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ABSTRACT

Large Language Models (LLMs) exhibit impressive capabilities across diverse
tasks, yet aligning their outputs with human preferences remains a significant and
costly challenge. Traditional alignment methods like Reinforcement Learning
from Human Feedback (RLHF) depend heavily on extensive human-annotated
preference data, which is difficult to scale. We propose Introspective Adversarial
Learning (IAL), a novel alignment framework that enables LLMs to autonomously
refine their own outputs through iterative self-improvement, without requiring
additional human supervision. IAL introduces a Player-Advisor mechanism where
the Player generates candidate responses and the Advisor provides constructive
refinement strategies. The refined responses are evaluated by a reward model, and
the contrast between initial and improved outputs drives a Preference Transductive
Learning process. This reflective cycle allows the model to generate high-quality
preference data internally and progressively enhance alignment. Experiments on the
zephyr-7b-sft-full model, evaluated via the HuggingFace Open LLM Leaderboard
and MT-Bench, show that IAL consistently improves alignment performance while
preserving strong general task capabilities. Compared to state-of-the-art methods
such as SPIN, SPA, and DPO, IAL achieves superior results without relying on
costly human preference annotations, offering a scalable and efficient pathway
toward better-aligned LLMs.

1 INTRODUCTION

Large language models (LLMs) (Liu et al., 2024; Ouyang et al., 2022; Achiam et al., 2023) have
demonstrated remarkable capabilities in various domains such as Question Answering (Allam and
Haggag, 2012; Zhang et al., 2023), Code Generation (Li et al., 2022; Svyatkovskiy et al., 2020),
Summarization (Zhang et al., 2024; Pu et al., 2023), and Creative Writing. A significant advancement
of these models is their astonishing problem-solving ability after training. However, this process
relies heavily on costly human annotation efforts and consumes substantial computational resources.
Moreover, ensuring that the responses generated by Large Language Models are aligned with human
preferences remains a major challenge (Wang et al., 2023). The commonly used methods to enhance
the alignment capabilities of Large Language Models are Supervised Fine-Tuning (SFT) (Ouyang
et al., 2022; Tunstall et al., 2023) and Reinforcement Learning from Human Feedback (RLHF) (Chris-
tiano et al., 2017). In practice, both methods necessitate extensive and meticulously annotated datasets
for model training. The acquisition of such data is often prohibitively expensive and time consum-
ing. Consequently, researchers have increasingly focused on developing more efficient fine-tuning
techniques that can maximize the utility of existing data to enhance alignment performance.

Recent advances have introduced self-enhancing algorithms that take advantage of the inherent gener-
ative capabilities of large models (Yuan et al., 2024; Wu et al., 2024). These algorithms are capable of
transforming weakly aligned models into strongly aligned ones using minimal preference data or even
only through fine-tuning data. Notable examples include Self-Play Fine-Tuning (SPIN) (Chen et al.,
2024), Self-Play with Adversarial Critic (SPAC) (Ji et al., 2024), and Spread Preference Annotation
(SPA) (Kim et al., 2025).
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I'm thinking of getting into fitness recently. Do you have any 
workout plans suitable for beginners?

If it's your first time working out, you can start with simple 
exercises. For example, you can brisk walk for 30 minutes every 

day or do some basic yoga poses ...

If you’re new to fitness, it’s a great idea to start with simple 
exercises. For example, you can try brisk walking for 30 

minutes every day. It’s easy and effective. Or, give basic yoga 
a try—start with poses like the downward dog or mountain 

pose ...

You should provide a more structured workout plan ,and I would 
like you to offer  me more pre - and post - workout tips ...

Close !!!Large Gap ...

Reponse Generation  Response Regeneration with Feedback 

If you’re new to fitness, it’s great to start with a simple and manageable routine. You can begin with a mix of walking, basic
bodyweight exercises, and some stretching. For example, try walking for 30 minutes a day—it’s a great way to improve your
cardiovascular health. You can also add some basic exercises like squats, push-ups, and planks. Start with just a few reps and

sets, and gradually increase as you get stronger ...

Ground Truth 

Figure 1: A comparative example of responses generated by the model with and without human
feedback relative to ground truth. It can be observed that when the model receives human feedback,
the response generated for the second time places greater emphasis on the detailed description of
yoga movements and techniques compared to the initial response. The content of the response is also
more closely aligned with the Ground Truth.

Despite these advancements, the alignment of large language models remains largely dependent on
high-quality data manually annotated by humans (Tan et al., 2024; Chang et al., 2024). However, we
have largely overlooked the potential of leveraging the models’ inherent reasoning and summarization
capabilities to generate higher-quality preference data pairs. Therefore, a crucial question arises: How
can we effectively harness the intrinsic reasoning abilities of large language models to autonomously
generate preference datasets and subsequently utilize these newly generated preference data to further
enhance the alignment capabilities of the models?

In this paper, we introduce Introspective Adversarial Learning (IAL), an alignment framework
that exploits the generative capacity of large language models to achieve strong alignment through
fine-tuning on a dataset of aligned examples. The core idea is to iteratively engage the LLM in
reinforcement learning–based adversarial training between self-generated and human-annotated data,
thereby extracting improvement signals from their discrepancies. As illustrated in Figure 1, given the
strong instruction-following abilities of LLMs, humans can provide prompts and suggestions that
guide responses toward human preferences. In IAL, this suggestion role is assumed by the LLM itself.
The model alternates between two roles—Player and Advisor—both initialized from the same base
model. The Player executes complex instructions, while the Advisor offers constructive and realistic
feedback on the Player’s responses. The Player then refines its initial response by incorporating the
Advisor’s suggestions, producing a theoretically superior output. During training, both the initial and
refined responses are collected, and their quality is evaluated and ranked using PairRM (Jiang et al.,
2023), with the higher-scoring response designated as superior.

We conducted experiments on the Mistral-7b (Jiang, 2024) based fine-tuned model
zephyr-7b-sft-full over multiple iterations. For training, we used the Ultrachat200k (Ding
et al., 2023) dataset and evaluated the model performance on both the MT-Bench (Zheng et al.,
2023) and the Open LLM Leaderboard (Beeching et al., 2023). Through these experiments, we
demonstrated a significant enhancement in the model’s alignment capabilities, outperforming
baseline methods such as DPO (Rafailov et al., 2023), SPIN, and SPA. Importantly, our approach
does not degrade the general benchmark performance of the LLM. In summary, our contributions are
as follows:

1. A Novel Alignment Framework. We propose the Introspective Adversarial Learning (IAL)
framework, which utilizes the generative capabilities of Large Language Models (LLMs) to
autonomously produce high-quality preference data pairs via iterative adversarial training.
This approach enhances model alignment without requiring additional human-annotated
data, significantly reducing alignment costs.

2. Innovative Player-Advisor Mechanism. The IAL framework introduces a Player-Advisor
mechanism. The Player executes complex instructions and generates initial responses, while
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the Advisor provides optimization suggestions. This enables the model to self-assess and
refine its responses, improving consistency with human preferences.

3. Significant Improvement in Alignment Performance. Experiments show that IAL sig-
nificantly improves model alignment across multiple benchmarks, outperforming existing
methods like SPIN, SPA, and DPO. Importantly, it maintains model performance on general
tasks, demonstrating effective alignment without compromising generalization.

