

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 META-RL INDUCES EXPLORATION IN LANGUAGE AGENTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) has enabled the training of large language model (LLM) agents to interact with the environment and to solve multi-turn long-horizon tasks. However, the RL-trained agents often struggle in tasks that require active exploration and fail to efficiently adapt from trial-and-error experiences. In this paper, we present LAMER, a general Meta-RL framework that enables LLM agents to actively explore and learn from the environment feedback at test time. LAMER consists of two key components: *(i)* a cross-episode training framework to encourage exploration and long-term rewards optimization; and *(ii)* in-context policy adaptation via reflection, allowing the agent to adapt their policy from task feedback signal without gradient update. Experiments across diverse environments show that LAMER significantly improves performance over RL baselines, with 11%, 14%, and 19% performance gains on Sokoban, MineSweeper and Webshop, respectively. Moreover, LAMER also demonstrates better generalization to more challenging or previously unseen tasks compared to the RL-trained agents. Overall, our results demonstrate that meta-reinforcement learning provides a principled approach to induce exploration in language agents, enabling more robust adaptation to novel environments through learned exploration strategies.

1 INTRODUCTION

Recent advances in large language models (LLMs) have shifted from building conversational systems to decision-making agents capable of reasoning about and interacting with their environments (Yao et al., 2023b; Shinn et al., 2023; Wang et al., 2025; Feng et al., 2025). To accomplish the goal, language agents operate in multi-turn, textual observation-action loops, and must adapt quickly using the memory across turns. Central to such adaptation is *exploration*, which allows agents to test uncertain actions, acquire new knowledge, and avoid premature convergence on suboptimal strategies. However, unlike humans that can explore systematically and make fast adaptation in new environments (Wilson et al., 2014), LLM agents do not robustly engage in exploration without substantial interventions (Krishnamurthy et al., 2024).

Recent works has begun to address this limitation by guiding LLMs toward exploratory behaviors at test time. For example, Tajwar et al. (2025) train models offline to distill exploration strategies from trajectories from diverse environments, while Gandhi et al. (2024) induce such strategies from offline search traces. Setlur et al. (2025) train models to learn to explore in-context as a better way of spending test-time compute (Snell et al., 2025). However, these works either focus on single-turn non-agentic reasoning problems, or rely on offline data that limits them to imitation rather than active exploration.

In this work, we take a step toward agents that can *actively explore* their environment, gather feedback, and leverage this experience for more effective exploitation. Since multi-turn tasks often have a sparse success signal after an episode, we consider a multi-episode regime (Shinn et al., 2023) where an episode is the unit of exploration and exploitation. Balancing exploration and exploitation can then be naturally formulated as a *cross-episode* reinforcement learning (RL) framework. Training across many similar but different environments under this framework leads to *meta reinforcement learning* (Meta-RL) (Duan et al., 2016; Wang et al., 2016; Bauer et al., 2023; Beck et al., 2025), where the agent is forced to discover general strategies that work in unseen and potentially harder environments.

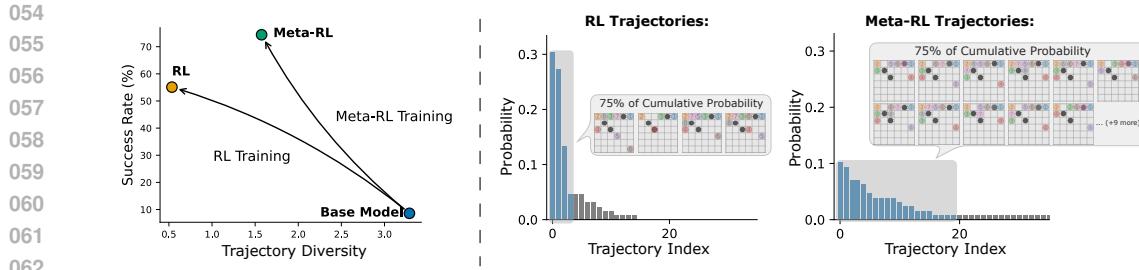


Figure 1: Comparison of RL and Meta-RL training on the Minesweeper environment. *Left*: Meta-RL training with LAMER retains higher sample diversity from the base model while achieving better success rates, reaching a better trade-off between exploration and exploitation. *Right*: Distinct trajectories and their empirical probabilities aggregated over multiple sampled trajectories in the MineSweeper environment. Each trajectory corresponds to a sequence of clicks (numbered cell) on the board. Sample diversity is quantified by the entropy of the empirical distribution. Meta-RL trained model produces more diverse and explorative trajectories.

Building upon this, we propose LAMER (LLM Agent with **Meta-RL**), a general Meta-RL framework for LLM agent training. LAMER contains two important design factors. First, unlike standard single-episode RL, LAMER is designed around a multi-episode structure to train the agent to solve the problem through trial and error. In early episodes, the agent is encouraged to gather diverse experiences and useful information of the environment, which are used to adapt its policy in later episodes. By maximizing long-term rewards across episodes, the agent internalizes a learning algorithm that explicitly incentivizes exploration for improved downstream exploitation. Second, at both training and test time, the agent effectively leverages the feedback and reflection from the past episodes to determine the strategy for the next episode, which essentially implements an RL algorithm in context, and making the approach naturally suited for LLM agents. Meta-RL produces more diverse samples while simultaneously achieving higher performance, reaching a better balance between exploration and exploitation (Figure 1). To the best of our knowledge, this is the first time a meta-RL framework is used for LLM agent training.

We evaluate LAMER on four challenging long-horizon tasks: Sokoban (Racanière et al., 2017), MineSweeper (Li et al., 2024), Webshop (Yao et al., 2022) and ALFWORLD (Shridhar et al., 2020). Using Qwen3-4B (Yang et al., 2025), we demonstrate that LAMER consistently outperforms prompting and RL baselines on all the environments. In addition, we observe that the trained model has learned a balance between exploration and exploitation, resulting in a better test-time scaling performance. In particular, LAMER adapts the trained policy at test time, with 11/14/19% absolute performance gains on Sokoban, MineSweeper and Webshop, respectively. Furthermore, we show that LAMER trained model achieves a better generalization to harder and out-of-distribution tasks. In summary, LAMER takes a step toward autonomous agents that can actively act to uncover information and improve their decision-making in the new environments.

2 RELATED WORK

LLM-as-agent. As LLMs become increasingly capable of reasoning about complex scenarios (Wei et al., 2022), there is a growing interest in making them decision-making autonomous agents. Earlier works rely on prompting frozen LLMs (Yao et al., 2023b; Shinn et al., 2023; Park et al., 2023; Wang et al., 2024a; AutoGPT). ReAct (Yao et al., 2023b) prompts LLMs with in-context examples to generate both textual actions and reasoning thoughts. Later, Reflexion (Shinn et al., 2023) extends this principle to the multi-episode setting, where the agent verbally reflects on the last episode and maintains their own reflection buffer for the next episodes. More recent research trains LLM agents through designing advanced RL algorithms (Wang et al., 2025; Feng et al., 2025) for multi-turn interactions, or supervised fine-tuning on generated interaction trajectories across diverse tasks (Tajwar et al., 2025). The evaluation of LLM agents also poses challenges because of fully verbal interactions with the environments. Recent benchmarks span a wide range of domains, including text-based embodied environments (Shridhar et al., 2020), e-commerce website (Yao et al., 2022), bandits (Nie et al., 2024), classic games (Park et al., 2025; Li et al., 2024) and other tasks (Liu et al., 2024;

108 Nathani et al., 2025). For a more comprehensive overview of these efforts, we refer readers to recent
 109 surveys (Wang et al., 2024b; Zhang et al., 2025).

110 **Meta reinforcement learning** (Meta-RL) (Beck et al., 2025) focuses on "learning to reinforcement
 111 learn" in order to rapidly adapt to new environments. Similar to meta-learning (Thrun & Pratt, 1998;
 112 Hospedales et al., 2021), it involves an inner-loop that represents an RL algorithm (i.e. adaptation
 113 strategy) by itself, together with an outer-loop that updates the meta-parameters so that the inner loop
 114 becomes more effective across many tasks. By training across many tasks, the outer loop forces the
 115 agent to learn the exploration strategy necessary to solve the tasks, while the inner loop enables the
 116 agent adapt quickly based on the exploration. Depending on how the inner loop is done, there are in-
 117 context methods and gradient-based methods. For example, Duan et al. (2016); Wang et al. (2016);
 118 Stadie et al. (2018) represent the inner-loop as a history-dependent policy parametrized by an RNN,
 119 the adaptation is thus done 'in-context' through gathering more information stored in the memory
 120 states. On the other hand, Finn et al. (2017) leverages a gradient-based approach in which the inner
 121 adapts a general meta-policy learned by the outer-loop. Our work lies in the former category, where
 122 the adaptation occurs entirely in-context at test time, naturally leveraging LLMs' in-context learning
 123 abilities.

124 **Test-time compute.** A Meta-RL framework in LAMER can be considered as amortizing the test-
 125 time compute by training tasks in a multi-episode manner rather than a single episode. In this way,
 126 the learned in-context policy adaptation balances exploration and exploitation for a fast adaptation
 127 at test time. This is essentially a better way of spending test-time compute (Snell et al., 2025;
 128 Muennighoff et al., 2025; Wu et al., 2025; Setlur et al., 2025). In our experiments, we match the
 129 training compute budget between an RL and a Meta-RL baseline, and show that meta-RL encourages
 130 superior test-time scaling behavior (through pass@k). Qu et al. (2025) similarly relates meta-RL to
 131 test-time compute, but they are limited to single-turn problems of mathematical reasoning, without
 132 leveraging the interactive feedback from the environment.

