compatible with the context, and in Section 4 we
define a quantitative measurement of such compatibility.

Our theory implies that the main consequence of enlarging
the model is that the learned representation space will be
brought closer to the span of the top-d singular functions
of the expectation operator, which we empirically verify in
Section 4.2. Once the two spaces are close enough, further
scaling will yield diminishing returns. We envision that
future breakthroughs in pretraining require context scaling,
where better contexts are learned from data, not heuristics.

In Section 5 we study how to evaluate contexts. This is a
prerequisite for context scaling because if we cannot even
determine which contexts are good, then we cannot create
better contexts. The key takeaway is that for a context to be
useful (meaning that it can lead to good representations), the
association between X and A should be moderate—neither
too strong nor too weak. For example, if A = X , then their
association is the strongest; if A is independent of X , then
their association is the weakest. However, neither context is
useful because A does not provide additional information
about X . In Section 5.2, we propose a quantitative measure-
ment of context usefulness that can be efficiently estimated
and does not require knowledge of the downstream task. We
also empirically verify that the metric correlates with the
performance of the encoder on many real datasets.

In one sentence, our key contribution is clarity on the target
of a large class of representation learning methods—the
singular functions of the expectation operator. We do not
discuss the numerical aspect of approximating these func-
tions, which requires an expressive model architecture and
a good optimizer, and such analyses are left to future work.

1.1. Examples of Representation Learning Methods

Supervised learning is the simplest way to learn represen-
tations. For example, neural networks pretrained on Ima-
geNet (Russakovsky et al., 2015) were very popular in the
early days of the deep learning boom (Huh et al., 2016).
Specifically, one uses the output of an intermediate layer,

typically the one before the last linear layer, as the represen-
tation. However, it has never been fully explained why the
penultimate layer works so well across disparate tasks.

Self-supervised learning (SSL) is currently the most com-
mon way of learning representations. There are two main
types of SSL: multi-view learning and masked autoencoders.
Multi-view learning includes contrastive learning (Oord
et al., 2018; Chen et al., 2020) and non-contrastive learning
(Grill et al., 2020; Zbontar et al., 2021; Bardes et al., 2022).
Masked autoencoders have wide applications, including lan-
guage (Devlin et al., 2019; Radford et al., 2019), vision (He
et al., 2022), videos (Gupta et al., 2023), and more.

Manifold learning is a classical method that aims to capture
the geometry of the data. Examples such as locally linear
embedding (LLE) (Roweis & Saul, 2000) and Laplacian
eigenmaps (Belkin & Niyogi, 2003) formulate manifold
learning as node representation learning on a graph, where
connected nodes should have similar embeddings.

2. Definitions and Examples
Let X be the input space. Pretraining aims to learn a feature
encoder Φ : X → Rd. We call Φ(x) the embedding of
x, and d the embedding dimension. Let PX be the data
distribution. In this work, we assume PX to be fixed.

The central argument of the contexture theory is that rep-
resentations are learned from the association between two
random variables: the input X ∈ X and a context variable
A ∈ A. A is called the context space. Let P+(x, a) be the
joint distribution of X and A, with marginal distributions
PX and PA. Let L2(PX ) be the L2 function space w.r.t. PX ,
with inner product ⟨f1, f2⟩PX

= EX∼PX [f1(X)f2(X)] and

norm ∥f∥PX
= ⟨f, f⟩1/2PX

. Define L2(PA), ⟨·, ·⟩PA
, ∥·∥PA

for PA similarly.

2.1. Examples of Contexts

1. Labels are a common type of context. They can
take different forms, such as discrete categories in
classification, continuous values in regression, or text
captions of images. Labels may be obtained from human
annotators or in pseudo-forms, such as clusters or teacher
models. Typically, labels are provided as compatible
pairs sampled from the joint distribution P+(x, a).

2. Random transformations generate different views of
the same data point. Common transformations include
adding random noise to inputs, as seen in diffusion
models and denoising autoencoders, or randomly
corrupting/masking inputs, as in SimCLR and masked
autoencoder. These transformations are typically defined
by domain experts and are specified through a predefined
conditional distribution P+(a | x).
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3. Graphs provide locality information about the inputs.
The edge weights represent the similarity between two
inputs. In this case, we have A = X with the conditional
distribution P+(a | x) proportional to the edge values
between x and a. See Section 3.3.

4. Features are predefined or pretrained mappings from
X to a vector space, which we denote by a = Ω(x).
This encompasses teacher models that provide stochas-
tic pretrained feature encoders. In contrast to previous
instances, here P+(a | x) is directly described via a repa-
rameterization or structural equation for a in terms of x.

2.2. Induced Kernels and the Expectation Operator

The joint distribution P+ fully determines the association
between X and A. It induces the positive-pair kernel (John-
son et al., 2023) and the dual kernel (Zhai et al., 2024).

Definition 2.1. The positive-pair kernel k+A and its dual
kernel k+X are defined as

k+A(a, a
′) =

P+(a, a′)

PA(a)PA(a′)
=

∫
P+(a|x)P+(a′|x)dPX (x)

PA(a)PA(a′)
;

k+X(x, x′) =
P+(x, x′)

PX (x)PX (x′)
=

∫
P+(x|a)P+(x′|a)dPA(a)

PX (x)PX (x′)
.

The kernels are density ratios between joints and marginals
for A and X , respectively. They capture how more likely
(a, a′) or (x, x′) appear together than independently given
P+. P+ also induces the following expectation operator.
Intuitively, given a function g ∈ L2(PA), the operator com-
putes the expectation of g(A) conditioned on any x.

Definition 2.2. The expectation operator TP+ :
L2(PA) → L2(PX ) is defined as for all g ∈ L2(PA),

(TP+g)(x) =

∫
g(a)P+(a | x)da = E[g(A) | x].

Its adjoint operator T ∗
P+ : L2(PX ) → L2(PA),

which satisfies ⟨f, TP+g⟩PX = ⟨T ∗
P+f, g⟩PA (∀f ∈

L2(PX ), g ∈ L2(PA)), is given by
(
T ∗
P+f

)
(a) =∫

f(x)P
+(a | x)PX (x)

PA(a) dx = E[f(X) | a].

Now we discuss the spectral properties of these opera-
tors. Define the kernel integral operator Tk+

A
: L2(PA) →

L2(PA) as (Tk+
A
g)(a) =

∫
g(a′)k+A(a, a

′)dPA(a
′). Define

the other operator Tk+
X

: L2(PX ) → L2(PX ) similarly. It
is easy to see that Tk+

A
= T ∗

P+TP+ , and Tk+
X
= TP+T ∗

P+ .

We call λ ∈ R an eigenvalue of Tk+
A

with eigenfunction ν ∈
L2(PA), if Tk+

A
ν = λν. Suppose Tk+

A
is a Hilbert-Schmidt

integral operator. Then, we can order its eigenvalues by 1 =
λ0 ≥ λ1 ≥ · · · ≥ 0, and the corresponding eigenfunctions
ν0, ν1, · · · form an orthonormal basis (ONB) of L2(PA).

Here λi ≤ 1 because of Jensen’s inequality, and ν0 ≡ 1
is always an eigenfunction of Tk+

A
with λ0 = 1. Similarly,

we can order the eigenvalues of Tk+
X

by 1 = κ0 ≥ κ1 ≥
· · · ≥ 0, and the eigenfunctions µ0, µ1, · · · form an ONB of
L2(PX ), where µ0 ≡ 1. We also have the following result.

Lemma 2.3 (Duality property, Zhai et al. (2024), Proposi-
tion 1). For all i, we have λi = κi ∈ [0, 1]. And if λi > 0,

then we have µi = λ
− 1

2
i TP+νi, and νi = λ

− 1
2

i T ∗
P+µi.

We call si = λ
1
2
i a singular value of TP+ , associated with

left singular function µi ∈ L2(PX ) and right singular
function νi ∈ L2(PA). Since µ0 ≡ 1 and ν0 ≡ 1, all other
µi (νi) must have zero mean as they are orthogonal to µ0

(ν0). Now, we can spectrally decompose P+ as follows.

Lemma 2.4. The spectral decomposition of P+ is
P+(x, a) =

∑
i siµi(x)νi(a)PX (x)PA(a).

Proof. ∀i,
〈

P+(x,a)
PX (x)PA(a) , νi

〉
PA

=
∫
P+(a | x)νi(a)da =

(TP+νi)(x) =
(
λ

1
2
i µi

)
(x) = siµi(x). Since (νi)i≥0 is an

ONB, we have P+(x,a)
PX (x)PA(a) =

∑∞
i=0 siµi(x)νi(a).

The first key result of the contexture theory is that the opti-
mal d-dimensional representation should recover the linear
space spanned by the top-d singular functions µ1, · · · , µd.
We say that such a representation learns the contexture. Note
that the constant function µ0 ≡ 1 is excluded, as it does
not need to be learned—there is no benefit in allocating a
dimension to encode something already universally present.

Definition 2.5. A d-dimensional encoder Φ = [ϕ1, · · · , ϕd]
learns the contexture of P+, if there exists a set of
top-d singular functions {µ1, · · · , µd} of TP+ , such that
span{ϕ1, · · · , ϕd} = span{µ1, · · · , µd}. We also say that
Φ extracts the top-d eigenspace of Tk+

X
.

If the multiplicity of sd is more than 1, then Φ recovering
the span of any top-d singular functions suffices. The in-
tuition why learning the contexture is ideal is that such a
representation keeps the most variance of the context, anal-
ogous to principal component analysis (PCA) in the finite-
dimensional case. Suppose X and A are both finite sets. Let
N = |X | and M = |A|. Then, a function f ∈ L2(PX ) is
a vector in RN , g ∈ L2(PA) is a vector in RM , and TP+

is essentially a matrix T ∈ RN×M . The goal is learning a
d-dimensional embedding E ∈ RN×d for the N samples in
X . PCA states that we should use the top-d left singular vec-
tors of T as E, or the top-d eigenvectors of TT⊤, because
they maximize the explained variance. Similarly, functional
spaces are essentially infinite-dimensional vector spaces, so
the d-dimensional encoder that preserves the most variance
of TP+ consists of the top-d left singular functions of TP+ ,
or the top-d eigenfunctions of Tk+

X
= TP+T ∗

P+ .
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3. Learning the Contexture
In this section, we show that every example method in Sec-
tion 1.1 does one of the following:

(i) Extracts the top-d eigenspace of Tk+
X

= TP+T ∗
P+

(learns the contexture of P+), that is, recovering the
span of µ1, · · · , µd (excluding µ0 ≡ 1);

(ii) Extracts the top-d eigenspace of TP+ΛT ∗
P+ , where Λ

is the integral operator of a kernel kΛ(a, a′), that is
(Λg)(a) =

∫
g(a′)kΛ(a, a

′)dPA(a
′). kΛ is called the

loss kernel, which is defined by the loss function used
in the objective. Since the constant function is not
necessarily the top eigenfunction of TP+ΛT ∗

P+ , in this
case, we do not exclude any eigenfunction.

Notation: For f ∈ L2(PX ), denote its mean by f̄ =
EPX [f(X)], and its centered version by f̃ = f − f̄ . The
same notation is used for multi-dim functions and random
variables, when the distribution is clear from context. The
covariance matrix of Φ : X → Rd, denoted by CovPX [Φ],
is a d× d matrix C where C[i, j] =

〈
ϕ̃i, ϕ̃j

〉
PX

.

3.1. Supervised Learning: Label Context

Let A be the label of X . The mean squared error (MSE) is

R(Φ) = min
W ,b

E
(X,A)∼P+

[
∥WΦ(X) + b−A∥22

]
, (1)

where Φ(X) is the output of the layer before the last linear
layer in a neural network, and b denotes the bias. If b can be
an arbitrary vector, then the linear layer is biased; if b = 0
is fixed, then the linear layer is unbiased. For classification
where A is one-hot, we have the following result.
Theorem 3.1 (Proof in Appendix A.1). Let A be a one-
hot random vector. Suppose the linear layer is unbiased,
that is b = 0. Then, Φ∗ minimizes R(Φ) if and only
if it extracts the top-d eigenspace of TP+ΛT ∗

P+ , where
kΛ(a, a

′) = I[a = a′], or (Λg)(a) = g(a)PA(a). If all
classes have the same size, then the top-d eigenfunctions of
TP+ΛT ∗

P+ and TP+T ∗
P+ are the same.

