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Abstract

Many important phenomenon in scientific fields such as climate, neuroscience
and epidemiology are naturally represented as spatiotemporal gridded data with
complex interactions. For example, in climate science, researchers aim to uncover
how large-scale events, such as the North Atlantic Oscillation (NAO) and the
Antarctic Oscillation (AAO), influence other global processes. Inferring causal
relationships from these data is a challenging problem compounded by the high
dimensionality of such data and the correlations between spatially proximate points.
We present SPACY (SPAtiotemporal Causal discoverY), a novel framework based
on variational inference, designed to explicitly model latent time-series and their
causal relationships from spatially confined modes in the data. Our method uses an
end-to-end training process that maximizes an evidence-lower bound (ELBO) for
the data likelihood. Theoretically, we show that, under some conditions, the latent
variables are identifiable up to transformation by an invertible matrix. Empirically,
we show that SPACY outperforms state-of-the-art baselines on synthetic data,
remains scalable for large grids, and identifies key known phenomena from real-
world climate data.

1 Introduction

Figure 1: SPACY jointly infers latent time series and
the underlying causal graph from gridded time-series
data by identifying spatial modes of variability.

In various scientific domains such as cli-
mate science, neurology, and epidemiol-
ogy, high-dimensional observational data
are naturally represented as gridded time
series with complex spatiotemporal interac-
tions. Unveiling causal relationships within
these datasets is crucial for predicting fu-
ture states, intervening in harmful trends,
and gaining insights into underlying mech-
anisms. In climate science, understanding
teleconnections—the interactions between
regions across thousands of kilometers—is
essential for analyzing how climate events, such as the North Atlantic Oscillation (NAO) [Hurrell,
1995, Hurrell et al., 2003, Chen and den Dool, 2003] and the Antarctic Oscillation (AAO) [Mo, 2000,
Thompson and Solomon, 2002], in one area affect weather patterns elsewhere [Liu et al., 2023].

While several methods have been developed for causal structure learning from time-series data
[Granger, 1969, Hyvärinen et al., 2010, Runge, 2020a, Tank et al., 2021, Gong Wenbo and Nick,
2022, Cheng et al., 2023], applying them to spatiotemporal data presents significant challenges.
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The high dimensionality of large gridded data makes it difficult for many of these techniques,
especially those relying on conditional independence tests, to scale effectively [Glymour et al.,
2019]. Additionally, spatially nearby time series are often highly correlated. Conditioning on nearby
correlated points can obscure true causal relationships between distant locations, reducing statistical
power and leading to inaccurate results [Tibau, 2022].

Recent advances in spatiotemporal causal discovery have sought to address these challenges. One
common approach is a two-stage process: first, dimensionality reduction is applied to extract a small
number of latent time series from the original grid of time series; then, causal discovery is performed
on these reduced-dimensional representations. Examples of this approach include Tibau [2022] and
Falasca et al. [2024]. However, these methods perform dimensionality reduction independent of the
causal structure, potentially leading to low-dimensional representations that obscure the relationships
among causally relevant entities. Another important line of research is causal representation learning
from time series data [Schölkopf et al., 2021]. While approaches like those in Yao et al. [2022a,b],
Chen et al. [2024] model latent time series from high-dimensional data, they do not incorporate
spatial priors, making them less suitable for spatiotemporal causal discovery. Causal Discovery with
Single-parent Decoding (CDSD) [Brouillard et al., 2024, Boussard et al., 2023] learns a mapping
from the observational time series to latent variables to infer the latent time series. However, it
assumes that each observed variable is influenced by only one latent variable.

We present a novel variational inference-based framework for spatial-temporal causal discovery
called SPAtio-temporal Causal DiscoverY (SPACY) to address these limitations (Figure 1). Our
approach jointly infers both the latent time series and the underlying causal graph in an end-to-end
process. The key idea of our approach is to learn the location and scale parameters of spatial factors
on the grid, which we model using Radial Basis Functions (RBFs). These spatial factors determine
the grid locations corresponding to each inferred latent time series. Our main contributions can be
summarized as follows: (1) We introduce SPAtio-temporal Causal discoverY (SPACY), a novel
variational inference-based causal discovery framework that tackles realistic and challenging settings
of spatiotemporal datasets by simultaneously inferring the latent causal representation time series and
the underlying causal graph. (2) Theoretically, we show that, under some conditions, the latent factors
are identifiable up to transformation by an invertible matrix from the observational data when the
resolution of the grid is infinite. (3) Experimentally, we demonstrate the strong performance of our
method on both synthetic and real-world datasets. SPACY can infer both lagged and instantaneous
causal links from high-dimensional grids in a tractable manner.

