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ABSTRACT

Reinforcement learning (RL) has enabled the training of large language model
(LLM) agents to interact with the environment and to solve multi-turn long-
horizon tasks. However, the RL-trained agents often struggle in tasks that require
active exploration and fail to efficiently adapt from trial-and-error experiences. In
this paper, we present LAMER, a general Meta-RL framework that enables LLM
agents to actively explore and learn from the environment feedback at test time.
LAMER consists of two key components: (i) a cross-episode training framework
to encourage exploration and long-term rewards optimization; and (ii) in-context
policy adaptation via reflection, allowing the agent to adapt their policy from task
feedback signal without gradient update. Experiments across diverse environ-
ments show that LAMER significantly improves performance over RL baselines,
with 11%, 14%, and 19% performance gains on Sokoban, MineSweeper and Web-
shop, respectively. Moreover, LAMER also demonstrates better generalization to
more challenging or previously unseen tasks compared to the RL-trained agents.
Overall, our results demonstrate that meta-reinforcement learning provides a prin-
cipled approach to induce exploration in language agents, enabling more robust
adaptation to novel environments through learned exploration strategies.

1 INTRODUCTION

Recent advances in large language models (LLMs) have shifted from building conversational sys-
tems to decision-making agents capable of reasoning about and interacting with their environ-
ments (Yao et al., 2023b; Shinn et al., 2023; Wang et al., 2025; Feng et al., 2025). To accomplish the
goal, language agents operate in multi-turn, textual observation-action loops, and must adapt quickly
using the memory across turns. Central to such adaptation is exploration, which allows agents to
test uncertain actions, acquire new knowledge, and avoid premature convergence on suboptimal
strategies. However, unlike humans that can explore systematically and make fast adaptation in
new environments (Wilson et al., 2014), LLM agents do not robustly engage in exploration without
substantial interventions (Krishnamurthy et al., 2024).

Recent works has begun to address this limitation by guiding LLMs toward exploratory behaviors
at test time. For example, Tajwar et al. (2025) train models offline to distill exploration strategies
from trajectories from diverse environments, while Gandhi et al. (2024) induce such strategies from
offline search traces. Setlur et al. (2025) train models to learn to explore in-context as a better way
of spending test-time compute (Snell et al., 2025). However, these works either focus on single-
turn non-agentic reasoning problems, or rely on offline data that limits them to imitation rather than
active exploration.

In this work, we take a step toward agents that can actively explore their environment, gather feed-
back, and leverage this experience for more effective exploitation. Since multi-turn tasks often have
a sparse success signal after an episode, we consider a multi-episode regime (Shinn et al., 2023)
where an episode is the unit of exploration and exploitation. Balancing exploration and exploita-
tion can then be naturally formulated as a cross-episode reinforcement learning (RL) framework.
Training across many similar but different environments under this framework leads to meta rein-
forcement learning (Meta-RL) (Duan et al., 2016; Wang et al., 2016; Bauer et al., 2023; Beck et al.,
2025), where the agent is forced to discover general strategies that work in unseen and potentially
harder environments.
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Figure 1: Comparison of RL and Meta-RL training on the Minesweeper environment. Left: Meta-
RL training with LAMER retains higher sample diversity from the base model while achieving
better success rates, reaching a better trade-off between exploration and exploitation. Right: Distinct
trajectories and their empirical probabilities aggregated over multiple sampled trajectories in the
MineSweeper environment. Each trajectory corresponds to a sequence of clicks (numbered cell)
on the board. Sample diversity is quantified by the entropy of the empirical distribution. Meta-RL
trained model produces more diverse and explorative trajectories.

Building upon this, we propose LAMER (LLM Agent with Meta-RL), a general Meta-RL frame-
work for LLM agent training. LAMER contains two important design factors. First, unlike standard
single-episode RL, LAMER is designed around a multi-episode structure to train the agent to solve
the problem through trial and error. In early episodes, the agent is encouraged to gather diverse
experiences and useful information of the environment, which are used to adapt its policy in later
episodes. By maximizing long-term rewards across episodes, the agent internalizes a learning al-
gorithm that explicitly incentivizes exploration for improved downstream exploitation. Second, at
both training and test time, the agent effectively leverages the feedback and reflection from the past
episodes to determine the strategy for the next episode, which essentially implements an RL al-
gorithm in context, and making the approach naturally suited for LLM agents. Meta-RL produces
more diverse samples while simultaneously achieving higher performance, reaching a better balance
between exploration and exploitation (Figure 1). To the best of our knowledge, this is the first time
a meta-RL framework is used for LLM agent training.

We evaluate LAMER on four challenging long-horizon tasks: Sokoban (Racanière et al., 2017),
MineSweeper (Li et al., 2024), Webshop (Yao et al., 2022) and ALFWorld (Shridhar et al., 2020).
Using Qwen3-4B (Yang et al., 2025), we demonstrate that LAMER consistently outperforms
prompting and RL baselines on all the environments. In addition, we observe that the trained model
has learned a balance between exploration and exploitation, resulting in a better test-time scaling
performance. In particular, LAMER adapts the trained policy at test time, with 11/14/19% abso-
lute performance gains on Sokoban, MineSweeper and Webshop, respectively. Furthermore, we
show that LAMER trained model achieves a better generalization to harder and out-of-distribution
tasks. In summary, LAMER takes a step toward autonomous agents that can actively act to uncover
information and improve their decision-making in the new environments.

2 RELATED WORK

LLM-as-agent. As LLMs become increasingly capable of reasoning about complex scenarios (Wei
et al., 2022), there is a growing interest in making them decision-making autonomous agents. Ear-
lier works rely on prompting frozen LLMs (Yao et al., 2023b; Shinn et al., 2023; Park et al., 2023;
Wang et al., 2024a; AutoGPT). ReAct (Yao et al., 2023b) prompts LLMs with in-context examples
to generate both textual actions and reasoning thoughts. Later, Reflexion (Shinn et al., 2023) extends
this principle to the multi-episode setting, where the agent verbally reflects on the last episode and
maintains their own reflection buffer for the next episodes. More recent research trains LLM agents
through designing advanced RL algorithms (Wang et al., 2025; Feng et al., 2025) for multi-turn inter-
actions, or supervised fine-tuning on generated interaction trajectories across diverse tasks (Tajwar
et al., 2025). The evaluation of LLM agents also poses challenges because of fully verbal interac-
tions with the environments. Recent benchmarks span a wide range of domains, including text-based
embodied environments (Shridhar et al., 2020), e-commerce website (Yao et al., 2022), bandits (Nie
et al., 2024), classic games (Park et al., 2025; Li et al., 2024) and other tasks (Liu et al., 2024;
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Nathani et al., 2025). For a more comprehensive overview of these efforts, we refer readers to recent
surveys (Wang et al., 2024b; Zhang et al., 2025).