This theorem works for randomized labels, where each x can
belong to multiple classes with certain probabilities. Kernel
kΛ stems from class imbalance; it puts more weights on
larger classes. Indeed, in practice, smaller classes are harder
to learn. To get rid of Λ, we can use the class-balanced risk
(also known as importance weighting (Shimodaira, 2000)):

Rbal(Φ) = min
W ,b

E
(X,A)∼P+

[
∥WΦ(X) + b−A∥22√

PA(A)

]
.

Theorem 3.2 (Proof in Appendix A.2). Under the setting of
Thm. 3.1, let the linear layer be biased. Then, Φ∗ minimizes
Rbal(Φ) if and only if it learns the contexture of P+.

Interestingly, this result can partially explain neural col-
lapse. Papyan et al. (2020) empirically showed that when
there are d classes of equal sizes and the labelA is determin-
istic, a sufficiently trained deep representation will collapse
to an equiangular tight frame (ETF) ϕ1, · · · , ϕd, which are
defined as ϕi(x) = c(I[x belongs to class i]− d−1) for all
i ∈ [d] and some constant c. The span of ϕ1, · · · , ϕd is the
same as the top-d eigenspace of TP+ΛT ∗

P+ . However, it
cannot explain why ϕ1, · · · , ϕd converge to the exact func-
tions as above—it only proves that they will span the same
space. To prove this, one needs to analyze the training dy-
namics of the specific optimizer, such as gradient-based
methods, while our results are independent of the optimizer.

When the classes have different sizes, the dual kernel of
TP+ΛT ∗

P+ is k+X(x, x′) = I[x and x′ have the same label].
This is equivalent to the simplex-encoded labels interpola-
tion (SELI) defined by Thrampoulidis et al. (2022, Defini-
tion 2), which generalizes neural collapse.

For a regression task where A is an arbitrary Euclidean
vector, using the same objective Eqn. (1), a similar result
can be proved. See Appendix A.3.

3.2. Self-supervised Learning: Transformation Context

Two major types of SSL are multi-view learning and de-
noising autoencoders. Multi-view learning independently
samples two views A,A+ from P+(·|x) for every x. A+ is
called a positive sample ofA. Then, one trains Ψ : A → Rd

such that Ψ(A) ≈ Ψ(A+). This Ψ is an encoder on A in-
stead of X , so at downstream we need to convert Ψ(a) to
Φ(x), which is typically done via the average encoder:

Φ(x) = (TP+Ψ)(x) =

∫
Ψ(a)dP+(a | x).

By Lemma 2.3, we have the following corollary.
Corollary 3.3. Let sd > 0. The average encoder Φ span-
ning the span of the left top-d singular functions of TP+ is
equivalent to Ψ spanning the span of the right top-d singular
functions of TP+ .

Enforcing Ψ(A) ≈ Ψ(A+) alone leads to the degenerate
solution where Ψ gives the same embedding to all a. This is
called the feature collapse problem. There are two solutions:
contrastive learning and non-contrastive learning. Prior
work by HaoChen et al. (2021); Johnson et al. (2023); Zhai
et al. (2024) showed that the spectral contrastive loss LC

and non-contrastive loss LN can learn the contexture of P+.
Let A+ be a positive sample of A, and A− be a negative
sample drawn from PA independently. Define

LC = E
[
−
〈
Ψ̃(A), Ψ̃(A+)

〉
+

1

2

〈
Ψ̃(A), Ψ̃(A−)

〉2]
;

LN = E
[∥∥Ψ(A)−Ψ(A+)

∥∥2
2

]
s.t. CovPA [Ψ] = I,
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where the (i, j)-th entry of CovPA [Ψ] is ⟨ψi, ψj⟩PA
, i, j ∈

[d]. Minimizing LN is a constrained optimization problem.
The constraint CovPA [Ψ] = I is called the orthonormality
constraint. It makes sure that Ψ must be rank-d, so that it
cannot be a constant function on A.

Theorem 3.4 (Proof in Appendix A.4). Ψ∗ minimizes LC

or LN if and only if Φ̃∗ = TP+Ψ̃∗ learns the contexture.

For denoising autoencoders, a similar result can be proved.
See Appendix A.5.

3.3. Node Representation Learning: Graph Context

Let G = (V, E) be an undirected graph, where edge (u, v)
has a weight w(u, v) such that w(u, v) = w(v, u) ≥ 0.
Let the degree of node u be d(u) =

∑
v∈V w(u, v), and

dsum =
∑

v d(v). Let PX (u) = d(u)
dsum

be a distribution on

V , and Pw(u, v) = w(u,v)
dsum

be a distribution on E . Define

P+(v|u) = w(u,v)
d(u) . The following problem with a similar

orthonormality constraint learns the contexture of P+.

minimize
Φ:X→Rd

1

2
E(u,v)∼Pw

[
∥Φ(u)− Φ(v)∥22

]
s.t. CovPX [Φ] = I.

(2)

Theorem 3.5 (Proof in Appendix A.6). Let Φ∗ be any solu-
tion to Eqn. (2) (so that for any constant c, Φ∗ + c is also a
solution). Then, Φ̃∗ learns the contexture of P+.

4. Optimality of the Contexture
So far, we have shown that commonly used learning objec-
tives can learn the contexture. Now, we address the question
of why and when learning the contexture is optimal. Ar-
guably no representations can be good for all downstream
tasks, but we show that a feature encoder that learns the con-
texture is optimal for the class of tasks that are compatible
with the context. This provides a quantitative characteri-
zation of when a task respects the human prior knowledge
the context incorporates. Interestingly, as we detail in the
sequel, this has intriguing implications for scaling laws.

4.1. Compatibility

The ultimate evaluation of an encoder is its performance on
relevant downstream tasks. Most downstream tasks, such as
prediction, clustering, and segmentation, can be associated
with a target function f∗ ∈ L2(PX ). For example, multi-
class classification can be associated with multiple one-vs-
all labeling functions. Moreover, if we are fitting a linear
predictor on top of Φ, then the mean and variance of f∗ do
not matter because we can change the weight and bias of
the predictor accordingly. Thus, we can assume that f∗ is
normalized, that is, it has zero mean and unit variance.

We say that a context P+ and a task f∗ are compatible, if
P+ can help us learn a good predictor for f∗. Formally,
consider the scenario where we have a corrupted training set
{(ai, yi)}, where ai ∼ P+(· | xi) and yi = f∗(xi). That is,
we cannot see the original samples xi, but can only see the
corrupted samples ai. To learn a predictor on this training
set, we can train a predictor ĝ : A → Y , and then use
f̂ = E[ĝ(A) | x]. At test time, given input x, we can draw
a ∼ P+(· | x) and then output the average of g∗(a). For
this procedure to work, two conditions are necessary:

• There exists g∗ ∈ L2(PA) s.t. f∗(x) = E[g∗(A) | x].
• This g∗ has a low Var[g∗(A) | x] on average over x.

If Var[g∗(A) | x] is high, then g∗(a) will be far away from
y = f∗(x), so fitting ĝ on (a, y) will not work. Based on
these insights, we define compatibility as follows.

Definition 4.1. The compatibility with P+ of any non-zero
f ∈ L2(PX ) is defined as

ρ(f, P+) = max
g∈L2(PA),g ̸=0

〈
f̃ , TP+g

〉
PX∥∥∥f̃∥∥∥

PX
∥g∥PA

∈ [0, 1].

For further insight, let f =
∑

i uiµi and g =
∑

i viνi.

Then, ρ(f, P+) = max
vi

∑
i≥1 siuivi√∑

i≥1 u2
i

√∑
i v

2
i

=

√∑
i≥1 s2iu

2
i∑

i≥1 u2
i

by Cauchy-Schwarz inequality (the optimal vi satisfy v0 =
0 and vi ∝ siui for i ≥ 1). For any ϵ > 0, we define the
class of (1− ϵ)-compatible tasks as

Fϵ(P
+) =

{
f ∈ L2(PX ) : E[f ] = 0, ρ(f, P+) ≥ 1− ϵ

}
.

This class of tasks satisfies the two conditions, i.e. we can
find a g∗ with low variance Var[g∗(A) | x]:
Theorem 4.2 (Proof in Appendix B.1). For any f∗ ∈
Fϵ(P

+), there exists a g∗ ∈ L2(PA) such that f∗(x) =
E[g∗(A) | x], and g∗ satisfies

E
X∼PX

E
A,A′∼P+(· | X)

[
(g∗(A)− g∗(A′))

2
]
≤ 4ϵ∥g∗∥2PA

.

Now that we have a class of tasks compatible with P+,
we evaluate Φ by its worst-case approximation error on
Fϵ(P

+). The most common way to evaluate Φ is to fit a
linear predictor on top, also called a linear probe, which is
the focus of our attention (other methods for using Φ include
fitting a small neural network on top, using a kernel method,
or using KNN). Specifically, the worst-case approximation
error of Φ on F ⊂ L2(PX ) is the maximum error of the
optimal linear probe in estimating any function in F . In this
work, we focus on the L2 error.
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Definition 4.3. Let F ⊂ L2(PX ) be a function class where
f ∈ F ⇒ αf ∈ F for all α ∈ R. The worst-case approxi-
mation error of Φ : X → Rd on F is defined as

err(Φ;F) = max
f∈F(P+), ∥f∥PX

=1
err(Φ, f),

where err(Φ, f) = min
w∈Rd, b∈R

∥∥w⊤Φ+ b− f
∥∥2
PX
.

The following key result shows that the Φ that minimizes
err(Φ;Fϵ(P

+)) over all d-dimensional encoders must re-
cover the linear space spanned by the µ1, · · · , µd. Here µ0

is excluded since the bias b in the linear predictor implicitly
contains µ0.

Theorem 4.4 (Proof in Appendix B.2). Suppose 1− s1 ≤
ϵ ≤ 1−

√
s21+s22

2 . For any d, among all Φ = [ϕ1, · · · , ϕd]
where ϕi ∈ L2(PX ) , Φ minimizes err(Φ;Fϵ(P

+)) if and
only if it learns the contexture of TP+ . The error is given by

min
Φ:X→Rd, ϕi∈L2(PX )

err
(
Φ;Fϵ(P

+)
)
=
s21 − (1− ϵ)2

s21 − s2d+1

.

Conversely, for any d-dimensional encoder Φ and any ϵ > 0,
there exists f ∈ L2(PX ) such that ρ(f, P+) = 1− ϵ, and
err(Φ, f) ≥ s21−(1−ϵ)2

s21−s2d+1
.

This result has two parts. First, we show that if f∗ is com-
patible (f∗ ∈ Fϵ(P

+)), the optimal encoder achieves low
error on f∗. Second, we ask what if f∗ is incompatible. We
cannot claim that no Φ works for f∗—if one knows f∗ a pri-
ori, then one can set ϕ1 = f∗ to achieve zero error. Instead,
we show that for any Φ, there exists an f with the same
compatibility as f∗ for which Φ performs poorly. Therefore,
compatibility reflects whether a context is suitable for a task.

Evaluating an arbitrary encoder. The above result
bounds the approximation error of the encoder that learns
the contexture. We can also bound the approximation error
of an arbitrary encoder. See Appendix C.

4.2. Implications for Neural Scaling Laws

Scaling laws (Kaplan et al., 2020) state that the performance
of large neural networks grows with their size. Moreover,
models of different architectures learn highly aligned repre-
sentations when scaled up. Huh et al. (2024) thus proposed
the platonic representation hypothesis that scaling makes
representations more aligned with an underlying reality,
though they did not formally define this reality.

