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ABSTRACT

As a relatively new form of sport, esports offers unparalleled data availability.
Despite the vast amounts of data that are generated by game engines, it can be
challenging to extract them and verify their integrity for the purposes of practical
and scientific use.
Our work aims to open esports to a broader scientific community by supplying
raw and pre-processed files from StarCraft II esports tournaments. These files
can be used in statistical and machine learning modeling tasks and related to
various laboratory-based measurements (e.g., behavioral tests, brain imaging). We
have gathered publicly available game-engine generated "replays" of tournament
matches and performed data extraction and cleanup using a low-level application
programming interface (API) parser library.
Additionally, we open-sourced and published all the custom tools that were de-
veloped in the process of creating our dataset. These tools include PyTorch and
PyTorch Lightning API abstractions to load and model the data.
Our dataset contains replays from major and premiere StarCraft II tournaments
since 2016. To prepare the dataset, we processed 55 tournament "replaypacks" that
contained 17930 files with game-state information. Based on initial investigation of
available StarCraft II datasets, we observed that our dataset is the largest publicly
available source of StarCraft II esports data upon its publication.
Analysis of the extracted data holds promise for further Artificial Intelligence (AI),
Machine Learning (ML), psychological, Human-Computer Interaction (HCI), and
sports-related studies in a variety of supervised and self-supervised tasks.

1 INTRODUCTION

Electronic sports (esports) are a relatively new and exciting multidisciplinary field of study (Reitman
et al., 2020; Chiu et al., 2021). There are multiple groups of stakeholders involved in the business
of esports (Scholz, 2019). The application of analytics to sports aims to optimize training and
competition performance. New training methods are derived from an ever increasing pool of data
and research aimed at generating actionable insights (Pustišek et al., 2019; Giblin et al., 2016; Baerg,
2017; Chen et al., 2021; Rajšp & Fister jr, 2020; Kos & Umek, 2018). Rule changes in sports come
at varying time intervals and frequently with unpredictable effects on their dynamics. It is especially
relevant to share esports data to assess changes in game design and their impact on professional
players, as such changes can occur more rapidly due to the (yet) relatively unstrctured nature of
esports competition (Seif El-Nasr et al., 2013; Su et al., 2021).

Advancements in Artificial Intelligence (AI) and Machine Learning (ML) have shown that Reinforce-
ment Learning (RL) agents are capable of outmatching human players in many different types of
games (Vinyals et al., 2019; Jaderberg et al., 2019; Silver et al., 2018; Berner et al., 2019). Psycholog-
ical research on neuroplasticity has also shown the great potential of video games to induce structural
brain adaptation as a result of experience (Kowalczyk-Grębska et al., 2018). Further, previous studies
have shown that playing video games can enhance cognitive functioining in a wide range of domains,
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including perceptual, attentional and spatial ability (Green & Bavelier, 2003; 2012). Data obtained
from esports titles – including those gathered from high-level tournament performance – may provide
a path to improving the quality and reproducibility of research in this field, especially in contrast
to the more variable data that is collected in laboratories and in less competitive settings. A lower
technical overhead and more data available for modeling could assist further research in these areas
(Alfonso et al., 2017; Ghasemaghaei, 2019; Zuiderwijk & Spiers, 2019).

The sparsity and methodological diversity of research on this topic remain as roadblocks in the study
of how video games can affect mental functioning. Some scholars recommended further research
on esports as a potential path forward (Reitman et al., 2020). Despite the digital nature of esports –
which are their greatest asset with respect to data gathering – there seems to be a lack of high-quality
pre-processed data published for scientific and practical use. The goal of our work is to mitigate
this issue by publishing datasets containing StarCraft II replays and pre-processed data from esports
events, classified as "Premiere" and "Major" by Liquipedia in the timeframe from 2016 until 2022
(Liquipedia, 2010).

A brief summary of the contributions stemming from this work is as follows: (1) The development of
a set of four tools to work with StarCraft II data; (2) The collected esports data from various public
sources; (3) The publication of a collection of raw replays after brief pre-processing (REDACTED)
(4) The processing of raw data with our toolset and publication as a dataset (REDACTED) (5) and
the preparation of an official API to interact with our data using PyTorch and PyTorch Lightning for
ease of experimentation in further research (REDACTED)

2 RELATED WORK

While reviewing StarCraft II related sources, we were able to find some publicly available datasets
made in 2013 “SkillCraft1” (Blair et al., 2013) and 2017 “MSC” (Wu et al., 2017). These datasets
are related to video games and in that regard could be classified as “gaming” datasets. However,
it is not clear what percentage of games included within these datasets contain actively competing
esports players and at what levels of skill. Using the SkillCraft1 dataset, the authors distinguished the
level of players based on the data. They proposed a new feature in the form of the Perception-Action
Cycle (PAC), which was calculated from the game data. This research can be viewed as the first
step toward developing new training methods and analytical depth in electronic sports. It provided
vital information describing different levels of gameplay and optimization in competitive settings
(Thompson et al., 2013). In Table 1 we present a comparison of these two StarCraft II datasets to our
own.

There are existing datasets in other games. Due to the major differences in game implementations,
these could not be directly compared to our work. Despite that, such publications build upon a similar
idea of sharing gaming or esports data for wider scientific audience and should be mentioned. Out of
all related work, STARDATA dataset is notable in that it comes from prior generation of StarCraft
game. This dataset seems to be the largest StarCraft: Brood War dataset available (Lin et al., 2021).
Moreover, in League of Legends, a multimodal dataset including physiological data is available
(Smerdov et al., 2020).