2 SPACY: Spatial-Temporal Causal Discovery

Problem Setting. We are given N samples of L-dimensional multivariate time series with T
timesteps each. These L time series are arranged in a K-dimensional grid G = [0, 1]K . We consider
a two-dimensional grid (K = 2). This means that the time series are arranged in a rectangular grid of
shape L1 × L2 where each grid cell corresponds to a distinct time series, and L = L1L2. We denote

the observational time series as
{
X

(1:T ),n
1:L

}N
n=1

. We assume that the dynamics of the observed data
are driven by interactions in a smaller number of latent (i.e. unobservable) time series. We denote the

D latent time series for each of the N samples as
{
Z

(1:T ),n
1:D

}N
n=1

, with D << L. The latent time
series is stationary with a maximum time lag of τ , meaning the present is influenced by up to τ past
timesteps. Interactions in the latent time series follow an SCM represented by a DAG G. Our goal is

to infer the latent time series
{
Z

(1:T ),n
1:D

}N
n=1

and the causal graph G in an unsupervised manner.

2.1 Forward Model

We formalize our assumptions about the data generation process using a probabilistic graphical model
(Figure 2). We assume that the latent time series Z is generated by an SCM with causal graph G. The
number of latent variables D is input as a hyperparameter. The spatial correlations between nearby
grid points are captured by the spatial factors F ∈ RL×D, parameterized by ρ and γ. These factors
map the latent time series Z(1:T )

1:D ∈ RD×T to the observed time series X(1:T )
1:L ∈ RL×T .
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Latent SCM. We model the latent SCM that describes the dynamics of Z(t) as an additive noise
model [Hoyer et al., 2008]:

Z
(t)
d = fd

(
PadG(< t),PadG(t)

)
+ η

(t)
d .

Figure 2: Probabilistic graphi-
cal model for SPACY. Shaded
circles are observed and hol-
low circles are latent.

The causal graph G specifies the causal parents of each node, repre-
sented by a temporal adjacency matrix with shape (L+1)×D×D.
The parent nodes from previous and current time steps are denoted
by PadG(< t) and PadG(t) respectively. We assume that Ztd is in-
fluenced by at most τ preceding time steps, i.e., PaG(< t) ⊆
{Zt−1, . . . ,Zt−τ}. G1:τ represents the lagged relationships and
G0 represents the instantaneous edges. The time-lag τ is treated as
a hyperparameter.

We implement two variants of SPACY based on the type of functional
relationships being modeled.

SPACY-L. This variant models linear relationships with independent
noise. fd is defined as:

fd
(
PadG(≤ t)

)
=

τ∑
k=0

D∑
d′=1

(G ◦W )kd′,d × Zt−kd′ , (1)

where ◦ denotes the Hadamard product, and W ∈ R(τ+1)×D×D is a learned weight tensor. We
assume that ηtd is isotropic Gaussian noise.

SPACY-NL. This variant models non-linear relationships using Rhino [Gong Wenbo and Nick, 2022],
which accounts for both instantaneous effects and history-dependent noise. We parameterize the
structural equations fd using MLPs ξf and λf shared across all nodes. We use trainable embeddings
E ∈ R(τ+1)×D×D×e with embedding dimension e to distinguish between nodes. fd is defined as:

fd (PaG(≤ t)) = ξf

 τ∑
k=0

D∑
j=1

Gk
j,d × λf

([
Zt−kj , Ekj

]
, Ed0
) . (2)

The noise model is based on conditional spline flows [Durkan et al., 2019], with the parameters of
the spline flow predicted by MLPs ξη and λη , which share a similar architecture to ξf and λf .

Spatial Factors. The low-dimensional latent time series are mapped to the high-dimensional grid by
the spatial factors F ∈ RL×D. The dth column of F represents the influence of the dth latent variable
on each grid location. To effectively capture the correlation between spatially proximate grid points
under a single latent variable, we model the spatial factors using radial basis functions (RBFs). RBFs
are commonly used for spatiotemporal modeling in real-life scientific fields. For example, in brain
imaging [Manning et al., 2014, Farnoosh and Ostadabbas, 2021] or climate field modeling [Lozano
et al., 2009, Sanford et al., 2022], data typically exhibit gradual changes across space. This continuity
is effectively modeled using RBFs, which ensure locality and smoothness in the spatial factor while
maintaining parameter efficiency. We assume a uniform prior over the grid G for the center parameter
ρd of each kernel, and assume that the scale parameter γd comes from a standard normal distribution.
Mathematically,

ρd ∼ U [0, 1]K ,γd ∼ N (0, I) , (3)

Fℓd = RBFd(xℓ;ρd,γd) = exp

(
−||xℓ − ρd||2

exp(γd)

)
, (4)

where xℓ refers to the spatial coordinates of the ℓth grid point.