Meta reinforcement learning (Meta-RL) (Beck et al., 2025) focuses on ”learning to reinforcement
learn” in order to rapidly adapt to new environments. Similar to meta-learning (Thrun & Pratt, 1998;
Hospedales et al., 2021), it involves an inner-loop that represents an RL algorithm (i.e. adaptation
strategy) by itself, together with an outer-loop that updates the meta-parameters so that the inner loop
becomes more effective across many tasks. By training across many tasks, the outer loop forces the
agent to learn the exploration strategy necessary to solve the tasks, while the inner loop enables the
agent adapt quickly based on the exploration. Depending on how the inner loop is done, there are in-
context methods and gradient-based methods. For example, Duan et al. (2016); Wang et al. (2016);
Stadie et al. (2018) represent the inner-loop as a history-dependent policy parametrized by an RNN,
the adaptation is thus done ‘in-context’ through gathering more information stored in the memory
states. On the other hand, Finn et al. (2017) leverages a gradient-based approach in which the inner
adapts a general meta-policy learned by the outer-loop. Our work lies in the former category, where
the adaptation occurs entirely in-context at test time, naturally leveraging LLMs’ in-context learning
abilities.

Test-time compute. A Meta-RL framework in LAMER can be considered as amortizing the test-
time compute by training tasks in a multi-episode manner rather than a single episode. In this way,
the learned in-context policy adaptation balances exploration and exploitation for a fast adaptation
at test time. This is essentially a better way of spending test-time compute (Snell et al., 2025;
Muennighoff et al., 2025; Wu et al., 2025; Setlur et al., 2025). In our experiments, we match the
training compute budget between an RL and a Meta-RL baseline, and show that meta-RL encourages
superior test-time scaling behavior (through pass@k). Qu et al. (2025) similarly relates meta-RL to
test-time compute, but they are limited to single-turn problems of mathematical reasoning, without
leveraging the interactive feedback from the environment.

Reasoning in LLMs. More broadly, this work relates to reasoning in LLMs, because language
agents must use reasoning as part of their decision-making. A large bulk of recent work on LLM
reasoning has focused on more advanced prompting (Wei et al., 2022; Yao et al., 2023a), post-
training (Cobbe et al., 2021; Luong et al., 2024; Shao et al., 2024; DeepSeek-AI et al., 2025)
or bootstrapping (Zelikman et al., 2022) against verifiers or reward models, inducing structured
search behavior (Gandhi et al., 2024; Moon et al., 2024), or reflecting on previous answers (Kumar
et al., 2024; Xiong et al., 2025; Qu et al., 2024), etc. Most of these works focus on single-turn
math (Hendrycks et al., 2021b; Cobbe et al., 2021) and coding (Chen et al., 2021; Hendrycks et al.,
2021a) problems, while we target multi-turn agentic environments where environment feedback is
available after every action and at the end of the episode.

3 PRELIMINARIES

We consider the scenario where an LLM agent interacts with the environment to solve a multi-turn
task. This process can be formulated as a Markovian decision process M = (S,A, P,R, γstep),
where S and A denote the state space and action space, and R is the reward function. At each time
step t = 0, ..., T − 1, the LLM agent observes a state st ∈ S and selects an action at ∈ A according
to its policy at ∼ πθ(·|st). The environment then provides a scalar reward rt ∈ R and transitions
to the next state st+1 according to the transition function P (· | st, at). A trajectory is the sequence
of states, actions, and rewards over an episode, i.e., τ = (s0, a0, r0, ..., sT−1, aT−1, rT−1). The
objective of reinforcement learning is to maximize the expected discounted return:

Eτ∼πθ

[
T−1∑
t=0

γt
steprt

]
(1)

where γstep ∈ [0, 1] is the discount factor. Recent works (Wang et al., 2025; Feng et al., 2025) have
shown that RL training has enabled LLM agents to interact with the environment and solve multi-
turn tasks. However, such agents often learn a fixed policy during training and struggle to actively
explore and adapt their behavior to the tasks at test time (Nie et al., 2024).

Meta-RL. Conversely, by training on a distribution of tasks, Meta-RL (Duan et al., 2016; Wang
et al., 2016; Bauer et al., 2023; Beck et al., 2025) encourages exploration because it optimizes meta-
parameters, such that the agent can solve new tasks quickly. In our case, the meta-parameters are
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the parameters of the LLM. This necessitates the agent to learn general exploration-exploitation
strategies suitable for the task distribution trained on. For example, for most navigation tasks in
partially observable environments, the optimal strategy is to gather the environment information and
locate the target during the first episode, then reach the target as efficiently as possible in the second
episode. This explore-then-exploit strategy implemented by the agent is itself a reinforcement learn-
ing algorithm, where the policy learned at the meta-level encodes how to adaptively switch between
information-gathering and reward-maximizing behaviors depending on the stage of interaction with
a new task. For LLM agents operating in multi-turn tasks, the policy can be in-context (i.e., without
parameter updates at test time), naturally leveraging the in-context capability of LLMs.

4 LAMER: A META-RL FRAMEWORK FOR LLM AGENTS

Adopting the principle of Meta-RL, we present LAMER, a framework for training LLM agents
with the ability to actively explore and adaptively learn from the environment. The framework
addresses two central challenges. First, how to balance exploration and exploitation over multiple
attempts at a task. To this end, LAMER introduces a cross-episode training scheme that treats each
trial as a sequence of episodes, enabling the agent to explore in early episodes and exploit this
information in later ones. Second, how to efficiently adapt the policy during training and evaluation.
Instead of relying on gradient-based updates, LAMER uses self-reflection as an in-context adaptation
mechanism, allowing the agent to summarize past experiences and adjust its strategy accordingly.
Together, these two components enable scalable training of LLM agents under a unified Meta-RL
framework, which can be optimized with standard RL algorithms.

Cross-episode training framework. In the training of LAMER, each trial consists of N episodes
sequentially generated by the agent:

T = (τ (0), τ (1), . . . , τ (N−1)), where τ (n) ∼ π
(n)
θ (·), n ∈ [0, N − 1], (2)

where π
(n)
θ (·) is the policy at episode n updated from the accumulated history τ (0), ..., τ (n−1)

through some adaptation strategy. For simplicity, in our analysis we assume all the episode contains
the T steps of interactions with the environment, i.e., τ (n) = (s

(n)
0 , a

(n)
0 , r

(n)
0 , ..., s

(n)
T−1, a

(n)
T−1, r

(n)
T−1)

for all n ∈ [0, N − 1]. The rollout process terminates at n if τ (n) is successful (as indicated by the
environment feedback). Otherwise, the agent starts a new episode τ (n+1) from the same initial
state, repeating this procedure until the maximum episode budget is reached. For action a

(n)
t , the

discounted return g
(n)
t within the episode τ (n) ∈ T is:

g
(n)
t =

T−1∑
l=t

γl−t
stepr

(n)
l , (3)

where γstep ∈ [0, 1] is within-the-episode discount factor.

To enhance the exploration and maximize the long-term reward, in LAMER framework we define
the discounted return G

(n)
t across the episodes of T as:

G
(n)
t = g

(n)
t︸︷︷︸

within-the-episode

+

N−1∑
m=n+1

γm−n
traj g

(m)
0︸ ︷︷ ︸

cross-episode

, (4)

where γtraj ∈ [0, 1] is the cross-episode discount factor. Finally, the LLM agent is trained via the
following Meta-RL objective:

J(θ) = ET ∼πθ

[
N−1∑
n=0

γn
traj

T−1∑
t=0

γt
stepr

(n)
t

]
= ET ∼πθ

[
G

(0)
0

]
. (5)

Here, γtraj is an important factor for the trade-off between exploration and exploitation. Ideally,
small γtraj biases the objective towards early episodes and will lead to rapid exploitation to solve
the problem. In comparison, a larger γtraj emphasizes long-horizon return and therefore encourages
more exploration at the early stage.