Table 1: StarCraft II dataset comparison

Dataset esports public replays available pre-processed API available replays timespan
SC2EGSet ! ! ! ! ! 17895 2016-2022
SkillCraft1 (Blair et al., 2013) % ! % ! % 3395 ND+

MSC (Wu et al., 2017) % ! !* ! ! 36619 ND+

* provided by the game publisher
+ ND - not disclosed

Related publications focused on in-game player performance analyses and psychological, technical,
mechanical or physiological indices. These studies were conducted with use of various video games
such as: Overwatch (Braun et al., 2017; Glass & McGregor, 2020), League of Legends (Blom et al.,
2019; Ani et al., 2019; Aung et al., 2018; Maymin, 2021; Lee et al., 2022), Dota 2 (Gourdeau &
Archambault, 2020; Hodge et al., 2017; 2019; Cavadenti et al., 2016; Pedrassoli Chitayat et al., 2020),
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StarCraft (Sánchez-Ruiz & Miranda, 2017; Stanescu et al., 2021; Norouzzadeh Ravari et al., 2021),
StarCraft II (Helmke et al., 2014; Lee et al., 2021; Lee & Ahn, 2021; Cavadenti et al., 2015; Volz
et al., 2019), Heroes of the Storm (Gourdeau & Archambault, 2020), Rocket League (Mathonat et al.,
2020), and Counter-Strike: Global Offensive (Khromov et al., 2019; Koposov et al., 2020; Smerdov
et al., 2019; Xenopoulos et al., 2022; Jonnalagadda et al., 2021), among others (Galli et al., 2011). In
some cases a comparison between professional and recreational players was conducted.

Most studies did not provide data as a part of their publication. In other publications, the authors
used replays that were provided by the game publishers or were publicly available online, which are
unsuitable for immediate data modeling tasks without prior pre-processing. The researchers used raw
files in MPQ (SC2Replay) format with their custom code when dealing with StarCraft II (Blizzard,
2017; Wang et al., 2020). Other studies solved technical problems that are apparent when working
with esports data and different sensing technologies, including visualization, but with no publication
of data (Bednárek et al., 2017; Feitosa et al., 2015; Afonso et al., 2019; Stepanov et al., 2019; Korotin
et al., 2019). Some researchers have attempted to measure tiredness in an undisclosed game via
electroencephalography (EEG) (Melentev et al., 2020), and player burnout using a multimodal dataset
that consisted of EEG, Electromyography (EMG), galvanic skin response (GSR), heart rate (HR),
eyetracking, and other physiological measures in esports (Smerdov et al., 2021).

2.1 GAME DESCRIPTION

Many of the related works introduce and communicate the properties of the games that they analyze.
In case of StarCraft II, we recommend the following description: “StarCraft II: Legacy of The Void
(SC2) contains various game modes: 1v1, 2v2, 3v3, 4v4, Archon, and Arcade. The most competitive
and esports related mode (1v1) can be classified as a two-person combat, real-time strategy (RTS)
game. The goal of the game for each of the competitors is either to destroy all of the structures, or to
make the opponent resign.” Moreover, StarCraft II contains multiple matchmaking options: “Ranked
game - Players use a built-in system that selects their opponent based on Matchmaking Rating (MMR)
points. Unranked game - Players use a built-in system that selects their opponent based on a hidden
MMR - such games do not affect the position in the official ranking. Custom game - Players join
the lobby (game room), where all game settings are set and the readiness to play is verified by both
players - this mode is used in tournament games. Immediately after the start of the game, players
have access to one main structure, which allows for further development and production of units.”
(Białecki et al., 2022).

3 MATERIAL AND METHODS

3.1 DATASET SOURCES AND PROPERTIES

The files used in the presented information extraction process were publicly available due to a
StarCraft II community effort. Tournament organizers for events classified as "Premiere" and "Major"
made the replays available immediately after the tournament to share the information with the broader
StarCraft II community for research, manual analysis, and in-game improvement. Sources include
Liquipedia, Spawning Tool, Reddit, Twitter, and tournament organizer websites. All replay packs
required to construct the dataset were searched and downloaded manually from the public domain.
The critical properties of the presented dataset are as follows:

• To secure the availability of the raw replays for further research and extraction, the SC2ReSet:
StarCraft II Esport Replaypack Set was created (REDACTED)

• The replays were processed under the licenses provided by the game publisher: End User
License Agreement (EULA), and "Blizzard StarCraft II AI and Machine Learning License"
which is available in subsection A.1 of the supplementary material.

• Our dataset was created by using open-source tools that were published with separate digital
object identifiers (doi) minted for each of the repositories. These tools are indexed on
Zenodo (REDACTED; REDACTED; REDACTED)

• We have made available a PyTorch (Paszke et al., 2019) and PyTorch Lightning (Falcon &
The PyTorch Lightning team, 2019) API for accessing our dataset and performing various
analyses. Our API is accessible in the form of a GitHub repository, which is available on
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Zenodo with a separate doi. All of the instructions for accessing the data and specific field
documentation are published there (REDACTED)

• The presented dataset is currently the largest that is publicly available, and contains informa-
tion from prestigeous StarCraft II tournaments.

• The dataset can be processed under CC BY NC 4.0 to comply with Blizzard EULA and the
aforementioned Blizzard StarCraft II AI and Machine Learning License.

3.2 DATASET PRE-PROCESSING

Dataset pre-processing required the use of a custom toolset. Initially, the Python programming lan-
guage was used to process the directory structure which held additional tournament stage information.
We include this information in the dataset in a separate file for each tournament, effectively mapping
the initial directory structure onto the resulting unique hashed filenames. Moreover, a custom tool for
downloading the maps was used; only the maps that were used within the replays were downloaded
(REDACTED) Finally, to ensure proper translation to English map names in the final data structures,
a custom C++ tool implementation was used. Information extraction was performed on map files that
contained all necessary localization data (REDACTED) The entirety of our processing pipeline is
visualized in Figure 1, and additional visualizations are available in the Appendix, subsection A.4.

