
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

META-RL INDUCES EXPLORATION IN
LANGUAGE AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) has enabled the training of large language model
(LLM) agents to interact with the environment and to solve multi-turn long-
horizon tasks. However, the RL-trained agents often struggle in tasks that require
active exploration and fail to efficiently adapt from trial-and-error experiences. In
this paper, we present LAMER, a general Meta-RL framework that enables LLM
agents to actively explore and learn from the environment feedback at test time.
LAMER consists of two key components: (i) a cross-episode training framework
to encourage exploration and long-term rewards optimization; and (ii) in-context
policy adaptation via reflection, allowing the agent to adapt their policy from task
feedback signal without gradient update. Experiments across diverse environ-
ments show that LAMER significantly improves performance over RL baselines,
with 11%, 14%, and 19% performance gains on Sokoban, MineSweeper and Web-
shop, respectively. Moreover, LAMER also demonstrates better generalization to
more challenging or previously unseen tasks compared to the RL-trained agents.
Overall, our results demonstrate that meta-reinforcement learning provides a prin-
cipled approach to induce exploration in language agents, enabling more robust
adaptation to novel environments through learned exploration strategies.

1 INTRODUCTION

Recent advances in large language models (LLMs) have shifted from building conversational sys-
tems to decision-making agents capable of reasoning about and interacting with their environ-
ments (Yao et al., 2023b; Shinn et al., 2023; Wang et al., 2025; Feng et al., 2025). To accomplish the
goal, language agents operate in multi-turn, textual observation-action loops, and must adapt quickly
using the memory across turns. Central to such adaptation is exploration, which allows agents to
test uncertain actions, acquire new knowledge, and avoid premature convergence on suboptimal
strategies. However, unlike humans that can explore systematically and make fast adaptation in
new environments (Wilson et al., 2014), LLM agents do not robustly engage in exploration without
substantial interventions (Krishnamurthy et al., 2024).

Recent works has begun to address this limitation by guiding LLMs toward exploratory behaviors
at test time. For example, Tajwar et al. (2025) train models offline to distill exploration strategies
from trajectories from diverse environments, while Gandhi et al. (2024) induce such strategies from
offline search traces. Setlur et al. (2025) train models to learn to explore in-context as a better way
of spending test-time compute (Snell et al., 2025). However, these works either focus on single-
turn non-agentic reasoning problems, or rely on offline data that limits them to imitation rather than
active exploration.

In this work, we take a step toward agents that can actively explore their environment, gather feed-
back, and leverage this experience for more effective exploitation. Since multi-turn tasks often have
a sparse success signal after an episode, we consider a multi-episode regime (Shinn et al., 2023)
where an episode is the unit of exploration and exploitation. Balancing exploration and exploita-
tion can then be naturally formulated as a cross-episode reinforcement learning (RL) framework.
Training across many similar but different environments under this framework leads to meta rein-
forcement learning (Meta-RL) (Duan et al., 2016; Wang et al., 2016; Bauer et al., 2023; Beck et al.,
2025), where the agent is forced to discover general strategies that work in unseen and potentially
harder environments.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

75% of Cumulative Probability

75% of Cumulative Probability

... (+9 more)

RL Trajectories: Meta-RL Trajectories:

Trajectory Index

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty

Trajectory IndexTrajectory Diversity

Figure 1: Comparison of RL and Meta-RL training on the Minesweeper environment. Left: Meta-
RL training with LAMER retains higher sample diversity from the base model while achieving
better success rates, reaching a better trade-off between exploration and exploitation. Right: Distinct
trajectories and their empirical probabilities aggregated over multiple sampled trajectories in the
MineSweeper environment. Each trajectory corresponds to a sequence of clicks (numbered cell)
on the board. Sample diversity is quantified by the entropy of the empirical distribution. Meta-RL
trained model produces more diverse and explorative trajectories.

Building upon this, we propose LAMER (LLM Agent with Meta-RL), a general Meta-RL frame-
work for LLM agent training. LAMER contains two important design factors. First, unlike standard
single-episode RL, LAMER is designed around a multi-episode structure to train the agent to solve
the problem through trial and error. In early episodes, the agent is encouraged to gather diverse
experiences and useful information of the environment, which are used to adapt its policy in later
episodes. By maximizing long-term rewards across episodes, the agent internalizes a learning al-
gorithm that explicitly incentivizes exploration for improved downstream exploitation. Second, at
both training and test time, the agent effectively leverages the feedback and reflection from the past
episodes to determine the strategy for the next episode, which essentially implements an RL al-
gorithm in context, and making the approach naturally suited for LLM agents. Meta-RL produces
more diverse samples while simultaneously achieving higher performance, reaching a better balance
between exploration and exploitation (Figure 1). To the best of our knowledge, this is the first time
a meta-RL framework is used for LLM agent training.

We evaluate LAMER on four challenging long-horizon tasks: Sokoban (Racanière et al., 2017),
MineSweeper (Li et al., 2024), Webshop (Yao et al., 2022) and ALFWorld (Shridhar et al., 2020).
Using Qwen3-4B (Yang et al., 2025), we demonstrate that LAMER consistently outperforms
prompting and RL baselines on all the environments. In addition, we observe that the trained model
has learned a balance between exploration and exploitation, resulting in a better test-time scaling
performance. In particular, LAMER adapts the trained policy at test time, with 11/14/19% abso-
lute performance gains on Sokoban, MineSweeper and Webshop, respectively. Furthermore, we
show that LAMER trained model achieves a better generalization to harder and out-of-distribution
tasks. In summary, LAMER takes a step toward autonomous agents that can actively act to uncover
information and improve their decision-making in the new environments.

2 RELATED WORK

LLM-as-agent. As LLMs become increasingly capable of reasoning about complex scenarios (Wei
et al., 2022), there is a growing interest in making them decision-making autonomous agents. Ear-
lier works rely on prompting frozen LLMs (Yao et al., 2023b; Shinn et al., 2023; Park et al., 2023;
Wang et al., 2024a; AutoGPT). ReAct (Yao et al., 2023b) prompts LLMs with in-context examples
to generate both textual actions and reasoning thoughts. Later, Reflexion (Shinn et al., 2023) extends
this principle to the multi-episode setting, where the agent verbally reflects on the last episode and
maintains their own reflection buffer for the next episodes. More recent research trains LLM agents
through designing advanced RL algorithms (Wang et al., 2025; Feng et al., 2025) for multi-turn inter-
actions, or supervised fine-tuning on generated interaction trajectories across diverse tasks (Tajwar
et al., 2025). The evaluation of LLM agents also poses challenges because of fully verbal interac-
tions with the environments. Recent benchmarks span a wide range of domains, including text-based
embodied environments (Shridhar et al., 2020), e-commerce website (Yao et al., 2022), bandits (Nie
et al., 2024), classic games (Park et al., 2025; Li et al., 2024) and other tasks (Liu et al., 2024;

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Nathani et al., 2025). For a more comprehensive overview of these efforts, we refer readers to recent
surveys (Wang et al., 2024b; Zhang et al., 2025).

Meta reinforcement learning (Meta-RL) (Beck et al., 2025) focuses on ”learning to reinforcement
learn” in order to rapidly adapt to new environments. Similar to meta-learning (Thrun & Pratt, 1998;
Hospedales et al., 2021), it involves an inner-loop that represents an RL algorithm (i.e. adaptation
strategy) by itself, together with an outer-loop that updates the meta-parameters so that the inner loop
becomes more effective across many tasks. By training across many tasks, the outer loop forces the
agent to learn the exploration strategy necessary to solve the tasks, while the inner loop enables the
agent adapt quickly based on the exploration. Depending on how the inner loop is done, there are in-
context methods and gradient-based methods. For example, Duan et al. (2016); Wang et al. (2016);
Stadie et al. (2018) represent the inner-loop as a history-dependent policy parametrized by an RNN,
the adaptation is thus done ‘in-context’ through gathering more information stored in the memory
states. On the other hand, Finn et al. (2017) leverages a gradient-based approach in which the inner
adapts a general meta-policy learned by the outer-loop. Our work lies in the former category, where
the adaptation occurs entirely in-context at test time, naturally leveraging LLMs’ in-context learning
abilities.