The observational time series is assumed to be generated by applying a grid point-wise non-linearity gℓ
to the product of the spatial factors and latent time series, with additive Gaussian noise. We implement
the nonlinearity gℓ as an MLP Ξ shared across all grid-points, with concatenated embeddings
G ∈ RL×f , where f is the embedding dimension. In equations,

X
(t)
ℓ = gℓ

(
[FZ]

(t)
ℓ

)
+ ε

(t)
ℓ , ε

(t)
ℓ ∼ N (0, σ2

ℓ I) (5)

gℓ(x) = Ξ ([x,Gℓ]) , Gℓ ∈ Rf (6)
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Figure 3: Overview of the ELBO calculation for SPACY. The model processes spatiotemporal data{
X

(1:T ),n
1:L

}N
n=1

to infer latent time series
{
Z

(1:T ),n
1:D

}N
n=1

, where D ≪ L. Causal relationships are

modeled using a DAG G sampled from qϕ(G). Latent time series are mapped to grid locations via
spatial factors F sampled from qϕ(F). Arrows in G are labeled with edge time-lags.

2.2 Variational Inference

Let θ denote the parameters of the forward model. Ideally, we would estimate θ using maximum
likelihood estimation. However, the likelihood pθ (X) is intractable due to the presence of latent
variables Z, G and F. To address this, we propose using variational inference, optimizing an evidence
lower bound (ELBO) instead.
Proposition 1. The data generation model described in Figure 2 admits the following evidence lower
bound (ELBO):

log pθ

(
X(1:T ),1:N

)
≥

N∑
n=1

{
Eqϕ(Z(1:T ),n|X(1:T ),n)qϕ(G)qϕ(F)

[
log pθ

(
X(1:T ),n|Z(1:T ),n,F

)
+
[
log pθ

(
Z(1:T ),n|G

)
− log qϕ(Z

(1:T ),n|X(1:T ),n)
] ]}

+ Eqϕ(G)[log p(G)− log qϕ(G)]

+ Eqϕ(F)[log p(F)− log qϕ(F)] = ELBO(θ, ϕ) (7)

See section A.1.1 for the derivation. We outline the computation of the ELBO in Figure
3. qϕ represents the variational distribution, with variational parameters ϕ. The first term
log pθ(X

(1:T ),n|Z(1:T ),n,F) in (7) represents the conditional likelihood of the observed data X(1:T ),n

conditioned on Z(1:T ),n and F, and represents how well the observed data is fit. The remaining terms
represent the KL divergences of the variational distributions from their prior distributions. More
details about the implementation of the loss terms are in Appendix A.2.

We detail the implementation of the variational distributions below:

Causal graph qϕ(G). The variational distribution for the adjacency matrix qϕ(G) is modeled as a
product of independent Bernoulli distributions, indicating the presence or absence of every edge. To
compute the expectation over qϕ(G), we sample one graph using Monte Carlo sampling, leveraging
the Gumbel-Softmax trick [Jang et al., 2017].

Spatial Factor qϕ(F). We model the variational distributions of the center and scale pa-
rameters ρd and γd as normal distributions with learnable mean and log-variance parameters
(µρd , vρd), (µγd , vγd). To sample from qϕ(F), we first sample ρd and γd using the reparameteriza-
tion trick [Kingma and Welling, 2014], and then compute the RBF kernel using these parameters. To
ensure that the coordinates of the center lie in the range [0, 1], we apply the sigmoid function.

ρd ∼ N (µρd , exp (vρd
) I) ,γd ∼ N (µγd

, exp (vγd) I)

Fℓd = RBFd(xℓ;ρd,γd) = exp

(
−||xℓ − sigmoid(ρd)||2

exp(γd)

)
.
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Encoder qϕ(Z(1:T ),n|X(1:T ),n). To obtain the latents from the observational samples, we use a
neural network encoder. Specifically, the variational distribution qϕ(Z(1:T ),n|X(1:T ),n) is modeled
as a normal distribution whose mean and log-variance are output by MLPs ζµ and ζσ2 . We sample Z
from the distribution using the reparameterization trick:

Z(t),n ∼ N
(
ζµ(X

(t),n), exp
(
ζσ2(X(t),n)

))
.

3 Identifiability Analysis

In this section, we examine the identifiability of the generative model introduced in Section 2.1.
Roughly speaking, a model is said to be identifiable if the latent variables can be uniquely recovered
from observational data. Several prior works have investigated the identifiability of latent parameters
in various deep generative models [Khemakhem et al., 2020, Zheng et al., 2022, Yao et al., 2022a].

We focus on the specific case where gℓ in (6) is the identity map. To analyze identifiability, we extend
the notion of a gridded time series to infinite resolution. Instead of observing the time series at a finite
set of grid points, we assume it can be observed at every point within the bounded K-dimensional
grid G = [0, 1]K . In this framework, X(x) represents a T -dimensional random variable describing
the observational time series at location x on the grid.