The contexture theory provides a new perspective on the
role of scaling. The function class from which the feature
encoders Φ are trained is a subset of L2(PX ), and as the
model gets larger, the class approaches L2(PX ). This sug-
gests that scaling brings the learned representation closer
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Figure 1. Alignment between the learned representation and the
top-d eigenfunctions of T

k+
X

on the abalone dataset. Solid
curves: CCA. Dashed curves: mutual KNN. Depth here means the
number of hidden layers.

to the span of the top-d singular functions of TP+ , explain-
ing why big models learn aligned representations. The key
difference is that contexts are designed by humans and thus
are more subjective than the so-called “underlying reality”.

We substantiate this extrapolation with an experiment on the
abalone dataset from OpenML. We use KNN (K = 30)
as context, where A = X , and P+ maps x to one of its
K nearest neighbors equiprobably. We compare two d-
dimensional representations with d = 128 learned in the
following two ways: (i) Kernel PCA to obtain the exact top-
d eigenfunctions of Tk+

X
; (ii) non-contrastive learning (LN

in Theorem 3.4) implemented with VICReg (Bardes et al.,
2022). For (ii), we use a fully-connected neural network
with Tanh activation, skip connections, and AdamW opti-
mizer (Kingma & Ba, 2015; Loshchilov & Hutter, 2017).
We use the same number of training epochs for every model.
For each width and depth, we run the experiments 15 times
with different random initializations, and report the average
alignment. See Appendix E for more details.

We measure the alignment between the two representa-
tions using the canonical-correlation analysis (CCA) metric
R2

CCA, and the mutual KNN metric with 10 neighbors like
Huh et al. (2024). We center and whiten the representations
(making the covariance identity) when using mutual KNN.
CCA is invariant to all invertible linear transformations on
Φ, which is ideal because such transformations do not affect
the performance of the downstream linear probe, since one
can adjust W and b of the linear probe accordingly. We
do not use linear CKA proposed by Kornblith et al. (2019)
because it is only invariant to orthogonal transformations.

Figure 1 plots the alignment between the exact top-d eigen-
functions and the learned deep representation while varying
the depth and width of the neural network. When they are
chosen optimally, the CCA can be as high as 0.9, and the
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mutual KNN can be higher than 0.8. Note that these align-
ment metric values are very high. For example, in Huh et al.
(2024), the mutual KNN metric value is usually below 0.2.
Hence, the representation learned by the neural network is
highly aligned with the top-d eigenfunctions.

The top plot studies neural networks with increasing widths.
We observe that when the neural network is relatively nar-
row, increasing the width improves alignment. However,
once the neural network is sufficiently wide, further increas-
ing the width may have a negative effect. For example, when
the depth is 3, the alignment is the highest when the width
is 512, and the alignment becomes lower when the network
is wider than 512. Since increasing the width can only make
the function class of Φ larger, this phenomenon is not due to
the expressivity of the neural network. We hypothesize that
it arises from optimization difficulty, that is larger models
are harder to train effectively. Consequently, with the same
number of pretraining steps, a larger model will be farther
away from the minima, leading to a reduced alignment.

The bottom plot studies neural networks with increasing
depths, and a similar trend is observed. When the network
is shallow, increasing the depth improves the alignment.
However, once the network is sufficiently deep, further in-
creasing the depth may have a negative effect.

In summary, we draw two conclusions from this experiment:
(i) the representation learned by a large neural network is
highly aligned with the top-d eigenfunctions; (ii) once the
neural network is large enough, further increasing its size
does not increase the alignment. Hence, we argue that once
the model is large enough such that Φ is already highly
aligned with the top-d eigenfunctions, further increasing the
model size inevitably yields diminishing returns.

5. Context Evaluation
How to create better contexts is a challenging problem. In
this section, we take a first step by studying when a context
is useful and how to efficiently evaluate its usefulness. The
key result is that the usefulness of a context is largely de-
termined by the association level between X and A, and a
useful context should have a moderate association. The
association level affects the decay rate of the singular values.
We propose a usefulness metric that only depends on the
singular values. Then, we empirically verify that this metric
has a strong correlation with the actual performance of the
encoder on many real datasets. As such, the proposed metric
can help practitioners to select among various pretraining
methods or hyperparameter settings efficiently.

5.1. The Effect of Context Association

A useful context should provide sufficient training signals
that are easy for the model to capture. If the association

between the X and A of a context is too weak, then the
signals will be insufficient. If the association is too strong,
then capturing the signals will be too hard. The association
level affects the spectrum of the context—the stronger the
association, the slower the decay of the singular values.

Case 1: Weak association. Consider the extreme case
whereA is independent ofX . This context is clearly useless
because it provides no information. In this case, only the
trivial singular function µ0 ≡ 1 has a positive singular value;
all the other singular values are 0. WhenX andA are nearly
independent, k+X(x, x′) is very close to 1, which causes the
singular values to decay too fast. Formally, we have:

Lemma 5.1 (Proof in Appendix G.1). When |k+X(x, x′)−
1| < ϵ for all x, x′ ∈ X , we have

∑
i>0 s

2
i < ϵ.

In Appendix F, we empirically verify that low association
leads to a small |k+X(x, x′) − 1| for all x, x′. In such a
scenario, Fϵ(P

+) is a very small set, so very few tasks are
compatible with and can benefit from the context.

Case 2: Strong association. The context A = X is useless.
Contexts whose singular values decay too slow are bad
because (i) for pretraining, there are non-smooth singular
functions with large singular values, which are hard to learn;
(ii) for downstream, a larger d is needed, as more singular
functions have non-trivial contributions, and it leads to a
higher sample complexity. In Appendix F, we empirically
verify that kernel k+X has a high Lipschitz constant when the
association is strong, meaning that the kernel is non-smooth
and thus the singular functions are non-smooth.

5.2. Task-agnostic Evaluation of Contexts

A good measurement of context usefulness should be task-
agnostic, because we would like the pretrained encoder to be
transferable to a variety of tasks, which we might not know
at pretrain time. Note that for any task-agnostic metric, one
can adversarially create a task for which the metric fails, so
there is no universal task-agnostic metric. However, a metric
can still be very useful if it provides guidance for most real
tasks. To this end, we propose the following metric:

τd =
1

1− s2d+1

+ β

∑d
i=1 s

2
i∑d0

i=1 s
2
i

, τ = min
d
τd, (3)

where β > 0 is a parameter, and d0 is the maximum embed-
ding dimension we consider. Typically d0 ranges from 512
to 8192. We choose β = 1 and d0 = 512 in our experiments.
τd is a proxy of the prediction error when the embedding
dimension is d. Thus, the d that minimizes τd can be viewed
as the predicted optimal embedding dimension, and τ evalu-
ates the context when d is chosen optimally.

Metric derivation. Let the target function be f∗ =
f0 + f1, where ⟨f0, f1⟩PX

= 0, f1 is compatible with the
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Figure 2. Metric illustration on abalone. Top row: context spec-
tra. Bottom row: black solid curves are τd divided by 6; red
dashed curves are the actual downstream prediction error. We
divide τd by 6 to fit it in the same plot.
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Figure 3. Metric illustration on MNIST, similar to Figure 2.

context, and f0 is not compatible with the context. The
prediction error can then be decomposed into (i) the approx-
imation error of f1; (ii) the approximation error of f0; (iii)
the estimation error. Theorem 4.4 bounds component (i) by
s21−(1−ϵ)2

s21−s2d+1
. In practice, s1 is usually very close to 1, and we

simplify this bound to the first term of Eqn. (3), up to a con-
stant factor. For component (ii), stronger associations imply
that more tasks are compatible with the context, reducing
this approximation error. Thus, this component should be
negatively correlated with

∑d0

i=1 s
2
i . Component (iii), the

estimation error, increases with stronger associations, since
higher association typically requires a larger d, and thus
greater sample complexity. Based on the results in Zhai
et al. (2024), this component can be essentially understood
as positively correlated with

∑d
i=1 s

2
i . The second term in

Eqn. (3) combines the contributions from components (ii)
and (iii), and is designed to be bounded by 1. This met-
ric can be efficiently estimated. It only requires the top-d0
eigenfunctions of Tk+

X
, which can be estimated in O(m3)

time using a random subset of m = Θ(d0 log d0) samples.
See Appendix D for details.

We now conduct an experiment that examines τd on two
datasets. First, we use the abalone dataset and KNN as
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Figure 4. Comparison of the downstream task between abalone
and MNIST. The y-axis is the cosine similarity between the down-
stream task and the i-th eigenfunction.

the context, similar to Section 4.2. We adjust the association
level by changing K: K = 150 (weak), K = 30 (moderate)
and K = 5 (strong). We obtain the exact eigenvalues and
eigenfunctions of Tk+

X
using kernel PCA. In Figure 2, we

plot the spectra of the three contexts in the top row. Then, in
the bottom row, we compare τd against the prediction error
of the linear probe under different d. We can see that when
the association is weak or moderate, τd first decreases and
then increases, which tracks the actual error. However, when
the association is too strong, τd monotonically decreases
with d, and it cannot track the actual error.

Second, we use the MNIST dataset. The context is ran-
dom cropping with crop ratio α. We adjust the association
level by changing α: α = 0.5 (weak), α = 0.2 (moderate)
and α = 0.05 (strong). Since kernel PCA is not scalable
to datasets as large as MNIST, we instead train a LeNet
(LeCun et al., 1998) using the non-contrastive learning ob-
jective (LN in Theorem 3.4) and the AdamW optimizer.
Then, we estimate the top eigenvalues using the method in
Appendix D. The downstream task is a binary classification
task—whether the digit is greater than 4. After pretraining,
a linear probe is fit on top of Φ using ridge regression. The
result is plotted in Figure 3.

Unlike abalone, on MNIST the downstream error mono-
tonically decreases with d. This disparity stems from the
difference between the two downstream tasks. To demon-
strate this, in Figure 4 we plot the cosine similarity between
the target function f∗ and the estimated i-th eigenfunction
on the two datasets. We can see that the variance of f∗ on
abalone is mostly concentrated on the top-5 eigenfunc-
tions, with the first cosine similarity being almost 0.5. In
contrast, the variance of f∗ on MNIST is more scattered,
and the cosine similarity is still close to 0.1 for the 150-th
eigenfunction. Consequently, having a large d on abalone
will have a little impact on the approximation error but will
increase the estimation error significantly. On the other
hand, having a larger d on MNIST will decrease the approx-
imation error more than it increases the estimation error,
which is why the total error monotonically decreases with d.
The takeaway from this experiment is that, while a context
with moderate association is generally good, its effective-
ness ultimately depends on the specific downstream task.
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The implication is that no evaluation metric would univer-
sally work for all contexts and downstream tasks. However,
a metric would still be useful if it correlates well with the
actual error in most scenarios, and thus can provide insights
into choosing the right context and the right hyperparame-
ters, such as the mask or crop ratio.

5.3. Empirical Verification

Now we examine if our metric correlates with the encoder’s
performance on real datasets. In practice, the performance
is influenced by many factors. To create a setting where all
factors but the context are controlled, we let the encoder be
the exact top-d singular functions obtained by kernel PCA.

Each dataset is randomly split into a pretrain set, a down-
stream labeled set, and a test set. The downstream linear
predictor is fit via ridge regression. Hyperparameter grid
search is conducted at both encoder learning and down-
stream stages. The evaluation metric is the mean squared
error. Let errd be the actual prediction error when Φ is d-
dimensional. We test d up to d0 = 512. Let d∗ be the one
that minimizes errd. We use four types of contexts:

• RBF kernels: k(x, a) = exp(−γ∥x− a∥2). We define
P+ as P+(a | x) ∝ k(x, a) for each x.

• KNN: P+(a | x) = K−1 if a is a KNN of x, else 0.

• RBFmask: First, randomly mask 20% of the features,
and then apply RBF kernels to the other features.
Specifically, we randomly draw 50 masks, and use
the average of P+ over all masks as the context.