Replaypacks SC2DatasetPreparator SC2InfoExtractorGo

Maps SC2MapLocaleExtractor

SC2DatasetPreparatorSC2ReSet SC2EGSetDataset

Full dataset generation pipeline

Figure 1: Pre-processing and processing steps of our pipeline that result in SC2ReSet (REDACTED)
and SC2EGSetDataset (REDACTED) We used a custom data processing toolset including the

SC2DatasetPreparator (REDACTED) SC2MapLocaleExtractor (REDACTED) and
SC2InfoExtractorGo (REDACTED) .

3.3 DATA PROCESSING

Custom software was implemented in the Go programming language (Golang) and built upon
authorized and public repositories endorsed by the game publisher (Belicza, 2016). The tool was
used to perform information extraction from files in MPQ format with the SC2Replay extension.
Information extraction was performed for each pre-processed directory that corresponded to a single
tournament. Depending on the use case, different processing approaches are possible by providing
command line arguments (REDACTED) .

3.4 DATA PARSING AND INTEGRITY

The parsing capabilities of the tooling were defined with a Golang high-level parser API available
on GitHub (Belicza, 2016). After initial data-structures were obtained, the next step checked the
integrity of the data. This was accomplished by comparing information available across different
duplicate data structures that corresponded to: the number of players, map name, length of the player
list, game version, and Blizzard map boolean (signifying whether a map was published by Blizzard).
If a replay parser or custom integrity check failed, the replay was omitted.
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3.5 DATA FILTERING AND RESTRUCTURING

Filtering for different game modes was omitted as collected replay files were a part of esports
tournament matches. Most often, StarCraft II tournament matches are played in the form of one
versus one player combat. Therefore, it was assumed that filtering for the number of players was not
required at this step. Custom data structures were created and populated at this stage. This allowed
for more control over the processing, summary generation, and final output. Merging data structures
containing duplicate information was performed where applicable.

3.6 SUMMARIZATION AND JSON OUTPUT TO ZIP ARCHIVE

Replay summarization was required in order to provide information that can be accessed without
unpacking the dataset. Finally, the data was converted from Golang data structures into JavaScript
Object Notation (JSON) format, and compressed into a zip archive.

3.7 DATASET LOADING

Interacting with the dataset is possible via PyTorch (Paszke et al., 2019) and PyTorch Lightning
(Falcon & The PyTorch Lightning team, 2019) abstractions. Our implementations exposes a few
key features: (1) Automatic dataset downloading and extraction from Zenodo archive; (2) Custom
validators that filter or verify the integrity of the dataset; (3) The ability of our abstractions to load and
use any other dataset that was pre-processed using our toolset. The required disk space to succesfully
download and extract our dataset is approximately 170 gigabytes. We showcase the example use
of our API in Listing 1. Please note that the API is subject to change and any users should refer to
the official documentation for the latest release features and usage information. Additional listing
showcasing the use of SC2EGSetDataset is available in the Appendix, subsection A.5. Additionally,
we include human readable examples of JSON data structures in the Appendix, subsection A.6.

from sc2_datasets.torch.sc2_egset_dataset import SC2EGSetDataset
from sc2_datasets.available_replaypacks import (

EXAMPLE_SYNTHETIC_REPLAYPACKS
)

if __name__ == "__main__":
# Initialize the dataset:
sc2_egset_dataset = SC2EGSetDataset(

unpack_dir="./unpack_dir_path",
download_dir="./download_dir_path",
download=True,
names_urls=EXAMPLE_SYNTHETIC_REPLAYPACKS,

)

# Iterate over instances:
for i in range(len(sc2_egset_dataset)):

sc2_replay_data = sc2_egset_dataset[i]

Listing 1: Example use of the SC2EGSetDataset with PyTorch with a synthetic replaypack prepared
for testing.

4 DATASET DESCRIPTION

The collected dataset consisted of 55 tournaments. Within the available tournaments, 18309 matches
were processed. The final processing yielded 17895 files. While inspecting the processed data, we
observed three major game versions. Each tournament in the dataset was saved with an accompanying
JSON file that contains descriptive statistics such as: (1) Game version histogram, (2) Dates at which
the observed matches were played, (3) Server information, (4) Picked race information, (5) Match
length, (6) Detected spawned units, (7) Race picked versus game time histogram. Figure 2 depicts the
frequency with which each of the races played against the other and the distribution of races observed
within the tournaments. Figure 4 depicts the distribution of match times that were observed.
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Figure 2: Distribution of player races and race matchup information.

The oldest observed tournament was IEM 10 Taipei, which was played in 2016. The most recent
observed tournament was IEM Katowice, which finished on 2022.02.27. The game contains different
"races" that differ in the mechanics required for the gameplay. Figure 3 shows visible differences in
the distribution of match time for players that picked different races.

Figure 3: Match time distribution split by races: Terran (blue), Protoss (yellow), and Zerg (purple).

Figure 4: Actions per minute (APM)
by player race.

The published data resulting from our work
is distributed under the Creative Commons
Attribution-NonCommercial 4.0 International
(CC BY-NC 4.0) license and is available in a
widely recognized scientific repository - Zen-
odo.