4
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Figure 2: Comparison between the training processes of RL (top) and Meta-RL used in LAMER
(bottom). For a single task, RL generates a group of trajectories independently. In contrast, in
LAMER we use Meta-RL and produce the trajectories sequentially and adapt the policy in-context
with self-reflection. Trajectory discount factor γtraj is used for cross-episode credit assignment.

In-context policy adaptation with self-reflection. In Meta-RL, policy adaptation is the inner loop
of the learning process of an LLM agent. Therefore, a flexible and efficient adaptation mechanism
plays an important role during training and methods like gradient descent Finn et al. (2017) might be
too expensive, especially for LLMs. In LAMER, we propose a self-reflection based strategy(Shinn
et al., 2023) to adapt the policy in-context (Brown et al., 2020; Laskin et al., 2023). Specifically,
after each episode finishes, we prompt the agent to generate the textual reflection on the previous
attempt, providing specific feedback and plan to guide the next episode (see Appendix A for the
used prompt). The policy is therefore updated through modifying the context, π(n)

θ (·) = πθ(·|H(n))

where H(n) denotes the inter-episode memory that contains both the history trajectories and reflec-
tions. Importantly, the self-reflection step is also explicitly trained in LAMER using the reward
obtained in the next episode. Note that the content H(n) can be adjusted according to the predefined
memory buffer to reduce the context length and improve the efficiency. By default, we retain both
history and reflection in H(n), and provide an ablation study in Section 6.2.

Comparison to RL training. Compared to the RL objective (Eq. 1), Meta-RL extends the credit
assignment across multiple episodes to incentivize exploration in the early stages. In practice, given
a single task, both RL and Meta-RL will sample a group of episodes during training to estimate the
advantage. The key difference is that the RL rollouts are independent, whereas in Meta-RL each
episode is conditioned on the preceding rollouts within the trial. Figure 2 illustrates the conceptual
difference between the training processes of RL and Meta-RL.

Optimization. The proposed Meta-RL objective in (5) can be optimized with standard policy
gradient methods. Given the per-action cross-episode return G

(n)
t defined above, the gradient can be

estimated by

∇θJ(θ) = ET ∼πθ

[
N−1∑
n=0

T−1∑
t=0

∇θ log πθ(a
(n)
t |s(n)t ,H(n))A

(n)
t

]
, (6)

where A
(n)
t is the advantage estimation derived from G

(n)
t . The framework is compatible with

widely used optimizers such PPO (Schulman et al., 2017) and critic-free approaches such as
GRPO (Shao et al., 2024) and GiGPO (Feng et al., 2025).

5 EXPERIMENTS

In this section, we conduct comprehensive experiments to evaluate LAMER Meta-RL framework.
Specifically, we present the evaluation on: (i) the overall performance of LAMER across different
agent environments; (ii) the generalization ability of LAMER to harder tasks; (iii) the generalization
of LAMER under distribution shifts.
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Table 1: Performance on Sokoban, MineSweeper and Webshop environments. The results of p@1,
p@2 and p@3 denote the success rate (%) under 1, 2, and 3 attempts, respectively.

Method Sokoban MineSweeper Webshop
p@1 p@2 p@3 p@1 p@2 p@3 p@1 p@2 p@3

Prompting
Zero-shot 6.8 9.8 12.9 4.5 6.6 8.6 1.4 2.1 2.3
ReAct 7.2 9.6 12.5 6.3 7.0 10.9 3.1 4.5 4.5
Reflexion 6.4 9.8 12.1 5.5 7.2 9.8 2.7 3.3 3.5
Training with RL
PPO 12.5 15.4 16.8 29.7 34.2 35.5 53.1 54.5 54.9
RLOO 13.5 16.6 18.8 48.8 51.2 51.6 67.6 68.4 69.1
GRPO 22.9 26.4 27.0 36.3 40.0 40.4 72.9 73.0 73.0
GiGPO 41.6 43.6 44.1 52.0 54.9 55.1 73.4 74.6 75.2
Training with Meta-RL (ours)
LAMER 42.4 52.0 55.9 44.1 66.4 74.4 67.8 84.4 89.1

5.1 EXPERIMENTAL SETUP

Environments. We evaluate LAMER on four challenging and diverse environments:
Sokoban (Racanière et al., 2017), MineSweeper Li et al. (2024), Webshop Yao et al. (2022)
and ALFWorld Shridhar et al. (2020). Among them, Sokoban is a classic grid-based game
on planning where the environment is fully observable. In comparison, the environments of
MineSweeper, ALFWorld and Webshop are partially observable, requiring the agent to explore and
plan under uncertainty to finish the task. Specifically, MineSweeper is a board game about logical
deduction on hidden cells. Webshop simulates realistic web-based shopping tasks, and ALFWorld
provides text-based embodied environments. We provide the detailed explanation and prompts of
the environment in Appendix A. All the experiments are conducted with the text modality, though
the proposed method can be naturally applied to multimodal environments.

Training details. We use Qwen3-4B (Yang et al., 2025) as our base model for all the experiments.
To improve rollout efficiency in agentic loops, we use the non-thinking mode during trajectory gen-
eration. Additionally, we validate our method on Llama3.1-8B-Instruct (Grattafiori et al., 2024), see
Appendix D.1 for the results. For the Meta-RL setting, we use γtraj = 0.6 as the default trajectory
discount factor and explore its influence in the ablation study. We use GiGPO as the default opti-
mization algorithm for all the environments with LAMER. Importantly, for Meta-RL training we
sample N = 3 episodes and set group size to 8 for each task. To ensure a fair comparison, we use
a group size of 24 in standard RL training, yielding the same number of trajectories used for each
gradient update step. All other hyperparameters and configurations are kept identical across RL and
Meta-RL for a fair comparison and are provided in Appendix C.

5.2 PERFORMANCE COMPARISON

In this section, we compare the performance of our proposed algorithm LAMER with prompting-
based baselines (Zero-shot, ReAct (Yao et al., 2023b; Shinn et al., 2023)), and RL methods
(PPO (Schulman et al., 2017), RLOO (Ahmadian et al., 2024), GRPO (Shao et al., 2024), and
GiGPO (Feng et al., 2025)) across three environments: Sokoban, MineSweeper, and Webshop. For
each method, we report the success rates under 1, 2, and 3 attempts (i.e., pass@1, pass@2, and
pass@3, respectively). The results are summarized in Table 1.