• KNNmask: 20% random masking and then apply KNN.

For each of these contexts, A = X . For each type, we use
35 contexts by adjusting γ for RBF kernels and K for KNN.
By doing so, we adjust the association level between X and
A. We make sure that contexts in every type range from very
weak to very strong association. We do not use masking
alone because its dual kernel is hard to estimate.

In Table 1 we report the correlation between τ and errd∗ over
all 140 contexts from the 4 types on 28 classification (Cls)
and regression (Reg) datasets from OpenML (Vanschoren
et al., 2013) widely used in machine learning research. The
most common metric is the Pearson correlation, but it can
only detect linear correlations, while the correlation between
τ and errd∗ is not necessarily linear. Thus, we also report
the distance correlation (Székely et al., 2007) that can detect
non-linear correlations, but it cannot tell if the correlation is
positive or negative because it is always non-negative.

The median reported in the table shows that on more than
half of the datasets, there is a Pearson correlation of over
0.5, which is in general considered a strong correlation. The
distance correlation is even higher. As expected, the metric

Table 1. Correlation between τ and errd∗ on all 4 types of contexts
(clipped). Full results reported in Table 3 in Appendix G.

Dataset Size (↑) #Feat. Type Pearson Dist.

diabetes 768 8 Cls 0.737 0.740
Moneyball 1232 14 Reg 0.680 0.650
yeast 1269 8 Cls 0.221 0.256
splice 3190 60 Cls 0.831 0.801
abalone 4177 8 Reg 0.028 0.470
mushroom 8124 22 Cls 0.185 0.340
pumadyn32nh 8192 32 Reg 0.938 0.961
SpeedDating 8378 120 Cls 0.590 0.656
grid stability 10000 12 Reg 0.925 0.911
brazilian houses 10692 9 Reg -0.290 0.563
fifa 19178 28 Reg -0.349 0.663
kings county 21613 21 Reg 0.842 0.882
cps88wages 28155 6 Reg 0.250 0.479

Mean on 28 datasets 0.431 0.611
Median on 28 datasets 0.587 0.659

does not work on all datasets. For example, the Pearson
correlation is very negative on brazilian houses and
fifa. To understand the failure modes, in Appendix G we
do more analysis on the datasets where our metric fails.

6. Conclusion
We advance the science of representation learning by articu-
lating the target of representation learning—the top singu-
lar functions of a particular operator induced by a context,
which we term contextures. We further prove that such a
representation is optimal because it minimizes the worst-
case approximation on the class of tasks compatible with
the context. We show that most representation learning
approaches could be cast as estimating contextures, and em-
pirically verified that large neural networks can learn the top
singular functions well. We further analyze when a context
can be useful, relating that to its spectrum, and proposed a
task-agnostic usefulness metric that correlates well with the
encoder’s performance on real datasets.

Our analysis has three limitations, which lead to three open
problems. First, our analysis focused on the minimizers of
the objectives. However, Cohen et al. (2021) showed that
deep models trained by popular gradient methods do not
find the minimizers, but instead oscillate around the edge of
stability. The open problem is how this phenomenon affects
our results. Second, we did not discuss the impact of the
inductive bias of the model architecture, such as the trans-
lation invariance of convolutional neural networks. Such
inductive biases can affect the context and, therefore, the
encoder. We pose how to integrate the effect of these bi-
ases into our theory as an open problem. Third, our theory
assumes that PX is fixed. In practice, however, there is al-
ways a data distribution shift from upstream to downstream.
Refining our theory to handle such distribution shifts is an
exciting direction for future work.
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A. Proofs for Section 3
A.1. Proof of Theorem 3.1

Theorem 3.1. Let A be a one-hot random vector. Suppose the linear layer is unbiased, that is b = 0. Then, Φ∗ minimizes
R(Φ) if and only if it extracts the top-d eigenspace of TP+ΛT ∗

P+ , where kΛ(a, a′) = I[a = a′], or (Λg)(a) = g(a)PA(a).
If all classes have the same size, then the top-d eigenfunctions of TP+ΛT ∗

P+ and TP+T ∗
P+ are the same.

The following lemma will be very useful in the proof.

Lemma A.1. TP+ΛT ∗
P+ is the integral kernel operator of the following kernel

k(x, x′) =

∫∫
kΛ(a, a

′)P+(a|x)P+(a′|x′)dada′.

Proof. By definition, we have

(T ∗
P+h)(a′) =

∫
h(x′)P+(x′|a′)dx′.

Thus we can get

(ΛT ∗
P+h)(a) =

∫
(T ∗

P+h)(a′)kΛ(a, a
′)PA(a

′)da′

=

∫∫
h(x′)P+(x′|a′)kΛ(a, a′)PA(a

′)dx′da′

=

∫∫
h(x′)P+(a′|x′)kΛ(a, a′)PX (x′)dx′da′.

This implies that

(TP+ΛT ∗
P+h)(x) =

∫
(ΛT ∗

P+h)(a)P+(a|x)da

=

∫∫∫
h(x′)kΛ(a, a

′)P+(a|x)P+(a′|x′)PX (x′)dada′dx′

=

∫
h(x′)k(x, x′)PX (x′)dx′,

as desired.

Then, we finish the proof of Theorem 3.1.

Proof. For any fixed Φ, define

R(Φ,W ) = EP+

[
∥A−WΦ(X)∥22

]
= E

X∼PX
E

A∼P+(·|X)

[
∥A−WΦ(X)∥22

]
.

Assuming, without loss of generality, that EX∼PX [ΦiΦj ] = δij ; otherwise one can perform Gram-Schmidt process on Φi

and change the value of W respectively. Thus, it amounts to minimize

R(Φ,W ) = E
X∼PX

E
A∼P+(·|X)

[
∥A−WΦ(X)∥22

]
= E

X∼PX
∥WΦ(X)∥22 − 2 E

X∼PX
E

A∼P+(·|X)
⟨A,WΦ(X)⟩+ E

A∼PA
∥A∥22

= ∥W ∥2F − 2 E
X∼PX

E
A∼P+(·|X)

⟨A,WΦ(X)⟩+ E
A∼PA

∥A∥22.

Denote W = (wij)1≤i≤dA,1≤j≤d. We have

∂R
∂wij

= 2wij − 2 E
X∼PX

E
A∼P+(·|X)

[AiΦj(X)],

13
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which implies that for a fixed Φ, the optimal W that minimizes this loss should satisfy

wij = E
X∼PX

E
A∼P+(·|X)

[AiΦj(X)].

Combining the minimizer of W with R and notice that EA∼PA∥A∥
2
2 is a constant, it suffices to maximize

F (Φ) =
∑
i,j

[
E

X∼PX
E

A∼P+(·|X)
AiΦj(X)

]2
=

∫ ∑
j

Φj(x1)Φj(x2)⟨a1, a2⟩PX (x1)P
+(a1|x1)PX (x2)P

+(a2|x2)dx1da1dx2da2

=

∫∫ ∑
j

Φj(x1)Φj(x2)k̂(x1, x2)PX (x1)PX (x2)dx1dx2,

where

k̂(x1, x2) =

∫∫
⟨a1, a2⟩P+(a1|x1)P+(a2|x2)da1da2 (4)

=

∫∫
I[a1 = a2]P

+(a1|x1)P+(a2|x2)da1da2.

Thus Φ∗ is a minimizer of R(Φ) if Φ∗ extracts the top-d eigenfunctions of k̂(x1, x2). Combining with Lemma A.1 yields
that kΛ(a, a′) = I[a = a′]. Furthermore, we have (Λg)(a) =

∫
g(a′)kΛ(a, a

′)dPA(a
′) = g(a)PA(a), as desired.

If all classes have the same size, we have PA(a) ≡ c ∈ (0, 1) where c is a constant. Thus (Λg)(a) = g(a)PA(a) =
cg(a), which implies that TP+ΛT ∗

P+ = cTP+T ∗
P+ . This concludes that TP+ΛT ∗

P+ and TP+T ∗
P+ share the same top-d

eigenfunctions.

A.2. Proof of Theorem 3.2

Theorem 3.2. Under the setting of Theorem 3.1, let the linear layer be biased. Then, Φ∗ minimizes Rbal(Φ) if and only if
it learns the contexture of P+.

Proof. For any fixed Φ, define

R(Φ,W ) = EP+

[
1√

PA(A)
∥A−WΦ(X)∥22

]
= E

X∼PX
E

A∼P+(·|X)

[
1√

PA(A)
∥A−WΦ(X)∥22

]
.

Assuming, without loss of generality,

E
X∼PX

E
A∼P+(·|X)

[
1√

PA(A)
ΦiΦj

]
= δij ;

otherwise we can perform Gram-Schmidt process on Φi and change the value of W respectively. Thus it suffices to
minimize

R(Φ,W ) = E
X∼PX

E
A∼P+(·|X)

[
1√

PA(A)
∥A−WΦ(X)∥22

]

= E
X∼PX

E
A∼P+(·|X)

[
1√

PA(A)
∥WΦ(X)∥22

]

− 2 E
X∼PX

E
A∼P+(·|X)

〈
A√
PA(A)

,WΦ(X)

〉
+ E

A∼PA

[
∥A∥22√
PA(A)

]

= ∥W ∥2F − 2 E
X∼PX

E
A∼P+(·|X)

〈
A√
PA(A)

,WΦ(X)

〉
+ E

A∼PA

[
∥A∥22√
PA(A)

]
.

14
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Denote W = (wij)1≤i≤dA,1≤j≤d. We have

∂R
∂wij

= 2wij − 2 E
X∼PX

E
A∼P+(·|X)

[
Ai√
PA(A)

Φj(X)

]
,

which implies that for a fixed Φ, the minimizer of W satisfies

wij = E
X∼PX

E
A∼P+(·|X)

[
Ai√
PA(A)

Φj(X)

]
.

Combining the minimizer of W with R, it suffices to maximize

R′ =
∑
i,j

[
E

X∼PX
E

A∼P+(·|X)

Ai√
PA(A)

Φj(X)

]2
=

∫∫ ∑
j

Φj(x1)Φj(x2)k̂(x1, x2)PX (x1)PX (x2)dx1dx2,

where

k̂(x1, x2) =

∫∫
⟨a1, a2⟩√

PA(a1)PA(a2)
P+(a1|x1)P+(a2|x2)da1da2

=

∫∫
I[a1 = a2]√
PA(a1)PA(a2)

P+(a1|x1)P+(a2|x2)da1da2

=

∫
P+(a|x1)P+(a|x2)

PA(a)
dy.

Thus, Φ∗ is a minimizer of R(Φ) if Φ∗ extracts the top-d eigenfunctions of k̂(x1, x2). Combining with Definitions 2.1
and 2.5 yields the desired results.

A.3. Result for Regression

For regression where A is an arbitrary Euclidean vector, using the same objective as Eqn. (1), we can prove the following
result.

Theorem A.2. Φ∗ minimizes Eqn. (1) if and only if Φ∗ extracts the top-d eigenspace of TP+ΛT ∗
P+ . If the linear layer is

unbiased (b = 0), then kΛ(a, a′) = ⟨a, a′⟩; if it is biased (b can be arbitrary), then kΛ(a, a′) =
〈
ã, ã′

〉
.

Remark A.3. Kernel kΛ(a, a′) = ⟨a, a′⟩ is called the linear kernel on A, and kΛ(a, a′) =
〈
ã, ã′

〉
is called the centered

linear kernel w.r.t. PA. Theorem 3.1 is a special case of Theorem A.2.

Proof. For the unbiased linear model, the proof is similar to that of Theorem 3.1. Combining Eqn. (4) and Lemma A.1
yields the desired result.

Next, we consider a biased linear model. For a variable z, we denote z̄ = E[Z], and z̃ = z − E[Z] as its centered version.