5 EXPERIMENTS
AND FUTURE RESEARCH

5.1 WINNER PREDICTION
AND PLAYER PERFORMANCE EVALUATION

Within section 2 we have referenced multiple
articles that dealt with player performance evalu-
ation. These works performed data mining tasks
on game engine generated replays and other
sources of player related information.

Experiments regarding winner prediction can un-
cover interesting information about the optimal
strategy of play. Prior analyses in this task with
a small sample of esports players have shown
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the importance of some key indicators. The pro-
posed dataset can help with the reproduction and
facilitation of various claims, some of which are based on anecdotal evidence (Białecki et al., 2022).
The sample analysis below describes a basic attempt at predicting match outcome using only data
related to player economy to demonstrate the potential for gleaning insights from replay data.

Data Preparation Matches were initially filtered to only include those exceeding or equaling a
length of 9 minutes, which is approximately the 25th percentile of match length values. Next, a set
of features was generated from the available economy-related indicators. Additional features were
generated by combining mineral and vespene indicators into summed resource indicators. Match data
were then aggregated by averaging across match time for each player, resulting in 22,230 samples of
averaged match data (from 11,115 unique matches). Standard deviations were computed in addition
to averaged values where applicable. Further features were then generated by computing ratios of
resources killed/resources lost for army, economy and technology contexts, along with a ratio of
food made to food used. As a final step, prior to feature standardization, each feature was filtered
for outliers (replacing with median) that exceeded an upper limit of 3 standard deviations from the
feature mean.

Feature Selection The feature count was reduced by first computing point biserial correlations
between features and match outcome, selecting for features with a statistically significant (α = .001)
coefficient value exceeding that of ± .050. Next, a matrix of correlations was computed for the
remaining features and redundant features were removed. 17 features remained after this process,
of which 8 were basic features (mineralsLostArmy, mineralsKilledArmy, mineralsLostEconomy,
mineralsKilledEconomy, and the SD for each).

Modelling Modelling was conducted on features (economic indicators) that represented the global
average gamestate, in which all time points were aggregated into a single state, and also as a time series
in which the gamestate was represented at a sampling rate of approx. 7 seconds. Three algorithms were
chosen for comparative purposes: Logistic Regression (sklearn.linear_model.LogisticRegression),
Support Vector Machine (sklearn.svm.SVC) (Pedregosa et al., 2011; Buitinck et al., 2013), and
Extreme Gradient Boosting (xgboost.XGBClassifier) (Chen & Guestrin, 2016). Each algorithm was
initiated with settings aimed at binary classification and with typical starting hyperparameters. A
5-fold cross validation procedure was implemented across the models.

Two sets of models were trained for the average gamestate and one for the gamestate as a time series.
In the first averaged set of models the input features represented the economic gamestate of a single
player without reference to their opponent, with the model output representing outcome prediction
accuracy for that player - a binary classification problem on scalar win/loss classes. The second
averaged set of models differed in that it used the averaged economic gamestate of both players as
input features, and attempted to predict the outcome of "Player 1" for each match. Finally, the time
series models consisted of a feature input vector containing the economic gamestate at 7 second
intervals – the task here was also to predict the outcome of a match based on only a single player’s
economic features, as in the single-player averaged set of models.

Label counts were equalized to the minimal label count prior to generating the data folds, resulting
in 10,744 samples of “Win” and “Loss” labels each for the single-player averaged models and the
time series models. For the two-player set of averaged models (containing the features of both
players in a given match), the total number of matches used was 10,440. Accuracy was chosen as the
model performance evaluation metric in all three cases. Computation was performed on a standard
desktop-class PC without additional resources.

Results As the results indicate (see Table 2), good outcome prediction can be achieved from
economic indicators only, even without exhaustive optimization of each model’s hyperparameters.
For the one-player averaged set of models, SVM and XGBoost displayed similar performance, with
the logistic classifier lagging slightly behind. For the two-player averaged set of models, all three
algorithms performed essentially equally well. Feature importances were taken from a single-player
XGBoost model (with identical hyperparameters) that was applied to the entire dataset for illustrative
purposes. Figure 6 available in Appendix, subsection A.3, depicts the top five features by importance.
It is interesting to note that importance was more heavily centered around mineral-related features
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than those tied to vespene, which is likely tied to how mineral and vespene needs are distributed
across unit/building/technology costs. Further feature investigation is required to verify this tendency.

Table 2: Classification models and their performance metrics for two separate win prediction models.
The “One Player Prediction” models attempt to correctly output if one of the players won or lost. The
“Two Player Prediction” models have access to the data for both of the players and attempts to output

if "Player 1" won or lost.

Classifier Accuracy SD Hyperparameters
One Player Prediction

Support Vector Machine - RBF 0.8488 0.0075 kernel=’rbf’, C=10, gamma=’auto’
XGBoost 0.8397 0.0064 Booster=’gbtree’, eta=0.2, max_depth=5
Logistic Regression 0.8118 0.0057 C=10, penalty=’l2’

Two Player Prediction
Support Vector Machine - RBF 0.9071 0.0055 kernel=’rbf’, C=10, gamma=’auto’
XGBoost 0.8924 0.0063 Booster=’gbtree’, eta=0.2, max_depth=5
Logistic Regression 0.8916 0.0063 C=10, penalty=’l2’

Figure 5 depicts the time series application of these models as an illustration of outcome prediction
accuracy over time. It should be noted that these time series results are not based on any form of data
aggregation, and as such only basic economic features could be used for classification (18 features in
total).
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Figure 5: Accuracy comparison of applied classification models.