We also generalize our assumptions about how the spatial factors are generated, and assume that they
are function evaluations at the grid points of a family of linearly independent functions. Notably, the
family of RBF functions are one such family of functions [Smola and Schölkopf, 1998]. To formalize
this, we introduce the following definition.
Definition (Spatial Factor Process). Let G = [0, 1]K be a K−dimensional grid, and let Z ∈ RD×T .
Suppose F = {Fψ1

, ..., FψD
} is a finite linearly independent family. We define a Spatial Factor

Process SFP(Z,F , pε), denoted by X : G → RT , as follows: for each location x ∈ G in the grid,

X(x) = F⊤
x Z+ εx, where Fx = [Fψ1

(x), . . . , FψD
(x)]

⊤ (8)

and εx ∼ pε(·) is a normally distributed noise term.

The first result demonstrates that if two SFPs are equal at all grid points, they must share the same
spatial factors and latent time series, up to a permutation. This implies that the spatial factors and
latent time series are identifiable from the conditional likelihood log pθ (X(x)|Z,Fx).
Theorem 1 (Identifiability of SFPs). Given two SFPs X = SFP(Z,F , pε) and Y = SFP(Z̃, F̃ , qε)
where none of the rows of Z or Z̃ are all zero, such that p(X(x)) = p(Y(x)) for every x ∈ G, then
Z = P Z̃ and F = F̃ for some permutation matrix P .

We now turn to the identifiability of the latent time series from the observational distribution. The
following result shows that the latent variable distribution can be recovered up to a transformation
by an invertible matrix. Although not as precise as Theorem 1, it still guarantees that the latents are
partially identifiable.

Theorem 2 (Identifiability of the latents). Suppose two spatial factor processes X(x) and X̃(x) with
spatial factors Fx and F̃x have the same observational distributions for all x ∈ G. Then the latent
variable distribution is identifiable up to transformation by an invertible matrix.

The detailed mathematical statements and proofs for these results are provided in Appendix A.1.2.

4 Experiments

We assess SPACY’s ability to capture causal relationships across various spatiotemporal contexts
using both synthetic datasets with known ground truth and simulated climate datasets. Our results
demonstrate that SPACY consistently uncovers accurate causal relationships while generating in-
terpretable outputs. An implementation of SPACY is available at (https://anonymous.4open.
science/r/spacy-572B/). The code is built with PyTorch 2.1 and tested on NVIDIA A10 GPUs.

Baselines. We compare SPACY with state-of-the-art baselines. We include the two-step algorithms
Mapped PCMCI (Varimax-PCA + PCMCI+ with Partial Correlation test) [Tibau, 2022, Runge,
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Figure 4: Results on different configurations of the synthetic datasets. We report the F1 and MCC
scores for each method across different latent dimensions D. Average over 5 runs reported.

2020b] and the Linear Response method [Falasca et al., 2024]. We also evaluate against the causal
representation learning approaches, LEAP [Yao et al., 2022a] and TDRL [Yao et al., 2022b].

4.1 Synthetic Data

Setup. Since real-world datasets lack ground truth causal graphs, we generate synthetic datasets
with known causal relationships to benchmark SPACY’s causal discovery performance. These are
generated from randomly constructed ground-truth graphs, following the forward model described
in Figure 2. We experiment with several configurations of synthetic data. The latent time series are
generated using either (1) a linear structural causal model (SCM) with randomly initialized weights
and additive Gaussian noise, or (2) a nonlinear SCM, where the structural equations are modeled by
randomly initialized MLPs, combined with additive history-dependent conditional-spline noise. For
more details on synthetic dataset settings and generation, refer to Appendix A.3.1.

We assess the performance of SPACY and the baselines using two metrics: the orientation F1 score
of the inferred causal graph G, and the mean correlation coefficient (MCC) between the learned and
ground-truth latent representations Z. More details on the evaluation process are in Appendix A.2.4.

Results. The results of the synthetic experiments are shown in Figure 4. SPACY consistently
outperforms all other methods across all settings of D in terms of F1 score. On the linear SCM
datasets, Mapped PCMCI performs competitively, particularly when using linear spatial mapping,
while LEAP, TDRL, and Linear-Response exhibit weaker performance. In the nonlinear settings,
SPACY significantly outperforms the baselines, with a more pronounced performance drop observed
for LEAP, TDRL, and Linear-Response, whose F1 scores decline sharply as D increases. SPACY’s
performance scales more effectively with increasing D, further widening the gap in performance.