For any fixed Φ, define
R(Φ,W , b) = E

X∼PX
E

A∼P+(·|X)

[
∥A−WΦ(X)− b∥22

]
= E

X∼PX
E

A∼P+(·|X)

[
∥A−WΦ(X)− b∥22

]
= E

X∼PX
E

A∼P+(·|X)

[∥∥∥Ã−W Φ̃(X)− b̂
∥∥∥2
2

]
= E

X∼PX
E

A∼P+(·|X)

[∥∥∥Ã−W Φ̃(X)
∥∥∥2
2

]
+
∥∥∥b̂∥∥∥2

2

where b̂ = WEX∼PX [Φ(X)]−EA∼PA [A]+b. Thus, for any fixed Φ,W , the optimal b = EA∼PA [A]−WEX∼PX [Φ(X)].

Assuming, without loss of generality, EX∼PX [Φ̃iΦ̃j ] = δij ; otherwise we can perform Gram-Schmidt process on Φ̃i and
change the value of W respectively. Thus, it suffices to minimize
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R̂(Φ,W ) = E
X∼PX

E
A∼P+(·|X)

[∥∥∥Ã−W Φ̃(X)
∥∥∥2
2

]
= E

X∼PX

∥∥∥W Φ̃(X)
∥∥∥2
2
− 2 E

X∼PX
E

A∼P+(·|X)

〈
Ỹ ,W Φ̃(X)

〉
+ E

A∼PA

∥∥∥Ã∥∥∥2
2

= ∥W ∥2F − 2 E
X∼PX

E
A∼P+(·|X)

〈
Ã,W Φ̃(X)

〉
+ E

A∼PA

∥∥∥Ã∥∥∥2
2
.

Denote W = (wij)1≤i≤dy,1≤j≤d. We have

∂R̂
∂wij

= 2wij − 2 E
X∼PX

E
A∼P+(·|X)

[
ÃiΦ̃j(X)

]
,

which implies that for a fixed Φ, the minimizer of W satisfies

wij = E
X∼PX

E
A∼P+(·|X)

[
ÃiΦ̃j(X)

]
.

Combining the minimizer of W with R̂ and notice that EA∼PA

∥∥∥Ã∥∥∥2
2

is a constant, it suffices to maximize

R̂′ =
∑
i,j

[
E

X∼PX
E

A∼P+(·|X)
ÃiΦ̃j(X)

]2
=

∫ ∑
j

Φ̃j(x1)Φ̃j(x2)⟨ã1, ã2⟩PX (x1)P
+(a1|x1)PX (x2)P

+(a2|x2)dx1da1dx2da2

=

∫∫ ∑
j

Φ̃j(x1)Φ̃j(x2)k̂(x1, x2)PX (x1)PX (x2)dx1dx2,

where

k̂(x1, x2) =

∫∫
⟨ã1, ã2⟩P+(a1|x1)P+(a2|x2)da1da2.

Notice that ∫∫
k̂(x1, x2)PX (x1)PX (x2)dx1dx2 =

∫
⟨ã1, ã2⟩P+(x1, a1)P

+(x2, a2)dx1da1dx2da2

=

∫
⟨ã1, ã2⟩PA(a1)PA(a2)da1da2 = 0,

thus Φ∗ is a minimizer of R(Φ) if Φ̃∗ extracts the top-d eigenfunctions of k̂(x1, x2). Combining with Lemma A.1 yields
the desired results.

A.4. Proof of Theorem 3.4

Theorem 3.4. Ψ∗ minimizes LC or LN if and only if Φ̃∗ = TP+Ψ̃∗ learns the contexture.

Proof. (i) The spectral contrastive loss is

LC(Ψ) = E
X∼PX

E
A,A+∼P+(·|X)

[
−
〈
Ψ̃(A), Ψ̃(A+)

〉
+

1

2
E

A−∼PA

[〈
Ψ̃(A), Ψ̃(A−)

〉2]]
.

Suppose ψi =
∑

j≥0 cijνj where νj is the ONB of L2(PA) in Lemma 2.3. Since νj is the ONB of L2(PA) and ν0 ≡ 1,
we can get for j ≥ 1, EPA [νj(a)] = δ0,j = 0. Thus we can get ψ̃i = ψi − E[ψi] =

∑
j≥1 cijνj .
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Denote matrix C = (cij)1≤i≤d,j≥1, matrix B = (bij) := C⊤C, and matrix D = diag(s21, s
2
2, · · · ) where si is the

singular value of TP+ . We have

E
X∼PX

E
A,A+∼P+(·|X)

[〈
Ψ̃(A), Ψ̃(A+)

〉]
=

∫∫∫ 〈
Ψ̃(a), Ψ̃(a+)

〉
P+(a|x)P+(a+|x)PX (x)dxdada+

=

∫ 〈∫
Ψ̃(a)P+(a|x)dy,

∫
Ψ̃(a+)P+(a+|x)da+

〉
p(x)dx

=

∫ 〈
TP+Ψ̃(x), TP+Ψ̃(x)

〉
p(x)dx = ∥TP+Ψ̃∥2PX

=
∑
i

s2i bii;

and

E
A,A−∼PA

[〈
Ψ̃(A), Ψ̃(A−)

〉2]
=

∫∫ [ d∑
i=1

ψ̃i(a)ψ̃i(a
−)

]2
dPA(a)dPA(a

−)

=
∑

1≤i,j≤d

[∫
ψ̃i(a)ψ̃j(a)dPA(a)

]2
=
∑
i,j

b2ij .

Thus, we have

LC(Ψ) = −
∑
i

s2i bii +
1

2

∑
i,j

b2ij = ∥B −D∥2F − ∥D∥2F .

So if suffices to minimize ∥B−D∥2F where rank(B) ≤ d. By Eckart-Young-Mirsky Theorem, we know the minimizer
of B is B∗ = diag(s21, · · · , s2d). Thus the minimizer of C should be C∗ = Udiag(s1, · · · , sd) where U ∈ Rd×d is
an orthonormal matrix. This indicates the minimizer Ψ̃∗ extracts the top-d singular functions of TP+ , and Φ̃∗ learns
the contexture of P+.

(ii) The non-contrastive loss is

LN(Ψ) = E
X∼PX

E
A,A+∼P+(·|X)

[
−
〈
Ψ̃(A), Ψ̃(A+)

〉]
;

L′
N(Ψ) = E

X∼PX
E

A,A+∼P+(·|X)

[∥∥Ψ(A)−Ψ(A+)
∥∥2
2

]
,

where CovPA [Ψ] = I . Since for any Ψ,

L′
N(Ψ)− LN (Ψ) = 2 E

A∼PA

[∥∥∥Ψ̃(A)
∥∥∥2
2

]
= 2d

is a constant, thus Ψ∗ minimizes LN(Ψ) ⇐⇒ Ψ∗ minimizes L′
N(Ψ).

Suppose ψi =
∑

j≥0 cijνj where νj is the ONB of L2(PA) in Lemma 2.4. Since EPA [νj(a)] = δ0,j , we can get
ψ̃i = ψi − E[ψi] =

∑
j≥1 cijνj .

We now consider the minimizer of LN(Ψ). By the calculation in (i), we obtain

LN(Ψ) = − E
X∼PX

E
A,A+∼P+(·|X)

[〈
Ψ̃(A), Ψ̃(A+)

〉]
= −∥TP+Ψ̃∥2PX

= −
∑
i

s2i bii.

By EPA

[
ψ̃iψ̃j

]
= δij , we have ∑

i

bii =
∑
i,j

c2ij = d.
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Since νi is an ONB of L2(PA), ψ̃1, · · · , ψ̃d are orthogonal, we have

bii =

d∑
j=1

c2ji =

d∑
j=1

〈
ψ̃j , νi

〉2
PA

≤ ∥νi∥2PA
= 1. (5)

Thus, we conclude that

LN(Ψ) +

d∑
i=1

s2i =

d∑
i=1

s2i (1− bii)−
∑
i>d

s2i bii ≥
d∑

i=1

s2d(1− bii)−
∑
i>d

s2dbii = 0,

which implies that LN(Ψ) ≥ −
∑d

i=1 s
2
i . To attain equality, we will have bii = 1 for i = 1, · · · , d, and bii = 0 for

i ≥ d+ 1. By Eqn. (5), we can know Ψ∗ extracts the span of ν1, · · · , νd, indicating that Ψ̃∗ extracts the top-d singular
functions of TP+ and Φ̃∗ learns the contexture of P+.

A.5. Result for Denoising Autoencoders

For denoising autoencoders, suppose X ⊆ RdX . Then, consider minimizing the following objective:

R(Ψ) = min
W∈RdX×d, b∈RdX

E
(X,A)∼P+

[
∥WΨ(A) + b−X∥22

]
. (6)

Theorem A.4. Let Ψ∗ be any minimizer of Eqn. (6). Then, Ψ̃∗ extracts the top-d eigenspace of T ∗
P+ΛTP+ , where Λ is

the integral operator of kΛ(x, x′) = ⟨x̃, x̃′⟩ if b can be an arbitrary vector, or kΛ(x, x′) = ⟨x, x′⟩ if b = 0. Consequently,
Φ̃∗ = TP+Ψ̃∗ extracts the top-d eigenspace of TP+T ∗

P+Λ.

Proof. The proof is the same as Theorem A.2.

A.6. Proof of Theorem 3.5

Theorem 3.5. Let Φ∗ be any solution to Eqn. (2) (so that for any constant c, Φ∗ + c is also a solution). Then, Φ̃∗ learns
the contexture of P+.

Proof. Without loss of generality, suppose Φ̄ = 0. We have

(TP+f)(u) =
∑
v

f(v)
w(u, v)

d(u)
; ⟨TP+f, g⟩PX

=
∑
u,v

f(u)g(v)
w(u, v)

dsum
= ⟨f, TP+g⟩PX

,

which implies that TP+ is self-adjoint. Therefore, the eigenfunctions of TP+ are the same as those of T ∗
P+TP+ , with square

root eigenvalues.

For the objective of Eqn. (2), we have

1

2
E(u,v)∼Pw

[
∥Φ(u)− Φ(v)∥22

]
= E

(u,v)∼Pw

[
∥Φ(u)∥22 − ⟨Φ(u),Φ(v)⟩

]
=

d∑
i=1

(
∥ϕi∥2PX

− ⟨ϕi, TP+ϕi⟩PX

)
= d−

d∑
i=1

⟨ϕi, TP+ϕi⟩PX
.

Note that (u, v) and (v, u) can be drawn from Pw with equal probability. We conclude that Φ extracts the top-d eigenfunctions
of TP+ , which are the same as the top-d eigenfunctions of T ∗

P+TP+ , or the top-d singular functions of TP+ . This implies
that Φ̃ learns the contexture of TP+ .
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B. Proofs for Section 4
B.1. Proof of Theorem 4.2

Theorem 4.2. For any f∗ ∈ Fϵ(P
+), there exists a g∗ ∈ L2(PA) such that f∗(x) = E[g∗(A) | x], and g∗ satisfies

E
X∼PX

E
A,A′∼P+(· | X)

[
(g∗(A)− g∗(A′))

2
]
≤ 4ϵ∥g∗∥2PA

. (7)

Proof. Let g∗ =
∑
siuiνi. We have already explained that if f∗ ∈ Fϵ(P

+), i.e., E[f∗] = 0 and ρ(f∗, P+) ≥ 1− ϵ, then
it must satisfy the condition w.r.t. g∗:

⟨f∗, TP+g∗⟩PX

∥f∗∥PX
∥g∗∥PA

≥ 1− ϵ.

For Eqn. (7), we have P (A′|A = a) =
∫
P+(A′|X = x)P+(x|A′ = a)dx, where P+(x|a) = P+(a|x)PX (x)

PA(a) by Bayes
rule. Then, using Definition 2.1 we have P (A′|A = a) = k+A(a, a

′)PA(a
′), which implies that

EX∼PXEA,A′∼P+(·|X)[g
∗(A)g∗(A′)] = EA∼PAEA′∼P (·|A)[g

∗(A)g∗(A′)]

= EA

[
g∗(A)

∫
g∗(a′)P (a′|A)da′

]
= EA

[
g∗(A)

∫
g∗(a′)k+A(a, a

′)PA(a
′)da′

]
=
〈
g∗, Tk+

A
g∗
〉
PA
.