2 RELATED WORK

Self-Play. Self-Play (Samuel, 1959; Tesauro et al., 1995; Christiano et al., 2017; Silver et al.,
2018) is a learning paradigm where an agent iteratively competes with itself. Widely used in Multi-
Agent Reinforcement Learning (MARL) (Canese et al., 2021; Zhang et al., 2021; Wen et al., 2022),
it pits the current model against its past iterations. Applications include Generative Adversarial
Networks (GANs) (Goodfellow et al., 2020), adversarial imitation learning (Ho and Ermon, 2016),
and inverse reinforcement learning (Ng and Russell, 2000). A prominent industrial example is
AlphaGo Zero (Silver et al., 2017), which achieved superhuman performance via Self-Play.

In Large Language Model alignment, Self-Play Fine-Tuning (SPIN) employs Self-Play using a
supervised fine-tuning dataset (x, y) to generate responses y′. Without strong model supervision,
it iteratively refines the model to better distinguish y from y′, producing a stronger model. Unlike
SPIN, Self-Play with Adversarial Critic (SPAC) uses a preference dataset. This offline preference
optimization method frames the problem as a Stackelberg game (Nie and Zhang, 2008), introducing
an adversarial critic to maintain a pessimistic reward estimate while optimizing the policy.

Iterative Self-Improvement in LLMs. Growing interest exists in methods enabling LLMs to improve
autonomously through iterative self-training. Self-Critique (Li, 2024) and Self-Rewarding (Yuan
et al., 2024) let models generate and evaluate their own outputs. Coffee (Moon et al., 2023) uses
self-generated feedback to enhance code generation. Similarly, Self-Play Preference Optimization
(SPPO) (Wu et al., 2024) extends self-play to preference learning. The Sol-Ver Lin et al. (2025)
framework enhances code and test generation through solver–verifier self-play, whereas the SPC Chen
et al. (2025) framework employs adversarial self-play to refine the critic’s reasoning evaluation,
thereby strengthening LLM reasoning performance.

Alignment of LLMs with Human Preferences. Current alignment methods primarily use Rein-
forcement Learning from Human Feedback (RLHF), training a reward model on human preferences
and optimizing the policy with algorithms like Proximal Policy Optimization (PPO) (Schulman et al.,
2017), using KL divergence to avoid excessive deviation. Direct Preference Optimization (DPO)
simplifies this by using an implicit reward function, bypassing explicit reward modeling. Advances
like SimPO (Meng et al.) and DPO-Positive (Pal et al., 2024) have improved performance, yet these
methods still rely on costly, time-consuming human-annotated datasets.

3 METHODOLOGY

Overview. In this section, we introduce a novel fine-tuning method for enhancing the alignment of
Large Language Model (LLM) without the need for preference datasets or human feedback, termed
Introspective Adversarial Learning. As illustrated in Figure 2, our proposed method consists of two
main components: Self-Refined Responses Generation and Preference Transductive Learning. By
leveraging offline data generation and reinforcement learning, we can transform a weakly aligned
Large Language Model into a strongly aligned LLM.

3.1 BACKGROUND

We consider a Large Language Model parameterized by parameters and denoted as πθ. In the context
of preference learning, given a text sequence x = [x1, x2, . . . , xn], the model generates a response
y = [y1, y2, . . . , ym] relative to x. The response y can be regarded as a sample drawn from πθ(·|x).
It is worth noting that xi and yi represent the individual tokens at the i-th position in the sequences x
and y, respectively. The process of generating responses by an autoregressive model is a Markov
process (Ethier and Kurtz, 2009). The autoregressive model πθ utilizes the previously generated
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Instruction (   ): How does abstract art challenge conventional 
notions of art?

Response (   ): Abstract art breaks the rules of traditional art. It 
doesn't look like real things, focuses more on feelings than 
stories, and makes viewers think for themselves ...

 Target Response (   ): Abstract art challenges conventional 
notions of art by rejecting realistic representation in favor of 
shapes and colors, shifting the focus from storytelling to 
emotional expression...

Player Model 

Advisor Model 

 Suggestion (  ):Some suggestions for the response: 
1.Be more specific: Instead of saying... 
2.Add examples: Including brief examples, like... 
3.Clarify "feeling":Specify what kind of feelings... 

   Regenerated Response( ):
Abstract art challenges the
norms of traditional art. It
abandons realistic depiction,
instead using shapes and colors to
evoke emotions and concepts. It
prioritizes emotional expression
over storytelling, allowing
viewers to interpret the work in 
 their own way...

Player Model  Suggestion 

Response 

Refine based on (   )

Refinement Phase

Response 

Response 

Instruction 

Quality Estimation Phase

Select the better responses

 Loser ( ):Abstract art 
breaks the rules of art...

 Winner (  ): Abstract
art challenges the
norms of traditional art.
It abandons realistic ...

Stage 1. Self-Refined Responses Generation

Stage 2. Preference Transductive Learning 

( )

Weak Model Strong Model 

Update

In
pu

t

Dataset

SPACP Training

PairRM

Figure 2: The framework of Introspective Adversarial Learning ( IAL). In the t-th iteration of IAL, the
Player model samples an initial Response y from the Instruction x, and the Advisor model generates
a Suggestion s based on x and y. The Player model then produces a Regenerated Response y′ using
s and ranks it against y. SPACP optimizes the model in the Preference Transductive Learning phase
for continuous self-improvement.

token sequence to generate a token for a given position in the sequence. Given the prompt x, the
autoregressive language model πθ can generate the response y through probabilistic means:

πθ(y|x) =
m∏
j=1

πθ(yj |x,y<j) (1)

Given a human preference dataset D = {xj ,y
+
j ,y

−
j }Nj=1, where xj denotes the j-th instruction

in the dataset, commonly referred to as a Prompt, and y+
j and y−

j represent the preferred and less
preferred responses, respectively, conditioned on the given instruction xj . Assuming the existence
of a model πref that has been fine-tuned with supervised learning, the Reinforcement Learning from
Human Feedback (RLHF) method employs the Bradley-Terry (David, 1963) model to characterize
the aforementioned preference responses. Specifically, the probability of the preferred response
emerging victorious is modeled as follows:

p(y+ ≻ y−|x) = σ(r(x,y+)− r(x,y−)) (2)

where σ represents the logistic function, and r(x, y) denotes a latent reward function that is hypothe-
sized to exist for the response y given the prompt x. In the context of dataset D, the training objective
of the reward model is to encourage the model to assign higher scores to preferred responses than to
dispreferred ones. Formally, the loss function is defined as:

LRM(r,D) = −E(x,y+,y−)∼D

[
log σ

(
r(x,y+)− r(x,y−)

)]
. (3)

3.2 SELF-REFINED RESPONSES GENERATION

Initiation. We assume that we are given a large fine-tuning dataset DL and an initial parameterization
πinit of the Large Language Model. The LLM is required to undergo standard Supervised Fine-Tuning
(SFT) on the dataset DL prior to the subsequent procedures. The loss function for Supervised
Fine-Tuning is defined as follows:

LSFT (πθ,x,y) = −
1

N

N∑
i=1

log πθ(yi|x,y<i) (4)
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In this context, x signifies the given fine-tuning prompt, and N denotes the length of the entire
fine-tuning data response. Post fine-tuning, the model, denoted as π0, is a weakly aligned model and
has not yet been aligned with human preferences.