Test-time compute. A Meta-RL framework in LAMER can be considered as amortizing the test-
time compute by training tasks in a multi-episode manner rather than a single episode. In this way,
the learned in-context policy adaptation balances exploration and exploitation for a fast adaptation
at test time. This is essentially a better way of spending test-time compute (Snell et al., 2025;
Muennighoff et al., 2025; Wu et al., 2025; Setlur et al., 2025). In our experiments, we match the
training compute budget between an RL and a Meta-RL baseline, and show that meta-RL encourages
superior test-time scaling behavior (through pass@k). Qu et al. (2025) similarly relates meta-RL to
test-time compute, but they are limited to single-turn problems of mathematical reasoning, without
leveraging the interactive feedback from the environment.

Reasoning in LLMs. More broadly, this work relates to reasoning in LLMs, because language
agents must use reasoning as part of their decision-making. A large bulk of recent work on LLM
reasoning has focused on more advanced prompting (Wei et al., 2022; Yao et al., 2023a), post-
training (Cobbe et al., 2021; Luong et al., 2024; Shao et al., 2024; DeepSeek-AI et al., 2025)
or bootstrapping (Zelikman et al., 2022) against verifiers or reward models, inducing structured
search behavior (Gandhi et al., 2024; Moon et al., 2024), or reflecting on previous answers (Kumar
et al., 2024; Xiong et al., 2025; Qu et al., 2024), etc. Most of these works focus on single-turn
math (Hendrycks et al., 2021b; Cobbe et al., 2021) and coding (Chen et al., 2021; Hendrycks et al.,
2021a) problems, while we target multi-turn agentic environments where environment feedback is
available after every action and at the end of the episode.

3 PRELIMINARIES

We consider the scenario where an LLM agent interacts with the environment to solve a multi-turn
task. This process can be formulated as a Markovian decision process M = (S,A, P,R, γstep),
where S and A denote the state space and action space, and R is the reward function. At each time
step t = 0, ..., T − 1, the LLM agent observes a state st ∈ S and selects an action at ∈ A according
to its policy at ∼ πθ(·|st). The environment then provides a scalar reward rt ∈ R and transitions
to the next state st+1 according to the transition function P (· | st, at). A trajectory is the sequence
of states, actions, and rewards over an episode, i.e., τ = (s0, a0, r0, ..., sT−1, aT−1, rT−1). The
objective of reinforcement learning is to maximize the expected discounted return:

Eτ∼πθ

[
T−1∑
t=0

γt
steprt

]
(1)

where γstep ∈ [0, 1] is the discount factor. Recent works (Wang et al., 2025; Feng et al., 2025) have
shown that RL training has enabled LLM agents to interact with the environment and solve multi-
turn tasks. However, such agents often learn a fixed policy during training and struggle to actively
explore and adapt their behavior to the tasks at test time (Nie et al., 2024).

Meta-RL. Conversely, by training on a distribution of tasks, Meta-RL (Duan et al., 2016; Wang
et al., 2016; Bauer et al., 2023; Beck et al., 2025) encourages exploration because it optimizes meta-
parameters, such that the agent can solve new tasks quickly. In our case, the meta-parameters are

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the parameters of the LLM. This necessitates the agent to learn general exploration-exploitation
strategies suitable for the task distribution trained on. For example, for most navigation tasks in
partially observable environments, the optimal strategy is to gather the environment information and
locate the target during the first episode, then reach the target as efficiently as possible in the second
episode. This explore-then-exploit strategy implemented by the agent is itself a reinforcement learn-
ing algorithm, where the policy learned at the meta-level encodes how to adaptively switch between
information-gathering and reward-maximizing behaviors depending on the stage of interaction with
a new task. For LLM agents operating in multi-turn tasks, the policy can be in-context (i.e., without
parameter updates at test time), naturally leveraging the in-context capability of LLMs.

4 LAMER: A META-RL FRAMEWORK FOR LLM AGENTS

Adopting the principle of Meta-RL, we present LAMER, a framework for training LLM agents
with the ability to actively explore and adaptively learn from the environment. The framework
addresses two central challenges. First, how to balance exploration and exploitation over multiple
attempts at a task. To this end, LAMER introduces a cross-episode training scheme that treats each
trial as a sequence of episodes, enabling the agent to explore in early episodes and exploit this
information in later ones. Second, how to efficiently adapt the policy during training and evaluation.
Instead of relying on gradient-based updates, LAMER uses self-reflection as an in-context adaptation
mechanism, allowing the agent to summarize past experiences and adjust its strategy accordingly.
Together, these two components enable scalable training of LLM agents under a unified Meta-RL
framework, which can be optimized with standard RL algorithms.

Cross-episode training framework. In the training of LAMER, each trial consists of N episodes
sequentially generated by the agent:

T = (τ (0), τ (1), . . . , τ (N−1)), where τ (n) ∼ π
(n)
θ (·), n ∈ [0, N − 1], (2)

where π
(n)
θ (·) is the policy at episode n updated from the accumulated history τ (0), ..., τ (n−1)

through some adaptation strategy. For simplicity, in our analysis we assume all the episode contains
the T steps of interactions with the environment, i.e., τ (n) = (s

(n)
0 , a

(n)
0 , r

(n)
0 , ..., s

(n)
T−1, a

(n)
T−1, r

(n)
T−1)

for all n ∈ [0, N − 1]. The rollout process terminates at n if τ (n) is successful (as indicated by the
environment feedback). Otherwise, the agent starts a new episode τ (n+1) from the same initial
state, repeating this procedure until the maximum episode budget is reached. For action a

(n)
t , the

discounted return g
(n)
t within the episode τ (n) ∈ T is:

g
(n)
t =

T−1∑
l=t

γl−t
stepr

(n)
l , (3)

where γstep ∈ [0, 1] is within-the-episode discount factor.

To enhance the exploration and maximize the long-term reward, in LAMER framework we define
the discounted return G

(n)
t across the episodes of T as:

G
(n)
t = g

(n)
t︸︷︷︸

within-the-episode

+

N−1∑
m=n+1

γm−n
traj g

(m)
0︸ ︷︷ ︸

cross-episode

, (4)

where γtraj ∈ [0, 1] is the cross-episode discount factor. Finally, the LLM agent is trained via the
following Meta-RL objective:

J(θ) = ET ∼πθ

[
N−1∑
n=0

γn
traj

T−1∑
t=0

γt
stepr

(n)
t

]
= ET ∼πθ

[
G

(0)
0

]
. (5)

Here, γtraj is an important factor for the trade-off between exploration and exploitation. Ideally,
small γtraj biases the objective towards early episodes and will lead to rapid exploitation to solve
the problem. In comparison, a larger γtraj emphasizes long-horizon return and therefore encourages
more exploration at the early stage.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

𝑠𝑠0
(0) 𝑠𝑠2

(0) 𝑠𝑠T−1
(0) 𝑠𝑠0

(1) 𝑠𝑠1
(1) 𝑠𝑠T−1

(1) 𝑠𝑠0
(𝑁𝑁−1) 𝑠𝑠1

(𝑁𝑁−1) 𝑠𝑠𝑇𝑇
(𝑁𝑁−1)

Episode 𝜏𝜏 (0) Episode 𝜏𝜏 (1) Episode 𝜏𝜏 (𝑁𝑁−1)

𝑠𝑠0
(0) 𝑠𝑠2

(0) 𝑠𝑠T−1
(0) 𝑠𝑠0

(1) 𝑠𝑠1
(1) 𝑠𝑠T−1

(1) 𝑠𝑠0
(𝑁𝑁−1) 𝑠𝑠1

(𝑁𝑁−1) 𝑠𝑠𝑇𝑇
(𝑁𝑁−1)

Episode 𝜏𝜏 (0) Episode 𝜏𝜏 (1) Episode 𝜏𝜏 (𝑁𝑁−1)
Reflection Reflection

𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Agent

Agent

RL Training:

Meta-RL Training:

Independent Independent

Figure 2: Comparison between the training processes of RL (top) and Meta-RL used in LAMER
(bottom). For a single task, RL generates a group of trajectories independently. In contrast, in
LAMER we use Meta-RL and produce the trajectories sequentially and adapt the policy in-context
with self-reflection. Trajectory discount factor γtraj is used for cross-episode credit assignment.

In-context policy adaptation with self-reflection. In Meta-RL, policy adaptation is the inner loop
of the learning process of an LLM agent. Therefore, a flexible and efficient adaptation mechanism
plays an important role during training and methods like gradient descent Finn et al. (2017) might be
too expensive, especially for LLMs. In LAMER, we propose a self-reflection based strategy(Shinn
et al., 2023) to adapt the policy in-context (Brown et al., 2020; Laskin et al., 2023). Specifically,
after each episode finishes, we prompt the agent to generate the textual reflection on the previous
attempt, providing specific feedback and plan to guide the next episode (see Appendix A for the
used prompt). The policy is therefore updated through modifying the context, π(n)

θ (·) = πθ(·|H(n))

where H(n) denotes the inter-episode memory that contains both the history trajectories and reflec-
tions. Importantly, the self-reflection step is also explicitly trained in LAMER using the reward
obtained in the next episode. Note that the content H(n) can be adjusted according to the predefined
memory buffer to reduce the context length and improve the efficiency. By default, we retain both
history and reflection in H(n), and provide an ablation study in Section 6.2.