Since Tk+
A
g∗ = T ∗

P+TP+g∗ =
∑
s3iuiνi, Eqn. (7) is equivalent to

∑
(s2i − s4i )u

2
i ≤ 2ϵ

∑
s2iu

2
i . Meanwhile, we have∑

s2iu
2
i ≥ (1− ϵ)2

∑
u2i ≥ (1− 2ϵ)

∑
u2i . By Cauchy-Schwarz inequality, we have (

∑
s4iu

2
i )(
∑
u2i ) ≥ (

∑
s2iu

2
i )

2 ≥
(1− 2ϵ)(

∑
u2i )(

∑
s2iu

2
i ), which proves Eqn. (7).

B.2. Proof of Theorem 4.4

Theorem 4.4. Suppose 1 − s1 ≤ ϵ ≤ 1 −
√

s21+s22
2 . For any d, among all Φ = [ϕ1, · · · , ϕd] where ϕi ∈ L2(PX ) , Φ

minimizes err(Φ;Fϵ(P
+)) if and only if it learns the contexture of TP+ . The error is given by

min
Φ:X→Rd, ϕi∈L2(PX )

err
(
Φ;Fϵ(P

+)
)
=
s21 − (1− ϵ)2

s21 − s2d+1

.

Conversely, for any d-dimensional encoder Φ and any ϵ > 0, there exists f ∈ L2(PX ) such that ρ(f, P+) = 1 − ϵ, and
err(Φ, f) ≥ s21−(1−ϵ)2

s21−s2d+1
.

Proof. Necessity: Since span(Φ) is at most rank-d, thus there exists f1 ∈ span{µ1, · · · , µd+1} with ∥f1∥PX = 1 that is
orthogonal to span(Φ). Thus there exists f1, f2 ∈ span{µ1, · · · , µd+1} with ∥f1∥PX = ∥f2∥PX = 1, f1 is orthogonal
to span(Φ) and f2 ∈ span(Φ) (thus f1 ⊥ f2), and µ1 ∈ span{f1, f2}. Suppose µ1 = α1f1 + α2f2 (without loss of
generosity, assuming α1, α2 ∈ [0, 1]) and denote f0 = α2f1 − α1f2. Then ∥f0∥PX = 1 and ⟨µ1, f0⟩PX = 0. Since
f1, f2 ∈ span{µ1, · · · , µd+1}, we have f0 ∈ span{µ2, · · · , µd+1} and thus E[f0] = 0.

Consider f = β1µ1 + β2f0 where β2
1 + β2

2 = 1, β1, β2 ∈ [0, 1]. Denote f =
∑

i≥1 uiµi, we can get
∑

i u
2
i = 1 and

β2
2 ≤ s21 − (1− ϵ)2

s21 − s2d+1

=⇒
∑
i≥1

s2iu
2
i ≥ s21β

2
1 + s2d+1β

2
2 = s21 − (s21 − s2d+1)β

2
2 ≥ (1− ϵ)2

∑
i

u2i .

Obviously, f ∈ F(P+). We have

f = β1µ1 + β2f0 = β1(α1f1 + α2f2) + β2(α2f1 − α1f2) = (α1β1 + α2β2)f1 + (α2β1 − α1β2)f2.

By the definition of f1, f2 we can know the approximation error for f is (α1β1 + α2β2)
2. We can show F (α1) =

α1β1 + α2β2 = α1β1 +
√
1− α2

1β2 (α1 ∈ [0, 1]) first increases then decreases when β1, β2 ∈ [0, 1]. Thus F (α1)
2 ≥

min{F (0)2, F (1)2} = min{β2
1 , β

2
2}. Take β2

2 =
s21−(1−ϵ)2

s21−s2d+1
≤ 1

2 , we can get for f , the approximation error is always at

least s21−(1−ϵ)2

s21−s2d+1
.
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To attain equality, we must have
∑

i≥1 s
2
iu

2
i = s21β

2
1 + s2d+1β

2
2 . This implies that f1 = µd+1, indicating that

span(ϕ1, · · · , ϕd) = span(µ1, · · · , µd). Thus Φ learns the contexture of TP+ .

Furthermore, denote f0 = k2µ2 + · · ·+ kd+1µd+1 and consider f = β1µ1 + β2f0 where β2
1 + β2

2 = 1, β1, β2 ∈ [0, 1]. By
the definition of f0 and f , we have ∥f∥PX = 1 and f = β1µ1 + β2µ2 = β1µ1 + β2k2µ2 + · · ·+ β2kd+1µd+1. Thus

ρ2(f, P+) = s21β
2
1 + β2

2

d+1∑
i=2

s2i k
2
i = s21 −

(
s21 −

d+1∑
i=2

s2i k
2
i

)
β2
2 .

Take

β2
2 =

s21 − (1− ϵ)2

s21 −
(∑d+1

i=2 s
2
i k

2
i

) ≤ s21 − (1− ϵ)2

s21 − s22
≤
s21 −

s21+s22
2

s21 − s22
=

1

2
,

we have ρ(f, P+) = 1− ϵ. Similarly, the approximation error for f is

(α1β1 + α2β2)
2 ≥ min{β2

1 , β
2
2} = β2

2 =
s21 − (1− ϵ)2

s21 −
(∑d+1

i=2 s
2
i k

2
i

) ≥ s21 − (1− ϵ)2

s21 − s2d+1

.

Sufficiency: For any f ∈ F(P+) with ∥f∥PX
= 1 and E[f ] = 0, denote f =

∑
i≥1 uiµi where

∑
i≥1 u

2
i = 1. Obviously

we have (1− ϵ)2 ≤
∑

i≥1 s
2
iu

2
i ≤ 1. Notice that when span(ϕ1, · · · , ϕd) = span(µ1, · · · , µd) since Φ learns the contexture

of TP+ , the approximation of f will be
∑

i≥d+1 u
2
i := A. By the given conditions, we have

(1− ϵ)2 ≤
∑
i≥1

s2iu
2
i ≤ s21

d∑
i=1

u2i + s2d+1

∑
i≥d+1

u2i = s21 − (s21 − s2d+1)A,

and this implies that

A = min
w∈Rd, b∈R

∥∥w⊤Φ+ b− f
∥∥2
PX

≤ s21 − (1− ϵ)2

s21 − s2d+1

.

When u21 = 1− s21−(1−ϵ)2

s21−s2d+1
, u2d+1 =

s21−(1−ϵ)2

s21−s2d+1
, the equality holds. Thus the approximation error reaches its lower bound

when Φ learns the contexture of TP+ .

C. Evaluating an Arbitrary Encoder
Given a context that is compatible with the task, the encoder that learns the contexture is optimal. Now, what about an
arbitrary encoder Φ? Is it possible to bound its worst-case approximation error on the class of compatible tasks? To derive
such a bound, two key objects are necessary: the induced RKHS and the ratio trace. They were originally defined in (Zhai
et al., 2024) for self-supervised learning, and here we extend them to a broader scope.

Denote the range of T ∗
P+ by R(T ∗

P+) =
{
T ∗
P+f

∣∣ f ∈ L2(PX )
}

.

Definition C.1. The induced RKHS of P+, denoted by HP+ , is the Hilbert space R(T ∗
P+) with the inner product given by〈

T ∗
P+f1, T

∗
P+f2

〉
HP+

= ⟨f1, f2⟩PX
.

An alternative formula is that for any h1, h2 ∈ HP+ where h1 =
∑
uiνi and h2 =

∑
viνi, there is ⟨h1, h2⟩HP+

=
∑ uivi

s2i
.

Proposition C.2. The induced RKHS HP+ has the following properties:

(i) k+A is the reproducing kernel, such that h(a) =
〈
h, k+A(a, ·)

〉
HP+

for all h ∈ HP+ .

(ii) HP+ is isometric to span{µi : si > 0}, which is a subspace of L2(PX ).

(iii) f∗ ∈ Fϵ(P
+) is equivalent to h∗ = T ∗

P+f∗ satisfying the following isometry property:

(1− ϵ)
∥∥∥h̃∗∥∥∥

HP+

≤
∥∥∥h̃∗∥∥∥

PA
≤
∥∥∥h̃∗∥∥∥

HP+

. (8)
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Proof. For any h ∈ HP+ where h = T ∗
P+f and f =

∑
uiµi, we have〈

h, k+A(a, ·)
〉
HP+

=
〈∑

siuiνi,
∑

s2i νi(a)νi

〉
HP+

=
∑

siuiνi(a) = h(a),

which proves (i). (ii) is obvious. Regarding (iii), recall that f∗ =
∑
uiµi ∈ Fϵ(P

+) is equivalent to
∑

i≥1 s
2
iu

2
i ≥

(1 − ϵ)2
∑

i≥1 u
2
i , and this is

∥∥∥h̃∗∥∥∥
PA

≥ (1 − ϵ)
∥∥∥h̃∗∥∥∥

HP+

. Meanwhile, it is obvious that
∥∥∥h̃∗∥∥∥

PA
≤
∥∥∥h̃∗∥∥∥

HP+

always

holds.

Definition C.3. Define covariance matrices CΦ = CovPX [Φ], and BΦ = CovPA [T
∗
P+Φ]. If CΦ is invertible, then the ratio

trace of Φ w.r.t. P+ is defined as RT(Φ;P+) = RT(ϕ1, · · · , ϕd;P+) := Tr(C−1
Φ BΦ); otherwise, let Φ′ = [ϕi1 , · · · , ϕit ]

be the maximal linearly independent subset of [ϕ1, · · · , ϕd], and define the ratio trace of Φ the same as the ratio trace of Φ′.

The ratio trace of any Φ essentially measures how well Φ is aligned with the contexture of P+. Multiplying Φ by any
invertible matrix does not change its ratio trace. If Φ learns the contexture, then its ratio trace is s21 + · · ·+ s2d, which can be
easily shown by setting ϕi = µi. In fact, this is the maximum ratio trace of any d-dimensional encoder.

Lemma C.4. Suppose ϕ1, · · · , ϕd are orthonormal and all have zero mean. Then, we have

∥T ∗
P+ϕ1∥2PA

+ · · ·+ ∥T ∗
P+ϕd∥2PA

≤ s21 + · · ·+ s2d.

Proof. Let ϕi =
∑

j≥1 qijµj for i ∈ [d]. Then, Q = (qij) is a matrix with d orthonormal rows and infinitely many columns.
It is easy to see that the left-hand side is equal to Tr(QDQ⊤), where D = diag

{
s21, s

2
2, · · ·

}
. Let qj be the j-th column of

Q. For all j ∈ [d], there is
∑j

i=1 q
⊤
i qi ≤ j; and for any j > d, there is

∑j
i=1 q

⊤
i qi ≤ d. Thus, using Abel transformation,

we have

Tr(QDQ⊤) = Tr(DQ⊤Q) =

∞∑
j=1

s2jq
⊤
j qj =

∞∑
j=1

(
j∑

i=1

q⊤
i qi

)(
s2j − s2j+1

)
≤

d∑
j=1

s2j ,

as desired.

The ratio trace induces a key quantity in the approximation error bound called the trace gap, which reflects the gap between
Φ and the top-d singular functions. The larger the trace gap is, the larger the approximation error will be. A simple definition
is s21 + · · · + s2d+1 − RT(Φ;P+), whose lower bound s2d+1 can be achieved by the top-d singular functions, the optimal
encoder. However, there is an issue with this definition. For example, consider an encoder with d = 1000. It learns the
top-10 singular functions, but the other 990 dimensions are complete noise that has zero contribution to RT(Φ;P+). The
approximation error of this encoder should be no higher than that of the top-10 singular functions, because adding more
dimensions will never make the approximation error higher. However, if d becomes larger and RT(Φ;P+) stays the same,
then s21 + · · ·+ s2d+1 − RT(Φ;P+) will become larger, so this quantity does not correlate with the approximation error in
this scenario. The following definition fixes this issue.