Meta-RL obtains better performance. Across all three environments, LAMER trained with
Meta-RL consistently outperforms both prompting-based baselines and RL-training methods on the
final pass@3 success rate. On Sokoban, LAMER achieves a 55.9% pass@3 success rate, substan-
tially outperforming the 44.1% from the strongest RL baseline (GiGPO) and 12.9% from prompting-
based methods. Similarly, on MineSweeper LAMER reaches 74.4% pass@3 success rate, which is
19% higher than the best RL-trained model. On Webshop, LAMER also performs 14% better than
the RL-trained methods. Notably, the performance gains are not limited to pass@3: improvements
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Figure 3: Trajectory diversity of base and trained models. Compared to RL, Meta-RL preserves
more diverse trajectories from the base model, striking a better balance between exploration and
exploitation.

are also observed on pass@2 for all the environments, and even pass@1 for Sokoban. Together,
these results demonstrate that LAMER delivers consistent benefit on the trained agents to solve the
long-horizon task in the complex environments.

Meta-RL exhibits stronger test-time scaling. Beside achieving the best final pass@3 perfor-
mance, Meta-RL also demonstrates remarkable effectiveness in test-time scaling, with larger per-
formance gains across attempts according to the results in Tabel 1. For example, the improvement
from pass@1 to pass@3 on Sokoban is 13.5% in Meta-RL, significantly larger both RL-trained and
prompting-based baselines (which are less than 5%). Notably, although Meta-RL starts with slightly
lower pass@1 performance than RL baseline (GiGPO) in MineSweeper and Webshop, it quickly re-
covers and surpasses all baselines by pass@2 and pass@3. The results indicate that the trained
model has successfully learned to actively explore in the earlier episodes and adapt effectively from
the mistakes, leading to significant gains in the subsequent attempts. The illustrative trajectories and
reflections produced by the trained agents are presented in Figure 6 in Appendix E.

Meta-RL induces exploration. To further analyze the behavior of the models, we measure the
diversity of answer trajectories across environments. For each question, we sample multiple trajec-
tories from the agent and group the identical trajectories that have the same states and actions. These
groups are used to form the empirical distribution over distinct trajectories, as shown in Figure 1. We
then estimate the entropy the distribution to quantify the trajectory diversity. Figure 3 compares the
trajectory diversity of the base model, RL, and Meta-RL agents across environments. We observe
that the base model exhibits the highest entropy, indicating it generates a wide range of trajectories,
though this diversity does not translate into higher success rates (see Table 1). RL-trained agent re-
duces diversity and converges toward more deterministic behaviors. In contrast, LAMER preserves
a higher level of diversity than RL baselines, allowing more exploration at test time.

5.3 GENERALIZATION TO HARDER TASKS

Next we study the generalization ability of the pretrained models on harder tasks. To this end,
we take the models trained with RL and Meta-RL and evaluate them on the harder tasks in the
environments of Sokoban and MineSweeper. We increase the difficulty by using more boxes for
Sokoban and more mines for MineSweeper in the grid. The results are shown in Figure 4. As
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Figure 4: Performance of RL and Meta-RL trained model on the tasks with increased difficulty. For
Sokoban, we gradually increase the number of boxes and for Minesweeper, we increase the number
of mines in the grid.
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expected, the model trained with both RL and Meta-RL underperforms on harder tasks with an
increasing number of boxes or mines in the grid. However, Meta-RL consistently outperforms RL
on all the difficulty levels. Notably, on the most difficult setting, the model trained from Meta-RL
still outperforms the RL-trained model with 10% performance gap on Sokoban, and 5% performance
gap on the MineSweeper. The consistent gap indicates that LAMER trained with Meta-RL not only
performs better on the training distribution, but also generalizes better to the harder tasks.

5.4 GENERALIZATION TO UNSEEN TASKS

We further study the ability LAMER and alternative methods to generalize out-of-distribution. For
this experiment, we use the ALFWorld environment (Shridhar et al., 2020). As a text-based em-
bodied environment, ALFWorld contains 6 categories of common household activities: Pick and
Place (Pick), Examine in Light (Look), Clean and Place (Clean), Heat and Place (Heat), Cool and
Place (Cool), and Pick Two and Place (Pick2). We use the tasks of Pick, Look, Clean and Heat
as in-distribution tasks and use Cool and Pick2 as out-of-distribution tasks. We train LAMER and
alternative baselines with instances from in-distribution tasks and then evaluate the model on both
in-distribution tasks (with held-out test set), and the examples of out-of-distribution tasks. The
results are shown in Table 2. As we can see, RL trained model generally performs well on in-
distribution tasks and outperforms prompting-based methods by achieving more than 20% improve-
ment on Look, Clean and Heat. However, on out-of-distribution tasks, Cool and Pick2, it only ob-
tains 58.1% and 36.0% success rate. Meta-RL consistently outperforms RL on both in-distribution
and out-of-distribution tasks, with a notable performance gap on out-of-distribution tasks. In partic-
ular, our LAMER framework achieves 23% performance gains on Cool and around 14% on Pick2.
Overall, these results suggest that on ALFWorld, Meta-RL trained model could generalize better to
out-of-distribution tasks compared to the RL trained model.

Table 2: Evaluation of out-of-distribution generalization on the tasks of ALFWorld.

Method i.d o.o.d

Pick Look Clean Heat Cool Pick2

Prompting 91.9 52.9 48.4 44.8 42.8 21.2
RL 95.5 83.0 67.9 86.6 58.1 36.0
Meta-RL 97.7 100.0 90.2 89.5 81.0 50.2

6 ANALYSIS

We further conduct a series of ablation studies on the key design factors of LAMER, including (i)
the influence of trajectory discounted factor γtraj on the trade-off between exploration and exploita-
tion and (ii) the ablation of inter-episode memory configurations. We additionally discuss (iii) the
computation budget of the proposed Meta-RL framework compared to the RL training.

6.1 INFLUENCE OF TRAJECTORY DISCOUNT FACTOR

The cross-episodes discount factor γtraj controls how rewards are propagated within a trial, thereby
mediating the balance between exploration and exploitation in the LAMER framework during train-
ing. To understand the effect of the discount factor, we train the agents with LAMER using different
values of γtraj on Sokoban, MineSweeper and Webshop. The results are shown in Figure 5. We
observe that a larger value of γtraj does not necessarily lead to better final performance on pass@3,
instead, the optimal setting of γtraj varies across different environments. For Sokoban and Web-
shop, intermediate values like γtraj = 0.6 yield the best results, suggesting that balancing immediate
and long-term rewards is more important for these tasks. In contrast, MineSweeper benefits from
relatively larger γtraj like 0.9, indicating that extended credit assignment better supports strategic
exploration in this environment. Overall, the results show that γtraj provides a practical way to
control the trade-off between exploration and exploitation across environments.
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Figure 5: Success rates of models trained with different γtraj. A higher value encourages more
exploration during training.

6.2 ABLATION ON THE INTER-EPISODE MEMORY

In LAMER, the agent policy is adapted in-context through the inter-episode memory H(n), which
by default contains both the trajectories and reflections of previous episodes. To assess the influence
of memory content to the training, we consider two alternative configurations in H(n): (1) only his-
tory trajectories; (2) only reflections. The performance of the trained agents in each configurations
are reported in Table 3. The results show that self-reflection provides a clear benefit in LAMER,
leading to 21.6% improvement on Sokoban, 11.0% on Minesweeper and 3.5% on Webshop, re-
spectively. Interestingly, the reflection-only configuration also outperforms the default setting in
LAMER (which contains both trajectory and reflection) across all environments. We hypothesize
that this is because reflection-only memory presents more concise and focused guidance, leading to
more effective adaptation of the agent’s behavior.