133 **Reasoning in LLMs.** More broadly, this work relates to reasoning in LLMs, because language
 134 agents must use reasoning as part of their decision-making. A large bulk of recent work on LLM
 135 reasoning has focused on more advanced prompting (Wei et al., 2022; Yao et al., 2023a), post-
 136 training (Cobbe et al., 2021; Luong et al., 2024; Shao et al., 2024; DeepSeek-AI et al., 2025)
 137 or bootstrapping (Zelikman et al., 2022) against verifiers or reward models, inducing structured
 138 search behavior (Gandhi et al., 2024; Moon et al., 2024), or reflecting on previous answers (Kumar
 139 et al., 2024; Xiong et al., 2025; Qu et al., 2024), etc. Most of these works focus on single-turn
 140 math (Hendrycks et al., 2021b; Cobbe et al., 2021) and coding (Chen et al., 2021; Hendrycks et al.,
 141 2021a) problems, while we target multi-turn agentic environments where environment feedback is
 142 available after every action and at the end of the episode.

143 3 PRELIMINARIES

144 We consider the scenario where an LLM agent interacts with the environment to solve a multi-turn
 145 task. This process can be formulated as a Markovian decision process $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, R, \gamma_{step})$,
 146 where \mathcal{S} and \mathcal{A} denote the state space and action space, and R is the reward function. At each time
 147 step $t = 0, \dots, T - 1$, the LLM agent observes a state $s_t \in \mathcal{S}$ and selects an action $a_t \in \mathcal{A}$ according
 148 to its policy $a_t \sim \pi_\theta(\cdot | s_t)$. The environment then provides a scalar reward $r_t \in \mathbb{R}$ and transitions
 149 to the next state s_{t+1} according to the transition function $P(\cdot | s_t, a_t)$. A trajectory is the sequence
 150 of states, actions, and rewards over an episode, i.e., $\tau = (s_0, a_0, r_0, \dots, s_{T-1}, a_{T-1}, r_{T-1})$. The
 151 objective of reinforcement learning is to maximize the expected discounted return:
 152

$$\mathbb{E}_{\tau \sim \pi_\theta} \left[\sum_{t=0}^{T-1} \gamma_{step}^t r_t \right] \quad (1)$$

153 where $\gamma_{step} \in [0, 1]$ is the discount factor. Recent works (Wang et al., 2025; Feng et al., 2025) have
 154 shown that RL training has enabled LLM agents to interact with the environment and solve multi-
 155 turn tasks. However, such agents often learn a fixed policy during training and struggle to actively
 156 explore and adapt their behavior to the tasks at *test time* (Nie et al., 2024).

157 **Meta-RL.** Conversely, by training on a distribution of tasks, Meta-RL (Duan et al., 2016; Wang
 158 et al., 2016; Bauer et al., 2023; Beck et al., 2025) encourages exploration because it optimizes meta-
 159 parameters, such that the agent can solve new tasks quickly. In our case, the meta-parameters are

162 the parameters of the LLM. This necessitates the agent to learn general exploration-exploitation
 163 strategies suitable for the task distribution trained on. For example, for most navigation tasks in
 164 partially observable environments, the optimal strategy is to gather the environment information and
 165 locate the target during the first episode, then reach the target as efficiently as possible in the second
 166 episode. This *explore-then-exploit* strategy implemented by the agent is itself a reinforcement learning
 167 algorithm, where the policy learned at the meta-level encodes how to adaptively switch between
 168 information-gathering and reward-maximizing behaviors depending on the stage of interaction with
 169 a new task. For LLM agents operating in multi-turn tasks, the policy can be in-context (*i.e.*, without
 170 parameter updates at test time), naturally leveraging the in-context capability of LLMs.
 171

4 LAMER: A META-RL FRAMEWORK FOR LLM AGENTS

174 Adopting the principle of Meta-RL, we present LAMER, a framework for training LLM agents
 175 with the ability to actively explore and adaptively learn from the environment. The framework
 176 addresses two central challenges. First, how to balance exploration and exploitation over multiple
 177 attempts at a task. To this end, LAMER introduces a cross-episode training scheme that treats each
 178 trial as a sequence of episodes, enabling the agent to explore in early episodes and exploit this
 179 information in later ones. Second, how to efficiently adapt the policy during training and evaluation.
 180 Instead of relying on gradient-based updates, LAMER uses self-reflection as an in-context adaptation
 181 mechanism, allowing the agent to summarize past experiences and adjust its strategy accordingly.
 182 Together, these two components enable scalable training of LLM agents under a unified Meta-RL
 183 framework, which can be optimized with standard RL algorithms.
 184

185 **Cross-episode training framework.** In the training of LAMER, each trial consists of N episodes
 186 sequentially generated by the agent:

$$\mathcal{T} = (\tau^{(0)}, \tau^{(1)}, \dots, \tau^{(N-1)}), \quad \text{where } \tau^{(n)} \sim \pi_\theta^{(n)}(\cdot), n \in [0, N-1], \quad (2)$$

187 where $\pi_\theta^{(n)}(\cdot)$ is the policy at episode n updated from the accumulated history $\tau^{(0)}, \dots, \tau^{(n-1)}$
 188 through some adaptation strategy. For simplicity, in our analysis we assume all the episode contains
 189 the T steps of interactions with the environment, *i.e.*, $\tau^{(n)} = (s_0^{(n)}, a_0^{(n)}, r_0^{(n)}, \dots, s_{T-1}^{(n)}, a_{T-1}^{(n)}, r_{T-1}^{(n)})$
 190 for all $n \in [0, N-1]$. The rollout process terminates at n if $\tau^{(n)}$ is successful (as indicated by the
 191 environment feedback). Otherwise, the agent starts a new episode $\tau^{(n+1)}$ from the same initial
 192 state, repeating this procedure until the maximum episode budget is reached. For action $a_t^{(n)}$, the
 193 discounted return $g_t^{(n)}$ *within the episode* $\tau^{(n)} \in \mathcal{T}$ is:
 194

$$g_t^{(n)} = \sum_{l=t}^{T-1} \gamma_{step}^{l-t} r_l^{(n)}, \quad (3)$$

195 where $\gamma_{step} \in [0, 1]$ is within-the-episode discount factor.
 196

197 To enhance the exploration and maximize the long-term reward, in LAMER framework we define
 198 the discounted return $G_t^{(n)}$ *across the episodes* of \mathcal{T} as:
 199

$$G_t^{(n)} = \underbrace{g_t^{(n)}}_{\text{within-the-episode}} + \underbrace{\sum_{m=n+1}^{N-1} \gamma_{traj}^{m-n} g_0^{(m)}}_{\text{cross-episode}}, \quad (4)$$

200 where $\gamma_{traj} \in [0, 1]$ is the cross-episode discount factor. Finally, the LLM agent is trained via the
 201 following Meta-RL objective:
 202

$$J(\theta) = \mathbb{E}_{\mathcal{T} \sim \pi_\theta} \left[\sum_{n=0}^{N-1} \gamma_{traj}^n \sum_{t=0}^{T-1} \gamma_{step}^{t-n} r_t^{(n)} \right] = \mathbb{E}_{\mathcal{T} \sim \pi_\theta} \left[G_0^{(0)} \right]. \quad (5)$$

203 Here, γ_{traj} is an important factor for the trade-off between *exploration* and *exploitation*. Ideally,
 204 small γ_{traj} biases the objective towards early episodes and will lead to rapid exploitation to solve
 205 the problem. In comparison, a larger γ_{traj} emphasizes long-horizon return and therefore encourages
 206 more exploration at the early stage.

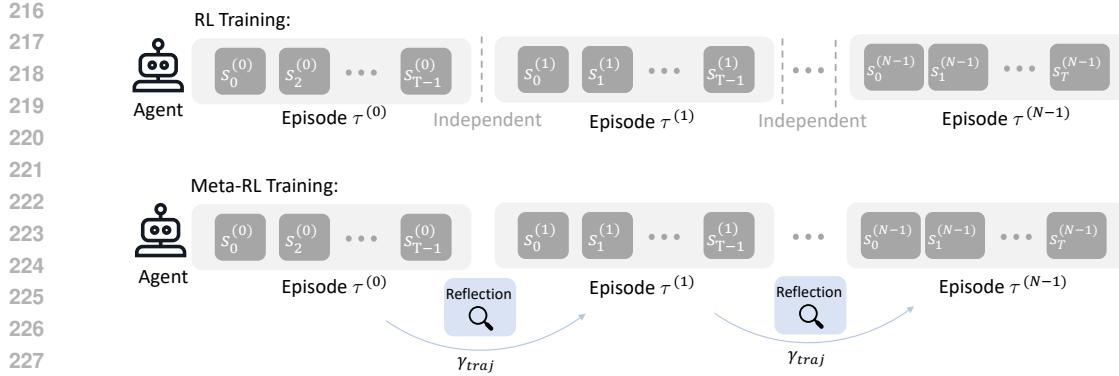


Figure 2: Comparison between the training processes of RL (top) and Meta-RL used in LAMER (bottom). For a single task, RL generates a group of trajectories independently. In contrast, in LAMER we use Meta-RL and produce the trajectories sequentially and adapt the policy in-context with self-reflection. Trajectory discount factor γ_{traj} is used for cross-episode credit assignment.