The quality of the causal representations, measured by the MCC score, follows a similar pattern.
Mapped PCMCI remains competitive with SPACY, while LEAP, TDRL, and Linear-Response
consistently show lower MCC scores across all configurations. Figure 7 provides a visual illustration
of the recovered spatial factors.

We also examine the runtime and performance of SPACY across spatial scales. The results are
detailed in Appendix A.4. In addition, we assess SPACY’s robustness to over-specifying latent
variables D and the kernel function choice. Results are in Appendix A.5.

4.2 Real-World Application to Climate Science

The Global Temperature Dataset is a mixed real-simulated dataset containing monthly global tem-
perature data from 1999 to 2001[Chen and den Dool, 2003]. Before applying SPACY, the data was
deseasonalized by subtracting the monthly means. Due to the global nature of the data, we utilized the
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Figure 5: Qualitative results for Global Temperature climate dataset. The numbers on the arrow
refers to the time lag of the causal links. Subgraph of G depicting learned causal relationships among
regions associated with the (a) Northern Atlantic Oscillation (b) Antarctic Oscillation.

Haversine distance for calculating the RBF kernel in the spatial factors, as opposed to the Euclidean
distance. Details on the dataset and preprocessing can be found in Appendix A.7.

Results. We qualitatively evaluate SPACY’s inferred spatial factors and causal graph due to the lack
of a ground truth causal graph. Figure 12 shows the spatial factors and causal graphs learned by
SPACY from the Global Temperature Dataset, visualized using the method in Appendix A.3.3. The
spatial modes identified by SPACY correspond to key regions influencing global climate patterns,
such as coastlines of major land masses (e.g., East Asia, Northern Europe) and critical ocean areas
(e.g., Central Pacific, South Atlantic).

Figure 5 highlights two subgraphs derived from SPACY’s results: GNAO and GAAO, which align
with the Northern Atlantic Oscillation (NAO) [Hurrell, 1995, Chen and den Dool, 2003, Hurrell
et al., 2003] and the Antarctic Oscillation (AAO) [Thompson and Solomon, 2002, Mo, 2000]. These
subgraphs reveal how SPACY uncovers causal connections between regions sharing similar weather
characteristics, influenced by known teleconnection patterns. SPACY accurately identifies the spatial
extent and connectivity of NAO-related regions (North-Eastern Canada, North Western Europe)
[Chen and den Dool, 2003, Hurrell, 1995] and AAO-related regions (South-East Australia, South
Atlantic, South Indian Ocean) [Thompson and Solomon, 2002]. The subgraphs reflect temperature
correlations and oscillations in these areas, identifying both instantaneous and lagged links.

Additionally, SPACY infers modes that are spatially confined with distinct centers and scales and
clear spatial boundaries, enhancing interpretability. In contrast, principal component analysis and
Mapped PCMCI (Figure 13) produce broadly distributed components that are challenging to interpret.

5 Conclusion

In this work, we examined the problem of inferring causal relationships from spatiotemporal data.
This problem has significant applications in climate, neuroscience, and biomedical science, among
other fields. We proposed an end-to-end variational inference method to learn the latent causal
representations and the underlying SCM, while producing an interpretable output. We discussed the
structural identifiability of our model, and demonstrated the empirical efficacy of our method on both
synthetic and simulated climate datasets. SPACY successfully recovers spatial patterns linked to
known events like the Northern Atlantic Oscillation and Antarctic Oscillation.

As a direction for future work, our method can be extended to multivariate settings. Performing latent
causal representation learning and causal discovery between multiple variables could further enhance
the capability of our approach in handling complex real-world datasets. Such an extension would be
particularly valuable in domains like climate science [Tibau, 2022, Brouillard et al., 2024], where
interactions between multiple variables (e.g. temperature and pressure) are critical.
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A Appendix

A.1 Theory

A.1.1 ELBO Derivation

Z
(t)
d = fd

(
PadG(< t),PadG(t)

)
+ η

(t)
d

ρd ∼ U [0, 1]K ,γd ∼ N (0, I)

Fd = [RBFd(xℓ;ρd,γd)]
L
ℓ=1 , xℓ ∈ G

Xℓ = gℓ ([FZ]ℓ) + εℓ

εℓ ∼ N (0, σ2
ℓ I)

Figure 6: Probabilistic graphical model for SPACY and the generative equations. Shaded circles are
observed and hollow circles are latent.