In the j-th iteration, a small fine-tuning dataset Dj ∼ DL is randomly sampled from the large
fine-tuning dataset DL, where Dj = {(xi,y

t
i) | 0 ≤ i ≤ N − 1}. It is noteworthy that yt

i denotes
the target response in our fine-tuning dataset. We consider a scenario in which humans interact with a
Large Language Model through dialogues. As shown in Figure 1, in this interaction, a specific task
prompt xi is provided to the LLM, which then generates a corresponding response yi. Based on
the task requirements, humans provide textual feedback and Suggestion si for the LLM’s response,
such as making the response more conversational, reducing the length of the response, or providing a
more detailed explanation of the answer. Based on these suggestions, the LLM can generate a new
response y′

i that is theoretically more aligned with the task requirements and human preferences.

In this process, the LLM acts as a Player, generating responses based on the given instructions, while
humans act as Advisors, not only evaluating the LLM’s responses but also providing directions for
optimization. The complex reasoning and response optimization suggestions provided by humans
can be emulated by a single fine-tuned LLM. The entire dialogue process can be realized based on
an initialized LLM model parameter πt. However, it is important to recognize that there may be
discrepancies between the preferences of the unaligned LLM and human preferences. The regenerated
response y′

i may not necessarily be more aligned with human preferences compared to the initially
sampled response yi. Therefore, an additional reward model rθ is required to evaluate preferences
and select responses that are more aligned with human preferences (y+

i ) and those that are not
recommended (y−

i ).

(y+
i ,y

−
i ) = (yi,y

′
i) if rθ(yi) > rθ(y

′
i) else (y′

i,yi) (5)

Here, rθ(y) denotes the evaluation score assigned to the response y by the reward model, where a
higher score indicates greater alignment with the preferences of the reward model. Based on the
aforementioned procedures, upon the completion of the j-th iteration of data generation, we construct
a preference dataset D′

j for subsequent model training, where (x,yt,y+,y−) ∈ D′
j .

3.3 PREFERENCE TRANSDUCTIVE LEARNING

We formulate the offline preference optimization as a Stackelberg game between two players: a Policy
(Leader) and an Adversarial Critic (Follower) . The policy πθ aims to maximize the value estimated
by the critic, while the critic constructs a pessimistic reward estimate constrained by preference data.
This duality is achieved through a bilevel optimization framework.

SPAC (Ji et al., 2024) has already specified the objective of the critic, which is to minimize a loss
function that integrates the reward estimate and the average pessimism for a fixed policy πθ, where
D = {(xi,y

+
i ,y

−
i ) | 0 ≤ i ≤ N − 1}:

min
r

E(x,y+,y−)∼D
[
− log σ

(
r(x,y+)− r(x,y−)

)]︸ ︷︷ ︸
Preference Loss

+λEx∼D,y∼πθ(·|x) [r(x,y)]︸ ︷︷ ︸
Pessimism Penalty

(6)

where λ > 0 controls the strength of pessimism. In our policy update phase, the policy πθ is updated
to maximize the critic’s pessimistic reward estimate while maintaining proximity to the reference
model πref:

max
πθ

Ex∼D,y∼πθ(·|x)
[
r(x,y)− αDKL

(
πθ(·|x)

∥∥πref(·|x)
)]

(7)

It is worth mentioning that, to avoid explicit reward modeling, we employ a DPO-inspired transfor-
mation. Let r(x,y) = η log πθ(y|x)

πref(y|x) + logZ(x), where Z(x) is a normalization term. Substituting
this into the critic’s objective yields a practical single-timescale algorithm:

min
πθ

−E(x,y+,y−)∼D log σ

(
η log

πθ(y
+|x)

πref(y+|x)
− η log

πθ(y
−|x)

πref(y−|x)

)
+λ · Ex∼D,y∼πθ(·|x) log σ

(
η log

πθ(y|x)
πref(y|x)

)
(8)
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where η governs the alignment between the reward and the policy. After minor enhancements, the
resulting formula is presented as follows:

πt+1 ← argmin
π∈Π

E(x,y+,y−)∼D,y∼πθ(·|x)η

(
log

π(y|x)
πt(y|x)

− log
π(y+|x)
πt(y+|x)

)
−λE(x,y+,y−)∼D log σ

(
η log

π(y+|x)
πt(y+|x)

− η log
π(y−|x)
πt(y−|x)

)
(9)

where, πt represents the model at t-th iteration, D represents the preference dataset, and Π signifies
the policy class.

However, the entire approach is fundamentally grounded in the Bradley–Terry (BT) (Bradley and
Terry, 1952) model. In Direct Preference Optimization (DPO) (Rafailov et al., 2023), the BT
formulation only enforces relative ranking constraints, without directly guaranteeing an increase
in the probability of positive samples. This introduces a potential weakness (Pal et al., 2024; Ren
and Sutherland, 2024): during training, the model may sacrifice the log-probability of y+ while
achieving the optimization objective primarily through more aggressively suppressing y−.

When optimizing according to Equation 9, this issue inevitably arises in practice. We provide a more
detailed empirical investigation of this phenomenon in the Appendix B.3.

To address the aforementioned issue, we propose Self-Play with Adversarial Critic-Positive
(SPACP), a novel reinforcement learning strategy. Given the high confidence in the target responses
within the fine-tuning dataset, we incorporate the penalty term Pπ,πt

(x,yt) = max
(
0, log πt(y

t|x)
π(yt|x)

)
into the log-sigmoid loss function of Equation 9. The integration of this penalty term is intended to
preserve a high log-likelihood for the target responses. The complete loss function for SPACP is as
follows, where D′ = {(xi,y

t
i ,y

+
i ,y

−
i ) | 0 ≤ i ≤ N − 1}, γ is a hyperparameter used to control the

strength of the penalty term:

LSPACP (π;πt,D′) = E(x,yt,y+,y−)∼D′η

(
log

π(y+|x)
πt(y+|x)

− log
π(yt|x)
πt(yt|x)

+ γ · Pπ,πt
(x,yt)

)
−λE(x,yt,y+,y−)∼D′ log σ

(
η log

π(yt|x)
πt(yt|x)

− η log
π(y−|x)
πt(y−|x)

− η · γ · Pπ,πt
(x,yt)

)
(10)

By incorporating a penalty term, we can enhance the log-likelihood of the target responses within
the fine-tuning dataset. This approach not only increases the gap in the log-probabilities between
the target and non-target responses but also ensures that the log-likelihood of the target responses
is improved compared to the model from the previous iteration. This method effectively guides the
model alignment in a deterministic direction during the Self-Play process, thereby preventing the
accumulation of alignment errors.

After each training session, the model parameters of both the Player and Advisor are updated using
the most recent parameters, thereby commencing the next iteration. By integrating self-refinement
of data generation with the Self-Play training process, IAL enhances the alignment of weakly
aligned models, ultimately transforming them into strongly aligned models. This approach leverages
iterative refinement to strengthen model alignment, thereby ensuring more robust and accurate model
performance.