Table 3: Comparison of LAMER with different inter-episode memory configurations.

Content in H(n) Sokoban MineSweeper Webshop
Trajectory-only 34.8 69.5 89.3
Reflection-only 56.4 80.5 92.8
Both 55.9 74.4 89.1

6.3 TRAINING BUDGET

We conclude with a discussion on the training budget of RL and Meta-RL, focusing on both data
usage and computational efficiency. To ensure a fair comparison, we set the group size for standard
RL to be three times larger than that of Meta-RL. This adjustment guarantees that the two methods
consume the same number of trajectories for each gradient update. Aside from this scaling, all other
experimental configurations—such as learning rates, batch sizes, and network architectures—are
held constant. This design choice highlights that Meta-RL does not require a larger data budget
compared to RL; in other words, both methods rely on the same total number of trajectories to learn.

Nevertheless, LAMER might still introduce additional training time cost compared to the RL base-
lines. In RL training, all the episodes could be sampled in parallel since they are independent. In
contrast, LAMER exhibits less parallelism since episodes within the same trial needs to be generated
sequentially. As a result, we observe around twice the training time cost for LAMER in our current
implementation. This suggests that more sophisticated sampling strategies, such as asynchronous
rollout, could further improve the efficiency of LAMER for training LLM agents.

7 CONCLUSION

Being able to explore and gather information from the environment is crucial in building autonomous
agents that can adapt quickly and robustly. We introduced LAMER, a general LLM agent training
framework leveraging the principle of meta reinforcement learning. Unlike previous RL methods
that maximize a single-episode return for immediate payoff, LAMER maximizes a discounted cross-
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episode return, naturally balancing when to explore versus when to exploit to maximize long-term
performance. The exploration allowed at training time teaches the agent general explorative strate-
gies that enable a rapid in-context adaptation at test time. We show across diverse environments that
LAMER significantly outperforms RL methods, is able to generalize to harder environments, and
scales better with more episodes at test time.

Limitations and future work. Our results raise several promising directions for future work.
(1) The generality of our method allows for combining it with other RL algorithms or self-reflection
frameworks. We hypothesize that a more advanced advantage estimation strategy or a stronger
reasoning model may enhance the performance. (2) Our approach requires sampling episodes se-
quentially for rollouts since episodes are dependent in cross-episode training. This eventually leads
to longer training time than RL methods. More efficient training strategies will be explored in future
work. (3) Finally, LAMER trained on easier environments can generalize to harder environments
of the same kind or relatively similar domains. This ultimately suggests possibilities in building
generalist agents that can adapt to completely novel environments.

LLM USAGE STATEMENT

LLM is mainly used for proofreading and as a plot assistant in this work.

REPRODUCIBILITY STATEMENT

In order to ensure that our work is reproducible, we have provided experimental details in Sec-
tion 5.1, together with the template of prompts we used in Appendix B. Complete code documenta-
tion is under development and will be made available alongside the paper’s final version.
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APPENDIX

A TASK DESCRIPTION AND DETAILS

Sokoban. We include the classic video game Sokoban as a fully-observable environment. The game
is a 2D square board, with N boxes scattered on the board. There are also N target positions marked
on the board. The player is placed at an initial position, and the goal is to push all the boxes to the
target positions. There is no correspondence between each box and the target position. When the
player walks into a box, it gets pushed in that direction (if there’s space). Boxes can’t be pushed into
walls or other boxes. Once a box is pushed into a corner or against a wall with no way to get behind
it, it might become permanently stuck. There is no pull operation in this game. The agent, therefore,
has to think several moves ahead to avoid getting boxes stuck in positions where they can’t reach
their targets. The difficulty of this task is controlled by the board size, the number of boxes, and the
wall structure of the board. We train on a board size 6× 6 with 2 boxes.

Minesweeper. We include the classic video game Minesweeper as a partially-observable environ-
ment. The game is a 2D square board, with several mines randomly scattered in the board cells. The
goal of the game is to open all the safe cells without revealing the hidden mines. In each step, the
agent opens a cell, and the first step is always safe. If a mine is revealed, the task ends in failure
immediately. The state of the opened (safe) cells can either be empty or a number from 1 to 8, and
the number specifies how many mines are adjacent to the specific cell. The agent needs to use the
numbers marked on the opened cells to reason about the position of mines. Success is achieved
when all safe cells are revealed. Our implementation is based on a simplified version of Li et al.
(2023). The difficulty of this task is controlled by the board size and the number of mines. We train
on a board size 6× 6 with 3 hidden mines.

WebShop (Yao et al., 2022). We include WebShop as a partially-observable text-based environ-
ment that simulates online shopping. The agent is given a natural language instruction specifying
a product to purchase with certain attributes. The environment presents a simplified e-commerce
interface where the agent can search for products, navigate through search results, and examine
product pages with details like price, color, size, and customer reviews. The agent must interpret the
instruction, search effectively, filter through multiple product options, and select the item that best
matches the specified criteria. Success is measured by whether the final purchased item satisfies all
the requirements in the original instruction.

ALFWorld (Shridhar et al., 2020). We include ALFWorld as a partially-observable text-based en-
vironment that simulates household tasks in interactive fiction format. The agent receives natural
language instructions for common household activities. The environment provides text descriptions
of rooms, objects, and possible actions, while the agent must navigate through a house, interact with
objects, and complete multi-step tasks. Objects may need to be found, picked up, cleaned, heated, or
combined with other objects to achieve the goal. The agent’s view is limited to the current room and
nearby objects, requiring exploration and memory of previously visited locations. Success requires
understanding the instruction, planning a sequence of actions, and executing them correctly while
managing partial observability. We train on the training examples of the activities ‘Pick’, ‘Look’,
‘Clean’, ‘Heat’. We evaluate in-distribution on the test examples from the same activities, and we
evaluate out-of-distribution on the test examples from ‘Cool’, ’Pick2’ activities.
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B EXAMPLE PROMPTS

We provide examples of prompts for each task. There are two types of prompts: (1) the standard
version (with name ‘Standard Prompt’) used for prompting the agent to play the game; (2) the
reflection prompt used for self-reflection on a past experience (with name ‘Reflection Prompt’)

There are variables such as {past experience reflection}, {history actions}
in the prompts, among with other task-specific hyperparameters. They are omitted in the
prompts for clarity. In practice, they will be replaced with the actual content. Note that the
{past experience reflection} will be empty for the first episode.

Similar to (Feng et al., 2025), we use <action> </action> block to indicate the final decision
of the action, and we use <remark> </remark> to indicate the content of the self-reflection.

(see next page for the prompts)
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B.1 SOKOBAN

Sokoban Standard Prompt

You are an expert agent operating in the Sokoban environment.

# Symbols and Their Meaning
- Walls (#): These block movement. You can’t move through or push anything into walls.
- Floor ( ): Open spaces where you can walk and move boxes.
- Targets (O): The spots where boxes need to go.
- Boxes (X): These are what you need to push onto the targets.
- Player (P): That’s you! You’ll move around the grid to push boxes.
- Box on Target (✓): A box successfully placed on a target.
- Player on Target (S): You standing on a target.