Each timepoint contains the average accuracy for 5-fold cross validation, with a minimum match
length of 9 minutes and a maximum match length of approx. 15 minutes. All three algorithms
provided similar performance over time, although this may be an effect of the minimal hyperparameter
optimization that was performed. Further, it is also interesting to note and that all three algorithms
meet a classification performance asymptote at approx. the same match time (~550 seconds),
which may indicate that this is where economic indicators begin to lose their predictive power
and (presumably) other factors such as army size, composition, and their application become the
primary determinants. The code for our experiments is available at a dedicated GitHub repository
(REDACTED).
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5.2 FUTURE RESEARCH

5.2.1 GAME STYLE ANALYSIS

Game style analysis can be treated as a task to be solved via supervised or self-supervised methods.
Using algorithms such as Uniform Manifold Approximation and Projection (UMAP) (McInnes et al.,
2018) or t-Distributed Stochastic Neighbor Embedding (t-SNE) (van der Maaten & Hinton, 2008)
for the data that we provided could uncover interesting insights depending on the direction of the
analysis. Such game style analysis could be investigated using sequence analysis methods or use per
game statistics.

5.2.2 COMBAT ENCOUNTER ANALYSIS

Combat analysis as a task can be researched using AI, ML, and classic algorithms in various esports
(Uriarte & Ontañón, 2018). There were some related works that analyzed unit encounters in StarCraft
II (Lee et al., 2021). Although our pre-processed dataset cannot be used to directly reproduce combat
encounter analyses, we provide raw replays published as SC2ReSet (REDACTED).

6 LIMITATIONS

We acknowledge that our work is not without limitations. The design and implementation of our
dataset do not consider the ability to obtain StarCraft II data through game-engine simulation at a
much higher resolution. Because of this, the extracted dataset cannot reflect exact unit positioning.
Replays in their original MPQ (SC2Replay) format contain all necessary information to recreate a
game using game-engine API. Therefore, we plan to continue our research and provide more datasets
that will expand the scientific possibilities within gaming and esports. Further, it should be noted that
the experiments described here are more illustrative than investigative in nature, and could be greatly
expanded upon in future work. We recommend further research to use SC2ReSet (REDACTED)
to compute game-engine simulated information. We also do not provide simulation observation
data that allows more detailed spatiotemporal information to be extracted at a higher computational
cost. Moreover, it is worth noting that the dataset completeness was dependent on which tournament
organizers and tournament administrators decided to publish replay packs.

7 DISCUSSION

Future authors may want to filter out replays that ended prematurely due to unknown reasons. Our
dataset may contain replays that are undesirable for esports research. We have decided against the
deletion of replays to preserve the initial distributions of data. Additionally, as filtering was omitted
(besides that performed for the purposes of the described experiments), there is a risk that the dataset
contains matches that were a part of the tournament itself but did not count towards the tournament
standings. Due to the timeframe of the tournaments and game version changes, despite our best
efforts, some information might be missing or corrupted and is subject to further processing and
research.

Our dataset is the largest publicly available pre-processed esports dataset. Moreover, in preparing
the data, we defined and published the software used for the data extraction process and other
tasks. Future research on StarCraft II may be built upon these tools and our dataset (REDACTED;
REDACTED; REDACTED) .

The dataset may also serve to increase knowledge regarding the in-game behavior of players, i.e.
the relationship between the variables and overall strategies used by the players at high levels of
advancement. Such information can be used in comparisons to non-gamers or intermediate players in
the process of studying the relationship between game proficiency, cognitive functioning, and brain
structure (Jakubowska et al., 2021).

Moreover, a report done in the area of clinical medicine highlighted the lack of compliance of many
authors with their data availability statement (DAS). It is clear that publishing the data and tools
required for modeling is a key component of ensuring reproducible scientific work (Gabelica et al.,
2022).
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Other noteworthy applications of the dataset include comparing gameplay styles, action sequence clas-
sification, and their relation to victory. To that end, we encourage using different statistical methods
and Machine Learning (ML) algorithms, including supervised and self-supervised approaches.
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A APPENDIX

A.1 BLIZZARD STARCRAFT II AI AND MACHINE LEARNING LICENSE

BLIZZARD® STARCRAFT® II AI AND MACHINE LEARNING LICENSE

IMPORTANT NOTICE:

YOU SHOULD CAREFULLY READ THIS AGREEMENT (THE “AGREEMENT”) BEFORE
INSTALLING OR USING BLIZZARD’S (“BLIZZARD”) STARCRAFT II AI AND MACHINE
LEARNING SOFTWARE AND ENVIRONMENT (THE “SOFTWARE”). IF YOU DO NOT
AGREE WITH ALL OF THE TERMS OF THIS AGREEMENT, YOU MAY NOT INSTALL OR
OTHERWISE ACCESS THE SOFTWARE.

Subject to the terms of this Agreement, your use of the Software is governed by Blizzard’s End User
License Agreement (“EULA”), which is incorporated by reference herein and is available for review
here. (http://us.blizzard.com/en-us/company/legal/eula.html) Please carefully review the EULA and
this Agreement prior to installing or using the Software. IF YOU DO NOT AGREE TO THE TERMS
OF THE EULA AND THIS AGREEMENT, YOU ARE NOT PERMITTED TO INSTALL, COPY,
OR USE THE SOFTWARE.

1. Use Of The Software.

A. AI Testing And Machine Learning Use Only: Subject to your compliance with this
Agreement, Blizzard grants you a limited, revocable, non-sublicensable license to use
the Software for purposes of AI testing, machine learning, and related research only.

B. Blizzard Account Not Required: Notwithstanding the requirements of Section 1.A of
the EULA, creation of a Blizzard Account is not required in order to use the Software.
Legal entities other than natural persons are authorized to use the Software. However,
other than as specifically excepted in this Agreement, the remaining provisions and
requirements of the EULA are controlling.