Comparison to RL training. Compared to the RL objective (Eq. 1), Meta-RL extends the credit
assignment across multiple episodes to incentivize exploration in the early stages. In practice, given
a single task, both RL and Meta-RL will sample a group of episodes during training to estimate the
advantage. The key difference is that the RL rollouts are independent, whereas in Meta-RL each
episode is conditioned on the preceding rollouts within the trial. Figure 2 illustrates the conceptual
difference between the training processes of RL and Meta-RL.

Optimization. The proposed Meta-RL objective in (5) can be optimized with standard policy
gradient methods. Given the per-action cross-episode return G

(n)
t defined above, the gradient can be

estimated by

∇θJ(θ) = ET ∼πθ

[
N−1∑
n=0

T−1∑
t=0

∇θ log πθ(a
(n)
t |s(n)t ,H(n))A

(n)
t

]
, (6)

where A
(n)
t is the advantage estimation derived from G

(n)
t . The framework is compatible with

widely used optimizers such PPO (Schulman et al., 2017) and critic-free approaches such as
GRPO (Shao et al., 2024) and GiGPO (Feng et al., 2025).

5 EXPERIMENTS

In this section, we conduct comprehensive experiments to evaluate LAMER Meta-RL framework.
Specifically, we present the evaluation on: (i) the overall performance of LAMER across different
agent environments; (ii) the generalization ability of LAMER to harder tasks; (iii) the generalization
of LAMER under distribution shifts.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance on Sokoban, MineSweeper and Webshop environments. The results of p@1,
p@2 and p@3 denote the success rate (%) under 1, 2, and 3 attempts, respectively.

Method Sokoban MineSweeper Webshop
p@1 p@2 p@3 p@1 p@2 p@3 p@1 p@2 p@3

Prompting
Zero-shot 6.8 9.8 12.9 4.5 6.6 8.6 1.4 2.1 2.3
ReAct 7.2 9.6 12.5 6.3 7.0 10.9 3.1 4.5 4.5
Reflexion 6.4 9.8 12.1 5.5 7.2 9.8 2.7 3.3 3.5
Training with RL
PPO 12.5 15.4 16.8 29.7 34.2 35.5 53.1 54.5 54.9
RLOO 13.5 16.6 18.8 48.8 51.2 51.6 67.6 68.4 69.1
GRPO 22.9 26.4 27.0 36.3 40.0 40.4 72.9 73.0 73.0
GiGPO 41.6 43.6 44.1 52.0 54.9 55.1 73.4 74.6 75.2
Training with Meta-RL (ours)
LAMER 42.4 52.0 55.9 44.1 66.4 74.4 67.8 84.4 89.1

5.1 EXPERIMENTAL SETUP

Environments. We evaluate LAMER on four challenging and diverse environments:
Sokoban (Racanière et al., 2017), MineSweeper Li et al. (2024), Webshop Yao et al. (2022)
and ALFWorld Shridhar et al. (2020). Among them, Sokoban is a classic grid-based game
on planning where the environment is fully observable. In comparison, the environments of
MineSweeper, ALFWorld and Webshop are partially observable, requiring the agent to explore and
plan under uncertainty to finish the task. Specifically, MineSweeper is a board game about logical
deduction on hidden cells. Webshop simulates realistic web-based shopping tasks, and ALFWorld
provides text-based embodied environments. We provide the detailed explanation and prompts of
the environment in Appendix A. All the experiments are conducted with the text modality, though
the proposed method can be naturally applied to multimodal environments.

Training details. We use Qwen3-4B (Yang et al., 2025) as our base model for all the experiments.
To improve rollout efficiency in agentic loops, we use the non-thinking mode during trajectory gen-
eration. Additionally, we validate our method on Llama3.1-8B-Instruct (Grattafiori et al., 2024), see
Appendix D.1 for the results. For the Meta-RL setting, we use γtraj = 0.6 as the default trajectory
discount factor and explore its influence in the ablation study. We use GiGPO as the default opti-
mization algorithm for all the environments with LAMER. Importantly, for Meta-RL training we
sample N = 3 episodes and set group size to 8 for each task. To ensure a fair comparison, we use
a group size of 24 in standard RL training, yielding the same number of trajectories used for each
gradient update step. All other hyperparameters and configurations are kept identical across RL and
Meta-RL for a fair comparison and are provided in Appendix C.

5.2 PERFORMANCE COMPARISON

In this section, we compare the performance of our proposed algorithm LAMER with prompting-
based baselines (Zero-shot, ReAct (Yao et al., 2023b; Shinn et al., 2023)), and RL methods
(PPO (Schulman et al., 2017), RLOO (Ahmadian et al., 2024), GRPO (Shao et al., 2024), and
GiGPO (Feng et al., 2025)) across three environments: Sokoban, MineSweeper, and Webshop. For
each method, we report the success rates under 1, 2, and 3 attempts (i.e., pass@1, pass@2, and
pass@3, respectively). The results are summarized in Table 1.

Meta-RL obtains better performance. Across all three environments, LAMER trained with
Meta-RL consistently outperforms both prompting-based baselines and RL-training methods on the
final pass@3 success rate. On Sokoban, LAMER achieves a 55.9% pass@3 success rate, substan-
tially outperforming the 44.1% from the strongest RL baseline (GiGPO) and 12.9% from prompting-
based methods. Similarly, on MineSweeper LAMER reaches 74.4% pass@3 success rate, which is
19% higher than the best RL-trained model. On Webshop, LAMER also performs 14% better than
the RL-trained methods. Notably, the performance gains are not limited to pass@3: improvements

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Base Model RL Meta-RL
0

2

4

6

Tr
aj

ec
to

ry
 D

iv
er

sit
y

Sokoban

Base Model RL Meta-RL
0

1

2

3

4

Tr
aj

ec
to

ry
 D

iv
er

sit
y

MineSweeper

Base Model RL Meta-RL
0

2

4

6

Tr
aj

ec
to

ry
 D

iv
er

sit
y

Webshop

Figure 3: Trajectory diversity of base and trained models. Compared to RL, Meta-RL preserves
more diverse trajectories from the base model, striking a better balance between exploration and
exploitation.

are also observed on pass@2 for all the environments, and even pass@1 for Sokoban. Together,
these results demonstrate that LAMER delivers consistent benefit on the trained agents to solve the
long-horizon task in the complex environments.

Meta-RL exhibits stronger test-time scaling. Beside achieving the best final pass@3 perfor-
mance, Meta-RL also demonstrates remarkable effectiveness in test-time scaling, with larger per-
formance gains across attempts according to the results in Tabel 1. For example, the improvement
from pass@1 to pass@3 on Sokoban is 13.5% in Meta-RL, significantly larger both RL-trained and
prompting-based baselines (which are less than 5%). Notably, although Meta-RL starts with slightly
lower pass@1 performance than RL baseline (GiGPO) in MineSweeper and Webshop, it quickly re-
covers and surpasses all baselines by pass@2 and pass@3. The results indicate that the trained
model has successfully learned to actively explore in the earlier episodes and adapt effectively from
the mistakes, leading to significant gains in the subsequent attempts. The illustrative trajectories and
reflections produced by the trained agents are presented in Figure 6 in Appendix E.

Meta-RL induces exploration. To further analyze the behavior of the models, we measure the
diversity of answer trajectories across environments. For each question, we sample multiple trajec-
tories from the agent and group the identical trajectories that have the same states and actions. These
groups are used to form the empirical distribution over distinct trajectories, as shown in Figure 1. We
then estimate the entropy the distribution to quantify the trajectory diversity. Figure 3 compares the
trajectory diversity of the base model, RL, and Meta-RL agents across environments. We observe
that the base model exhibits the highest entropy, indicating it generates a wide range of trajectories,
though this diversity does not translate into higher success rates (see Table 1). RL-trained agent re-
duces diversity and converges toward more deterministic behaviors. In contrast, LAMER preserves
a higher level of diversity than RL baselines, allowing more exploration at test time.