# Goal
Your goal is to push all the boxes (X) onto the target spots (O). Once all boxes are on the
targets, you win!

# Rules
Your admissible actions are [“up”, “down”, “left”, “right”].
You can only push one box at a time. You can’t pull boxes, so plan ahead to avoid getting
stuck.
You can’t walk through or push boxes into walls (#) or other boxes.
To avoid traps, do not push boxes into corners or against walls where they can’t be moved
again.
{example}

# Observations
The initial state of the game is:
0: # # # # # #
1: # # # _ O #
2: # _ O _ _ #
3: # _ _ X X #
4: # _ # P _ #
5: # # # # # #

{past experience reflection}
You have already taken the following actions:
{history actions}
Your current observation is:
0: # # # # # #
1: # # # _ O #
2: # _ O _ X #
3: # _ X P _ #
4: # _ # _ _ #
5: # # # # # #

Now it’s your turn to make moves (choose the next {num actions per turn} actions).
- Your response first be step-by-step reasoning about the current situation — observe the
positions of boxes and targets, plan a path to push a box toward a target, and avoid traps like
corners or walls.
- Then choose {num actions per turn} admissible actions and present them within
<action> </action> tags (separated by comma).
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Sokoban Reflection Prompt

You are an expert agent operating in the Sokoban environment.

# Symbols and Their Meaning
- Walls (#): These block movement. You can’t move through or push anything into walls.
- Floor ( ): Open spaces where you can walk and move boxes.
- Targets (O): The spots where boxes need to go.
- Boxes (X): These are what you need to push onto the targets.
- Player (P): That’s you! You’ll move around the grid to push boxes.
- Box on Target (✓): A box successfully placed on a target.
- Player on Target (S): You standing on a target.

# Your Goal
Your goal is to push all the boxes (X) onto the target spots (O). Once all boxes are on the
targets, you win!

# Rules
Your admissible actions are [“up”, “down”, “left”, “right”].
You can only push one box at a time. You can’t pull boxes, so plan ahead to avoid getting
stuck.
You can’t walk through or push boxes into walls (#) or other boxes.
To avoid traps, do not push boxes into corners or against walls where they can’t be moved
again.

# Your Task
You will be given the history of a past experience.
Your job is to **reflect on the past sequence**, identify any **mistakes or inefficiencies**,
and then devise a **concise, improved plan** starting from the original initial state.

# Past Experience
The initial state of the game is:
0: # # # # # #
1: # # # _ O #
2: # _ O _ _ #
3: # _ _ X X #
4: # _ # P _ #
5: # # # # # #

You have taken the following actions:
{history actions}
The final state is:
0: # # # # # #
1: # # # _ O #
2: # _ O _ X #
3: # _ X P _ #
4: # _ # _ _ #
5: # # # # # #

The task is NOT successfully completed.
Now it’s your turn to reflect on the past experience and come up with a new plan of action.
- Your response should first be step-by-step reasoning about the strategy and path you took
to attempt to complete the task. Identify where things went wrong or could be better.
- Then devise a concise, new plan of action that accounts for your mistake with reference to
specific actions that you should have taken.
- Finally, end the response with your reflection and improved plan inside <remark>
</remark> tags, to guide the next trial.
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B.2 MINESWEEPER

Minesweeper Standard Prompt

You are an expert agent operating in the Minesweeper game.
You will be given a two dimensional {board size} by {board size} board, with {n mines}
hidden mines.
The rows and columns are indexed from 1 to {board size}.

# Cell States
- Unopened cells (?): cells that are yet to be revealed and may contain a mine.
- Blank cells (.): opened and non-mine cells, and they have no neighboring mines
- Numbered cells (1-8): opened and non-mine cells, and the number indicates how many
mines are in the eight neighboring cells, including those diagonally adjacent. For example,
a cell with a ‘8’ means all its neighboring cells contain mines.
- Mine cells (*): opened cells that contain a mine.

# Your Goal
Your goal is to clear the board by revealing all the cells that don’t contain mines, without
detonating any of the hidden mines scattered throughout the board.
Use clues about the number of neighboring mines in each field to reason about the position
of mines and non-mine cells.

# Reveal Rules
Your admissible action is to choose ONE unopened cell (?) to reveal per turn. The outcome
depends on the content of that cell:
- Blank cell (.): That cell is revealed, and all contiguous blank cells plus their bordering
numbered cells are automatically revealed (auto-cascade).
- Numbered cell (1–8): Only that single cell is revealed, showing the count of neighboring
mines.
- Mine (*): The game ends immediately in a loss.
# Observation
The initial state of the game is:
Row 1: . . . . . .
Row 2: . . . 1 1 1
Row 3: . . . 1 ? ?
Row 4: 1 1 . 1 2 ?
Row 5: ? 1 . . 1 1
Row 6: ? 1 . . . .

{past experience reflection}
You have already chosen the following cells to reveal: (6, 1)
Your current observation is:
Row 1: . . . . . .
Row 2: . . . 1 1 1
Row 3: . . . 1 ? ?
Row 4: 1 1 . 1 2 ?
Row 5: ? 1 . . 1 1
Row 6: 1 1 . . . .

Now it’s your turn to make a move.
- Your should first reason step-by-step about the current situation — observe the status of
the board, inferring the states of unopened cells (?).
- Then choose ONE unopened cell (?) to reveal. Put the index of cell in the format of “(row,
col)” within the <action> </action> tag.
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Minesweeper Reflection Prompt

You are an expert agent operating in the Minesweeper game.
You will be given a two dimensional {board size} by {board size} board, with {n mines}
hidden mines.
The rows and columns are indexed from 1 to {board size}

# Cell States
- Unopened cells (?): cells that are yet to be revealed and may contain a mine.
- Blank cells (.): opened and non-mine cells, and they have no neighboring mines
- Numbered cells (1-8): opened and non-mine cells, and the number indicates how many
mines are in the eight neighboring cells, including those diagonally adjacent. For example,
a cell with a ‘8’ means all its neighboring cells contain mines.
- Mine cells (*): opened cells that contain a mine.

# Your Goal
Your goal is to clear the board by revealing all the cells that don’t contain mines, without
detonating any of the hidden mines scattered throughout the board.
Use clues about the number of neighboring mines in each field to reason about the position
of mines and non-mine cells.

# Reveal Rules
Your admissible action is to choose ONE unopened cell (?) to reveal per turn. The outcome
depends on the content of that cell:
- Blank cell (.): That cell is revealed, and all contiguous blank cells plus their bordering
numbered cells are automatically revealed (auto-cascade).
- Numbered cell (1–8): Only that single cell is revealed, showing the count of neighboring
mines.
- Mine (*): The game ends immediately in a loss.

# Your Task
You will be given the history of a past experience.
Your job now is to **reflect on the past experience**, identify any **mistakes or inefficien-
cies**, and then devise a **concise, improved plan** for your next try starting from the
original initial state.
# Past Experience
The initial state of the game is:
Row 1: . . . . . .
Row 2: . . . 1 1 1
Row 3: . . . 1 ? ?
Row 4: 1 1 . 1 2 ?
Row 5: ? 1 . . 1 1
Row 6: ? 1 . . . .