In-context policy adaptation with self-reflection. In Meta-RL, policy adaptation is the inner loop of the learning process of an LLM agent. Therefore, a flexible and efficient adaptation mechanism plays an important role during training and methods like gradient descent Finn et al. (2017) might be too expensive, especially for LLMs. In LAMER, we propose a self-reflection based strategy (Shinn et al., 2023) to *adapt the policy in-context* (Brown et al., 2020; Laskin et al., 2023). Specifically, after each episode finishes, we prompt the agent to generate the textual reflection on the previous attempt, providing specific feedback and plan to guide the next episode (see Appendix A for the used prompt). The policy is therefore updated through modifying the context, $\pi_\theta^{(n)}(\cdot) = \pi_\theta(\cdot | \mathcal{H}^{(n)})$ where $\mathcal{H}^{(n)}$ denotes the inter-episode memory that contains both the history trajectories and reflections. **Importantly, the self-reflection step is also explicitly trained in LAMER using the reward obtained in the next episode.** Note that the content $\mathcal{H}^{(n)}$ can be adjusted according to the predefined memory buffer to reduce the context length and improve the efficiency. By default, we retain both history and reflection in $\mathcal{H}^{(n)}$, and provide an ablation study in Section 6.2.

Comparison to RL training. Compared to the RL objective (Eq. 1), Meta-RL extends the credit assignment across multiple episodes to incentivize exploration in the early stages. In practice, given a single task, both RL and Meta-RL will sample a group of episodes during training to estimate the advantage. The key difference is that the RL rollouts are independent, whereas in Meta-RL each episode is conditioned on the preceding rollouts within the trial. Figure 2 illustrates the conceptual difference between the training processes of RL and Meta-RL.

Optimization. The proposed Meta-RL objective in (5) can be optimized with standard policy gradient methods. Given the per-action cross-episode return $G_t^{(n)}$ defined above, the gradient can be estimated by

$$\nabla_\theta J(\theta) = \mathbb{E}_{\mathcal{T} \sim \pi_\theta} \left[\sum_{n=0}^{N-1} \sum_{t=0}^{T-1} \nabla_\theta \log \pi_\theta(a_t^{(n)} | s_t^{(n)}, \mathcal{H}^{(n)}) A_t^{(n)} \right], \quad (6)$$

where $A_t^{(n)}$ is the advantage estimation derived from $G_t^{(n)}$. The framework is compatible with widely used optimizers such as PPO (Schulman et al., 2017) and critic-free approaches such as GRPO (Shao et al., 2024) and GiGPO (Feng et al., 2025).

5 EXPERIMENTS

In this section, we conduct comprehensive experiments to evaluate LAMER Meta-RL framework. Specifically, we present the evaluation on: (i) the overall performance of LAMER across different agent environments; (ii) the generalization ability of LAMER to harder tasks; (iii) the generalization of LAMER under distribution shifts.

270 Table 1: Performance on Sokoban, MineSweeper and Webshop environments. The results of p@1,
 271 p@2 and p@3 denote the success rate (%) under 1, 2, and 3 attempts, respectively.
 272

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323	290 Sokoban			291 MineSweeper			292 Webshop		
	293 Method	294 p@1	295 p@2	296 p@3	297 p@1	298 p@2	299 p@3	300 p@1	301 p@2
<i>Prompting</i>									
Zero-shot	6.8	9.8	12.9	4.5	6.6	8.6	1.4	2.1	2.3
ReAct	7.2	9.6	12.5	6.3	7.0	10.9	3.1	4.5	4.5
Reflexion	6.4	9.8	12.1	5.5	7.2	9.8	2.7	3.3	3.5
<i>Training with RL</i>									
PPO	12.5	15.4	16.8	29.7	34.2	35.5	53.1	54.5	54.9
RLOO	13.5	16.6	18.8	48.8	51.2	51.6	67.6	68.4	69.1
GRPO	22.9	26.4	27.0	36.3	40.0	40.4	72.9	73.0	73.0
GiGPO	41.6	43.6	44.1	52.0	54.9	55.1	73.4	74.6	75.2
<i>Training with Meta-RL (ours)</i>									
LAMER	42.4	52.0	55.9	44.1	66.4	74.4	67.8	84.4	89.1

287 5.1 EXPERIMENTAL SETUP

288 **Environments.** We evaluate LAMER on four challenging and diverse environments:
 289 Sokoban (Racanière et al., 2017), MineSweeper Li et al. (2024), Webshop Yao et al. (2022)
 290 and ALFWORLD Shridhar et al. (2020). Among them, Sokoban is a classic grid-based game
 291 on planning where the environment is *fully observable*. In comparison, the environments of
 292 MineSweeper, ALFWORLD and Webshop are *partially observable*, requiring the agent to explore and
 293 plan under uncertainty to finish the task. Specifically, MineSweeper is a board game about logical
 294 deduction on hidden cells. Webshop simulates realistic web-based shopping tasks, and ALFWORLD
 295 provides text-based embodied environments. We provide the detailed explanation and prompts of
 296 the environment in Appendix A. All the experiments are conducted with the text modality, though
 297 the proposed method can be naturally applied to multimodal environments.
 298

299 **Training details.** We use Qwen3-4B (Yang et al., 2025) as our base model for all the experiments.
 300 To improve rollout efficiency in agentic loops, we use the non-thinking mode during trajectory
 301 generation. [Additionally, we validate our method on Llama3.1-8B-Instruct \(Grattafiori et al., 2024\)](#), see
 302 [Appendix D.1 for the results](#). For the Meta-RL setting, we use $\gamma_{traj} = 0.6$ as the default trajectory
 303 discount factor and explore its influence in the ablation study. We use GiGPO as the default optimiza-
 304 tion algorithm for all the environments with LAMER. Importantly, for Meta-RL training we
 305 sample $N = 3$ episodes and set group size to 8 for each task. To ensure a fair comparison, we use
 306 a group size of 24 in standard RL training, yielding the same number of trajectories used for each
 307 gradient update step. All other hyperparameters and configurations are kept identical across RL and
 308 Meta-RL for a fair comparison and are provided in Appendix C.

309 5.2 PERFORMANCE COMPARISON

310 In this section, we compare the performance of our proposed algorithm LAMER with prompting-
 311 based baselines (Zero-shot, ReAct (Yao et al., 2023b; Shinn et al., 2023)), and RL methods
 312 (PPO (Schulman et al., 2017), RLOO (Ahmadian et al., 2024), GRPO (Shao et al., 2024), and
 313 GiGPO (Feng et al., 2025)) across three environments: Sokoban, MineSweeper, and Webshop. For
 314 each method, we report the success rates under 1, 2, and 3 attempts (*i.e.*, pass@1, pass@2, and
 315 pass@3, respectively). The results are summarized in Table 1.

316 **Meta-RL obtains better performance.** Across all three environments, LAMER trained with
 317 Meta-RL consistently outperforms both prompting-based baselines and RL-training methods on the
 318 final pass@3 success rate. On Sokoban, LAMER achieves a 55.9% pass@3 success rate, substan-
 319 tially outperforming the 44.1% from the strongest RL baseline (GiGPO) and 12.9% from prompting-
 320 based methods. Similarly, on MineSweeper LAMER reaches 74.4% pass@3 success rate, which is
 321 19% higher than the best RL-trained model. On Webshop, LAMER also performs 14% better than
 322 the RL-trained methods. Notably, the performance gains are not limited to pass@3: improvements

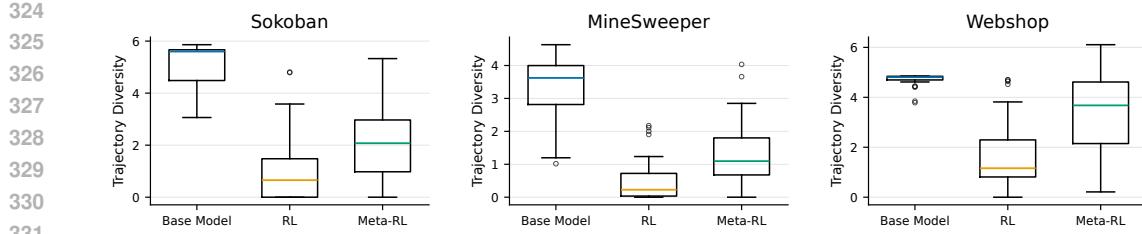


Figure 3: Trajectory diversity of base and trained models. Compared to RL, Meta-RL preserves more diverse trajectories from the base model, striking a better balance between exploration and exploitation.

are also observed on pass@2 for all the environments, and even pass@1 for Sokoban. Together, these results demonstrate that LAMER delivers consistent benefit on the trained agents to solve the long-horizon task in the complex environments.

Meta-RL exhibits stronger test-time scaling. Beside achieving the best final pass@3 performance, Meta-RL also demonstrates remarkable effectiveness in test-time scaling, with larger performance gains across attempts according to the results in Tabel 1. For example, the improvement from pass@1 to pass@3 on Sokoban is 13.5% in Meta-RL, significantly larger both RL-trained and prompting-based baselines (which are less than 5%). Notably, although Meta-RL starts with slightly lower pass@1 performance than RL baseline (GiGPO) in MineSweeper and Webshop, it quickly recovers and surpasses all baselines by pass@2 and pass@3. The results indicate that the trained model has successfully learned to actively explore in the earlier episodes and adapt effectively from the mistakes, leading to significant gains in the subsequent attempts. **The illustrative trajectories and reflections produced by the trained agents are presented in Figure 6 in Appendix E.**

Meta-RL induces exploration. To further analyze the behavior of the models, we measure the diversity of answer trajectories across environments. **For each question, we sample multiple trajectories from the agent and group the identical trajectories that have the same states and actions. These groups are used to form the empirical distribution over distinct trajectories, as shown in Figure 1. We then estimate the entropy of the distribution to quantify the *trajectory diversity*.** Figure 3 compares the trajectory diversity of the base model, RL, and Meta-RL agents across environments. We observe that the base model exhibits the highest entropy, indicating it generates a wide range of trajectories, though this diversity does not translate into higher success rates (see Table 1). RL-trained agent reduces diversity and converges toward more deterministic behaviors. In contrast, LAMER preserves a higher level of diversity than RL baselines, allowing more exploration at test time.