Proposition 1. The data generation model described in Figure 2 admits the following evidence lower
bound (ELBO):

log pθ

(
X(1:T ),1:N

)
≥

N∑
n=1

{
Eqϕ(Z(1:T ),n|X(1:T ),n)qϕ(G)qϕ(F)

[
log pθ

(
X(1:T ),n|Z(1:T ),n,F

)
+
[
log pθ

(
Z(1:T ),n|G

)
− log qϕ

(
Z(1:T ),n|X(1:T ),n

)]]}
+ Eqϕ(G)[log p(G)− log qϕ(G)]

+ Eqϕ(F)[log p(F)− log qϕ(F)] = ELBO(θ, ϕ)

Proof. We begin with the log-likelihood of the observed data:

log pθ

(
X(1:T ),1:N

)
= log

∫
pθ

(
X(1:T ),1:N ,Z(1:T ),1:N ,G,F

)
dZ dG dF

We multiply and divide by the variational distribution qϕ
(
Z(1:T ),1:N |X(1:T ),1:N

)
qϕ (G) qϕ (F) to

create an evidence lower bound (ELBO) using Jensen’s inequality:

log pθ

(
X(1:T ),1:N

)
= log

∫
qϕ
(
Z(1:T ),1:N |X(1:T ),1:N

)
qϕ (G) qϕ (F)

qϕ
(
Z(1:T ),1:N |X(1:T ),1:N

)
qϕ (G) qϕ (F)

pθ

(
X(1:T ),1:N ,Z(1:T ),1:N ,G,F

)
dZ dG dF

≥ Eqϕ(Z(1:T ),1:N |X(1:T ),1:N)qϕ(G)qϕ(F)

[
log

pθ
(
X(1:T ),1:N ,Z(1:T ),1:N ,G,F

)
qϕ
(
Z(1:T ),1:N |X(1:T ),1:N

)
qϕ (G) qϕ (F)

]
. (9)

By the assumptions of the data generative process,

pθ

(
X(1:T ),1:N ,Z(1:T ),1:N ,G,F

)
= pθ

(
X(1:T ),1:N |Z(1:T ),1:N ,F

)
pθ

(
Z(1:T ),1:N |G

)
p (F) p (G)
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Further, note that X(1:T ),1:N are conditionally independent given F,Z(1:T ),1:N . Also, X(1:T ),n is
conditionally independent of Z(1:T ),m given Z(1:T ),n,F for m ̸= n. This implies that:

pθ

(
X(1:T ),1:N |Z(1:T ),1:N ,F

)
=

N∏
n=1

pθ

(
X(1:T ),n|Z(1:T ),n,F

)
.

Similarly, Z(1:T ),1:N are conditionally independent given G, which implies

pθ

(
Z(1:T ),1:N |G

)
=

N∏
n=1

pθ

(
Z(1:T ),n|G

)
.

Substituting these terms back into (9) and grouping terms according to the variables Z,G,F yields
the ELBO.

log pθ

(
X(1:T ),1:N

)
≥

N∑
n=1

{
Eqϕ(Z(1:T ),n|X(1:T ),n)qϕ(G)qϕ(F)

[
log pθ

(
X(1:T ),n|Z(1:T ),n,G,F

)
+
(
log pθ

(
Z(1:T ),n|G

)
− log qϕ

(
Z(1:T ),n|X(1:T ),n

))]}
+ Eqϕ(G) [log p(G)− log qϕ(G)]

+ Eqϕ(F) [log p(F)− log qϕ(F)] ≡ ELBO(θ, ϕ).

A.1.2 Identifiability

Definition 1 (Linearly Independent Family). Let F be a family of real-valued, parametric functions
F =

{
fψ : RK → R

}
. F is said to be a linearly independent family if, for any finite set {ψ1, ..., ψn},

we have
n∑
k=1

αkfψk
= 0 =⇒ αk = 0 ∀k ∈ [n]. (10)

Definition 2 (Spatial Factor Process). Let G = [0, 1]K be a K−dimensional grid, and let Z ∈ RD×T .
Suppose F = {Fψ1 , ..., FψD

} is a finite linearly independent family. We define a Spatial Factor
Process SFP(Z,F , pε), denoted by X : G → RT , as follows:

For each location x ∈ G in the grid,

X(x) = F⊤
x Z+ εx (11)

where

Fx =

Fψ1
(x)

...
FψD

(x)

 ,
and εx ∼ pε(·) is a normally distributed noise term

A Spatial Factor Process (SFP) extends the concept of a gridded time series to an infinite resolution.
Instead of observing the time series on a finite set of grid points, we assume that a time series can
be observed at every location within a bounded K-dimensional grid, G = [0, 1]K . In the above
definition, Z represents a (fixed) realization of a D−dimensional time series of length T .

We now show that SFPs are identifiable, i.e., if the distributions of two SFPs are equal, then their
corresponding parameters Z and F are also equal (upto permutation).