4 EXPERIMENTS

In this section, we conduct a detailed experimental analysis of IAL. Through our experiments, we
demonstrate that IAL can outperform SPIN, SPA, and DPO (which requires additional human-
annotated data) without the need for extra human-labeled data. This highlights that IAL achieves
superior performance across various evaluation benchmarks compared to the baseline.

4.1 EXPERIMENT SETUP

Model and Datasets. In our research, we employ the zephyr-7B-sft-full as the foundational
architecture. This model is derived from the pre-trained Mistral-7B (Jiang, 2024) and has been fine-
tuned on the SFT dataset Ultrachat200k from HuggingFace. The Ultrachat200k dataset represents a
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high-quality subset of 200,000 samples from the larger UltraChat (Ding et al., 2023) corpus, which
includes approximately 1.4 million dialogues generated using OpenAI’s Turbo API. To facilitate
comparisons with DPO (Direct Preference Optimization) and SPA (Spread Preference Annotation),
we utilize the widely adopted UltraFeedback (Cui et al., 2023) dataset from prior work (Hong et al.,
2024; Rosset et al., 2024) for training these methods. For the external reward model, we employ
PairRM (Jiang et al., 2023) for preference judgment. Drawing inspiration from the data processing
methodology of the SPIN (Chen et al., 2024) dataset, we initiate our iterative process by randomly
sampling 50,000 data points from Ultrachat200k for data generation. Subsequently, we train the
model according to the algorithm described in Section 3.3 of this paper. In the ensuing iterative
training phases, we blend the most recently synthesized data with newly generated data, training the
model for two epochs in each iteration. For additional experiments with other model, please refer to
the Appendix B.2.1.

Evaluation. In this study, we adopt two widely recognized benchmarks for assessing the performance
of Large Language Models (LLMs): the Huggingface Open LLM Leaderboard (Beeching et al.,
2023) and MT-Bench (Zheng et al., 2023). These benchmarks are commonly utilized within the
research community to evaluate various dimensions of LLM capabilities. (1) The Huggingface
Open LLM Leaderboard consists of six diverse datasets that provide a comprehensive evaluation
of models from multiple angles. It covers a wide range of Natural Language Processing (NLP)
tasks, including but not limited to Multitask Language Understanding (MMLU), Commonsense
Reasoning (Arc (Clark et al., 2018), HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al.,
2019)), Human Deception detection (TruthfulQA) (Lin et al., 2021), and Mathematical Inference
(GSM8K (Cobbe et al., 2021)). These tasks span multiple domains, allowing for a robust and holistic
evaluation of the LLM’s generalization capabilities. (2) MT-Bench, on the other hand, specifically
evaluates the overall performance of chatbots across several key categories that are critical for LLM
proficiency, such as mathematical reasoning, programming, role-playing, and creative writing. The
evaluation methodology involves scoring multi-turn responses generated by the models, with GPT-4
being employed to assess the quality of these responses. For a more detailed discussion of the
evaluation methodology, please refer to the Appendix B.1.

Implementation Details. In each iteration, we sample a seed dataset from the fine-tuning dataset.
Utilizing the prompts within this seed dataset, we perform Self-Refined Responses Generation. For
each prompt, we sample a single response with a temperature setting of 0.7. Subsequently, we
assign preference labels to the generated response pairs using PairRM (Jiang et al., 2023). The entire
iterative process is conducted for three iterations, with each iteration lasting for two epochs. For
the hyperparameters in IAL, we set β = 0.1, γ = 5.0, and λ = 1.0, with an initial learning rate of
5× 10−7. We utilize the RMSProp optimizer and a linear learning rate scheduler, where the warm-up
phase constitutes 10% of the total training steps.

4.2 BASELINES SETTINGS

In this section, we will provide a detailed description of the training details of the baselines we
employed, as well as the datasets utilized. For additional experiments with more baselines, please
refer to the Appendix B.2.2.

DPO. We conducted three iterations of training using the zephyr-7B-sft-full model on the
UltraFeedback dataset, with each iteration comprising two epochs. The warm-up steps accounted
for 10% of the total training steps. We employed the AdamW optimizer with a learning rate of
5.0× 10−7 and a hyperparameter β = 0.1. Additionally, we utilized a Cosine learning rate scheduler.
These hyperparameters are widely adopted, and their training outcomes can be regarded as the ideal
reference results for DPO.

SPA. After initializing with DPO, we sampled each independent prompt twice from the seed dataset
with a temperature of 0.7 and assigned preference labels. For the DPO hyperparameter β, we
maintained a fixed value of β = 0.1 and a learning rate of 5 × 10−7. We adopted the AdamW
optimizer and a Cosine learning rate scheduler, with the warm-up phase corresponding to 10% of the
total training steps. For the SPA hyperparameters α and K%, we used fixed values of α = 0.1 and
K = 10, and we performed two iterations in total.

SPIN. In each iteration, we randomly sampled 50k prompts from the UltraChat200k dataset and
generated synthetic responses using the base model. Following the SPIN experimental configuration,
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we utilized the synthetic data from the most recent iteration and added it to the newly generated
synthetic data. Consequently, the synthetic dataset size was 50k in iteration 0, and 100k in iterations 1
and 2. In each iteration, we trained the model for two epochs. We selected β = 0.1 and the RMSProp
optimizer, with warm-up steps accounting for 10% of the total training steps. For iterations 0 and 1,
the learning rate was set to 5× 10−7, while for iteration 2, it was set to 1× 10−7.
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Figure 3: The evaluation results of baselines and IAL on the HuggingFace Open LLM Leaderboard.
See Table 2 for detailed data.

4.3 MAIN RESULTS

Based on the results shown in Figure 3, we utilized the HuggingFace Open LLM Leaderboard (Beech-
ing et al., 2023) as our evaluation benchmark to demonstrate the superiority and effectiveness of our
method. We compared the performance of models trained with our approach against those trained
with SPA (Kim et al., 2025), SPIN (Chen et al., 2024), and DPO (Rafailov et al., 2023) methods. We
specifically examined the differences in evaluation outcomes between models after three iterations
of IAL and those after initial full fine-tuning, significantly highlighting our method’s capability to
enhance model alignment. At the initial iteration, we used the fine-tuned zephyr-7b-sft-full
to generate a dataset for subsequent model training. Given that the model was still in a weak alignment
state, we observed an average evaluation accuracy increase of 2.42% after the first iteration, primarily
improving in the TruthfulQA (Lin et al., 2021), GSM8K (Cobbe et al., 2021), and HellaSwag (Zellers
et al., 2019) metrics. During the second iteration, the model continued to enhance all metrics, with the
HellaSwag metric surpassing the maximum values of other baselines. The average evaluation accuracy
also exceeded the maximum values of other baselines, improving by 1.95% compared to the previous
iteration. In the final iteration, although the model showed a decrease in Winogrande and HellaSwag
metrics, other metrics increased. Ultimately, our method achieved an average evaluation accuracy of
63.38%, a 0.42% improvement over the previous iteration, surpassing the three baseline algorithms.
It can be observed that as iterations progressed, our model gradually transitioned from weak to strong
alignment, with diminishing improvement margins, yet still significantly outperforming DPO, which
relies on additional preference data for training.