5.3 GENERALIZATION TO HARDER TASKS

Next we study the generalization ability of the pretrained models on harder tasks. To this end, we take the models trained with RL and Meta-RL and evaluate them on the harder tasks in the environments of Sokoban and MineSweeper. We increase the difficulty by using more boxes for Sokoban and more mines for MineSweeper in the grid. The results are shown in Figure 4. As

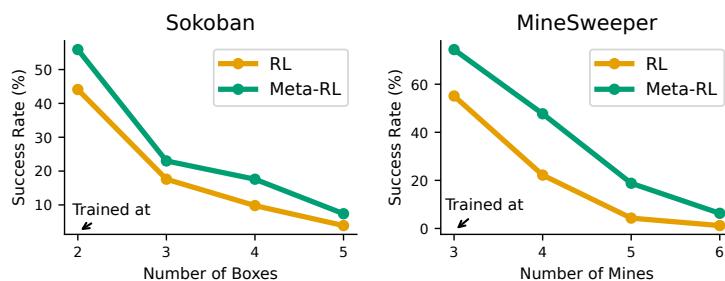


Figure 4: Performance of RL and Meta-RL trained model on the tasks with increased difficulty. For Sokoban, we gradually increase the number of boxes and for Minesweeper, we increase the number of mines in the grid.

378 expected, the model trained with both RL and Meta-RL underperforms on harder tasks with an
 379 increasing number of boxes or mines in the grid. However, Meta-RL consistently outperforms RL
 380 on all the difficulty levels. Notably, on the most difficult setting, the model trained from Meta-RL
 381 still outperforms the RL-trained model with 10% performance gap on Sokoban, and 5% performance
 382 gap on the MineSweeper. The consistent gap indicates that LAMER trained with Meta-RL not only
 383 performs better on the training distribution, but also generalizes better to the harder tasks.

385 5.4 GENERALIZATION TO UNSEEN TASKS

387 We further study the ability LAMER and alternative methods to generalize out-of-distribution. For
 388 this experiment, we use the ALFWORLD environment (Shridhar et al., 2020). As a text-based em-
 389 bodied environment, ALFWORLD contains 6 categories of common household activities: Pick and
 390 Place (*Pick*), Examine in Light (*Look*), Clean and Place (*Clean*), Heat and Place (*Heat*), Cool and
 391 Place (*Cool*), and Pick Two and Place (*Pick2*). We use the tasks of *Pick*, *Look*, *Clean* and *Heat*
 392 as in-distribution tasks and use *Cool* and *Pick2* as out-of-distribution tasks. We train LAMER and
 393 alternative baselines with instances from in-distribution tasks and then evaluate the model on both
 394 in-distribution tasks and out-of-distribution tasks (with held-out test set), and the examples of out-of-distribution tasks. The
 395 results are shown in Table 2. As we can see, RL trained model generally performs well on in-
 396 distribution tasks and outperforms prompting-based methods by achieving more than 20% improve-
 397 ment on *Look*, *Clean* and *Heat*. However, on out-of-distribution tasks, *Cool* and *Pick2*, it only ob-
 398 tains 58.1% and 36.0% success rate. Meta-RL consistently outperforms RL on both in-distribution
 399 and out-of-distribution tasks, with a notable performance gap on out-of-distribution tasks. In partic-
 400 ular, our LAMER framework achieves 23% performance gains on *Cool* and around 14% on *Pick2*.
 401 Overall, these results suggest that on ALFWORLD, Meta-RL trained model could generalize better to
 402 out-of-distribution tasks compared to the RL trained model.

403
 404 Table 2: Evaluation of out-of-distribution generalization on the tasks of ALFWORLD.

Method	<i>i.d</i>				<i>o.o.d</i>	
	Pick	Look	Clean	Heat	Cool	Pick2
Prompting	91.9	52.9	48.4	44.8	42.8	21.2
RL	95.5	83.0	67.9	86.6	58.1	36.0
Meta-RL	97.7	100.0	90.2	89.5	81.0	50.2

412 6 ANALYSIS

413 We further conduct a series of ablation studies on the key design factors of LAMER, including (i)
 414 the influence of trajectory discounted factor γ_{traj} on the trade-off between exploration and exploita-
 415 tion and (ii) the ablation of inter-episode memory configurations. We additionally discuss (iii) the
 416 computation budget of the proposed Meta-RL framework compared to the RL training.

420 6.1 INFLUENCE OF TRAJECTORY DISCOUNT FACTOR

421 The cross-episodes discount factor γ_{traj} controls how rewards are propagated within a trial, thereby
 422 mediating the balance between exploration and exploitation in the LAMER framework during
 423 training. To understand the effect of the discount factor, we train the agents with LAMER using different
 424 values of γ_{traj} on Sokoban, MineSweeper and Webshop. The results are shown in Figure 5. We
 425 observe that a larger value of γ_{traj} does not necessarily lead to better final performance on pass@3,
 426 instead, the optimal setting of γ_{traj} varies across different environments. For Sokoban and Web-
 427 shop, intermediate values like $\gamma_{traj} = 0.6$ yield the best results, suggesting that balancing immediate
 428 and long-term rewards is more important for these tasks. In contrast, MineSweeper benefits from
 429 relatively larger γ_{traj} like 0.9, indicating that extended credit assignment better supports strategic
 430 exploration in this environment. Overall, the results show that γ_{traj} provides a practical way to
 431 control the trade-off between exploration and exploitation across environments.

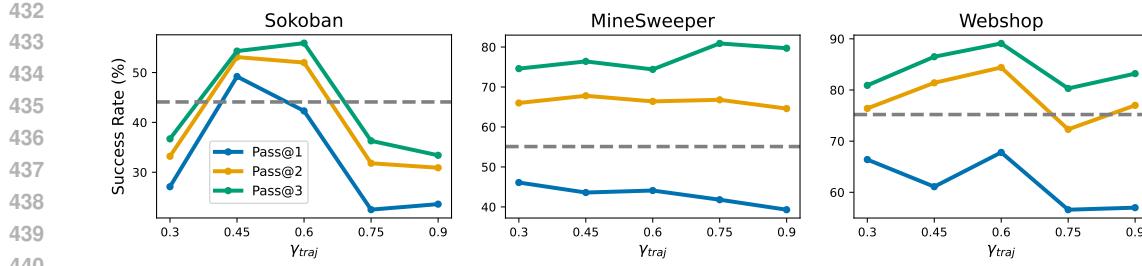


Figure 5: Success rates of models trained with different γ_{traj} . A higher value encourages more exploration during training.

6.2 ABLATION ON THE INTER-EPISODE MEMORY

In LAMER, the agent policy is adapted *in-context* through the inter-episode memory $\mathcal{H}^{(n)}$, which by default contains both the trajectories and reflections of previous episodes. To assess the influence of memory content to the training, we consider two alternative configurations in $\mathcal{H}^{(n)}$: (1) only history trajectories; (2) only reflections. The performance of the trained agents in each configurations are reported in Table 3. The results show that self-reflection provides a clear benefit in LAMER, leading to 21.6% improvement on Sokoban, 11.0% on Minesweeper and 3.5% on Webshop, respectively. Interestingly, the reflection-only configuration also outperforms the default setting in LAMER (which contains both trajectory and reflection) across all environments. We hypothesize that this is because reflection-only memory presents more concise and focused guidance, leading to more effective adaptation of the agent’s behavior.

Table 3: Comparison of LAMER with different inter-episode memory configurations.

Content in $\mathcal{H}^{(n)}$	Sokoban	MineSweeper	Webshop
Trajectory-only	34.8	69.5	89.3
Reflection-only	56.4	80.5	92.8
Both	55.9	74.4	89.1

6.3 TRAINING BUDGET

We conclude with a discussion on the training budget of RL and Meta-RL, focusing on both data usage and computational efficiency. To ensure a fair comparison, we set the group size for standard RL to be three times larger than that of Meta-RL. This adjustment guarantees that the two methods consume the same number of trajectories for each gradient update. Aside from this scaling, all other experimental configurations—such as learning rates, batch sizes, and network architectures—are held constant. This design choice highlights that Meta-RL does not require a larger data budget compared to RL; in other words, both methods rely on the same total number of trajectories to learn.

Nevertheless, LAMER might still introduce additional training time cost compared to the RL baselines. In RL training, all the episodes could be sampled in parallel since they are independent. In contrast, LAMER exhibits less parallelism since episodes within the same trial needs to be generated sequentially. As a result, we observe around twice the training time cost for LAMER in our current implementation. This suggests that more sophisticated sampling strategies, such as asynchronous rollout, could further improve the efficiency of LAMER for training LLM agents.

7 CONCLUSION

Being able to explore and gather information from the environment is crucial in building autonomous agents that can adapt quickly and robustly. We introduced LAMER, a general LLM agent training framework leveraging the principle of meta reinforcement learning. Unlike previous RL methods that maximize a single-episode return for immediate payoff, LAMER maximizes a discounted cross-

486 episode return, naturally balancing when to explore versus when to exploit to maximize long-term
 487 performance. The exploration allowed at training time teaches the agent general explorative strate-
 488 gies that enable a rapid in-context adaptation at test time. We show across diverse environments that
 489 LAMER significantly outperforms RL methods, is able to generalize to harder environments, and
 490 scales better with more episodes at test time.

491 **Limitations and future work.** Our results raise several promising directions for future work.
 492 (1) The generality of our method allows for combining it with other RL algorithms or self-reflection
 493 frameworks. We hypothesize that a more advanced advantage estimation strategy or a stronger
 494 reasoning model may enhance the performance. (2) Our approach requires sampling episodes se-
 495 quentially for rollouts since episodes are dependent in cross-episode training. This eventually leads
 496 to longer training time than RL methods. More efficient training strategies will be explored in future
 497 work. (3) Finally, LAMER trained on easier environments can generalize to harder environments
 498 of the same kind or relatively similar domains. This ultimately suggests possibilities in building
 499 generalist agents that can adapt to completely novel environments.