You have chosen the following cells to reveal:
{history actions}
The final state is:
Row 1: . . . . . .
Row 2: . . . 1 1 1
Row 3: . . . 1 ? ?
Row 4: 1 1 . 1 2 ?
Row 5: * 1 . . 1 1
Row 6: 1 1 . . . .

The task is NOT successfully completed.
Now it’s your turn to reflect on the past experience and come up with a new plan of action.
- Your response should first be step-by-step reasoning about the strategy and path you took
to attempt to complete the task. Identify where things went wrong or could be better.
- Then devise a concise, new plan of action that accounts for your mistake with reference to
specific actions that you should have taken.
- Finally, end the response with your reflection and improved plan inside <remark>
</remark> tags, to guide the next trial. 22
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B.3 WEBSHOP

WebShop Standard Prompt

You are an expert autonomous agent operating in the WebShop e-commerce environment.
Your task is to: Find me slip resistant, non slip men’s loafers & slip-ons with rubber outsole,
rubber sole with color: 1877blue, and size: 11.5, and price lower than 70.00 dollars.
{past experience reflection}{history actions}
Your admissible actions of the current situation are:
‘search[your query]’,
‘click[search]’.
Now it’s your turn to take one action for the current step.
Your response should first be step-by-step reasoning about the current situation, then think
carefully which admissible action best advances the shopping goal.
Once you’ve finished your reasoning, you should choose an admissible action for current
step and present it within <action> </action> tags.

WebShop Reflection Prompt

You are an expert autonomous agent operating in the WebShop e-commerce environment.
Your task is to: Find me slip resistant, non slip men’s loafers & slip-ons with rubber outsole,
rubber sole with color: 1877blue, and size: 11.5, and price lower than 70.00 dollars.
You will be given the history of a past experience.
Your job is to **reflect on the past sequence**, identify any **mistakes or inefficiencies**,
and then devise a **concise, improved plan** starting from the original initial state.
Below are the last few actions and corresponding observations you have:
{history actions}
The task is NOT successfully completed.
Now it’s your turn to reflect on the past experience and come up with a new plan of action.
- Your response should first be step-by-step reasoning about the strategy and path you took
to attempt to complete the task. Identify where things went wrong or could be better.
- Then devise a concise, new plan of action that accounts for your mistake with reference to
specific actions that you should have taken.
- Finally, end the response with your reflection and improved plan inside <remark>
</remark> tags, to guide the next trial.
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B.4 ALFWORLD

ALFWorld Standard Prompt

You are an expert agent operating in the ALFRED Embodied Environment.
-= Welcome to TextWorld, ALFRED! =-

You are in the middle of a room. Looking quickly around you, you see a bed 1, a desk 2, a
desk 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a garbagecan
1, a laundryhamper 1, a safe 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3, a shelf 2, and a shelf 1.

Your task is to: put a mug in desk.

{past experience reflection}{history actions}
Your admissible actions of the current situation are:
’go to bed 1’,
’go to desk 1’,
’go to desk 2’,
’go to drawer 1’,
’go to drawer 2’,
’go to drawer 3’,
’go to drawer 4’,
’go to drawer 5’,
’go to drawer 6’,
’go to garbagecan 1’,
’go to laundryhamper 1’,
’go to safe 1’,
’go to shelf 1’,
’go to shelf 2’,
’go to shelf 3’,
’go to shelf 4’,
’go to shelf 5’,
’go to shelf 6’,
’inventory’,
’look’.
Now it’s your turn to take an action.
- Your response should first by step-by-step reasoning about the current situation.
- Once you’ve finished your reasoning, you should choose an admissible action for current
step and present it within <action> </action> tags.
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ALFWorld Reflection Prompt

You are an expert agent operating in the ALFRED Embodied Environment.
-= Welcome to TextWorld, ALFRED! =-

You are in the middle of a room. Looking quickly around you, you see a bed 1, a desk 2, a
desk 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a garbagecan
1, a laundryhamper 1, a safe 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3, a shelf 2, and a shelf 1.

Your task is to: put a mug in desk.

You will be given the history of a past experience.
Your job is to **reflect on the past sequence**, identify any **mistakes or inefficiencies**,
and then devise a **concise, improved plan** starting from the original initial state.

Below are the actions you took and the corresponding observations:
{history actions}
The task is NOT successfully completed.
Now it’s your turn to reflect on the past experience and come up with a new plan of action.
- Your response should first be step-by-step reasoning about the strategy and path you took
to attempt to complete the task. Identify where things went wrong or could be better.
- Then devise a concise, new plan of action that accounts for your mistake with reference to
specific actions that you should have taken.
- Finally, end the response with your reflection and improved plan inside <remark>
</remark> tags, to guide the next trial.
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C TRAINING DETAILS

LAMER is compatible with standard policy gradient algorithms. Without specification, we use
GiGPO as the default optimization algorithm. During training, the self-reflection step is also explic-
itly trained using the reward in the subsequent episodes. During training, we match the total number
of experiences sampled for each example between RL and Meta-RL to ensure a fair comparison.
Specifically, for each sample N = 3 episodes and set group size to 8 for Meta-RL, and use a group
size of 24 for standard RL training. Besides that, other hyper-parameters and configuration are kept
the same between RL and Meta-RL training. We use Qwen3-4B as the base model and train it with
Adam optimizer and a learning rate of 1e − 6. For Sokoban and MineSweeper, we train the agents
with a batch size of 16 for 300 epochs. In comparison, we use batch size of 8 and 150 epochs for
Webshop and ALFWorld. The environment reward is set to be 10 for successful trajectories and
0 for unsuccessful ones. We use temperature of 1.0 during rollout and 0.7 during evaluation. The
maximum number of output tokens is set to 1024. Our code is based on the training framework of
verl (Sheng et al., 2025) and verl-agent Feng et al. (2025).

D ADDITIONAL RESULTS

D.1 EXPERIMENTS ON DIFFERENT ARCHITECTURE

LAMER is designed as a general framework built on meta-RL principles and is model-agnostic.
To validate this, we additionally ran experiments on Llama3.1-8B-Instruct (Grattafiori et al., 2024),
showing that our method works well on models in a different model architecture and model size.

Table 4: Performance on Sokoban and MineSweeper environments using Llama3.1-8B-Instruct as
base model. The results of p@1, p@2 and p@3 denote the success rate (%) under 1, 2, and 3
attempts, respectively.

Method Sokoban MineSweeper
p@1 p@2 p@3 p@1 p@2 p@3

GiGPO 5.9 6.3 6.3 39.1 41.4 42.2
LAMER 17.6 19.9 20.3 47.7 61.3 65.6

In Table 4, we compare LAMER with the strongest baseline GiGPO (Feng et al., 2025), on Sokoban
and Minesweeper. We show The results indicate that on Llama-3.1-8B-Instruct, LaMer still out-
performs the RL baselines across the environments, demonstrating the general applicability of our
method to different model architecture and size.