5.3 GENERALIZATION TO HARDER TASKS

Next we study the generalization ability of the pretrained models on harder tasks. To this end,
we take the models trained with RL and Meta-RL and evaluate them on the harder tasks in the
environments of Sokoban and MineSweeper. We increase the difficulty by using more boxes for
Sokoban and more mines for MineSweeper in the grid. The results are shown in Figure 4. As

2 3 4 5
Number of Boxes

10

20

30

40

50

Su
cc

es
s R

at
e

(%
)

Trained at

Sokoban
RL
Meta-RL

3 4 5 6
Number of Mines

0

20

40

60

Su
cc

es
s R

at
e

(%
)

Trained at

MineSweeper
RL
Meta-RL

Figure 4: Performance of RL and Meta-RL trained model on the tasks with increased difficulty. For
Sokoban, we gradually increase the number of boxes and for Minesweeper, we increase the number
of mines in the grid.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

expected, the model trained with both RL and Meta-RL underperforms on harder tasks with an
increasing number of boxes or mines in the grid. However, Meta-RL consistently outperforms RL
on all the difficulty levels. Notably, on the most difficult setting, the model trained from Meta-RL
still outperforms the RL-trained model with 10% performance gap on Sokoban, and 5% performance
gap on the MineSweeper. The consistent gap indicates that LAMER trained with Meta-RL not only
performs better on the training distribution, but also generalizes better to the harder tasks.

5.4 GENERALIZATION TO UNSEEN TASKS

We further study the ability LAMER and alternative methods to generalize out-of-distribution. For
this experiment, we use the ALFWorld environment (Shridhar et al., 2020). As a text-based em-
bodied environment, ALFWorld contains 6 categories of common household activities: Pick and
Place (Pick), Examine in Light (Look), Clean and Place (Clean), Heat and Place (Heat), Cool and
Place (Cool), and Pick Two and Place (Pick2). We use the tasks of Pick, Look, Clean and Heat
as in-distribution tasks and use Cool and Pick2 as out-of-distribution tasks. We train LAMER and
alternative baselines with instances from in-distribution tasks and then evaluate the model on both
in-distribution tasks (with held-out test set), and the examples of out-of-distribution tasks. The
results are shown in Table 2. As we can see, RL trained model generally performs well on in-
distribution tasks and outperforms prompting-based methods by achieving more than 20% improve-
ment on Look, Clean and Heat. However, on out-of-distribution tasks, Cool and Pick2, it only ob-
tains 58.1% and 36.0% success rate. Meta-RL consistently outperforms RL on both in-distribution
and out-of-distribution tasks, with a notable performance gap on out-of-distribution tasks. In partic-
ular, our LAMER framework achieves 23% performance gains on Cool and around 14% on Pick2.
Overall, these results suggest that on ALFWorld, Meta-RL trained model could generalize better to
out-of-distribution tasks compared to the RL trained model.

Table 2: Evaluation of out-of-distribution generalization on the tasks of ALFWorld.

Method i.d o.o.d

Pick Look Clean Heat Cool Pick2

Prompting 91.9 52.9 48.4 44.8 42.8 21.2
RL 95.5 83.0 67.9 86.6 58.1 36.0
Meta-RL 97.7 100.0 90.2 89.5 81.0 50.2

6 ANALYSIS

We further conduct a series of ablation studies on the key design factors of LAMER, including (i)
the influence of trajectory discounted factor γtraj on the trade-off between exploration and exploita-
tion and (ii) the ablation of inter-episode memory configurations. We additionally discuss (iii) the
computation budget of the proposed Meta-RL framework compared to the RL training.

6.1 INFLUENCE OF TRAJECTORY DISCOUNT FACTOR

The cross-episodes discount factor γtraj controls how rewards are propagated within a trial, thereby
mediating the balance between exploration and exploitation in the LAMER framework during train-
ing. To understand the effect of the discount factor, we train the agents with LAMER using different
values of γtraj on Sokoban, MineSweeper and Webshop. The results are shown in Figure 5. We
observe that a larger value of γtraj does not necessarily lead to better final performance on pass@3,
instead, the optimal setting of γtraj varies across different environments. For Sokoban and Web-
shop, intermediate values like γtraj = 0.6 yield the best results, suggesting that balancing immediate
and long-term rewards is more important for these tasks. In contrast, MineSweeper benefits from
relatively larger γtraj like 0.9, indicating that extended credit assignment better supports strategic
exploration in this environment. Overall, the results show that γtraj provides a practical way to
control the trade-off between exploration and exploitation across environments.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.3 0.45 0.6 0.75 0.9
traj

30

40

50
Su

cc
es

s R
at

e
(%

)

Sokoban

Pass@1
Pass@2
Pass@3

0.3 0.45 0.6 0.75 0.9
traj

40

50

60

70

80
MineSweeper

0.3 0.45 0.6 0.75 0.9
traj

60

70

80

90
Webshop

Figure 5: Success rates of models trained with different γtraj. A higher value encourages more
exploration during training.

6.2 ABLATION ON THE INTER-EPISODE MEMORY

In LAMER, the agent policy is adapted in-context through the inter-episode memory H(n), which
by default contains both the trajectories and reflections of previous episodes. To assess the influence
of memory content to the training, we consider two alternative configurations in H(n): (1) only his-
tory trajectories; (2) only reflections. The performance of the trained agents in each configurations
are reported in Table 3. The results show that self-reflection provides a clear benefit in LAMER,
leading to 21.6% improvement on Sokoban, 11.0% on Minesweeper and 3.5% on Webshop, re-
spectively. Interestingly, the reflection-only configuration also outperforms the default setting in
LAMER (which contains both trajectory and reflection) across all environments. We hypothesize
that this is because reflection-only memory presents more concise and focused guidance, leading to
more effective adaptation of the agent’s behavior.

Table 3: Comparison of LAMER with different inter-episode memory configurations.

Content in H(n) Sokoban MineSweeper Webshop
Trajectory-only 34.8 69.5 89.3
Reflection-only 56.4 80.5 92.8
Both 55.9 74.4 89.1

6.3 TRAINING BUDGET

We conclude with a discussion on the training budget of RL and Meta-RL, focusing on both data
usage and computational efficiency. To ensure a fair comparison, we set the group size for standard
RL to be three times larger than that of Meta-RL. This adjustment guarantees that the two methods
consume the same number of trajectories for each gradient update. Aside from this scaling, all other
experimental configurations—such as learning rates, batch sizes, and network architectures—are
held constant. This design choice highlights that Meta-RL does not require a larger data budget
compared to RL; in other words, both methods rely on the same total number of trajectories to learn.

Nevertheless, LAMER might still introduce additional training time cost compared to the RL base-
lines. In RL training, all the episodes could be sampled in parallel since they are independent. In
contrast, LAMER exhibits less parallelism since episodes within the same trial needs to be generated
sequentially. As a result, we observe around twice the training time cost for LAMER in our current
implementation. This suggests that more sophisticated sampling strategies, such as asynchronous
rollout, could further improve the efficiency of LAMER for training LLM agents.

7 CONCLUSION

Being able to explore and gather information from the environment is crucial in building autonomous
agents that can adapt quickly and robustly. We introduced LAMER, a general LLM agent training
framework leveraging the principle of meta reinforcement learning. Unlike previous RL methods
that maximize a single-episode return for immediate payoff, LAMER maximizes a discounted cross-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

episode return, naturally balancing when to explore versus when to exploit to maximize long-term
performance. The exploration allowed at training time teaches the agent general explorative strate-
gies that enable a rapid in-context adaptation at test time. We show across diverse environments that
LAMER significantly outperforms RL methods, is able to generalize to harder environments, and
scales better with more episodes at test time.

Limitations and future work. Our results raise several promising directions for future work.
(1) The generality of our method allows for combining it with other RL algorithms or self-reflection
frameworks. We hypothesize that a more advanced advantage estimation strategy or a stronger
reasoning model may enhance the performance. (2) Our approach requires sampling episodes se-
quentially for rollouts since episodes are dependent in cross-episode training. This eventually leads
to longer training time than RL methods. More efficient training strategies will be explored in future
work. (3) Finally, LAMER trained on easier environments can generalize to harder environments
of the same kind or relatively similar domains. This ultimately suggests possibilities in building
generalist agents that can adapt to completely novel environments.

LLM USAGE STATEMENT

LLM is mainly used for proofreading and as a plot assistant in this work.

REPRODUCIBILITY STATEMENT

In order to ensure that our work is reproducible, we have provided experimental details in Sec-
tion 5.1, together with the template of prompts we used in Appendix B. Complete code documenta-
tion is under development and will be made available alongside the paper’s final version.