Definition C.5. For any linearly independent f1, · · · , fd′ ∈ L2(PX ), denote F = [f1, · · · , fd′ ], CF = CovPX [F ], and
BF = CovPA [F ]. The trace gap of Φ w.r.t. P+ is defined as

TG(Φ;P+) := inf
d′≤d

inf
f1,··· ,fd′

{
s21 + · · ·+ s2d′+1 − Tr(C−1

F BF )
}
.

Obviously, this definition of trace gap is upper bounded by s21 + · · ·+ s2d+1 −RT(Φ;P+). It solves the issue in the previous
example because having completely noisy dimensions does not affect the trace gap. The following result bounds the
approximation error.

Theorem C.6. Suppose TG(Φ;P+) < s21, and ϵ > 1− s1. Then,

err(Φ;Fϵ(P
+)) ≤ s21 − (1− ϵ)2 + s1TG(Φ;P+)

s21 − TG(Φ;P+)2
.

Remark C.7. This bound is fairly tight. If Φ learns the contexture, then by Theorem 4.4 we have err(Φ;Fϵ(P
+)) =

s21−(1−ϵ)2

s21−s2d+1
, and TG(Φ;P+) = sd+1. Compared to this exact formula, the above upper bound only has an extra s1TG(Φ;P+)

term in the numerator.

21



Contextures: Representations from Contexts

Proof. Let f1, · · · , fd′ be the functions that minimize s21 + · · ·+ s2d′+1 −Tr(C−1
F BF ). Without loss of generality, assume

that f1, · · · , fd′ have zero mean and are orthonormal. Let F = span{f1, · · · , fd′}, and H = span
{
T ∗
P+f1, · · · , T ∗

P+fd′
}

.
For any f ∈ Fϵ(P

+) with ∥f∥PX
= 1, let h = T ∗

P+f ∈ HP+ , and let fF be the projection of f onto F . Since
err(Φ;Fϵ(P

+)) is upper bounded by ∥f − fF∥2PX
, it suffices to show that ∥f − fF∥2PX

is upper bounded by the right-hand
side.

Let α2 = ∥fF∥2PX
, and β2 = ∥f − fF∥2PX

, where α and β are non-negative. Then, α2 + β2 = ∥f∥2PX
= 1 = ∥h∥2HP+

.

The isometry property says that (1− ϵ)2(α2 + β2) ≤ ∥h∥2PA
. Let f − fF = βf0 where ∥f0∥PX

= 1. Let hF = T ∗
P+hF

and h0 = T ∗
P+f0. Then, we have ∥hF∥2PA

≤ s21∥fF∥
2
PX

= s21α
2. Meanwhile, since f0 is orthogonal to f1, · · · , fd′ ,

by Lemma C.4 we have
∥∥T ∗

P+f0
∥∥2
PA

+
∥∥T ∗

P+f1
∥∥2
PA

+ · · · +
∥∥T ∗

P+fd′
∥∥2
PA

≤ s21 + · · · + s2d′+1, which implies that∥∥T ∗
P+f0

∥∥2
PA

≤ s21 + · · ·+ s2d′+1 − Tr(C−1
F B−1

F ). Let τ = TG(Φ;P+). Then, we have

∥h∥2PA
= ∥hF + βh0∥2PA

≤ ∥hF∥2PA
+ β2∥h0∥2PA

+ 2β∥hF∥PA
∥h0∥PA

≤ s21α
2 + τ2β2 + 2s1ταβ.

Thus, we have (1− ϵ)2(α2 +β2) ≤ s21α
2 + τ2β2 +2s1ταβ, which implies that (s21 − τ2)β2 ≤ [s21 − (1− ϵ)2](α2 +β2)+

2s1ταβ ≤ [s21 − (1− ϵ)2 + s1τ ](α
2 + β2), as desired.

Connection to Fisher discriminant analysis. Fisher discriminant analysis (Mika et al., 1999; Baudat & Anouar, 2000;
Liu et al., 2004), or more generally linear discriminant analysis (LDA), is a classical method of learning linear classifiers
in statistics. Here we show that Fisher discriminant analysis has a strong connection to the contexture theory. Suppose
X ⊆ RdX . Fisher discriminant analysis defines the following between-class covariance matrix SB ∈ RdX×dX and
within-class covariance matrix SW ∈ RdX×dX :

SB =

∫∫ {
(E[X | A = a1]− E[X | A = a2])(E[X | A = a1]− E[X | A = a2])

⊤
}
;

SW =

∫
EP+

[
(X − E[X | A = a])(X − E[X | A = a])

⊤
∣∣∣ A = a

]
dPA(a).

In the original formulation of Fisher discriminant analysis, A is the label of X . Here we extend it to a general context
variable. Consider a linear encoder Φ(x) = Wx, where W ∈ Rd×dX . Then, one solves the following optimization problem
to find W :

maximize
W∈Rd×dX

J(W ) = Tr
[(
WSBW

⊤)(WSWW⊤)−1
]

s.t. WSWW⊤ is invertible.

Here, J(W ) is called the Fisher discriminant. Define Ψ(a) = EP+ [WX|A = a]. Then, we can see that

WSBW
⊤ =

∫∫
(Ψ(a1)−Ψ(a2))(Ψ(a1)−Ψ(a2))

⊤
dPA(a1)dPA(a2);

WSWW⊤ =

∫
EP+

[
(Φ(X)−Ψ(a))(Φ(X)−Ψ(a))

⊤
∣∣∣ A = a

]
dPA(a).

Let CΦ = E[Φ̃(X)Φ̃(X)⊤] and BΦ = E[Ψ̃(A)Ψ̃(A)⊤]. Then, we have

WSBW
⊤ = 2

{
E
[
Ψ(A)Ψ(A)⊤

]
− Ψ̄Ψ̄⊤} = 2E

[
Ψ̃(A)Ψ̃(A)⊤

]
= 2BΦ;

WSWW⊤ =

∫
EP+

[
Φ(X)Φ(X)⊤ −Ψ(a)Ψ(a)⊤

∣∣ A = a
]
dPA(a)

= E
[
Φ(X)Φ(X)⊤

]
− E

[
Ψ(A)Ψ(A)⊤

]
= E

[
Φ̃(X)Φ̃(X)⊤

]
− E

[
Ψ̃(A)Ψ̃(A)⊤

]
= CΦ −BΦ.

Therefore, J(W ) = 2Tr[(CΦ −BΦ)
−1BΦ], which is very similar to the ratio trace defined in Definition C.3. Recall that

an encoder that learns the contexture maximizes the ratio trace. A well-known result is that J(W ) is maximized when
W consists of the top-d eigenvectors of S−1

W SB . Hence, Fisher discriminant analysis is almost equivalent to contexture
learning under the constraint that the encoder must be linear.
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Figure 5. Estimating the eigenvalues using a random subset of m samples, from n total training samples.

D. Efficient Estimation of the Context Usefulness Metric
To estimate the metric τd defined in Eqn. (3), it suffices to estimate the top-d0 eigenvalues of the context. This can be
efficiently done with the following procedure:

(i) Train an encoder Φ whose output dimension is at least d0 to learn the contexture with a random subset of m samples.

(ii) Estimate the covariance matrix CΦ ∈ Rd×d = CovPX [Φ] with Monte Carlo.

(iii) Estimate BΦ ∈ Rd×d, where BΦ[i, j] =
〈
ϕ̃i, Tk+

X
ϕ̃j

〉
PX

, with Monte Carlo.

(iv) Solve the generalized eigenvalue problem BΦv = λCΦv. The eigenvalues λ1 ≥ · · · ≥ λd0
are estimates of

s21, · · · , s2d0
. Moreover, let Q = [v1, · · · ,vd] where (vi) are the orthonormal eigenvectors corresponding to (λi).

Let Φ∗ be the normalized version of Φ̃Q such that each dimension is scaled to unit variance. Then, ϕ∗1, · · · , ϕ∗d0
are

estimates of µ1, · · · , µd0 .

If we only need to estimate the eigenvalues, then (Shawe-Taylor et al., 2005) showed that for any fixed d, the sum s21+· · ·+s2d
can be estimated with low error using Θ(d) i.i.d. samples. By union bound, all s21, · · · , s2d0

can be estimated with low error
using m = Θ(d0 log d0) i.i.d. samples. However, if we want to estimate the eigenfunctions as well, then usually we need to
use the entire training set.

Let us demonstrate this method on 3 real datasets from OpenML (Vanschoren et al., 2013): abalone, fifa, and
kings county. We use KNN with K = 60 as context, where A = X , and P+(x′|x) = K−1 if x′ is a K-nearest
neighbor of x and 0 otherwise. For this context, we can exactly compute k+X , and thus we can obtain the exact eigenvalues
(ground truth) using kernel PCA. Meanwhile, we pretrain Φ with one of the variational objectives using a random subset of
m samples, and estimate the eigenvalues using the post-hoc approach. Then, we compare the estimation with the ground
truth.

We use a 2-layer wide Tanh-activated neural network with embedding dimension d = 512 and hidden dimension 20,000 as
Φ. We train the model through non-contrastive learning with the orthonormality constraint implemented by VICReg (Bardes
et al., 2022), and AdamW (Kingma & Ba, 2015; Loshchilov & Hutter, 2017) as the optimizer. We vary m and compare the
estimated top-d0 eigenvalues with the ground truth, where d0 = 256. The estimated eigenvalues and the ground truth are
plotted in Figure 5. From the plots, we observe that the eigenvalues estimated by our estimation method decay faster than
the ground truth, even if the full dataset is used. We hypothesize that the main reason is that even though we use a very wide
neural network, its function class is still a subset of L2(PX ). Consequently, the inductive bias of the model architecture
has an impact on the encoder, and therefore the learned contexture can be viewed as a mixture of the inductive bias and
the original KNN context. This mixture causes the eigenvalues to decay faster, which explains the observation in Figure 5.
Another reason is related to optimization. Since the model is non-convex, gradient methods cannot find the minima of the
objective.

The average estimation error of the top-256 eigenvalues is reported in Table 2. The error is defined as 1
d0

∑d0

i=1 |λ̂i − s2i |,
where λ̂i is the estimated eigenvalue. The table shows that when m ∈ [600, 1000] ≈ [0.5d0 log d0, 0.7d0 log d0], the
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Dataset m = 100 m = 300 m = 600 m = 1000 m = 2000 Full dataset

abalone 0.157 0.124 0.088 0.104 0.110 0.088
fifa 0.218 0.151 0.137 0.134 0.133 0.131
kings county 0.278 0.264 0.190 0.183 0.177 0.177

Table 2. Average estimation error of the top-256 eigenvalues.

performance is comparable to using the full dataset, which verifies the theoretical result of (Shawe-Taylor et al., 2005). The
estimation error is not zero even if the full dataset is used due to the aforementioned reasons. In summary, the post-hoc
method can estimate the eigenvalues using a small subset of samples, but the estimated eigenvalues decay faster than the
ground truth.

E. Scaling Law Experiment Details
Here we provide a more detailed description of the experiment setting in Section 4.2.

Experiment overview. The purpose of this experiment is to examine whether a large neural network can learn the
contexture well, and whether scaling up the model size makes the learned representation more aligned to the top-d
eigenfunctions. We compare two encoders. The first encoder is obtained via kernel PCA on the dual kernel, so it consists of
the exact top-d eigenfunctions. The second encoder is obtained via training a large neural network to optimize an objective
that can learn the contexture. Then, we compute the representational alignment of these two encoders. The most classical
metric is the canonical-correlation analysis (CCA) metric R2

CCA, which is invariant under invertible linear transformations
to the encoders. (Kornblith et al., 2019) proposed a variant called linear CKA, which is only invariant under orthogonal
transformations. In our setting, since we only care about the span of ϕ1, · · · , ϕd, we would like the metric to be invariant
under all invertible transformations, which is why we use CCA. In addition, we also use the mutual KNN metric with 10
neighbors proposed by (Huh et al., 2024), which measures the intersection over union (IoU) of nearest neighbors between the
two representations. This metric is not invariant under invertible linear transformations, so we whiten the two representations
such that their covariance matrices are both identities.