C. EULA Exceptions: The terms of Blizzard’s EULA govern your use of the Software,
subject to the following narrow exceptions:
i. Derivative Works: Section 1.C.i of the EULA shall not be read to prohibit the autho-

rized use of the Software or data generated or collected from such use. However, no
portion of this Agreement shall give you the right to create, distribute, or otherwise
exploit unauthorized derivative works of the Software.

ii. Automation: The provisions of Section 1.C.ii of the EULA prohibiting the use of
automation processes or software do not apply to use of the Software.

iii. Commercial Use: The provisions of Section 1.C.iii of the EULA govern your use
of the Software, except that you are authorized to use and exploit data derived
from using the Software in connection with AI and machine learning programs for
personal or internal use, despite that such use of the data may ultimately be for a
commercial purpose. You may not otherwise use or exploit the Software for any
commercial purpose.

iv. Data Mining: The provisions of Section 1.C.iv of the EULA shall not prohibit the
authorized use of the Software or data generated or collected from such use.

v. Matchmaking: The provisions of Section 1.C.vi of the EULA shall not prohibit the
authorized use of the Software or data generated or collected from such use.

2. Ownership.

A. The provisions of Section 2 of the EULA apply in full force to the Software (including
generated by or collected through the authorized use of the Software.

A.2 DATASHEETS FOR DATASETS

Datasheets for datasets (Gebru et al., 2018) are defined and available as a part of the original
pre-processed dataset publication (REDACTED).
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A.3 ADDITIONAL VISUALIZATIONS

Figure 6: Percentages of feature importances based on XGBoost fit to all data.

A.4 PIPELINE VISUALIZATIONS

Due to the relative complexity of our infrastructure, we include additional visualizations of the
processing pipeline for all potential users on Figures 7 - 9. The dataset pre-processing is shown
on Figure 7, highlighting the use of a set of tools named SC2DatasetPreparator (REDACTED)
. The dataset processing is shown on Figure 8, highlighting the use of SC2MapLocaleExtractor
(REDACTED) to acquire the english map names, SC2InfoExtractorGo (REDACTED) to extract
the data, and SC2DatasetPreparator (REDACTED) to collect the final .zip archives. The dataset
post-processing and experiments are briefly visualized on Figure 9 and highlight the use of PyTorch
(Paszke et al., 2019), and Lightning (Falcon & The PyTorch Lightning team, 2019).
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Replaypacks SC2DatasetPreparator

Maps

SC2ReSet

Dataset Pre-processing

Figure 7: Pre-processing steps of our pipeline that result in SC2ReSet (REDACTED) . We are using
a custom data processing toolset including SC2DatasetPreparator (REDACTED) .

SC2InfoExtractorGo

SC2MapLocaleExtractor

SC2DatasetPreparator SC2EGSetDataset

Dataset Processing

Figure 8: Processing steps of our pipeline that result in SC2EGSetDataset (REDACTED) . We are
using a custom data processing toolset including SC2DatasetPreparator (REDACTED),

SC2MapLocaleExtractor (REDACTED) , and SC2InfoExtractorGo (REDACTED) .
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SC2EGSetDataset

PyTorch 
Dataset

Lightning 
DataModule 

JSON Parser JSON Parser

Experiment loop Experiment loop

Experiment Workflow

Official API SC2_Datasets

JSON data

Figure 9: Using the SC2EGSetDataset (REDACTED) with the officially provided API
(REDACTED) to conduct experiments.

A.5 DATASET USAGE EXAMPLES

There are various ways to use our dataset; one way includes using the custom PyTorch dataset class
which was briefly introduced in subsection 3.7, Listing 1. Due to the page limit we were unable to
visualize all of the potential uses of our infrastructure in the main text; Listing 2 showcases the most
basic use of the Lightning custom DataModule class that we implemented for our dataset. For further
information please refer to the official documentation.
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from sc2_datasets.lightning.sc2_egset_datamodule import (
SC2EGSetDataModule

)
from sc2_datasets.available_replaypacks import (

EXAMPLE_SYNTHETIC_REPLAYPACKS
)

if __name__ == "__main__":
# Initialize the datamodule:
sc2_egset_datamodule = SC2EGSetDataModule(

unpack_dir="./unpack_dir_path",
download_dir="./download_dir_path",
download=True,
replaypacks=EXAMPLE_SYNTHETIC_REPLAYPACKS,

)

# Initializing the PyTorch dataset within the DataModule class:
sc2_egset_datamodule.prepare_data()
# Obtaining the splits for training, testing, and validation:
sc2_egset_datamodule.setup()

Listing 2: Example use of the SC2EGSetDataModule with Lightning using a synthetic replaypack
prepared for testing.

It is important to note that our classes by default return a custom SC2ReplayData class which is a
serialization of the initial pre-processed JSON files. To construct a custom tensor required for further
modeling, users should use the exposed keyword argument “transform”, which should be a function
that transforms the default SC2ReplayData into some custom tensor required for further modeling.

A.6 DATASET STRUCTURE EXAMPLES

We include human-readable examples of various fields showcase on Listings 3-24; these are a
part of the SC2EGSet dataset JSON files. Users should refer to the respective parts of the official
documentation for more information and a list of all of the available fields. Access to these can be
used to define parsers in other programming languages.

A.6.1 TOP LEVEL FIELDS

{
...
"header": {

"elapsedGameLoops": 7855,
"version": "3.4.0.44401"

},
...