We conducted additional evaluations on the MT-Bench (Zheng et al., 2023), where we compared the
optimal results obtained from multiple iterations of various baseline models with the final model
trained using the Iterative Active Learning (IAL) approach, as illustrated in Figure 4. Upon a
thorough analysis, it is evident that the IAL-trained model shows significant improvements over the
baseline model, which was trained using Supervised Fine-Tuning (SFT), across several key metrics
on the MT-Bench. Notably, the most substantial enhancement is observed in the Writing metric,
where the IAL model outperforms its counterparts by a considerable margin. Furthermore, IAL also
demonstrates robust performance in the Roleplay metric, highlighting its versatility across different
task categories. The final model, trained with IAL, achieved an impressive average score of 6.96,
marking an enhancement of 0.98 points over the SFT-trained model and surpassing the performance

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

of other baseline models. For a detailed breakdown of the experimental results and further analysis,
please refer to the Appendix B.2.
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Figure 4: Left. Comparison of the best evaluation results across baselines on MT-Bench. Right.
Average scores, demonstrating the superiority of our method over the baselines.

4.4 ABLATION STUDIES
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Figure 5: The models trained with differ-
ent γ values for SPACP were evaluated on
the Hugging Face Open LLM Leaderboard,
demonstrating the trend of average accu-
racy.

In this subsection, we examine the effect of the number
of training epochs and the hyperparameter γ on model
training. Starting from the model after initial Super-
vised Fine-Tuning (SFT), we experiment with different
γ values and evaluate performance on the HuggingFace
Open LLM Leaderboard. This allows us to analyze
how γ influences model alignment. Figure 5 shows
the performance of the initial model under different γ
values and training iterations. For γ, average accuracy
on the HuggingFace benchmark rises steadily early on,
with the largest gain in the first two epochs. In contrast,
for γ = 1, performance improves more slowly, only
surpassing the degraded γ = 5 case by the fifth epoch.
For γ = 50 and γ = 500, performance declines as
training progresses, likely because high γ makes the
process similar to SFT. Since the model is already fine-
tuned on this dataset, further SFT causes overfitting
and performance drop. Thus, proper selection of γ and
epoch count is essential to improve model robustness
and accuracy. Additional ablation studies are provided
in Appendix B.4.

5 CONCLUSIONS

This paper introduces Introspective Adversarial Learning (IAL), an alignment framework that har-
nesses the generative power of Large Language Models (LLMs) to autonomously produce high-quality
preference data, thereby improving model alignment. Unlike traditional approaches, IAL eliminates
the need for extra human-annotated data, reducing cost and increasing efficiency. Extensive exper-
iments on the HuggingFace Open LLM Leaderboard and MT-Bench show that IAL outperforms
state-of-the-art methods such as SPIN, SPA, and DPO in alignment capability. Moreover, IAL
maintains strong model performance on benchmark tasks, balancing alignment gains with overall
competence.

Future work will extend IAL to diverse LLMs and tasks to assess its generality, while also aiming to
enhance alignment performance and streamline training for greater efficiency. We believe IAL offers
valuable insights and directions for LLM alignment research.
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We hereby declare that the present study, which proposes and validates Introspective Adversarial
Learning (IAL) for enhancing the alignment of large language models (LLMs) with human preferences
while reducing reliance on human-annotated data, strictly adheres to academic ethics in its design,
experimentation, and documentation. All datasets used in this study (e.g., UltraFeedback) are publicly
available academic resources containing no personally identifiable information or sensitive data. All
data processing procedures comply with the terms of use provided by the data sources, and no illegal
scraping or unauthorized use of data was conducted.

Although this research employs LLMs to generate textual content (e.g., suggestions, responses), all
generated materials have been manually reviewed and verified to ensure compliance with academic
integrity and social ethics. We commit not to produce or disseminate any misleading, harmful, or
unethical content.

We affirm that the goal of this study is to advance the development of AI alignment techniques,
thereby contributing to the creation of safer, more reliable, and human-value-aligned AI systems. We
welcome the research community to examine, verify, and critique our methodology, experiments, and
conclusions.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made our code publicly available in an anonymous
repository: https://anonymous.4open.science/r/IAL-27E3. The experimental environment can be
installed using the provided requirements.txt file. As detailed in Section 4.1 of the paper, we specify
the models and open-source datasets used in our experiments. Furthermore, Table B.1 describes
the evaluation metrics and settings in detail. Additional implementation specifics, including the
open-source libraries utilized and the dialogue templates for LLM interactions, can be found in the
anonymous code repository.
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A THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, including the appendix, we employed Large Language Models
(LLMs) for grammar checking and refinement of academic writing style to enhance readability
and professionalism. In addition, we utilized Artificial Intelligence (AI) to convert handwritten
mathematical formula images into LaTeX code, thereby facilitating the integration of equations into
the paper. All AI-generated content was carefully reviewed and verified by the authors, and we
assume full responsibility for the use of generative AI in this work.

B FURTHER DETAILS ON THE EXPERIMENT

B.1 OTHER EXPERIMENTAL SETTINGS AND EVALUATION DETAILS

Due to limited computational resources, we utilized Lora and DeepSpeed ZeRO-3 throughout the
experiments, with a global batch size of 4, a Gradient Accumulation size of 8, and precision set to
bfloat16.

Table 1: Detailed information of HuggingFace Open LLM Leaderboard.
Datasets Arc TruthfulQA Winogrande GSM8k HellaSwag MMLU

# few-shot 25 0 5 5 10 5
Metric acc_norm mc2 acc acc acc_norm acc

Table 2: Compared to all baselines, the IAL based on zephyr-7B-sft-full demonstrates
superior performance in the HuggingFace Open LLM Leaderboard dataset. The best results in each
column are highlighted in bold. The second-best results are highlighted with an underline. (we have
also added the increment compared to the previous iteration in the Average column).

Model Arc HellaSwag MMLU TruthfulQA Winogrande GSM8K Average
zephyr-7b-sft-full 57.85 80.62 58.83 40.37 78.85 34.19 58.45

DPO 60.79 82.69 59.97 45.67 78.85 37.57 60.92(+2.47)

SPA-iter0 59.59 81.65 58.95 41.38 78.85 37.81 59.71(+1.26)
SPA-iter1 59.79 82.64 58.98 42.38 79.01 36.94 59.96(+0.25)

SPIN-iter0 59.30 82.08 58.67 47.52 78.85 37.13 60.59(+2.14)
SPIN-iter1 60.04 82.40 59.45 52.58 78.82 38.36 61.94(+1.35)
SPIN-iter2 61.69 83.91 59.86 53.97 78.37 38.53 62.72 (+0.78)

IAL-iter0(Ours) 59.70 81.74 58.92 47.61 79.01 38.27 60.87(+2.42)
IAL-iter1(Ours) 62.13 83.93 59.94 51.44 79.77 39.73 62.82(+1.95)
IAL-iter2(Ours) 63.53 82.99 60.04 53.27 79.64 40.78 63.38(+0.42)

B.2 MORE EXPERIMENT RESULT

B.2.1 OUR METHOD ON QWEN-2.5

Evaluating our method on a single model is insufficient to fully demonstrate its effective-
ness. To provide a more comprehensive assessment, we conducted additional experiments on
Qwen-2.5-3B (Hui et al., 2024). Qwen-2.5, a member of the Qwen large language model series,
features a substantially enlarged knowledge base and exhibits marked improvements in programming
and mathematical reasoning capabilities. As reported in Table 2, the SPA method demonstrates
comparatively weak performance; therefore, we focus our experiments on DPO, SPIN, and IAL (our
proposed method). For fair comparison and reproducibility, the training hyperparameters are kept
consistent with those described in Section 4.2. Table 3 summarizes the evaluation results of these
methods on the Open LLM Leaderboard.
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Table 3: Evaluation results of Qwen-2.5-3B and its fine-tuned variants on the Open LLM Leader-
board. The best results in each column are highlighted in bold. The second-best results are highlighted
with an underline.