D.2 COMPARISON TO RL BASELINES WITH INTER-EPISODE MEMORY

In our main experiment at Table 1, we follow previous work and evaluate the standard RL methods
without access to the inter-episode memory. For comprehensive evaluation, we further evaluate the
RL trained agents with access to the inter-episode memory (reflections and previous trajectories).
The results of pass@3 are shown in Table 5. We observe that the inter-episode memory enhances the
performance of RL trained agents on Sokoban (+3.8%) and MineSweeper (+5.3%), while degrades
the performance on Webshop (-1.2%). Nevertheless, LAMER still substantially outperforms RL
baselines across all the environments, demonstrating the advantage of the proposed method.

Table 5: Performance of RL baselines with access to inter-episode memory (pass@3).

Method Sokoban MineSweeper Webshop
GiGPO (w/o memory) 44.1 55.1 75.2
GiGPO (w/ memory) 47.9 60.4 74.0
LAMER 55.9 74.4 89.1
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E EXAMPLES

On Figure 6, we provide an example of trajectories and corresponding reflections produced by the
agent when solving the MineSweeper game. Here each trajectory is represented by a sequence of
clicks (numbered cells) on the board. The mines are not visible to the agent and will lead to failure
of the game if clicked.

Attempt #1

### Step-by-Step Reasoning
In the past attempt, the player revealed cells (6, 1) and (6, 3). The resulting state showed that row 6, column 1 is a 1, row 6, column 2 is a ?, row 6,
column 3 is a *, and row 6, column 4 is a ?. This indicated that there is a mine at (6, 3), which is why the game ended in a loss.

#### Mistakes and Inefficiencies:
1. **Revealing (6, 1)**: This revealed a 1, indicating that there is exactly one mine in the 8 neighboring cells. However, since (6, 1) is adjacent to (6, 2)
and (5, 1), this information is limited and not very helpful in identifying the exact location of the mine.
2. **Revealing (6, 3)**: This revealed a *, indicating that (6, 3) is a mine. This is a direct loss, but it also provides some information about the surrounding
cells.
3. **Lack of strategic focus**: The player did not consider the implications of the numbers in row 4 and row 5, which are 1s and 2s, suggesting that there
are nearby mines.

### New Plan of Action
To improve the strategy, the player should focus on revealing cells that provide the most information without risking a direct reveal of a mine. Here's a
revised plan:
1. **Reveal (5, 1)**: This cell is adjacent to (6, 1) and (4, 1). Revealing (5, 1) would help determine if there is a mine nearby, especially since (6, 1) is a
1, indicating that there is exactly one mine in the 8 neighboring cells.
2. **Reveal (5, 2)**: This cell is adjacent to (6, 2) and (4, 2). It would help determine if there is a mine near (6, 2), which is a ?.
3. **Reveal (6, 4)**: This cell is adjacent to (6, 3) (which is a mine) and (5, 4). Revealing (6, 4) would help determine if there is a mine nearby, especially
since (6, 3) is a mine.

### Reflection and Improved Plan
<remark>
In the past attempt, revealing (6, 1) and (6, 3) led to a loss because (6, 3) was a mine. To avoid this, the next step should be to reveal (5, 1) to check the
surrounding cells without directly revealing a mine. After that, revealing (5, 2) would help determine if there is a mine near (6, 2). Finally, revealing (6, 4)
would help identify any nearby mines adjacent to (6, 3). This approach would provide more information without risking a direct hit on a mine.
</remark>

### Step-by-Step Reasoning
In the past attempt, the player revealed the cells (5, 1), (6, 4), (6, 1), (6, 6), and (6, 5). The resulting state showed some progress, but the task was not
completed successfully. Let's analyze what went wrong:

1. **Revealing (5, 1)**: This cell is adjacent to row 4, which has three 1s. Revealing (5, 1) would have revealed the surrounding cells, but since it was a
1, it indicated that there is at least one mine nearby. However, this didn't provide enough information to determine the exact location of the mines.
2. **Revealing (6, 4)**: This cell is adjacent to row 5, column 4, which is a 2. Revealing (6, 4) would have shown the number of mines around it, but
since it was a 1, it indicated that there is at least one mine nearby.
3. **Revealing (6, 1)**: This cell is adjacent to row 5, column 1, which is a 1. Revealing (6, 1) would have shown the number of mines around it, but
since it was a 1, it indicated that there is at least one mine nearby.
4. **Revealing (6, 6)**: This cell is adjacent to row 5, column 6, which is a 1. Revealing (6, 6) would have shown the number of mines around it, but
since it was a 1, it indicated that there is at least one mine nearby.
5. **Revealing (6, 5)**: This cell is adjacent to row 5, column 5, which is a 1. Revealing (6, 5) would have shown the number of mines around it, but
since it was a 1, it indicated that there is at least one mine nearby.

The main issue was that the player did not focus on revealing cells that would provide more direct information about the location of the mines. Instead,
the player revealed cells that were adjacent to already revealed cells, leading to a lot of unnecessary information and not enough progress toward
identifying the exact location of the mines.

### New Plan of Action
To improve the strategy, the player should focus on revealing cells that are not adjacent to already revealed cells, and that are far enough away to avoid
being affected by the auto-cascade effect. The goal is to identify the location of the mines by revealing cells that are not adjacent to any already
revealed cells, and that are in areas where the numbers indicate a higher likelihood of a mine.

Here is a revised plan:
1. **Reveal (6, 2)**: This cell is not adjacent to any already revealed cells and is far enough away to avoid being affected by the auto-cascade effect. It
is also adjacent to row 5, column 2, which is a 2, indicating that there is at least one mine nearby.
2. **Reveal (6, 3)**: This cell is not adjacent to any already revealed cells and is far enough away to avoid being affected by the auto-cascade effect. It
is also adjacent to row 5, column 3, which is a 2, indicating that there is at least one mine nearby.
3. **Reveal (6, 1)**: This cell is adjacent to row 5, column 1, which is a 1, indicating that there is at least one mine nearby. However, since it is adjacent
to row 6, column 2, which is a 1, it is important to reveal this cell to confirm the location of the mine.
4. **Reveal (6, 4)**: This cell is adjacent to row 5, column 4, which is a 2, indicating that there is at least one mine nearby. However, since it is adjacent
to row 6, column 3, which is a 1, it is important to reveal this cell to confirm the location of the mine.
5. **Reveal (6, 5)**: This cell is adjacent to row 5, column 5, which is a 1, indicating that there is at least one mine nearby. However, since it is adjacent
to row 6, column 4, which is a 1, it is important to reveal this cell to confirm the location of the mine.

By following this plan, the player can identify the location of the mines more effectively and avoid the mistakes made in the previous attempt.
<remark>
In the past attempt, the player revealed cells that were adjacent to already revealed cells, leading to a lot of unnecessary information and not enough
progress toward identifying the exact location of the mines. To improve the strategy, the player should focus on revealing cells that are not adjacent to
any already revealed cells, and that are far enough away to avoid being affected by the auto-cascade effect. The revised plan involves revealing cells
such as (6, 2), (6, 3), (6, 1), (6, 4), and (6, 5) to identify the location of the mines more effectively.
</remark>

Reflection #1

Attempt #2

Reflection #2

Attempt #3

Reflection #1 Reflection #2

Figure 6: Example of trajectories and reflections produced by LAMER trained agents on the
MineSweeper game.
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