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-
ing from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

AutoGPT. Significant-gravitas/auto-gpt: An experimental open-source attempt to make gpt-
4 fully autonomous., 2023. URL https://github.com/Significant-Gravitas/
Auto-GPT/tree/master.

Jakob Bauer, Kate Baumli, Feryal Behbahani, Avishkar Bhoopchand, Nathalie Bradley-Schmieg,
Michael Chang, Natalie Clay, Adrian Collister, Vibhavari Dasagi, Lucy Gonzalez, et al. Human-
timescale adaptation in an open-ended task space. In International Conference on Machine Learn-
ing, pp. 1887–1935. PMLR, 2023.

Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shi-
mon Whiteson. A tutorial on meta-reinforcement learning. Foundations and Trends® in Machine
Learning, 18(2–3):224–384, 2025. ISSN 1935-8245.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. 2021.

10

https://github.com/Significant-Gravitas/Auto-GPT/tree/master
https://github.com/Significant-Gravitas/Auto-GPT/tree/master

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl 2̂: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
agent training. arXiv preprint arXiv:2505.10978, 2025.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Kanishk Gandhi, Denise H J Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and
Noah Goodman. Stream of search (sos): Learning to search in language. In First Conference on
Language Modeling, 2024. URL https://openreview.net/forum?id=2cop2jmQVL.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,

11

https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=2cop2jmQVL

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vı́tor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps, 2021a. URL https://arxiv.org/abs/2105.09938.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021b. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):
5149–5169, 2021.

Akshay Krishnamurthy, Keegan Harris, Dylan J Foster, Cyril Zhang, and Aleksandrs Slivkins. Can
large language models explore in-context? Advances in Neural Information Processing Systems,
37:120124–120158, 2024.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Stenberg Hansen, Angelos Filos, Ethan Brooks, maxime gazeau, Himanshu
Sahni, Satinder Singh, and Volodymyr Mnih. In-context reinforcement learning with algorithm
distillation. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=hy0a5MMPUv.

Yinghao Li, Haorui Wang, and Chao Zhang. Assessing logical puzzle solving in large language
models: Insights from a minesweeper case study. CoRR, abs/2311.07387, 2023. doi: 10.48550/
ARXIV.2311.07387. URL https://doi.org/10.48550/arXiv.2311.07387.

Yinghao Li, Haorui Wang, and Chao Zhang. Assessing logical puzzle solving in large language mod-
els: Insights from a minesweeper case study. In Kevin Duh, Helena Gomez, and Steven Bethard
(eds.), Proceedings of the 2024 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 59–81,
Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.naacl-long.4. URL https://aclanthology.org/2024.naacl-long.4/.

13

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2105.09938
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=hy0a5MMPUv
https://doi.org/10.48550/arXiv.2311.07387
https://aclanthology.org/2024.naacl-long.4/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating LLMs as agents. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=zAdUB0aCTQ.

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Rea-
soning with reinforced fine-tuning, 2024. URL https://arxiv.org/abs/2401.08967.

Seungyong Moon, Bumsoo Park, and Hyun Oh Song. Guided stream of search: Learning to better
search with language models via optimal path guidance, 2024. URL https://arxiv.org/
abs/2410.02992.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

Deepak Nathani, Lovish Madaan, Nicholas Roberts, Nikolay Bashlykov, Ajay Menon, Vin-
cent Moens, Amar Budhiraja, Despoina Magka, Vladislav Vorotilov, Gaurav Chaurasia,
Dieuwke Hupkes, Ricardo Silveira Cabral, Tatiana Shavrina, Jakob Foerster, Yoram Bachrach,
William Yang Wang, and Roberta Raileanu. Mlgym: A new framework and benchmark for ad-
vancing ai research agents, 2025. URL https://arxiv.org/abs/2502.14499.

Allen Nie, Yi Su, Bo Chang, Jonathan N Lee, Ed H Chi, Quoc V Le, and Minmin Chen. Evolve:
Evaluating and optimizing llms for exploration. arXiv preprint arXiv:2410.06238, 2024.

Dongmin Park, Minkyu Kim, Beongjun Choi, Junhyuck Kim, Keon Lee, Jonghyun Lee, Inkyu Park,
Byeong-Uk Lee, Jaeyoung Hwang, Jaewoo Ahn, Ameya S. Mahabaleshwarkar, Bilal Kartal, Pri-
tam Biswas, Yoshi Suhara, Kangwook Lee, and Jaewoong Cho. Orak: A foundational benchmark
for training and evaluating llm agents on diverse video games. 2025. arXiv:2506.03610.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings
of the 36th annual acm symposium on user interface software and technology, pp. 1–22, 2023.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
language model agents how to self-improve. In The Thirty-eighth Annual Conference on Neu-
ral Information Processing Systems, 2024. URL https://openreview.net/forum?id=
DRC9pZwBwR.

Yuxiao Qu, Matthew Y. R. Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching,
Ruslan Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforce-
ment finetuning. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=TqODUDsU4u.

Sébastien Racanière, Théophane Weber, David Reichert, Lars Buesing, Arthur Guez, Danilo
Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, et al.
Imagination-augmented agents for deep reinforcement learning. Advances in neural information
processing systems, 30, 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Amrith Setlur, Matthew YR Yang, Charlie Snell, Jeremy Greer, Ian Wu, Virginia Smith, Max Sim-
chowitz, and Aviral Kumar. e3: Learning to explore enables extrapolation of test-time compute
for llms. arXiv preprint arXiv:2506.09026, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

14

https://openreview.net/forum?id=zAdUB0aCTQ
https://arxiv.org/abs/2401.08967
https://arxiv.org/abs/2410.02992
https://arxiv.org/abs/2410.02992
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2502.14499
https://openreview.net/forum?id=DRC9pZwBwR
https://openreview.net/forum?id=DRC9pZwBwR
https://openreview.net/forum?id=TqODUDsU4u

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Re-
flexion: language agents with verbal reinforcement learning. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=vAElhFcKW6.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
optimally can be more effective than scaling parameters for reasoning. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=4FWAwZtd2n.

Bradly C Stadie, Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, and Ilya
Sutskever. Some considerations on learning to explore via meta-reinforcement learning. arXiv
preprint arXiv:1803.01118, 2018.

Fahim Tajwar, Yiding Jiang, Abitha Thankaraj, Sumaita Sadia Rahman, J Zico Kolter, Jeff Schnei-
der, and Russ Salakhutdinov. Training a generally curious agent. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
UeB3Hdrhda.

Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In Learning to
learn, pp. 3–17. Springer, 1998.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language mod-
els. Transactions on Machine Learning Research, 2024a. ISSN 2835-8856. URL https:
//openreview.net/forum?id=ehfRiF0R3a.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024b.

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin,
Kefan Yu, Minh Nhat Nguyen, Licheng Liu, et al. Ragen: Understanding self-evolution in llm
agents via multi-turn reinforcement learning. arXiv preprint arXiv:2504.20073, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Robert C Wilson, Andra Geana, John M White, Elliot A Ludvig, and Jonathan D Cohen. Humans use
directed and random exploration to solve the explore–exploit dilemma. Journal of experimental
psychology: General, 143(6):2074, 2014.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for problem-solving with language models,
2025. URL https://arxiv.org/abs/2408.00724.

Wei Xiong, Hanning Zhang, Chenlu Ye, Lichang Chen, Nan Jiang, and Tong Zhang. Self-
rewarding correction for mathematical reasoning, 2025. URL https://arxiv.org/abs/
2502.19613.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

15

https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=UeB3Hdrhda
https://openreview.net/forum?id=UeB3Hdrhda
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=ehfRiF0R3a
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2502.19613
https://arxiv.org/abs/2502.19613

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023a. URL https:
//openreview.net/forum?id=5Xc1ecxO1h.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Guibin Zhang, Hejia Geng, Xiaohang Yu, Zhenfei Yin, Zaibin Zhang, Zelin Tan, Heng Zhou,
Zhongzhi Li, Xiangyuan Xue, Yijiang Li, et al. The landscape of agentic reinforcement learning
for llms: A survey. arXiv preprint arXiv:2509.02547, 2025.