Model Arc HellaSwag MMLU TruthfulQA Winogrande GSM8K Average
Qwen-2.5-3B 57.08 74.45 65.62 48.96 71.27 75.51 65.48

DPO 58.70 78.32 65.87 56.93 68.67 78.32 67.31(+1.83)

SPIN 59.40 78.26 66.12 55.63 68.89 78.51 67.80(+2.32)

IAL(Ours) 59.89 79.34 66.97 56.54 68.74 78.62 68.35(+3.26)

B.2.2 MORE BASELINES

We conducted a more thorough exploration and evaluation of the baseline methods, as detailed below:

SFT&DPO. Prior studies (Saeidi et al., 2024) have indicated that, when applied to relatively weaker
base models, performing task-specific Supervised Fine-Tuning prior to Direct Preference Optimiza-
tion is advantageous, leading to more stable and substantial performance improvements. We first
conducted SFT on the zephyr-7b-sft-full model using the chosen responses from the Ul-
traFeedback Binarized dataset prior to initiating DPO training. The SFT stage was performed for
2 epochs with a learning rate of 2×10−4, employing the AdamW optimizer. Subsequently, DPO
training was carried out, with all hyperparameter settings kept consistent with those described earlier.

PPO. Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a widely used reinforcement
learning algorithm that improves policy optimization stability by constraining the update step through
a clipped surrogate objective. Unlike traditional policy gradient methods that may suffer from large
and unstable updates, PPO strikes a balance between exploration and exploitation by limiting the
deviation between the new and old policies. We trained a new reward model on the Ultrafeedback
Binarized (Cui et al., 2023) dataset, and then used this new reward model to perform PPO training on
the zephyr-7b-sft-full model. The training was performed with a learning rate of 5.0×10−7, using the
AdamW optimizer. Both the value clip and ratio clip were set to 0.2, with 3 training epochs. The KL
penalty coefficient β was fixed at 0.02. For data, we utilized the UltraFeedback 200k dataset.

We evaluate the aforementioned baselines on both the Open LLM Leaderboard and MT-Bench, with
the detailed results summarized as follows:

Table 4: Evaluation results of zephyr-7b-sft-full and its fine-tuned variants on the Open
LLM Leaderboard. The best results in each column are highlighted in bold. The second-best results
are highlighted with an underline.

Model MT-bench Arc HellaSwag MMLU TruthfulQA Winogrande GSM8K Average
zephyr-7b-sft-full 5.98 57.85 80.62 58.83 40.37 78.85 34.19 58.45

SFT&DPO 6.76(+0.78) 61.63 82.31 60.67 47.21 79.50 39.20 61.75(+3.30)

PPO 7.08(+1.10) 63.46 82.69 59.87 49.79 80.12 41.94 62.97(+4.52)

IAL(Ours) 6.96(+0.98) 63.53 82.99 60.04 53.27 79.64 40.78 63.38(+4.93)

Our method slightly surpasses PPO in terms of the average score on the HuggingFace Open LLM
Leaderboard, and consistently outperforms the SFT&DPO approach on both the HuggingFace Open
LLM Leaderboard and MT-Bench benchmarks.

B.3 THE LIMITATION AND SOLUTION OF BT MODELING

To demonstrate that BT modeling only constrains relative ranking without directly ensuring an
increase in the probability of positive samples, we record the evolution of two metrics—Margin
and Real Reward—during the first iteration of the IAL framework, under both the baseline SPAC
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method and our proposed SPACP approach. Specifically, Margin = r(x, yt) − r(x,y+)+r(x,y−)
2 ,

Real Reward = η log πθ(y
t|x)

πref(yt|x) . The detailed trajectories of these metrics are illustrated in Figure 6.
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Figure 6: The evolution curves of Margin and Real Reward during the Preference Transductive
Learning stage.

From the evolution of the curves, we observe that the Margin in both SPAC and SPACP gradually
increases with training steps (noting that, from a qualitative perspective, Margin is negatively
correlated with the loss). Both methods drive the model toward a local optimum that maximizes the
Margin. However, the Real Reward curve of SPAC first increases during the initial one-third of
training, then gradually decreases in the later stages, exhibiting oscillatory downward behavior and
eventually falling below 0.0. This indicates that, in the latter phase, SPAC reduces the log-probability
of the target response yt under the current model compared to the initial reference model. Combined
with the overall increase in Margin, this observation precisely reflects the inherent limitation of BT
modeling.

In contrast, the SPACP method, with the incorporation of the penalty term, does not suffer from
this issue. Under SPACP, the log-probability of the target response yt continues to rise, while both
Margin and Real Reward grow steadily without oscillation. Consequently, the introduction of
the penalty term in SPACP effectively prevents the model from falling into the limitation of BT
modeling and enables sustained improvement in alignment performance.

B.4 FURTHER ABLATION EXPERIMENT

In our practical experiments, we observed that the responses generated by the Large Language
Model as the Player role were identical in consecutive generations. Specifically, the optimized
response y′ generated by the Player based on the previously provided suggestions was ex-
actly the same as the initial response y. When the LLM was configured to use greedy de-
coding for sampling, the proportion of identical consecutive responses could reach as high as
70%. However, by setting the temperature to 0.7, this phenomenon was significantly miti-
gated, with the proportion of identical responses ultimately dropping to between 3% and 5%.
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Figure 7: The models trained with differ-
ent γ values for SPACP were evaluated on
the Hugging Face Open LLM Leaderboard,
demonstrating the trend of average accuracy.

Given this observation, we were compelled to investi-
gate whether the consistency of consecutive responses
generated by the LLM in the Player role would have
a significant impact on the alignment effectiveness of
the algorithm. To address this question, we conducted
experiments using zephyr-7b-sft-full for the
first iteration. During the response generation phase,
we replaced the sentences of both the initial and sub-
sequent responses with the first response. The training
parameters remained unchanged, and we employed the
SPACP for multi-epoch training.

As illustrated in the Figure 7 , we found that even with
completely identical consecutive responses, the algo-
rithm was still able to improve the model’s average
accuracy on the benchmark, achieving satisfactory per-
formance. In fact, our satisfactory experimental results
could also be anticipated through the loss function. We
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can posit the assumption that y+ = y− = y, under
which the loss function would then be reformulated as:

L(π;πt,D′) =− (1 + λ) · E(x,yt,y)∼D′ log σ

(
η log

π(yt|x)
πt(yt|x)

− η log
π(y|x)
πt(y|x)

− η · γ · Pπ,πt
(x,yt)

)
+ P (D′) (11)

Here, P (D′) represents an expression associated with the dataset, which has no impact on the actual
gradient computation. It can be observed that when y+ = y−, our method reverts to DPOP.