}

Listing 3: Example header field containing a JSON object.
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{
...
"initData": {

"gameDescription": {
"gameOptions": {

"advancedSharedControl": false,
"amm": false,
"battleNet": true,
"clientDebugFlags": 265,
"competitive": false,
"cooperative": false,
"fog": 0,
"heroDuplicatesAllowed": true,
"lockTeams": true,
"noVictoryOrDefeat": false,
"observers": 0,
"practice": false,
"randomRaces": false,
"teamsTogether": false,
"userDifficulty": 0

},
"gameSpeed": "Faster",
"isBlizzardMap": true,
"mapAuthorName": "5-S2-1-1",
"mapFileSyncChecksum": 360400735,
"mapSizeX": 152,
"mapSizeY": 152,
"maxPlayers": 2

}
},
...

}

Listing 4: Example initData field containing a JSON object with nested information.

{
...
"details": {

"gameSpeed": "Faster",
"isBlizzardMap": true,
"timeUTC": "2016-07-29T04:50:12.5655603Z"

},
...

}

Listing 5: Example details field containing a JSON object.

{
...
"metadata": {

"baseBuild": "",
"dataBuild": "",
"gameVersion": "",
"mapName": "Galactic Process LE"

},
...

}

Listing 6: Example metadata field containing a JSON object.
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{
...
"metadata": {

"baseBuild": "",
"dataBuild": "",
"gameVersion": "",
"mapName": "Galactic Process LE"

},
...

}

Listing 7: Example metadata field containing a JSON object.
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{
...
"ToonPlayerDescMap": {

"5-S2-1-7361539": {
"nickname": "somePlayerNickname",
"playerID": 2,
"userID": 5,
"SQ": 105,
"supplyCappedPercent": 4,
"startDir": 1,
"startLocX": 127,
"startLocY": 131,
"race": "Zerg",
"selectedRace": "",
"APM": 0,
"MMR": 0,
"result": "Win",
"region": "China",
"realm": "China",
"highestLeague": "Unknown",
"isInClan": false,
"clanTag": "",
"handicap": 100,
"color": {
"a": 255,
"b": 0,
"g": 66,
"r": 255
}

},
"5-S2-1-7361634": {

"nickname": "AnotherPlayerNickname",
"playerID": 1,
"userID": 1,
"SQ": 115,
"supplyCappedPercent": 7,
"startDir": 7,
"startLocX": 24,
"startLocY": 20,
"race": "Zerg",
"selectedRace": "",
"APM": 0,
"MMR": 0,
"result": "Loss",
"region": "China",
"realm": "China",
"highestLeague": "Unknown",
"isInClan": false,
"clanTag": "",
"handicap": 100,
"color": {
"a": 255,
"b": 180,
"g": 20,
"r": 30
}

}
}
...

}

Listing 8: Example ToonPlayerDescMap field containing a JSON object mapping player statistics to
unique toon id.
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A.6.2 GAME EVENTS

All of the game events that were recorded by the game engine are available in one of the fields named
"gameEvents", all of the events that are available are presented in listings below.

[
...
{

"baseBuildNum": 44401,
"buildNum": 44401,
"cameraFollow": false,
"debugPauseEnabled": false,
"developmentCheatsEnabled": false,
"evtTypeName": "UserOptions",
"gameFullyDownloaded": true,
"hotkeyProfile": "\u003ccustom\u003e",
"id": 7,
"isMapToMapTransition": false,
"loop": 0,
"multiplayerCheatsEnabled": false,
"platformMac": false,
"syncChecksummingEnabled": false,
"testCheatsEnabled": false,
"useGalaxyAsserts": false,
"userid": {

"userId": 0
},

"versionFlags": 0
},

...
]

Listing 9: Example UserOptions game event JSON object.

[
...
{

"distance": null,
"evtTypeName": "CameraUpdate",
"follow": false,
"id": 49,
"loop": 2,
"pitch": null,
"reason": null,
"target": {

"x": 0.7109375,
"y": 0.5469970703125

},
"userid": {

"userId": 6
},
"yaw": null

},
...

]

Listing 10: Example CameraUpdate game event JSON object.
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[
...
{

"controlGroupId": 10,
"delta": {

"addSubgroups": [
{

"count": 1,
"intraSubgroupPriority": 1,
"subgroupPriority": 32,
"unitLink": 108

}
],
"addUnitTags": [
56885249
],
"removeMask": {
"None": null
},
"subgroupIndex": 0

},
"evtTypeName": "SelectionDelta",
"id": 28,
"loop": 12,
"userid": {

"userId": 5
}
},

...
]

Listing 11: Example SelectionDelta game event JSON object.

[
...
{

"abil": {
"abilCmdData": null,
"abilCmdIndex": 0,
"abilLink": 188

},
"cmdFlags": 256,
"data": {

"None": null
},
"evtTypeName": "Cmd",
"id": 27,
"loop": 15,
"otherUnit": null,
"sequence": 1,
"unitGroup": null,
"userid": {

"userId": 5
}

},
...

]

Listing 12: Example Cmd game event JSON object.
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[
...
{

"evtTypeName": "CmdUpdateTargetUnit",
"id": 105,
"loop": 37,
"target": {

"snapshotControlPlayerId": 0,
"snapshotPoint": {
"x": 64.5,
"y": 68.75,
"z": 5.994140625
},
"snapshotUnitLink": 369,
"snapshotUpkeepPlayerId": 0,
"tag": 2883585,
"targetUnitFlags": 111,
"timer": 0

},
"userid": {

"userId": 5
}

},
...

]

Listing 13: Example CmdUpdateTargetUnit game event JSON object.

[
...
{

"evtTypeName": "CommandManagerState",
"id": 103,
"loop": 37,
"sequence": 3,
"state": 1,
"userid": {

"userId": 5
}

},
...