500 **LLM USAGE STATEMENT**

501 LLM is mainly used for proofreading and as a plot assistant in this work.

502 **REPRODUCIBILITY STATEMENT**

503 In order to ensure that our work is reproducible, we have provided experimental details in Sec-
 504 tion 5.1, together with the template of prompts we used in Appendix B. Complete code documen-
 505 tation is under development and will be made available alongside the paper’s final version.

506 **REFERENCES**

507 Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
 508 Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-
 509 ing from human feedback in llms. *arXiv preprint arXiv:2402.14740*, 2024.

510 AutoGPT. Significant-gravitas/auto-gpt: An experimental open-source attempt to make gpt-
 511 4 fully autonomous., 2023. URL [https://github.com/Significant-Gravitas/](https://github.com/Significant-Gravitas/Auto-GPT/tree/master)
 512 Auto-GPT/tree/master.

513 Jakob Bauer, Kate Baumli, Feryal Behbahani, Avishkar Bhoopchand, Nathalie Bradley-Schmieg,
 514 Michael Chang, Natalie Clay, Adrian Collister, Vibhavari Dasagi, Lucy Gonzalez, et al. Human-
 515 timescale adaptation in an open-ended task space. In *International Conference on Machine Learn-
 516 ing*, pp. 1887–1935. PMLR, 2023.

517 Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shi-
 518 mon Whiteson. A tutorial on meta-reinforcement learning. *Foundations and Trends® in Machine
 519 Learning*, 18(2–3):224–384, 2025. ISSN 1935-8245.

520 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 521 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 522 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

523 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
 524 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
 525 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
 526 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
 527 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
 528 Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
 529 Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
 530 Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
 531 Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
 532 Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
 533 language models trained on code. 2021.

540 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 541 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
 542 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

543

544 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 545 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 546 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 547 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 548 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
 549 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 550 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 551 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
 552 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
 553 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
 554 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
 555 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
 556 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
 557 Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
 558 Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
 559 Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
 560 Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
 561 Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
 562 aasha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
 563 Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
 564 Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
 565 Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
 566 Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
 567 Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
 568 Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
 569 Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
 570 Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
 Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
 ment learning, 2025. URL <https://arxiv.org/abs/2501.12948>.

571 Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl'2: Fast
 572 reinforcement learning via slow reinforcement learning. *arXiv preprint arXiv:1611.02779*, 2016.

573

574 Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
 575 agent training. *arXiv preprint arXiv:2505.10978*, 2025.

576 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
 577 of deep networks. In *International conference on machine learning*, pp. 1126–1135. PMLR, 2017.

578

579 Kanishk Gandhi, Denise H J Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and
 580 Noah Goodman. Stream of search (sos): Learning to search in language. In *First Conference on
 581 Language Modeling*, 2024. URL <https://openreview.net/forum?id=2cop2jmQVL>.

582

583 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 584 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
 585 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
 586 rennev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
 587 Spataru, Baptiste Roziere, Bethany Biron, Bin Tang, Bobbie Chern, Charlotte Caucheteux,
 588 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
 589 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
 590 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
 591 Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
 592 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
 593 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,

594 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 595 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
 596 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
 597 so Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Alwala,
 598 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
 599 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
 600 Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
 601 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
 602 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
 603 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
 604 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
 605 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 606 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 607 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
 608 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
 609 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
 610 Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
 611 Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparth, Sheng
 612 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
 613 Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
 614 Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
 615 haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
 616 Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei
 617 Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
 618 Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuwei Wang, Yaelle Gold-
 619 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
 620 Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
 621 Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
 622 Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
 623 Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
 624 drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
 625 nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
 626 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
 627 hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
 628 Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
 629 talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
 630 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
 631 Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
 632 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
 633 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 634 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smo-
 635 thers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
 636 Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
 637 Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
 638 Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
 639 son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
 640 Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
 641 Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
 642 nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
 643 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
 644 jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
 645 Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
 646 Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
 647 Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
 Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
 Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
 Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
 Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan

648 Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
 649 Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
 650 Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
 651 Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
 652 driguez, Rafi Ayub, Raghatham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
 653 Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
 654 Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
 655 Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
 656 maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
 657 Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
 658 Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
 659 field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
 660 Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
 661 Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
 662 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
 663 mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
 664 Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
 665 jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
 666 Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
 667 Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
 668 duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
 669 <https://arxiv.org/abs/2407.21783>.

670 Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
 671 Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
 672 competence with apps, 2021a. URL <https://arxiv.org/abs/2105.09938>.

673 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
 674 Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
 675 In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks*
 676 *Track (Round 2)*, 2021b. URL <https://openreview.net/forum?id=7Bywt2mQsCe>.

677 Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
 678 networks: A survey. *IEEE transactions on pattern analysis and machine intelligence*, 44(9):
 679 5149–5169, 2021.

680 Akshay Krishnamurthy, Keegan Harris, Dylan J Foster, Cyril Zhang, and Aleksandrs Slivkins. Can
 681 large language models explore in-context? *Advances in Neural Information Processing Systems*,
 682 37:120124–120158, 2024.

683 Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
 684 Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
 685 reinforcement learning. *arXiv preprint arXiv:2409.12917*, 2024.

686 Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
 687 DJ Strouse, Steven Stenberg Hansen, Angelos Filos, Ethan Brooks, maxime gazeau, Himanshu
 688 Sahni, Satinder Singh, and Volodymyr Mnih. In-context reinforcement learning with algorithm
 689 distillation. In *The Eleventh International Conference on Learning Representations*, 2023. URL
 690 <https://openreview.net/forum?id=hy0a5MMPUv>.

691 Yinghao Li, Haorui Wang, and Chao Zhang. Assessing logical puzzle solving in large language
 692 models: Insights from a minesweeper case study. *CoRR*, abs/2311.07387, 2023. doi: 10.48550/
 693 ARXIV.2311.07387. URL <https://doi.org/10.48550/arXiv.2311.07387>.

694 Yinghao Li, Haorui Wang, and Chao Zhang. Assessing logical puzzle solving in large language mod-
 695 els: Insights from a minesweeper case study. In Kevin Duh, Helena Gomez, and Steven Bethard
 696 (eds.), *Proceedings of the 2024 Conference of the North American Chapter of the Association for*
 697 *Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 59–81,
 698 Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/
 699 2024.nacl-long.4. URL <https://aclanthology.org/2024.nacl-long.4/>.

702 Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
 703 Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
 704 Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
 705 Agentbench: Evaluating LLMs as agents. In *The Twelfth International Conference on Learning
 706 Representations*, 2024. URL <https://openreview.net/forum?id=zAdUB0aCTQ>.

707 Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Rea-
 708 soning with reinforced fine-tuning, 2024. URL <https://arxiv.org/abs/2401.08967>.

709

710 Seungyong Moon, Bumsoo Park, and Hyun Oh Song. Guided stream of search: Learning to better
 711 search with language models via optimal path guidance, 2024. URL <https://arxiv.org/abs/2410.02992>.

712

713 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 714 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 715 scaling, 2025. URL <https://arxiv.org/abs/2501.19393>.

716

717 Deepak Nathani, Lovish Madaan, Nicholas Roberts, Nikolay Bashlykov, Ajay Menon, Vin-
 718 cent Moens, Amar Budhiraja, Despoina Magka, Vladislav Vorotilov, Gaurav Chaurasia,
 719 Dieuwke Hupkes, Ricardo Silveira Cabral, Tatiana Shavrina, Jakob Foerster, Yoram Bachrach,
 720 William Yang Wang, and Roberta Raileanu. Mlgym: A new framework and benchmark for ad-
 721 vancing ai research agents, 2025. URL <https://arxiv.org/abs/2502.14499>.

722

723 Allen Nie, Yi Su, Bo Chang, Jonathan N Lee, Ed H Chi, Quoc V Le, and Minmin Chen. Evolve:
 Evaluating and optimizing llms for exploration. *arXiv preprint arXiv:2410.06238*, 2024.

724

725 Dongmin Park, Minkyu Kim, Beongjun Choi, Junhyuck Kim, Keon Lee, Jonghyun Lee, Inkyu Park,
 726 Byeong-Uk Lee, Jaeyoung Hwang, Jaewoo Ahn, Ameya S. Mahabaleshwarkar, Bilal Kartal, Pri-
 727 tam Biswas, Yoshi Suhara, Kangwook Lee, and Jaewoong Cho. Orak: A foundational benchmark
 728 for training and evaluating llm agents on diverse video games. 2025. *arXiv:2506.03610*.

729

730 Joon Sung Park, Joseph O'Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
 731 Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In *Proceedings
 732 of the 36th annual acm symposium on user interface software and technology*, pp. 1–22, 2023.

733

734 Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
 735 language model agents how to self-improve. In *The Thirty-eighth Annual Conference on Neu-
 736 ral Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=DRC9pZwBwR>.

737

738 Yuxiao Qu, Matthew Y. R. Yang, Amritur Setlur, Lewis Tunstall, Edward Emanuel Beeching,
 739 Ruslan Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforce-
 740 ment finetuning. In *Forty-second International Conference on Machine Learning*, 2025. URL
 741 <https://openreview.net/forum?id=TqODUDsU4u>.

742

743 Sébastien Racanière, Théophane Weber, David Reichert, Lars Buesing, Arthur Guez, Danilo
 744 Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, et al.
 745 Imagination-augmented agents for deep reinforcement learning. *Advances in neural information
 746 processing systems*, 30, 2017.