B.5 TRAINING OVERHEAD

We utilized 8 × L20 (48GB) to provide computational support for our experiments, and we have
detailed the specific time consumption for each step in the iterative process.

Table 5: Specific Consumption Time for Generation and Training
Iteration Iter 0 Iter 1 Iter 2

Process Generation Training Generation Training Generation Training

Time 5.4h 13.5h 5.4h 13.5h 5.4h 13.5h

DPO requires 4.6 hours for training per iteration, it is evident that the enhancement of our model’s
alignment performance comes at the cost of significant computational resources and time.

B.6 IMPLEMENTATION DETAILS OF THE ALGORITHM.

According to the theoretical proof in (Ji et al., 2024, Theorem 1), the penalty term in the loss function
requires an extremely large scale parameter λ to ensure convergence. This, however, can lead to
instability during the training process. To avoid such an excessively large value, we employ the
log-sigmoid function to smooth the logarithmic density ratio. The optimized loss function is presented
as follows:

LSPACPopt
(π;πt,D′) =− E(x,yt,y+,y−)∼D′ log σ

(
η

2
log

π(yt|x)
πt(yt|x)

+
η

2
log

π(y−|x)
πt(y−|x)

− η log
π(y+|x)
πt(y+|x)

− η · γ
2

Pπ,πt
(x,yt)

)

− λE(x,yt,y+,y−)∼D′ log σ

(
η log

π(yt|x)
πt(yt|x)

− η log
π(y−|x)
πt(y−|x)

− η · γ · Pπ,πt(x,y
t)

)
(12)

We summarize all our steps in the following algorithm:
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Algorithm 1 Introspective Adversarial Learning (IAL)
1: Initialize: large fine-tuning dataset DL, initial policy πinit, hyperparameters λ , η , γ, policy class

Π.
2: π0 ← argmin

π∈Π
E(x,y)∼DL

LSFT (π,x,y); // SFT On Fine-Tuning Dataset

3: for iteration t = 1, · · · , T − 1 do
4: π′

t ← πt;
5: Sample a subset Dt from the dataset DL.
6: for (x,yt) ∼ Dt do
7: Generate responses y ∼ πt(· | x); // Player
8: Generate suggestions s ∼ π′

t(· | x⊕ y); // Advisor
9: Regenerate responses y′ ∼ πt(· | x⊗ y ⊗ s); // Player

10: Filter by reward model rθ (5) :(y+
i ,y

−
i ) = (yi,y

′
i) if rθ(yi) > rθ(y

′
i) else (y′

i,yi);
11: end for
12: Organize dataset D′

t = {(x,yt,y+,y−)};
13: Minimize SPACP loss (10) :πt+1 ← argmin

π∈Π
LSPACPopt(π;πt,D′

t ∪ D′
t−1);

14: end for
15: return final policy πT ;

Notice. ⊕ and ⊗ are used to denote the dialogue templates for interaction with the Advisor and the
dialogue templates that require the Player to refine the given responses, respectively. In extreme cases,
if the Player attempts to take shortcuts, the second generated response y′ may be nearly identical or
completely consistent with the first generated response y. This can lead to the degeneration of the
algorithm. However, it is important to note that the alignment effect remains effective.

⊗ : Chat template of the Replayer

Please strictly follow the requirements below:
1. Original task : {Prompt}
2. Old response to be improved : {Generated_Response}
3. Modification suggestions : {Suggestion}

# Your task:
Generate a new response based solely on the suggestions. Follow the rules below:
1. Adjust the content entirely according to the suggestions.
2. Do not explain the modification process.
3. Output only the modified content without any additional explanation.
4. Do not simply restate the old response.
5. Ensure the final response is clear, concise, and directly aligned with the suggestions.

# Example
Original task: Summarize the paragraph.
Old response: "The text is about climate change and its consequences."
Modification suggestions: "Add details about rising sea levels and extreme weather events."
Final response:
"The paragraph highlights climate change, emphasizing rising sea levels and increasing extreme
weather events as major consequences."
Now apply the same process to the given input.
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⊕ : Chat template of the Advisor

You are an expert Advisor. Your task is to analyze the quality of a generated answer to a given question.
You should provide constructive and detailed suggestions based on the following dimensions:
1. Usefulness – Does the answer help solve the user’s problem?
2. Correctness – Is the answer factually and logically correct?
3. Coherence – Is the answer well-structured and easy to follow?
4. Complexity – Is the answer appropriately detailed (not too shallow, not unnecessarily complex)?
5. Verbosity – Is the answer concise without losing essential information?
6. Truthfulness – Does the answer avoid hallucinations or fabricated facts?
7. Honesty – Does the answer clearly state limitations, uncertainty, or missing information when
relevant?
8. Overall Usefulness – Considering all the above, how helpful is the answer with regard to the
question?
Format your evaluation as:
- Strengths: (List the positive aspects of the answer)
- Weaknesses: (List the issues and problems)
- Suggestions for Improvement: (Actionable steps to make the answer better)
# Example 1
Question:
What is the capital of France?
Answer:
The capital of France is Berlin.
Suggestion:
- Strengths: The answer is concise and directly addresses the question.
- Weaknesses: The correctness is wrong — Berlin is the capital of Germany, not France. The answer
fails in truthfulness and usefulness.
- Suggestions for Improvement: Correct the factual error. The improved answer should be: "The capital
of France is Paris."

# Example 2
Question:
Explain the concept of machine learning to a beginner.
Answer:
Machine learning is a type of artificial intelligence where computers use algorithms and statistical
models to analyze and learn from data patterns, making predictions or decisions without being explicitly
programmed.
Suggestion:
- Strengths: The answer is correct, truthful, and coherent. It provides a concise explanation suitable for
beginners.
- Weaknesses: The complexity may still be slightly high for absolute beginners, as terms like "statistical
models" are not explained.
- Suggestions for Improvement: Simplify technical terms and add an intuitive example. For instance:
"Machine learning is like teaching a computer by showing it many examples. For example, you can
teach it to recognize cats by showing lots of cat pictures."
# Now continue with the following instance:
Question:
{Prompt}
Answer:
{Generated_Response}
Suggestion:

C MORE DISCUSSIONS

In this section, we provide a more in-depth discussion of several specific aspects of the IAL method,
as detailed below:

Q1: During training, the response generation policy of the model continuously evolves. A natural
question arises: does the quality of feedback provided by the model, when acting in the role of
an Advisor, change accordingly? Moreover, how can such changes in feedback quality be reliably
assessed?
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The feedback provided by the model in the Advisor role indeed evolves across training epochs. Prior
work (Moon et al., 2023; Tao and Li, 2024) has shown that as the alignment level of a model improves,
the quality of its feedback and recommendations correspondingly increases. To quantitatively assess
the feedback quality of the Advisor model, we measure the proportion of instances in the validation
set where the reward model assigns a higher score to the Regenerated Response y′ than to the original
Response y. A higher proportion indicates superior feedback quality. Accordingly, we compute this
proportion Ri for each training epoch i.