16

https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

APPENDIX

A TASK DESCRIPTION AND DETAILS

Sokoban. We include the classic video game Sokoban as a fully-observable environment. The game
is a 2D square board, with N boxes scattered on the board. There are also N target positions marked
on the board. The player is placed at an initial position, and the goal is to push all the boxes to the
target positions. There is no correspondence between each box and the target position. When the
player walks into a box, it gets pushed in that direction (if there’s space). Boxes can’t be pushed into
walls or other boxes. Once a box is pushed into a corner or against a wall with no way to get behind
it, it might become permanently stuck. There is no pull operation in this game. The agent, therefore,
has to think several moves ahead to avoid getting boxes stuck in positions where they can’t reach
their targets. The difficulty of this task is controlled by the board size, the number of boxes, and the
wall structure of the board. We train on a board size 6× 6 with 2 boxes.

Minesweeper. We include the classic video game Minesweeper as a partially-observable environ-
ment. The game is a 2D square board, with several mines randomly scattered in the board cells. The
goal of the game is to open all the safe cells without revealing the hidden mines. In each step, the
agent opens a cell, and the first step is always safe. If a mine is revealed, the task ends in failure
immediately. The state of the opened (safe) cells can either be empty or a number from 1 to 8, and
the number specifies how many mines are adjacent to the specific cell. The agent needs to use the
numbers marked on the opened cells to reason about the position of mines. Success is achieved
when all safe cells are revealed. Our implementation is based on a simplified version of Li et al.
(2023). The difficulty of this task is controlled by the board size and the number of mines. We train
on a board size 6× 6 with 3 hidden mines.

WebShop (Yao et al., 2022). We include WebShop as a partially-observable text-based environ-
ment that simulates online shopping. The agent is given a natural language instruction specifying
a product to purchase with certain attributes. The environment presents a simplified e-commerce
interface where the agent can search for products, navigate through search results, and examine
product pages with details like price, color, size, and customer reviews. The agent must interpret the
instruction, search effectively, filter through multiple product options, and select the item that best
matches the specified criteria. Success is measured by whether the final purchased item satisfies all
the requirements in the original instruction.

ALFWorld (Shridhar et al., 2020). We include ALFWorld as a partially-observable text-based en-
vironment that simulates household tasks in interactive fiction format. The agent receives natural
language instructions for common household activities. The environment provides text descriptions
of rooms, objects, and possible actions, while the agent must navigate through a house, interact with
objects, and complete multi-step tasks. Objects may need to be found, picked up, cleaned, heated, or
combined with other objects to achieve the goal. The agent’s view is limited to the current room and
nearby objects, requiring exploration and memory of previously visited locations. Success requires
understanding the instruction, planning a sequence of actions, and executing them correctly while
managing partial observability. We train on the training examples of the activities ‘Pick’, ‘Look’,
‘Clean’, ‘Heat’. We evaluate in-distribution on the test examples from the same activities, and we
evaluate out-of-distribution on the test examples from ‘Cool’, ’Pick2’ activities.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B EXAMPLE PROMPTS

We provide examples of prompts for each task. There are two types of prompts: (1) the standard
version (with name ‘Standard Prompt’) used for prompting the agent to play the game; (2) the
reflection prompt used for self-reflection on a past experience (with name ‘Reflection Prompt’)

There are variables such as {past experience reflection}, {history actions}
in the prompts, among with other task-specific hyperparameters. They are omitted in the
prompts for clarity. In practice, they will be replaced with the actual content. Note that the
{past experience reflection} will be empty for the first episode.

Similar to (Feng et al., 2025), we use <action> </action> block to indicate the final decision
of the action, and we use <remark> </remark> to indicate the content of the self-reflection.

(see next page for the prompts)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.1 SOKOBAN

Sokoban Standard Prompt

You are an expert agent operating in the Sokoban environment.

Symbols and Their Meaning
- Walls (#): These block movement. You can’t move through or push anything into walls.
- Floor (): Open spaces where you can walk and move boxes.
- Targets (O): The spots where boxes need to go.
- Boxes (X): These are what you need to push onto the targets.
- Player (P): That’s you! You’ll move around the grid to push boxes.
- Box on Target (✓): A box successfully placed on a target.
- Player on Target (S): You standing on a target.

Goal
Your goal is to push all the boxes (X) onto the target spots (O). Once all boxes are on the
targets, you win!

Rules
Your admissible actions are [“up”, “down”, “left”, “right”].
You can only push one box at a time. You can’t pull boxes, so plan ahead to avoid getting
stuck.
You can’t walk through or push boxes into walls (#) or other boxes.
To avoid traps, do not push boxes into corners or against walls where they can’t be moved
again.
{example}

Observations
The initial state of the game is:
0: # # # # # #
1: # # # _ O #
2: # _ O _ _ #
3: # _ _ X X #
4: # _ # P _ #
5: # # # # # #

{past experience reflection}
You have already taken the following actions:
{history actions}
Your current observation is:
0: # # # # # #
1: # # # _ O #
2: # _ O _ X #
3: # _ X P _ #
4: # _ # _ _ #
5: # # # # # #

Now it’s your turn to make moves (choose the next {num actions per turn} actions).
- Your response first be step-by-step reasoning about the current situation — observe the
positions of boxes and targets, plan a path to push a box toward a target, and avoid traps like
corners or walls.
- Then choose {num actions per turn} admissible actions and present them within
<action> </action> tags (separated by comma).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Sokoban Reflection Prompt

You are an expert agent operating in the Sokoban environment.

Symbols and Their Meaning
- Walls (#): These block movement. You can’t move through or push anything into walls.
- Floor (): Open spaces where you can walk and move boxes.
- Targets (O): The spots where boxes need to go.
- Boxes (X): These are what you need to push onto the targets.
- Player (P): That’s you! You’ll move around the grid to push boxes.
- Box on Target (✓): A box successfully placed on a target.
- Player on Target (S): You standing on a target.

Your Goal
Your goal is to push all the boxes (X) onto the target spots (O). Once all boxes are on the
targets, you win!

Rules
Your admissible actions are [“up”, “down”, “left”, “right”].
You can only push one box at a time. You can’t pull boxes, so plan ahead to avoid getting
stuck.
You can’t walk through or push boxes into walls (#) or other boxes.
To avoid traps, do not push boxes into corners or against walls where they can’t be moved
again.

Your Task
You will be given the history of a past experience.
Your job is to **reflect on the past sequence**, identify any **mistakes or inefficiencies**,
and then devise a **concise, improved plan** starting from the original initial state.

Past Experience
The initial state of the game is:
0: # # # # # #
1: # # # _ O #
2: # _ O _ _ #
3: # _ _ X X #
4: # _ # P _ #
5: # # # # # #

You have taken the following actions:
{history actions}
The final state is:
0: # # # # # #
1: # # # _ O #
2: # _ O _ X #
3: # _ X P _ #
4: # _ # _ _ #
5: # # # # # #

The task is NOT successfully completed.
Now it’s your turn to reflect on the past experience and come up with a new plan of action.
- Your response should first be step-by-step reasoning about the strategy and path you took
to attempt to complete the task. Identify where things went wrong or could be better.
- Then devise a concise, new plan of action that accounts for your mistake with reference to
specific actions that you should have taken.
- Finally, end the response with your reflection and improved plan inside <remark>
</remark> tags, to guide the next trial.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.2 MINESWEEPER

Minesweeper Standard Prompt

You are an expert agent operating in the Minesweeper game.
You will be given a two dimensional {board size} by {board size} board, with {n mines}
hidden mines.
The rows and columns are indexed from 1 to {board size}.

Cell States
- Unopened cells (?): cells that are yet to be revealed and may contain a mine.
- Blank cells (.): opened and non-mine cells, and they have no neighboring mines
- Numbered cells (1-8): opened and non-mine cells, and the number indicates how many
mines are in the eight neighboring cells, including those diagonally adjacent. For example,
a cell with a ‘8’ means all its neighboring cells contain mines.
- Mine cells (*): opened cells that contain a mine.

Your Goal
Your goal is to clear the board by revealing all the cells that don’t contain mines, without
detonating any of the hidden mines scattered throughout the board.
Use clues about the number of neighboring mines in each field to reason about the position
of mines and non-mine cells.