747

748 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 749 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

750

751 Amritur Setlur, Matthew YR Yang, Charlie Snell, Jeremy Greer, Ian Wu, Virginia Smith, Max Sim-
 752 chowitz, and Aviral Kumar. e3: Learning to explore enables extrapolation of test-time compute
 753 for llms. *arXiv preprint arXiv:2506.09026*, 2025.

754

755 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 756 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 757 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

758

759 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 760 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *Proceedings
 761 of the Twentieth European Conference on Computer Systems*, pp. 1279–1297, 2025.

756 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Re-
 757 flexion: language agents with verbal reinforcement learning. In *Thirty-seventh Conference on*
 758 *Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=vAE1hFcKW6>.

759

760 Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
 761 Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. *arXiv*
 762 *preprint arXiv:2010.03768*, 2020.

763

764 Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
 765 optimally can be more effective than scaling parameters for reasoning. In *The Thirteenth Interna-*
 766 *tional Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=4FWAwZtd2n>.

767

768 Bradly C Stadie, Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, and Ilya
 769 Sutskever. Some considerations on learning to explore via meta-reinforcement learning. *arXiv*
 770 *preprint arXiv:1803.01118*, 2018.

771

772 Fahim Tajwar, Yiding Jiang, Abitha Thankaraj, Sumaita Sadia Rahman, J Zico Kolter, Jeff Schnei-
 773 der, and Russ Salakhutdinov. Training a generally curious agent. In *Forty-second International*
 774 *Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=UeB3Hdhrhda>.

775

776 Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In *Learning to*
 777 *learn*, pp. 3–17. Springer, 1998.

778

779 Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
 780 and Anima Anandkumar. Voyager: An open-ended embodied agent with large language mod-
 781 els. *Transactions on Machine Learning Research*, 2024a. ISSN 2835-8856. URL <https://openreview.net/forum?id=ehfRiF0R3a>.

782

783 Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
 784 Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
 785 *arXiv preprint arXiv:1611.05763*, 2016.

786

787 Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
 788 Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
 789 *Frontiers of Computer Science*, 18(6):186345, 2024b.

790

791 Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin,
 792 Kefan Yu, Minh Nhat Nguyen, Licheng Liu, et al. Ragen: Understanding self-evolution in llm
 793 agents via multi-turn reinforcement learning. *arXiv preprint arXiv:2504.20073*, 2025.

794

795 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 796 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 797 *neural information processing systems*, 35:24824–24837, 2022.

798

799 Robert C Wilson, Andra Geana, John M White, Elliot A Ludvig, and Jonathan D Cohen. Humans use
 800 directed and random exploration to solve the explore-exploit dilemma. *Journal of experimental*
 801 *psychology: General*, 143(6):2074, 2014.

802

803 Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
 804 An empirical analysis of compute-optimal inference for problem-solving with language models,
 805 2025. URL <https://arxiv.org/abs/2408.00724>.

806

807 Wei Xiong, Hanning Zhang, Chenlu Ye, Lichang Chen, Nan Jiang, and Tong Zhang. Self-
 808 rewarding correction for mathematical reasoning, 2025. URL <https://arxiv.org/abs/2502.19613>.

809

810 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 811 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 812 *arXiv:2505.09388*, 2025.

810 Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
811 real-world web interaction with grounded language agents. *Advances in Neural Information Pro-*
812 *cessing Systems*, 35:20744–20757, 2022.

813

814 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik R
815 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
816 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023a. URL <https://openreview.net/forum?id=5Xc1ecx01h>.

817

818 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
819 React: Synergizing reasoning and acting in language models. In *International Conference on*
820 *Learning Representations (ICLR)*, 2023b.

821

822 Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
823 reasoning. *Advances in Neural Information Processing Systems*, 35:15476–15488, 2022.

824

825 Guibin Zhang, Hejia Geng, Xiaohang Yu, Zhenfei Yin, Zaibin Zhang, Zelin Tan, Heng Zhou,
826 Zhongzhi Li, Xiangyuan Xue, Yijiang Li, et al. The landscape of agentic reinforcement learning
827 for llms: A survey. *arXiv preprint arXiv:2509.02547*, 2025.

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864
865

APPENDIX

866
867

A TASK DESCRIPTION AND DETAILS

868

Sokoban. We include the classic video game Sokoban as a fully-observable environment. The game is a 2D square board, with N boxes scattered on the board. There are also N target positions marked on the board. The player is placed at an initial position, and the goal is to push all the boxes to the target positions. There is no correspondence between each box and the target position. When the player walks into a box, it gets pushed in that direction (if there's space). Boxes can't be pushed into walls or other boxes. Once a box is pushed into a corner or against a wall with no way to get behind it, it might become permanently stuck. There is no pull operation in this game. The agent, therefore, has to think several moves ahead to avoid getting boxes stuck in positions where they can't reach their targets. The difficulty of this task is controlled by the board size, the number of boxes, and the wall structure of the board. We train on a board size 6×6 with 2 boxes.

878

Minesweeper. We include the classic video game Minesweeper as a partially-observable environment. The game is a 2D square board, with several mines randomly scattered in the board cells. The goal of the game is to open all the safe cells without revealing the hidden mines. In each step, the agent opens a cell, and the first step is always safe. If a mine is revealed, the task ends in failure immediately. The state of the opened (safe) cells can either be empty or a number from 1 to 8, and the number specifies how many mines are adjacent to the specific cell. The agent needs to use the numbers marked on the opened cells to reason about the position of mines. Success is achieved when all safe cells are revealed. Our implementation is based on a simplified version of Li et al. (2023). The difficulty of this task is controlled by the board size and the number of mines. We train on a board size 6×6 with 3 hidden mines.

887

WebShop (Yao et al., 2022). We include WebShop as a partially-observable text-based environment that simulates online shopping. The agent is given a natural language instruction specifying a product to purchase with certain attributes. The environment presents a simplified e-commerce interface where the agent can search for products, navigate through search results, and examine product pages with details like price, color, size, and customer reviews. The agent must interpret the instruction, search effectively, filter through multiple product options, and select the item that best matches the specified criteria. Success is measured by whether the final purchased item satisfies all the requirements in the original instruction.

895

ALFWorld (Shridhar et al., 2020). We include ALFWorld as a partially-observable text-based environment that simulates household tasks in interactive fiction format. The agent receives natural language instructions for common household activities. The environment provides text descriptions of rooms, objects, and possible actions, while the agent must navigate through a house, interact with objects, and complete multi-step tasks. Objects may need to be found, picked up, cleaned, heated, or combined with other objects to achieve the goal. The agent's view is limited to the current room and nearby objects, requiring exploration and memory of previously visited locations. Success requires understanding the instruction, planning a sequence of actions, and executing them correctly while managing partial observability. We train on the training examples of the activities 'Pick', 'Look', 'Clean', 'Heat'. We evaluate in-distribution on the test examples from the same activities, and we evaluate out-of-distribution on the test examples from 'Cool', 'Pick2' activities.

906

907

908

909

910

911

912

913

914

915

916

917

B EXAMPLE PROMPTS

We provide examples of prompts for each task. There are two types of prompts: (1) the standard version (with name ‘Standard Prompt’) used for prompting the agent to play the game; (2) the reflection prompt used for self-reflection on a past experience (with name ‘Reflection Prompt’)

There are variables such as {past_experience_reflection}, {history_actions} in the prompts, among with other task-specific hyperparameters. They are omitted in the prompts for clarity. In practice, they will be replaced with the actual content. Note that the {past_experience_reflection} will be empty for the first episode.

Similar to (Feng et al., 2025), we use `<action> </action>` block to indicate the final decision of the action, and we use `<remark> </remark>` to indicate the content of the self-reflection.

(see next page for the prompts)

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 B.1 SOKOBAN

973

974

975

976

977

978 Sokoban Standard Prompt

979

980 You are an expert agent operating in the Sokoban environment.

981

982 # Symbols and Their Meaning

983 - Walls (#): These block movement. You can't move through or push anything into walls.

984 - Floor (_): Open spaces where you can walk and move boxes.

985 - Targets (O): The spots where boxes need to go.

986 - Boxes (X): These are what you need to push onto the targets.

987 - Player (P): That's you! You'll move around the grid to push boxes.

988 - Box on Target (✓): A box successfully placed on a target.

989 - Player on Target (S): You standing on a target.

990

991 # Goal

992 Your goal is to push all the boxes (X) onto the target spots (O). Once all boxes are on the
993 targets, you win!

994

995 # Rules

996 Your admissible actions are ["up", "down", "left", "right"].

997 You can only push one box at a time. You can't pull boxes, so plan ahead to avoid getting
998 stuck.

999 You can't walk through or push boxes into walls (#) or other boxes.

1000 To avoid traps, do not push boxes into corners or against walls where they can't be moved
1001 again.

1002 {example}

1003 # Observations

1004 The initial state of the game is:

1005 0: # # # # #
1006 1: # # # _ O #
1007 2: # _ O _ _ #
1008 3: # _ _ X X #
1009 4: # _ # P _ #
1010 5: # # # # #

1011 {past_experience_reflection}

1012 You have already taken the following actions:

1013 {history_actions}

1014 Your current observation is:

1015 0: # # # # #
1016 1: # # # _ O #
1017 2: # _ O _ X #
1018 3: # _ X P _ #
1019 4: # _ # _ _ #
1020 5: # # # # #

1021 Now it's your turn to make moves (choose the next {num_actions_per_turn} actions).

1022 - Your response first be step-by-step reasoning about the current situation — observe the
1023 positions of boxes and targets, plan a path to push a box toward a target, and avoid traps like
1024 corners or walls.1025 - Then choose {num_actions_per_turn} admissible actions and present them within
<action> </action> tags (separated by comma).

Sokoban Reflection Prompt

You are an expert agent operating in the Sokoban environment.