Table 6: Proportion Ri, aggregated over validation samples, indicating the fraction of cases where the
reward model evaluates the Regenerated Response y′ as superior to the original Response y across
training iterations.

Cases R0 R1 R2

Sample 1 0.629 0.782 0.814

Sample 2 0.587 0.698 0.754

Sample 3 0.597 0.643 0.613

We conducted three independent runs of the IAL method, each for three epochs. As shown in the
tabulated results, the proportion Ri generally increases with the number of iterations, indicating
improved feedback quality. However, exceptions do occur—for instance, in Sample 3, the value of R2

decreases rather than increases during the second iteration. Due to limited computational resources,
we were unable to perform additional experiments to fully characterize the effectiveness of responses
generated by the model when acting in the Advisor role throughout IAL training.

Q2: Why does SPACP adopt the penalty term Pπ,πt(x,y
t) = max

(
0, log πt(y

t|x)
π(yt|x)

)
instead of

employing the conventional Negative Log-Likelihood (NLL) loss?

To better understand the role of the penalty term in SPACP, we consider replacing it with the standard
Negative Log-Likelihood (NLL) loss. The penalty term is specifically designed to ensure that the
log-likelihood of the target response under the updated policy does not fall below that of the previous
policy, thereby preventing alignment degradation during iterative self-play. This mechanism acts
as a relative constraint, safeguarding the stability of preference optimization by mitigating failure
modes previously identified in DPO, such as probability collapse and degraded likelihood of preferred
responses.

When substituting the penalty term with NLL loss, the optimization objective undergoes a fundamental
shift. NLL focuses solely on maximizing the likelihood of the reference response, essentially
reverting to a supervised fine-tuning (SFT) paradigm. While this strengthens absolute supervision, it
eliminates the relative “no-regression” guarantee provided by DPOP. Consequently, SPACP becomes
more vulnerable to the same failure modes observed in DPO, including diminished contrastive
signal utilization, increased risk of overfitting to reference data, and mode collapse under long-term
iterations. In effect, this modification reduces SPACP to a hybrid of SPAC and SFT, sacrificing the
anti-degradation property that is central to its self-corrective advantage.

D LIMITATIONS

Despite the encouraging results achieved by IAL, it still has several limitations. For instance, the
alignment process is highly dependent on the quality of the initial Large Language Model and the
design of the reward model. Moreover, as the number of iterations increases, the alignment results
from iterative training may still deviate from human preferences. However, we hope that our future
work will continue to address these limitations and further refine the framework.
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E GENERATION EXAMPLES

Prompt

Write a free verse poem capturing the surreal, mystical feeling one experiences when in love underneath
the radiant glow of a full moon. Add vivid sensory details to emphasize the emotions and sensations of
being in love during this rare celestial moment. Consider using metaphor and symbolism to convey the
intensity and uniqueness of this experience.

Response of SPA

Beneath the full moon’s radiant glow,\nI feel a love that’s hard to show.\nIt’s like a dream, a mystical
sight,\nA moment that’s rare and out of sight.\n\nThe air is thick with passion and desire,\nAs we dance
beneath the moon’s fire.\nOur bodies move in perfect sync,\nAs if we’re one, a single link.\n\nThe
moon’s light casts a silvery hue,\nAs we lose ourselves in this surreal view.\nIt’s like we’re in a fairy
tale,\nWhere love is real and never fails.\n\nThe stars twinkle like diamonds in the sky,\nAs we bask
in this celestial high.\nOur hearts beat as one, in perfect time,\nAs we lose ourselves in this mystical
rhyme.\n\nThe moon’s glow is like a beacon of hope,\nGuiding us through this love’s scope.\nIt’s a
moment that’s hard to forget,\nA memory that we’ll always keep.\n\nBeneath the full moon’s radiant
glow,\nI feel a love that’s hard to show.\nIt’s like a dream, a mystical sight,\nA moment that’s rare and
out of sight.

Response of DPO

Beneath the full moon’s radiant glow,\nI feel a love that’s pure and true,\nA mystical, surreal feel-
ing,\nThat’s unlike anything I knew.\n\nThe air is thick with passion,As we dance beneath the starry
sky,\nOur hearts beating in unison,\nAs we lose ourselves in each other’s eyes.\n\nThe moon’s light
casts a silver hue,\nOn the world around us,\nAnd we’re lost in its ethereal glow,\nAs we bask in its
mystical hush.\n\nOur love is like a shooting star,\nBurning bright and true,\nA symbol of our passion
and devotion,\nAs we revel in this rare celestial view.\n\nThe moon’s light is a beacon,\nGuiding us
through the night,\nAnd we’re lost in its surreal beauty,\nAs we revel in its mystical light.\n\nBeneath
the full moon’s radiant glow,\nI feel a love that’s pure and true,\nA mystical, surreal feeling,\nThat’s
unlike anything I knew.

Response of SPIN

Beneath the full moon’s radiant glow,\nI feel a love that’s pure and true,\nA mystical, surreal feel-
ing,\nThat’s hard to put into words, but I’ll try.\n\nThe moon’s light casts a silvery hue,\nAnd the world
around us seems to glow,\nAs if we’re in a dreamlike state,\nWhere nothing else can interfere.\n\nThe
air is crisp and cool,\nAnd the scent of flowers fills my nose,textbackslash nAs we dance beneath
the moon’s spell,\nLost in each other’s loving embrace.\n\nThe stars above us twinkle bright,\nAs if
they’re cheering us on,\nAnd the world seems to stand still,\nAs we revel in this rare celestial mo-
ment.\n\nOur love is like the moon,\nA constant source of light and warmth,\nGuiding us through the
darkest nights,\nAnd shining brightly in the light.\n\nAs we stand here, lost in love,\nI know that this
moment will never fade,\nFor it’s a memory that will stay with me,\nForever etched in my heart and
soul.
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Response of IAL

Beneath the full moon’s radiant glow,\nI feel a love that’s pure and true,\nA mystical, surreal feel-
ing,\nThat’s hard to put into words, but I’ll try.\n\nThe air is thick with passion,\nAs we dance beneath
the starry sky,\nOur bodies move in perfect harmony,\nTo the rhythm of the moon’s gentle sigh.\n\nThe
scent of jasmine fills my nose,\nAs we sway to the beat of our hearts,\nThe world around us fades
away,\nAnd we’re lost in each other’s embrace.\n\nThe moon casts a silver light,\nThat illuminates our
love so bright,\nAnd I feel as though we’re the only two,\nIn this world, just me and you.\n\nOur love is
like a shooting star,\nThat streaks across the night sky,\nA rare and wondrous sight to behold,\nThat
fills me with a sense of awe and high.\n\nThe moon is a symbol of our love,\nA beacon that guides
us through the night,\nAnd I know that as long as we’re together,\nWe’ll always find our way to the
light.\n\nSo let’s dance beneath the full moon’s glow,\nAnd let our love shine bright and true,\nFor in
this moment, we’re one and the same,\nAnd nothing can ever come between you and me.
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