]

Listing 14: Example CommandManagerState game event JSON object.
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[
...
{

"controlGroupIndex": 1,
"controlGroupUpdate": 2,
"evtTypeName": "ControlGroupUpdate",
"id": 29,
"loop": 1639,
"mask": {

"None": null
},
"userid": {

"userId": 1
}

},
...

]

Listing 15: Example ControlGroupUpdate game event JSON object.

[
...
{

"evtTypeName": "CmdUpdateTargetPoint",
"id": 104,
"loop": 2965,
"target": {

"x": 19.133056640625,
"y": 26.369140625,
"z": 5.73388671875

},
"userid": {

"userId": 5
}

},
...

]

Listing 16: Example CmdUpdateTargetPoint game event JSON object.

[
...
{

"evtTypeName": "GameUserLeave",
"id": 101,
"leaveReason": 0,
"loop": 7845,
"userid": {

"userId": 5
}

},
...

]

Listing 17: Example CmdUpdateTargetPoint game event JSON object.

A.6.3 TRACKER EVENTS

All of the game events that were recorded by the game engine are available in one of the fields named
"trackerEvents", all of the events that are available are presented in listings below.
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[
...
{

"evtTypeName": "PlayerSetup",
"id": 9,
"loop": 0,
"playerId": 1,
"slotId": 0,
"type": 1,
"userId": 1

},
...

]

Listing 18: Example PlayerSetup tracker event JSON object.
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[
...
{

"evtTypeName": "PlayerStats",
"id": 0,
"loop": 1,
"playerId": 1,
"stats": {

"scoreValueFoodMade": 57344,
"scoreValueFoodUsed": 49152,
"scoreValueMineralsCollectionRate": 0,
"scoreValueMineralsCurrent": 50,
"scoreValueMineralsFriendlyFireArmy": 0,
"scoreValueMineralsFriendlyFireEconomy": 0,
"scoreValueMineralsFriendlyFireTechnology": 0,
"scoreValueMineralsKilledArmy": 0,
"scoreValueMineralsKilledEconomy": 0,
"scoreValueMineralsKilledTechnology": 0,
"scoreValueMineralsLostArmy": 0,
"scoreValueMineralsLostEconomy": 0,
"scoreValueMineralsLostTechnology": 0,
"scoreValueMineralsUsedActiveForces": 0,
"scoreValueMineralsUsedCurrentArmy": 0,
"scoreValueMineralsUsedCurrentEconomy": 1050,
"scoreValueMineralsUsedCurrentTechnology": 0,
"scoreValueMineralsUsedInProgressArmy": 0,
"scoreValueMineralsUsedInProgressEconomy": 0,
"scoreValueMineralsUsedInProgressTechnology": 0,
"scoreValueVespeneCollectionRate": 0,
"scoreValueVespeneCurrent": 0,
"scoreValueVespeneFriendlyFireArmy": 0,
"scoreValueVespeneFriendlyFireEconomy": 0,
"scoreValueVespeneFriendlyFireTechnology": 0,
"scoreValueVespeneKilledArmy": 0,
"scoreValueVespeneKilledEconomy": 0,
"scoreValueVespeneKilledTechnology": 0,
"scoreValueVespeneLostArmy": 0,
"scoreValueVespeneLostEconomy": 0,
"scoreValueVespeneLostTechnology": 0,
"scoreValueVespeneUsedActiveForces": 0,
"scoreValueVespeneUsedCurrentArmy": 0,
"scoreValueVespeneUsedCurrentEconomy": 0,
"scoreValueVespeneUsedCurrentTechnology": 0,
"scoreValueVespeneUsedInProgressArmy": 0,
"scoreValueVespeneUsedInProgressEconomy": 0,
"scoreValueVespeneUsedInProgressTechnology": 0,
"scoreValueWorkersActiveCount": 12

}
},
...

]

Listing 19: Example PlayerStats tracker event JSON object.
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[
...
{

"evtTypeName": "UnitTypeChange",
"id": 4,
"loop": 15,
"unitTagIndex": 218,
"unitTagRecycle": 1,
"unitTypeName": "Egg"

},
...

]

Listing 20: Example UnitTypeChange tracker event JSON object.

[
...
{

"controlPlayerId": 1,
"evtTypeName": "UnitBorn",
"id": 1,
"loop": 652,
"unitTagIndex": 238,
"unitTagRecycle": 1,
"unitTypeName": "Drone",
"upkeepPlayerId": 1,
"x": 23,
"y": 17

},
...

]

Listing 21: Example UnitBorn tracker event JSON object.

[
...
{

"evtTypeName": "UnitTypeChange",
"id": 4,
"loop": 652,
"unitTagIndex": 203,
"unitTagRecycle": 1,
"unitTypeName": "Larva"

},
...

]

Listing 22: Example UnitTypeChange tracker event JSON object.
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[
...
{

"evtTypeName": "UnitDied",
"id": 2,
"killerPlayerId": null,
"killerUnitTagIndex": null,
"killerUnitTagRecycle": null,
"loop": 652,
"unitTagIndex": 203,
"unitTagRecycle": 1,
"x": 23,
"y": 17

},
...

]

Listing 23: Example UnitDied tracker event JSON object.

[
...
{

"evtTypeName": "UnitPositions",
"firstUnitIndex": 265,
"id": 8,
"items": [

0,
50,
27,
14,
49,
26,
3,
49,
28,
9,
48,
28,
18,
50,
26,
11,
50,
27,
21,
55,
23

],
"loop": 6000

}
...

]

Listing 24: Example UnitPositions tracker event JSON object.
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