Symbols and Their Meaning

- Walls (#): These block movement. You can't move through or push anything into walls.
- Floor (_): Open spaces where you can walk and move boxes.
- Targets (O): The spots where boxes need to go.
- Boxes (X): These are what you need to push onto the targets.
- Player (P): That's you! You'll move around the grid to push boxes.
- Box on Target (✓): A box successfully placed on a target.
- Player on Target (S): You standing on a target.

Your Goal

Your goal is to push all the boxes (X) onto the target spots (O). Once all boxes are on the targets, you win!

Rules

Your admissible actions are [“up”, “down”, “left”, “right”].

You can only push one box at a time. You can't pull boxes, so plan ahead to avoid getting stuck.

You can't walk through or push boxes into walls (#) or other boxes.

To avoid traps, do not push boxes into corners or against walls where they can't be moved again.

Your Task

You will be given the history of a past experience.

Your job is to **reflect on the past sequence**, identify any **mistakes or inefficiencies**, and then devise a **concise, improved plan** starting from the original initial state.

Past Experience

The initial state of the game is:

```
1056 0: # # # # #  
1057 1: # # # _ O #  
1058 2: # _ O _ _ #  
1059 3: # _ _ X X #  
1060 4: # _ # P _ #  
1061 5: # # # # # #
```

You have taken the following actions:

```
1062 {history_actions}
```

The final state is:

```
1065 0: # # # # #  
1066 1: # # # _ O #  
1067 2: # _ O _ X #  
1068 3: # _ X P _ #  
1069 4: # _ # _ _ #  
1070 5: # # # # # #
```

The task is NOT successfully completed.

Now it's your turn to reflect on the past experience and come up with a new plan of action.

- Your response should first be step-by-step reasoning about the strategy and path you took to attempt to complete the task. Identify where things went wrong or could be better.
- Then devise a concise, new plan of action that accounts for your mistake with reference to specific actions that you should have taken.
- Finally, end the response with your reflection and improved plan inside <remark></remark> tags, to guide the next trial.

1080 B.2 MINESWEEPER

1081

1082

1083

1084

1085

1086

Minesweeper Standard Prompt

You are an expert agent operating in the Minesweeper game.

You will be given a two dimensional {board_size} by {board_size} board, with {n_mines} hidden mines.

The rows and columns are indexed from 1 to {board_size}.

Cell States

- Unopened cells (?): cells that are yet to be revealed and may contain a mine.
- Blank cells (.): opened and non-mine cells, and they have no neighboring mines
- Numbered cells (1-8): opened and non-mine cells, and the number indicates how many mines are in the eight neighboring cells, including those diagonally adjacent. For example, a cell with a '8' means all its neighboring cells contain mines.
- Mine cells (*): opened cells that contain a mine.

Your Goal

Your goal is to clear the board by revealing all the cells that don't contain mines, without detonating any of the hidden mines scattered throughout the board.

Use clues about the number of neighboring mines in each field to reason about the position of mines and non-mine cells.

Reveal Rules

Your admissible action is to choose ONE unopened cell (?) to reveal per turn. The outcome depends on the content of that cell:

- Blank cell (.): That cell is revealed, and all contiguous blank cells plus their bordering numbered cells are automatically revealed (auto-cascade).
- Numbered cell (1-8): Only that single cell is revealed, showing the count of neighboring mines.
- Mine (*): The game ends immediately in a loss.

Observation

The initial state of the game is:

Row 1:

Row 2: . . . 1 1 1

Row 3: . . . 1 ? ?

Row 4: 1 1 . 1 2 ?

Row 5: ? 1 . . 1 1

Row 6: ? 1

{past_experience_reflection}

You have already chosen the following cells to reveal: (6, 1)

Your current observation is:

Row 1:

Row 2: . . . 1 1 1

Row 3: . . . 1 ? ?

Row 4: 1 1 . 1 2 ?

Row 5: ? 1 . . 1 1

Row 6: 1 1

Now it's your turn to make a move.

- Your should first reason step-by-step about the current situation — observe the status of the board, inferring the states of unopened cells (?).

- Then choose ONE unopened cell (?) to reveal. Put the index of cell in the format of "(row, col)" within the <action> </action> tag.

1134
 1135 Minesweeper Reflection Prompt

1136 You are an expert agent operating in the Minesweeper game.
 1137 You will be given a two dimensional $\{\text{board_size}\}$ by $\{\text{board_size}\}$ board, with $\{\text{n_mines}\}$
 1138 hidden mines.
 1139 The rows and columns are indexed from 1 to $\{\text{board_size}\}$

1140
 1141 # Cell States
 1142 - Unopened cells (?): cells that are yet to be revealed and may contain a mine.
 1143 - Blank cells (.): opened and non-mine cells, and they have no neighboring mines
 1144 - Numbered cells (1-8): opened and non-mine cells, and the number indicates how many
 1145 mines are in the eight neighboring cells, including those diagonally adjacent. For example,
 1146 a cell with a '8' means all its neighboring cells contain mines.
 1147 - Mine cells (*): opened cells that contain a mine.

1148 # Your Goal
 1149 Your goal is to clear the board by revealing all the cells that don't contain mines, without
 1150 detonating any of the hidden mines scattered throughout the board.
 1151 Use clues about the number of neighboring mines in each field to reason about the position
 1152 of mines and non-mine cells.

1153
 1154 # Reveal Rules
 1155 Your admissible action is to choose ONE unopened cell (?) to reveal per turn. The outcome
 1156 depends on the content of that cell:
 1157 - Blank cell (.): That cell is revealed, and all contiguous blank cells plus their bordering
 1158 numbered cells are automatically revealed (auto-cascade).
 1159 - Numbered cell (1-8): Only that single cell is revealed, showing the count of neighboring
 1160 mines.
 1161 - Mine (*): The game ends immediately in a loss.

1162 # Your Task
 1163 You will be given the history of a past experience.
 1164 Your job now is to **reflect on the past experience**, identify any **mistakes or inefficiencies**,
 1165 and then devise a **concise, improved plan** for your next try starting from the
 1166 original initial state.
 1167 # Past Experience
 1168 The initial state of the game is:

1169 Row 1:
 1170 Row 2: . . . 1 1 1
 1171 Row 3: . . . 1 ? ?
 1172 Row 4: 1 1 . 1 2 ?
 1173 Row 5: ? 1 . . 1 1
 1174 Row 6: ? 1

1175 You have chosen the following cells to reveal:
 1176 {history_actions}
 1177 The final state is:

1178 Row 1:
 1179 Row 2: . . . 1 1 1
 1180 Row 3: . . . 1 ? ?
 1181 Row 4: 1 1 . 1 2 ?
 1182 Row 5: * 1 . . 1 1
 1183 Row 6: 1 1

1184 The task is NOT successfully completed.
 1185 Now it's your turn to reflect on the past experience and come up with a new plan of action.
 1186 - Your response should first be step-by-step reasoning about the strategy and path you took
 1187 to attempt to complete the task. Identify where things went wrong or could be better.
 1188 - Then devise a concise, new plan of action that accounts for your mistake with reference to
 1189 specific actions that you should have taken.
 1190 - Finally, end the response with your reflection and improved plan inside <remark>
 1191 </remark> tags, to guide the next trial.

1188 B.3 WEBSHOP

1189

1190

1191

1192

1193

1194

1195

1196

1197

WebShop Standard Prompt

1198

You are an expert autonomous agent operating in the WebShop e-commerce environment. Your task is to: Find me slip resistant, non slip men's loafers & slip-ons with rubber outsole, rubber sole with color: 1877blue, and size: 11.5, and price lower than 70.00 dollars.
 {past_experience_reflection}{history_actions}

1202

Your admissible actions of the current situation are:
 'search[your query]',
 'click[search]'.
 Now it's your turn to take one action for the current step.

1205

Your response should first be step-by-step reasoning about the current situation, then think carefully which admissible action best advances the shopping goal.
 Once you've finished your reasoning, you should choose an admissible action for current step and present it within <action> </action> tags.

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

WebShop Reflection Prompt

1227

You are an expert autonomous agent operating in the WebShop e-commerce environment. Your task is to: Find me slip resistant, non slip men's loafers & slip-ons with rubber outsole, rubber sole with color: 1877blue, and size: 11.5, and price lower than 70.00 dollars.

1230

You will be given the history of a past experience.

1231

Your job is to **reflect on the past sequence**, identify any **mistakes or inefficiencies**, and then devise a **concise, improved plan** starting from the original initial state.

1232

Below are the last few actions and corresponding observations you have:

1233

{history_actions}

1234

The task is NOT successfully completed.

1235

Now it's your turn to reflect on the past experience and come up with a new plan of action.

1236

- Your response should first be step-by-step reasoning about the strategy and path you took to attempt to complete the task. Identify where things went wrong or could be better.

1237

- Then devise a concise, new plan of action that accounts for your mistake with reference to specific actions that you should have taken.

1238

- Finally, end the response with your reflection and improved plan inside <remark> </remark> tags, to guide the next trial.

1239

1240

1241

1242 B.4 ALFWORLD
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261

1262 **ALFWORLD Standard Prompt**

1263 You are an expert agent operating in the ALFRED Embodied Environment.
 1264 -= Welcome to TextWorld, ALFRED! =-

1265
 1266 You are in the middle of a room. Looking quickly around you, you see a bed 1, a desk 2, a
 1267 desk 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a garbagecan
 1268 1, a laundryhamper 1, a safe 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3, a shelf 2, and a shelf 1.
 1269

1270 Your task is to: put a mug in desk.

1271 {past_experience_reflection}{history_actions}
 1272 Your admissible actions of the current situation are:

1273 'go to bed 1',
 1274 'go to desk 1',
 1275 'go to desk 2',
 1276 'go to drawer 1',
 1277 'go to drawer 2',
 1278 'go to drawer 3',
 1279 'go to drawer 4',
 1280 'go to drawer 5',
 1281 'go to drawer 6',
 1282 'go to garbagecan 1',
 1283 'go to laundryhamper 1',
 1284 'go to safe 1',
 1285 'go to shelf 1',
 1286 'go to shelf 2',
 1287 'go to shelf 3',
 1288 'go to shelf 4',
 1289 'go to shelf 5',
 1290 'go to shelf 6',
 1291 'inventory',
 1292 'look'.