Theorem 3 (Identifiability of SFPs). If we have two SFPs X = SFP(Z,F , pε) and Y =

SFP(Z̃, F̃ , qε) where none of the rows of Z or Z̃ are all zero, such that p(X(x)) = p(Y(x))

for every x ∈ G, then Z = P Z̃ and F = F̃ for some permutation matrix P .
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Proof. Note that, for every v ∈ RT ,
p(X(x) = v) = p(Y(x) = v)

=⇒ pε (εx = v − y) = qε (ε̃x = v − ỹ)

where y = F⊤
x Z and ỹ = F̃x

⊤
Z̃. Since pε and qε are normally distributed, this can only be true

when
y = ỹ

=⇒ F⊤
x Z = F̃x

⊤
Z̃ ∀x ∈ G

=⇒
D∑
j=1

Fψj
(x)zjt =

D∑
j=1

Fψ̃j
(x)z̃jt ∀x ∈ G, t ∈ [T ]

=⇒
D∑
j=1

Fψj
(x)zjt −

D∑
j=1

Fψ̃j
(x)z̃jt = 0 ∀x ∈ G, t ∈ [T ] (12)

Suppose {ψ1, . . . , ψD} ∩ {ψ̃1, . . . , ψ̃D} = ∅. Then, this would imply that zjt = z̃jt = 0 ∀j, t,
which is a contradiction since we assume that none of the time series are all 0. This im-
plies that {ψ1, . . . , ψD} ∩ {ψ̃1, . . . , ψ̃D} ̸= ∅. Assume V =

{
(i, j) : ψi = ψ̃j

}
and de-

fine I = {i : ∃j such that (i, j) ∈ V }, J = {j : ∃ i such that (i, j) ∈ V }. Define the function
V : I → J, V(i) = j such that (i, j) ∈ V . Then (12) can be written as:

D∑
j=1
j /∈I

Fψj
(x)zjt −

D∑
j=1
j /∈J

Fψ̃j
(x)z̃jt +

D∑
j=1
j∈I

Fψj
(x)
(
zjt − z̃V(j)t

)
= 0 ∀x ∈ G, t ∈ [T ].

If I ̸= ∅, then zjt = 0 ∀j /∈ I due to the linear independence of Fψj
, which contradicts our

assumption of non-zero time series. Therefore, we must have that {ψ1, . . . , ψD} = {ψ̃1, . . . , ψ̃D},
and zjt = z̃V(j)t ∀j, t.

We now consider the identifiability of the parameters from the observational distribution. To this end,
we first introduce a useful lemma. We adapt the arguments from Lemma 3 in Boussard et al. [2023]
with some modifications.
Lemma 1 (Denoising X). Assume we have two models X and X̃ with spatial factors Fx and F̃x
respectively. Assume that the observational distributions of X(x) and X̃(x) are equal, i.e., the
following property holds:

For any finite set of grid points {x1, . . . , xn} ∈ G, we have

p (X(x1) = χ1, . . . ,X(xn) = χn) = p
(
X̃(x1) = χ1, . . . , X̃(xn) = χn

)
(13)

for all values of (χ1, . . . , χn) ∈ RT × Rn. Then we have that the following holds:

Given any set of points {x′1, . . . , x′k}, we have that p (Y(x′1), . . . ,Y(x′k)) = p
(
Ỹ(x′1), . . . , Ỹ(x′k)

)
,

where Y(x) := F⊤
x Z and Ỹ(x) := F̃⊤

x Z̃.

Proof. Pick n distinct grid points {x1, . . . , xn} ⊆ G such that {x′1, . . . , x′k} ∩ {x1, . . . , xn} = ϕ
and n + k > D. Let L = n + k. Then, we can use the same argument as in Lemma 3
in Boussard et al. [2023] on the distributions of {X(x1), . . . ,X(xn),X(x′1), . . . ,X(x′k)} and{
X̃(x1), . . . , X̃(xn), X̃(x′1), . . . , X̃(x′k)

}
, which we repeat for the sake of completeness.

Let PX(x1),...,X(xn),X(x′
1),...,X(x′

k)
and PX̃(x1),...,X̃(xn),X̃(x′

1),...,X̃(x′
k)

denote the probability mea-
sures corresponding to the densities

p(X(x1), . . . ,X(xn),X(x′1), . . . ,X(x′k)) :=

∫
p(X(x1), . . . ,X(xn),X(x′1), . . . ,X(x′k),Z) dZ,

p(X̃(x1), . . . , X̃(xn), X̃(x′1), . . . , X̃(x′k)) :=

∫
p(X̃(x1), . . . , X̃(xn), X̃(x′1), . . . , X̃(x′k), Z̃) dZ̃,
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respectively.