Setup. We use the abalone dataset from OpenML, and split the dataset into a pretrain set, a downstream train set and a
downstream test set by 70%-15%-15%. We use K-nearest neighbors (KNN) with K = 30 as the context. The embedding
dimension is set to d = 128. For the second encoder, we train a fully-connected neural network with Tanh activation and
skip connections for a sufficient number of steps with full-batch AdamW, and vary the depth and width of the network so
that we can study their effect on the alignment. Here, “depth” refers to the number of hidden layers—for example, a 2-layer
neural network has depth 1. For each width and depth, we run the experiments 15 times with different random initializations
and report the average alignment.

In our experiments, we observe the dimension collapse problem (Jing et al., 2022)—if we set the output dimension of the
neural network to be d, then the rank of the learned representation will usually be less than d, meaning that it can only
extract the top-d′ eigenspace for some d′ < d. (Jing et al., 2022) proved that the training dynamics of self-supervised
learning can cause this problem, that is, a large neural network trained with a gradient method cannot find the exact minima,
but will find a low-rank solution instead.

To fix this issue, we set the output dimension of the neural network to be d1 = 512 > d. After we obtain the d1-dimensional
encoder, similar to Appendix D we estimate the matrices CΦ and BΦ, and solve the generalized eigenvalue problem
BΦv = λCΦv. Let V = [v1, · · · ,vd] ∈ Rd1×d be the top-d eigenvectors; then, we use Φ̃V as the d-dimensional
representation. In other words, we use the 128 principal components of the 512-dimensional embedding.

F. More on Context Evaluation
In this section, we offer guidance for practitioners on identifying contexts with weak or strong associations with inputs. We
then show that both excessively weak and overly strong associations degrade downstream performance and demonstrate that
the proposed quantitative measurements accurately capture association strength in our controlled experiments. Moreover,
we provide full experimental results that complements Table 1. Finally, we provide proofs for the lemmas in Section 5.1.
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F.1. Quantitative measurements for level of association

While mutual information captures mutual dependence between random variables, estimating it from samples remains a
long-standing challenge as it requires the joint density function to be known (Paninski, 2003). To address this, we propose
alternative metrics that are computationally more tractable.

• Decay rate (all association): As we mentioned, the decay rate of the singular values (si)i≥0 reflects the strength of
association. To estimate the decay rate λ, we assume the singular values decay exponentially and fit the regression
model s2i = exp (−λi). When λ is large, it indicates a fast decay rate and context has low association. Conversely,
when λ is low, it implies a slow decay and highly associated context.

• Expected kernel deviation (weak association): Since the kernel values k+A(a, a
′) can be close to 1 for the contexts

with low association, we propose using the expected absolute deviation from 1, i.e. Ex,x′∼PX

[
|k+X(x, x′)− 1|

]
, as a

measure to indicate the weak association setting. Given samples x1, · · · , xn ∈ X , we use Monte Carlo sampling to
approximate it, i.e.

1

n2

n∑
i=1

n∑
j=1

|k+X(xi, xj)− 1|.

• Lipschitz constant (strong association): We empirically measure the Lipschitz constant of k+X for detecting contexts
with strong association. Specifically, given samples x1, · · · , xn ∈ X , we use the following estimation:

Lk+
X
= sup

x,y,z∈X

|k+X(z, x)− k+X(z, y)|
||x− y||2

≈ max
1≤i<j≤n,1≤k≤n

|k+X(xk, xi)− k+X(xk, xj)|
||xi − xj ||2

.

We note that the first metric requires estimating singular values (s2i )i≥0 and the last two metrics rely on estimating kernel
values k+X(x, x′). For estimating singular values, we employ the same technique as the task agnostic metric τ in Eqn. (3).
Estimating kernel values, on the other hand, necessitates training an encode Φ and approximating k+X(x, x′) as Φ(x)⊤Φ(x′),
which may require a large training set. Thus, decay rate measurements are preferred due to their simpler estimation process.

Additionally, for the non-smooth kernel k+X , we have the following lemma showing that we may have the singular functions
could be non-smooth and are difficult to estimate.

Lemma F.1. Let the Lipschitz constant for the positive pair kernel k+X be Lk+
X
= supx1,x2,x3∈X

|k+
X(x3,x1)−k+

X(x3,x2)|
||x1−x2||2 and

the maximum Lipschitz constant of its eigenfunctions be Lµ = maxi≥1 supx1,x2∈X
|µi(x1)−µi(x2)|

||x1−x2||2 . Assume that all the
eigenfunctions µi are bounded by c, i.e. µi(x) ≤ c for all i > 0 and x ∈ X . Then we have Lk+

X
≤ cLµ

∑
i=1 s

2
i .

Proof. We have

Lk+
X
= sup

x1,x2,x3∈X

|k+X(x3, x1)− k+X(x3, x2)|
∥x1 − x2∥2

= sup
x1,x2,x3∈X

|
∑

i≥0 s
2
iµi(x3)µi(x1)−

∑
i≥0 s

2
iµi(x3)µi(x2)|

∥x1 − x2∥2

= sup
x1,x2,x3∈X

|
∑

i≥0 s
2
iµi(x3)(µi(x1)− µi(x2)|

∥x1 − x2∥2

= sup
x1,x2,x3∈X

|
∑

i>0 s
2
iµi(x3)(µi(x1)− µi(x2)|

∥x1 − x2∥2
(µ0 ≡ 1)

≤ sup
x1,x2,x3∈X

∑
i>0 s

2
iµi(x3)|µi(x1)− µi(x2)|

∥x1 − x2∥2

≤ sup
x3∈X

∑
i>0

s2iµi(x3) sup
x1,x2∈X

|µi(x1)− µi(x2)|
∥x1 − x2∥2

≤ sup
x3∈X

∑
i>0

s2iµi(x3)Lµ
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≤ sup
x3∈X

cLµ

∑
i>0

s2i .

Assume that there exists a universal c that bounds all eigenfunctions. For a highly non-smooth kernel k+X with high Lipschiz
constant Lk+

X
, the lemma implies that we have either (i) smooth singular functions with large Lµ and slow decay in singular

values with small
∑

i=1 s
2
i , or (ii) non-smooth singular functions with large Lµ and fast decay in singular values with small∑

i=1 s
2
i . For (i), we need a larger d to approximate the kernel well, which leads to a higher downstream sample complexity.

For (ii), the function approximation by neural networks becomes more difficult for non-smooth functions (Yarotsky, 2018).

F.1.1. EMPIRICAL VERIFICATION

Setup. We provide empirical evidence showing (1) downstream performance is worse for contexts with weak and strong
associations, (2) the proposed quantitative measurements are positively correlated with the association level. To control the
level of association, we use RBF kernels and KNN.

For the estimation of kernel value k+X , we use k+X(x, x′) =
∫ P+(a|x)P+(a|x′)

PA(a) da since P+(a|x) can be efficiently computed
for these contexts. The decay rate is estimated using a non-linear least squares approach to fit the regression model. For
computing the expected kernel deviation, we utilize the entire training set. To estimate the Lipschitz constant, we restrict the
sample size to n = 1000 for computational efficiency. Other experimental setups are the same as in Section 5.3.

Results. Figure 6 and Figure 7 illustrate the relationship between association level and both the linear probe error errd∗

and the decay rate λ for KNN and RBF contexts, respectively. The results show that errd∗ increases at both extremes, with
most blue curves exhibiting a U-shape. This suggests that both weak and strong association levels lead to higher errors.
Additionally, the red curve indicates that the decay rate λ increases as the association level strengthens, highlighting a strong
correlation between association level and spectral decay, which is effectively captured by the estimated decay rate.

We report the relationship between association level and both the expected kernel deviation and the Lipschitz constant Lk+
X

in Figure 8 for the KNN context and Figure 9 for the RBF context. The results show that contexts with low association
exhibit small expected kernel deviations, while those with high association have large Lipschitz constants. These findings
align with our theoretical developments in Section 5.1.

G. More Experiment Details and Results
See Table 3 for the full results.

G.1. Proof of Lemma 5.1

Proof. Define k+X
′
(x, x′) = k+X(x, x′)− 1 =

∑
i>0 s

2
iµi(x)µi(x

′) that is the positive pair kernel without the trivial mode
(s0, µ0), where the equality follows the definition of Tk+

X
. We also denote the corresponding kernel integral operator as

(Tk+
X

′g)(x) =
∫
g(x′)k+X

′
(x, x′)dPX (x′). Then we have

∑
i>0

s2i = Tr(Tk+
X

′) =

∫
k+X

′
(x, x′)dPX (x′) <

∫
ϵdPX (x′) = ϵ,

as desired.
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Figure 6. Association level vs errd∗ and the decay rate λ for the KNN context on the 28 datasets. A larger K/N indicates a lower
association level, while a smaller K/N corresponds to a higher association level.

Figure 7. Association level vs errd∗ and the decay rate λ for the RBF context on the 28 datasets. A larger γ indicates a higher association
level, while a smaller γ corresponds to a higher association level.
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Figure 8. Association level vs the kernel deviation Ex,x′∼PX |k+
X(x, x′)− 1| and the Lipschitz constant L

k+
X

for the KNN context on
the 28 datasets. A larger K/N indicates a lower association level, while a smaller K/N corresponds to a higher association level. We
multiply L

k+
X

by the input feature dimension dfeat to normalize the L2 distance in the denominator.

Figure 9. Association level vs the kernel deviation Ex,x′∼PX |k+
X(x, x′)− 1| and the Lipschitz constant L

k+
X

for the RBF context on the
28 datasets. A larger γ indicates a higher association level, while a smaller γ corresponds to a higher association level. We multiply L

k+
X

by the input feature dimension dfeat to normalize the L2 distance in the denominator.
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Figure 10. Scatter plots of τ versus errd∗ . Dashed line: Linear fit.
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Table 3. Correlation between τ and the actual error errd∗ on all 4 types of contexts.

Dataset Size (↑) #Feature Type Pearson Distribution

credit-approval 690 15 Cls 0.583 0.683
breast-w 699 9 Cls 0.072 0.255
diabetes 768 8 Cls 0.737 0.740
solar flare 1066 10 Reg 0.019 0.262
Moneyball 1232 14 Reg 0.680 0.650
yeast 1269 8 Cls 0.221 0.256
cmc 1473 9 Cls 0.867 0.860
Wine 1599 11 Reg -0.084 0.212
scene 2407 299 Cls 0.608 0.685
dna 3186 180 Cls 0.881 0.843
splice 3190 60 Cls 0.831 0.801
kr-vs-kp 3196 36 Cls 0.543 0.512
abalone 4177 8 Reg 0.028 0.470
spambase 4601 57 Cls 0.775 0.858
colleges 7603 44 Reg 0.155 0.387
mushroom 8124 22 Cls 0.185 0.340
kin8nm 8192 8 Reg 0.805 0.760
pumadyn32nh 8192 32 Reg 0.938 0.961
cpu activity 8192 21 Reg 0.709 0.825
SpeedDating 8378 120 Cls 0.590 0.656
grid stability 10000 12 Reg 0.925 0.911
sulfur 10081 6 Reg -0.180 0.487
brazilian houses 10692 9 Reg -0.290 0.563
fifa 19178 28 Reg -0.349 0.663
superconductivity 21263 81 Reg 0.141 0.367
kings county 21613 21 Reg 0.842 0.882
health insurance 22272 11 Reg 0.601 0.749
cps88wages 28155 6 Reg 0.250 0.479

Mean 0.431 0.611
Median 0.587 0.659
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