Reveal Rules
Your admissible action is to choose ONE unopened cell (?) to reveal per turn. The outcome
depends on the content of that cell:
- Blank cell (.): That cell is revealed, and all contiguous blank cells plus their bordering
numbered cells are automatically revealed (auto-cascade).
- Numbered cell (1–8): Only that single cell is revealed, showing the count of neighboring
mines.
- Mine (*): The game ends immediately in a loss.
Observation
The initial state of the game is:
Row 1:
Row 2: . . . 1 1 1
Row 3: . . . 1 ? ?
Row 4: 1 1 . 1 2 ?
Row 5: ? 1 . . 1 1
Row 6: ? 1

{past experience reflection}
You have already chosen the following cells to reveal: (6, 1)
Your current observation is:
Row 1:
Row 2: . . . 1 1 1
Row 3: . . . 1 ? ?
Row 4: 1 1 . 1 2 ?
Row 5: ? 1 . . 1 1
Row 6: 1 1

Now it’s your turn to make a move.
- Your should first reason step-by-step about the current situation — observe the status of
the board, inferring the states of unopened cells (?).
- Then choose ONE unopened cell (?) to reveal. Put the index of cell in the format of “(row,
col)” within the <action> </action> tag.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Minesweeper Reflection Prompt

You are an expert agent operating in the Minesweeper game.
You will be given a two dimensional {board size} by {board size} board, with {n mines}
hidden mines.
The rows and columns are indexed from 1 to {board size}

Cell States
- Unopened cells (?): cells that are yet to be revealed and may contain a mine.
- Blank cells (.): opened and non-mine cells, and they have no neighboring mines
- Numbered cells (1-8): opened and non-mine cells, and the number indicates how many
mines are in the eight neighboring cells, including those diagonally adjacent. For example,
a cell with a ‘8’ means all its neighboring cells contain mines.
- Mine cells (*): opened cells that contain a mine.

Your Goal
Your goal is to clear the board by revealing all the cells that don’t contain mines, without
detonating any of the hidden mines scattered throughout the board.
Use clues about the number of neighboring mines in each field to reason about the position
of mines and non-mine cells.

Reveal Rules
Your admissible action is to choose ONE unopened cell (?) to reveal per turn. The outcome
depends on the content of that cell:
- Blank cell (.): That cell is revealed, and all contiguous blank cells plus their bordering
numbered cells are automatically revealed (auto-cascade).
- Numbered cell (1–8): Only that single cell is revealed, showing the count of neighboring
mines.
- Mine (*): The game ends immediately in a loss.

Your Task
You will be given the history of a past experience.
Your job now is to **reflect on the past experience**, identify any **mistakes or inefficien-
cies**, and then devise a **concise, improved plan** for your next try starting from the
original initial state.
Past Experience
The initial state of the game is:
Row 1:
Row 2: . . . 1 1 1
Row 3: . . . 1 ? ?
Row 4: 1 1 . 1 2 ?
Row 5: ? 1 . . 1 1
Row 6: ? 1

You have chosen the following cells to reveal:
{history actions}
The final state is:
Row 1:
Row 2: . . . 1 1 1
Row 3: . . . 1 ? ?
Row 4: 1 1 . 1 2 ?
Row 5: * 1 . . 1 1
Row 6: 1 1

The task is NOT successfully completed.
Now it’s your turn to reflect on the past experience and come up with a new plan of action.
- Your response should first be step-by-step reasoning about the strategy and path you took
to attempt to complete the task. Identify where things went wrong or could be better.
- Then devise a concise, new plan of action that accounts for your mistake with reference to
specific actions that you should have taken.
- Finally, end the response with your reflection and improved plan inside <remark>
</remark> tags, to guide the next trial. 22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

B.3 WEBSHOP

WebShop Standard Prompt

You are an expert autonomous agent operating in the WebShop e-commerce environment.
Your task is to: Find me slip resistant, non slip men’s loafers & slip-ons with rubber outsole,
rubber sole with color: 1877blue, and size: 11.5, and price lower than 70.00 dollars.
{past experience reflection}{history actions}
Your admissible actions of the current situation are:
‘search[your query]’,
‘click[search]’.
Now it’s your turn to take one action for the current step.
Your response should first be step-by-step reasoning about the current situation, then think
carefully which admissible action best advances the shopping goal.
Once you’ve finished your reasoning, you should choose an admissible action for current
step and present it within <action> </action> tags.

WebShop Reflection Prompt

You are an expert autonomous agent operating in the WebShop e-commerce environment.
Your task is to: Find me slip resistant, non slip men’s loafers & slip-ons with rubber outsole,
rubber sole with color: 1877blue, and size: 11.5, and price lower than 70.00 dollars.
You will be given the history of a past experience.
Your job is to **reflect on the past sequence**, identify any **mistakes or inefficiencies**,
and then devise a **concise, improved plan** starting from the original initial state.
Below are the last few actions and corresponding observations you have:
{history actions}
The task is NOT successfully completed.
Now it’s your turn to reflect on the past experience and come up with a new plan of action.
- Your response should first be step-by-step reasoning about the strategy and path you took
to attempt to complete the task. Identify where things went wrong or could be better.
- Then devise a concise, new plan of action that accounts for your mistake with reference to
specific actions that you should have taken.
- Finally, end the response with your reflection and improved plan inside <remark>
</remark> tags, to guide the next trial.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B.4 ALFWORLD

ALFWorld Standard Prompt

You are an expert agent operating in the ALFRED Embodied Environment.
-= Welcome to TextWorld, ALFRED! =-

You are in the middle of a room. Looking quickly around you, you see a bed 1, a desk 2, a
desk 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a garbagecan
1, a laundryhamper 1, a safe 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3, a shelf 2, and a shelf 1.

Your task is to: put a mug in desk.

{past experience reflection}{history actions}
Your admissible actions of the current situation are:
’go to bed 1’,
’go to desk 1’,
’go to desk 2’,
’go to drawer 1’,
’go to drawer 2’,
’go to drawer 3’,
’go to drawer 4’,
’go to drawer 5’,
’go to drawer 6’,
’go to garbagecan 1’,
’go to laundryhamper 1’,
’go to safe 1’,
’go to shelf 1’,
’go to shelf 2’,
’go to shelf 3’,
’go to shelf 4’,
’go to shelf 5’,
’go to shelf 6’,
’inventory’,
’look’.
Now it’s your turn to take an action.
- Your response should first by step-by-step reasoning about the current situation.
- Once you’ve finished your reasoning, you should choose an admissible action for current
step and present it within <action> </action> tags.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

ALFWorld Reflection Prompt

You are an expert agent operating in the ALFRED Embodied Environment.
-= Welcome to TextWorld, ALFRED! =-

You are in the middle of a room. Looking quickly around you, you see a bed 1, a desk 2, a
desk 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a garbagecan
1, a laundryhamper 1, a safe 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3, a shelf 2, and a shelf 1.

Your task is to: put a mug in desk.

You will be given the history of a past experience.
Your job is to **reflect on the past sequence**, identify any **mistakes or inefficiencies**,
and then devise a **concise, improved plan** starting from the original initial state.

Below are the actions you took and the corresponding observations:
{history actions}
The task is NOT successfully completed.
Now it’s your turn to reflect on the past experience and come up with a new plan of action.
- Your response should first be step-by-step reasoning about the strategy and path you took
to attempt to complete the task. Identify where things went wrong or could be better.
- Then devise a concise, new plan of action that accounts for your mistake with reference to
specific actions that you should have taken.
- Finally, end the response with your reflection and improved plan inside <remark>
</remark> tags, to guide the next trial.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C TRAINING DETAILS

LAMER is compatible with standard policy gradient algorithms. Without specification, we use
GiGPO as the default optimization algorithm. During training, the self-reflection step is also explic-
itly trained using the reward in the subsequent episodes. During training, we match the total number
of experiences sampled for each example between RL and Meta-RL to ensure a fair comparison.
Specifically, for each sample N = 3 episodes and set group size to 8 for Meta-RL, and use a group
size of 24 for standard RL training. Besides that, other hyper-parameters and configuration are kept
the same between RL and Meta-RL training. We use Qwen3-4B as the base model and train it with
Adam optimizer and a learning rate of 1e − 6. For Sokoban and MineSweeper, we train the agents
with a batch size of 16 for 300 epochs. In comparison, we use batch size of 8 and 150 epochs for
Webshop and ALFWorld. The environment reward is set to be 10 for successful trajectories and
0 for unsuccessful ones. We use temperature of 1.0 during rollout and 0.7 during evaluation. The
maximum number of output tokens is set to 1024. Our code is based on the training framework of
verl (Sheng et al., 2025) and verl-agent Feng et al. (2025).

D ADDITIONAL RESULTS

D.1 EXPERIMENTS ON DIFFERENT ARCHITECTURE

LAMER is designed as a general framework built on meta-RL principles and is model-agnostic.
To validate this, we additionally ran experiments on Llama3.1-8B-Instruct (Grattafiori et al., 2024),
showing that our method works well on models in a different model architecture and model size.

Table 4: Performance on Sokoban and MineSweeper environments using Llama3.1-8B-Instruct as
base model. The results of p@1, p@2 and p@3 denote the success rate (%) under 1, 2, and 3
attempts, respectively.