1293 Now it's your turn to take an action.

1294 - Your response should first by step-by-step reasoning about the current situation.
 1295 - Once you've finished your reasoning, you should choose an admissible action for current
 1296 step and present it within <action> </action> tags.

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

ALFWorld Reflection Prompt

You are an expert agent operating in the ALFRED Embodied Environment.

-- Welcome to TextWorld, ALFRED! --

You are in the middle of a room. Looking quickly around you, you see a bed 1, a desk 2, a desk 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a garbagecan 1, a laundryhamper 1, a safe 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3, a shelf 2, and a shelf 1.

Your task is to: put a mug in desk.

You will be given the history of a past experience.

Your job is to **reflect on the past sequence**, identify any **mistakes or inefficiencies**, and then devise a **concise, improved plan** starting from the original initial state.

Below are the actions you took and the corresponding observations:

{history_actions}

The task is NOT successfully completed.

Now it's your turn to reflect on the past experience and come up with a new plan of action.

- Your response should first be step-by-step reasoning about the strategy and path you took to attempt to complete the task. Identify where things went wrong or could be better.
- Then devise a concise, new plan of action that accounts for your mistake with reference to specific actions that you should have taken.
- Finally, end the response with your reflection and improved plan inside <remark></remark> tags, to guide the next trial.

1350 **C TRAINING DETAILS**

1352 LAMER is compatible with standard policy gradient algorithms. Without specification, we use
 1353 GiGPO as the default optimization algorithm. During training, the self-reflection step is also explicitly
 1354 trained using the reward in the subsequent episodes. During training, we match the total number
 1355 of experiences sampled for each example between RL and Meta-RL to ensure a fair comparison.
 1356 Specifically, for each sample $N = 3$ episodes and set group size to 8 for Meta-RL, and use a group
 1357 size of 24 for standard RL training. Besides that, other hyper-parameters and configuration are kept
 1358 the same between RL and Meta-RL training. We use Qwen3-4B as the base model and train it with
 1359 Adam optimizer and a learning rate of $1e - 6$. For Sokoban and MineSweeper, we train the agents
 1360 with a batch size of 16 for 300 epochs. In comparison, we use batch size of 8 and 150 epochs for
 1361 Webshop and ALFWORLD. The environment reward is set to be 10 for successful trajectories and
 1362 0 for unsuccessful ones. We use temperature of 1.0 during rollout and 0.7 during evaluation. The
 1363 maximum number of output tokens is set to 1024. Our code is based on the training framework of
 1364 verl (Sheng et al., 2025) and verl-agent Feng et al. (2025).

1365 **D ADDITIONAL RESULTS**

1366 **D.1 EXPERIMENTS ON DIFFERENT ARCHITECTURE**

1369 LAMER is designed as a general framework built on meta-RL principles and is model-agnostic.
 1370 To validate this, we additionally ran experiments on Llama3.1-8B-Instruct (Grattafiori et al., 2024),
 1371 showing that our method works well on models in a different model architecture and model size.
 1372

1373 **Table 4: Performance on Sokoban and MineSweeper environments using Llama3.1-8B-Instruct as
 1374 base model. The results of p@1, p@2 and p@3 denote the success rate (%) under 1, 2, and 3
 1375 attempts, respectively.**

Method	Sokoban			MineSweeper		
	p@1	p@2	p@3	p@1	p@2	p@3
GiGPO	5.9	6.3	6.3	39.1	41.4	42.2
LAMER	17.6	19.9	20.3	47.7	61.3	65.6

1383 In Table 4, we compare LAMER with the strongest baseline GiGPO (Feng et al., 2025), on Sokoban
 1384 and Minesweeper. We show The results indicate that on Llama-3.1-8B-Instruct, LaMer still out-
 1385 performs the RL baselines across the environments, demonstrating the general applicability of our
 1386 method to different model architecture and size.

1387 **D.2 COMPARISON TO RL BASELINES WITH INTER-EPIISODE MEMORY**

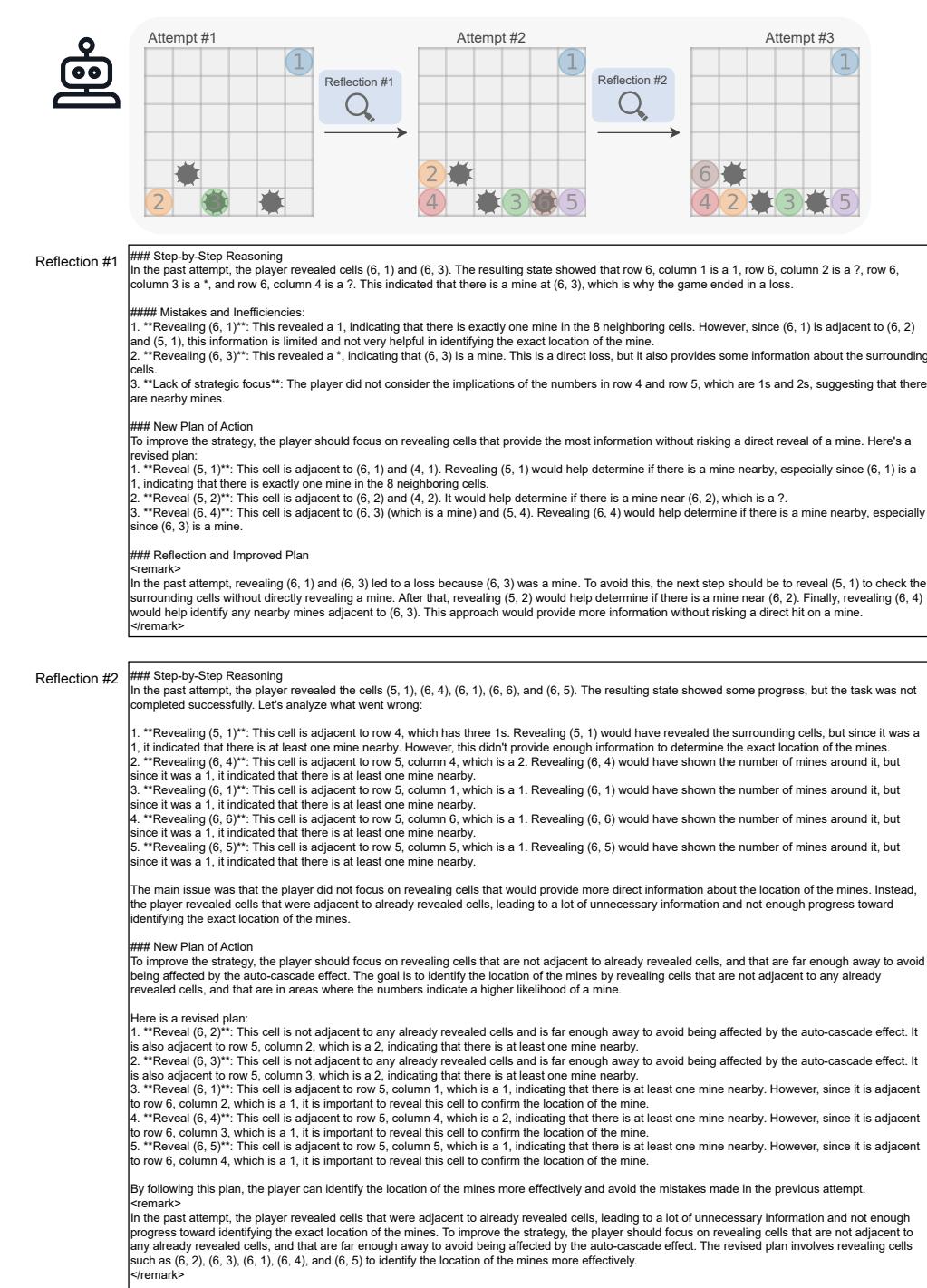
1389 In our main experiment at Table 1, we follow previous work and evaluate the standard RL methods
 1390 without access to the inter-episode memory. For comprehensive evaluation, we further evaluate the
 1391 RL trained agents with access to the inter-episode memory (reflections and previous trajectories).
 1392 The results of pass@3 are shown in Table 5. We observe that the inter-episode memory enhances the
 1393 performance of RL trained agents on Sokoban (+3.8%) and MineSweeper (+5.3%), while degrades
 1394 the performance on Webshop (-1.2%). Nevertheless, LAMER still substantially outperforms RL
 1395 baselines across all the environments, demonstrating the advantage of the proposed method.

1397 **Table 5: Performance of RL baselines with access to inter-episode memory (pass@3).**

Method	Sokoban	MineSweeper	Webshop
GiGPO (w/o memory)	44.1	55.1	75.2
GiGPO (w/ memory)	47.9	60.4	74.0
LAMER	55.9	74.4	89.1

1404 E EXAMPLES
1405

1406 On Figure 6, we provide an example of trajectories and corresponding reflections produced by the
1407 agent when solving the MineSweeper game. Here each trajectory is represented by a sequence of
1408 clicks (numbered cells) on the board. The mines are not visible to the agent and will lead to failure
1409 of the game if clicked.



1456 Figure 6: Example of trajectories and reflections produced by LAMER trained agents on the
1457 MineSweeper game.