Method Sokoban MineSweeper
p@1 p@2 p@3 p@1 p@2 p@3

GiGPO 5.9 6.3 6.3 39.1 41.4 42.2
LAMER 17.6 19.9 20.3 47.7 61.3 65.6

In Table 4, we compare LAMER with the strongest baseline GiGPO (Feng et al., 2025), on Sokoban
and Minesweeper. We show The results indicate that on Llama-3.1-8B-Instruct, LaMer still out-
performs the RL baselines across the environments, demonstrating the general applicability of our
method to different model architecture and size.

D.2 COMPARISON TO RL BASELINES WITH INTER-EPISODE MEMORY

In our main experiment at Table 1, we follow previous work and evaluate the standard RL methods
without access to the inter-episode memory. For comprehensive evaluation, we further evaluate the
RL trained agents with access to the inter-episode memory (reflections and previous trajectories).
The results of pass@3 are shown in Table 5. We observe that the inter-episode memory enhances the
performance of RL trained agents on Sokoban (+3.8%) and MineSweeper (+5.3%), while degrades
the performance on Webshop (-1.2%). Nevertheless, LAMER still substantially outperforms RL
baselines across all the environments, demonstrating the advantage of the proposed method.

Table 5: Performance of RL baselines with access to inter-episode memory (pass@3).

Method Sokoban MineSweeper Webshop
GiGPO (w/o memory) 44.1 55.1 75.2
GiGPO (w/ memory) 47.9 60.4 74.0
LAMER 55.9 74.4 89.1

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E EXAMPLES

On Figure 6, we provide an example of trajectories and corresponding reflections produced by the
agent when solving the MineSweeper game. Here each trajectory is represented by a sequence of
clicks (numbered cells) on the board. The mines are not visible to the agent and will lead to failure
of the game if clicked.

Attempt #1

Step-by-Step Reasoning
In the past attempt, the player revealed cells (6, 1) and (6, 3). The resulting state showed that row 6, column 1 is a 1, row 6, column 2 is a ?, row 6,
column 3 is a *, and row 6, column 4 is a ?. This indicated that there is a mine at (6, 3), which is why the game ended in a loss.

Mistakes and Inefficiencies:
1. **Revealing (6, 1)**: This revealed a 1, indicating that there is exactly one mine in the 8 neighboring cells. However, since (6, 1) is adjacent to (6, 2)
and (5, 1), this information is limited and not very helpful in identifying the exact location of the mine.
2. **Revealing (6, 3)**: This revealed a *, indicating that (6, 3) is a mine. This is a direct loss, but it also provides some information about the surrounding
cells.
3. **Lack of strategic focus**: The player did not consider the implications of the numbers in row 4 and row 5, which are 1s and 2s, suggesting that there
are nearby mines.

New Plan of Action
To improve the strategy, the player should focus on revealing cells that provide the most information without risking a direct reveal of a mine. Here's a
revised plan:
1. **Reveal (5, 1)**: This cell is adjacent to (6, 1) and (4, 1). Revealing (5, 1) would help determine if there is a mine nearby, especially since (6, 1) is a
1, indicating that there is exactly one mine in the 8 neighboring cells.
2. **Reveal (5, 2)**: This cell is adjacent to (6, 2) and (4, 2). It would help determine if there is a mine near (6, 2), which is a ?.
3. **Reveal (6, 4)**: This cell is adjacent to (6, 3) (which is a mine) and (5, 4). Revealing (6, 4) would help determine if there is a mine nearby, especially
since (6, 3) is a mine.

Reflection and Improved Plan
<remark>
In the past attempt, revealing (6, 1) and (6, 3) led to a loss because (6, 3) was a mine. To avoid this, the next step should be to reveal (5, 1) to check the
surrounding cells without directly revealing a mine. After that, revealing (5, 2) would help determine if there is a mine near (6, 2). Finally, revealing (6, 4)
would help identify any nearby mines adjacent to (6, 3). This approach would provide more information without risking a direct hit on a mine.
</remark>

Step-by-Step Reasoning
In the past attempt, the player revealed the cells (5, 1), (6, 4), (6, 1), (6, 6), and (6, 5). The resulting state showed some progress, but the task was not
completed successfully. Let's analyze what went wrong:

1. **Revealing (5, 1)**: This cell is adjacent to row 4, which has three 1s. Revealing (5, 1) would have revealed the surrounding cells, but since it was a
1, it indicated that there is at least one mine nearby. However, this didn't provide enough information to determine the exact location of the mines.
2. **Revealing (6, 4)**: This cell is adjacent to row 5, column 4, which is a 2. Revealing (6, 4) would have shown the number of mines around it, but
since it was a 1, it indicated that there is at least one mine nearby.
3. **Revealing (6, 1)**: This cell is adjacent to row 5, column 1, which is a 1. Revealing (6, 1) would have shown the number of mines around it, but
since it was a 1, it indicated that there is at least one mine nearby.
4. **Revealing (6, 6)**: This cell is adjacent to row 5, column 6, which is a 1. Revealing (6, 6) would have shown the number of mines around it, but
since it was a 1, it indicated that there is at least one mine nearby.
5. **Revealing (6, 5)**: This cell is adjacent to row 5, column 5, which is a 1. Revealing (6, 5) would have shown the number of mines around it, but
since it was a 1, it indicated that there is at least one mine nearby.

The main issue was that the player did not focus on revealing cells that would provide more direct information about the location of the mines. Instead,
the player revealed cells that were adjacent to already revealed cells, leading to a lot of unnecessary information and not enough progress toward
identifying the exact location of the mines.

New Plan of Action
To improve the strategy, the player should focus on revealing cells that are not adjacent to already revealed cells, and that are far enough away to avoid
being affected by the auto-cascade effect. The goal is to identify the location of the mines by revealing cells that are not adjacent to any already
revealed cells, and that are in areas where the numbers indicate a higher likelihood of a mine.

Here is a revised plan:
1. **Reveal (6, 2)**: This cell is not adjacent to any already revealed cells and is far enough away to avoid being affected by the auto-cascade effect. It
is also adjacent to row 5, column 2, which is a 2, indicating that there is at least one mine nearby.
2. **Reveal (6, 3)**: This cell is not adjacent to any already revealed cells and is far enough away to avoid being affected by the auto-cascade effect. It
is also adjacent to row 5, column 3, which is a 2, indicating that there is at least one mine nearby.
3. **Reveal (6, 1)**: This cell is adjacent to row 5, column 1, which is a 1, indicating that there is at least one mine nearby. However, since it is adjacent
to row 6, column 2, which is a 1, it is important to reveal this cell to confirm the location of the mine.
4. **Reveal (6, 4)**: This cell is adjacent to row 5, column 4, which is a 2, indicating that there is at least one mine nearby. However, since it is adjacent
to row 6, column 3, which is a 1, it is important to reveal this cell to confirm the location of the mine.
5. **Reveal (6, 5)**: This cell is adjacent to row 5, column 5, which is a 1, indicating that there is at least one mine nearby. However, since it is adjacent
to row 6, column 4, which is a 1, it is important to reveal this cell to confirm the location of the mine.

By following this plan, the player can identify the location of the mines more effectively and avoid the mistakes made in the previous attempt.
<remark>
In the past attempt, the player revealed cells that were adjacent to already revealed cells, leading to a lot of unnecessary information and not enough
progress toward identifying the exact location of the mines. To improve the strategy, the player should focus on revealing cells that are not adjacent to
any already revealed cells, and that are far enough away to avoid being affected by the auto-cascade effect. The revised plan involves revealing cells
such as (6, 2), (6, 3), (6, 1), (6, 4), and (6, 5) to identify the location of the mines more effectively.
</remark>

Reflection #1

Attempt #2

Reflection #2

Attempt #3

Reflection #1 Reflection #2

Figure 6: Example of trajectories and reflections produced by LAMER trained agents on the
MineSweeper game.

27

	Introduction
	Related Work
	Preliminaries
	LaMer: A Meta-RL Framework for LLM agents
	Experiments
	Experimental Setup
	Performance comparison
	Generalization to harder tasks
	Generalization to unseen tasks

	Analysis
	Influence of trajectory discount factor
	Ablation on the inter-episode memory
	Training budget

	Conclusion
	Task Description and Details
	Example Prompts
	Sokoban
	Minesweeper
	WebShop
	ALFWorld

	Training details
	Additional results
	Experiments on different architecture
	Comparison to RL baselines with inter-episode memory

	Examples