It is given that:

PX(x1),...,X(xn),X(x′
1),...,X(x′

k)
= PX̃(x1),...,X̃(xn),X̃(x′

1),...,X̃(x′
k)

Define Y(x) := F⊤
x Z and Ỹ(x) := F̃⊤

x Z̃, where Z ∼ p(Z) and Z̃ ∼ p(Z̃). Let Y =

(Y(x1), . . . ,Y(xn),Y(x′1), . . . ,Y(x′k)) and Ỹ =
(
Ỹ(x1), . . . , Ỹ(xn), Ỹ(x′1), . . . , Ỹ(x′k)

)
. Let

PY(x) and PỸ(x) be the distributions of Y(x) and Ỹ(x), respectively. We have:

X(x) = Y(x) + εx, X̃(x) = Ỹ(x) + ε̃x,

where εx ∼ N (0, σ2IT ) and ε̃x ∼ N (0, σ̃2IT ).

Denote ε =
(
εx1

, . . . , εxn
, εx′

1
, . . . , εx′

k

)
and ε̃ =

(
ε̃x1

, . . . , ε̃xn
, ε̃x′

1
, . . . , ε̃x′

k

)
.

By the additive structure of the model, the equality of measures becomes a convolution equation:

PY ∗ Pε = PỸ ∗ Pε̃,

where Pε and Pε̃ represent the measures of the Gaussian noise terms, and ∗ denotes convolution.

Applying the Fourier transform F to both sides and using the fact that the Fourier transform of a
convolution is the product of the Fourier transforms [Pollard, 2002],

F (PY ∗ Pε) = F
(
PỸ ∗ Pε̃

)
=⇒ F (PY)F (Pε) = F

(
PỸ
)
F (Pε̃) .

Given that the Fourier transform of a zero-mean Gaussian random vector with covariance σ2ILT is
e−

σ2

2 ω
⊤ω , we can rewrite the above as:

F
(
PY(x)

)
(ω)e−

σ2

2 ω
⊤ω = F

(
PỸ(x)

)
(ω)e−

σ̃2

2 ω
⊤ω, ∀ω ∈ RT .

We now aim to show that σ2 = σ̃2. Assume, without loss of generality, that σ2 < σ̃2. Dividing both

sides by e−
σ2

2 ω
⊤ω yields:

F (PY) (ω) = F
(
PỸ
)
(ω)e−

σ̃2−σ2

2 ω⊤ω, ∀ω ∈ RLT .

Here, e−
σ̃2−σ2

2 ω⊤ω is the Fourier transform of a Gaussian distribution with covariance (σ̃2 − σ2)ILT .
However, note that the left-hand side is the Fourier transform of a distribution supported on the
column span of Fx, which lies in a D-dimensional subspace of RLT . In contrast, the right-hand
side corresponds to a distribution with full support in RLT , as it involves the convolution of PỸ
with a LT -dimensional Gaussian random variable. This is a contradiction, as the supports of the
distributions on both sides must match.

Thus, we must have σ2 = σ̃2.

Finally, with σ2 = σ̃2, we conclude that:

F (PY) = F
(
PỸ
)
,

PY = PỸ .

Marginalizing out the variables Y(x1), . . . ,Y(xn) and Ỹ(x1), . . . , Ỹ(xn) yields the desired result.

Theorem 4 (Identifiability of the latents). Suppose we have two spatial factor processes X(x) and
X̃(x) with spatial factors Fx and F̃x respectively, generated from linearly independent families

F = {fψ1 , . . . , fψD
} and F̃ =

{
fψ̃1

, . . . , fψ̃D

}
respectively.
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Suppose the observational distributions of X(x) and X̃(x) are equal, i.e., the following property
holds:

For any finite set of grid points {x1, . . . , xn} ∈ G, we have

p (X(x1) = χ1, . . . ,X(xn) = χn) = p
(
X̃(x1) = χ1, . . . , X̃(xn) = χn

)
(14)

for all values of (χ1, . . . , χn) ∈ RT × Rn.

Then the latent variable distribution is identifiable up to transformation by an invertible matrix.

Proof. Since (14) holds, we can apply Lemma 1, by which we have that:

p (Y(x1) = y1, . . . ,Y(xn) = yn) = p
(
Ỹ(x1) = y1, . . . , Ỹ(xn) = yn

)
(15)

∀ (y1, . . . ,yn) ∈ RT × Rn where Y(x) = F⊤
x Z.

Since the family F is linearly independent, we can pick D points {x1, . . . , xD} from G such that

F =

fψ1
(x1) · · · fψD

(x1)
...

...
fψ1(xD) · · · fψD

(xD)

 =

−−−− F⊤
x1

−−−−
...

...
...

−−−− F⊤
xD

−−−−


is full rank 2.

Similarly, we can pick D points {x̃1, . . . , x̃D} from G such that

F̃ =

fψ̃1
(x̃1) · · · fψ̃D

(x̃1)
...

...
fψ̃1

(x̃D) · · · fψ̃D
(x̃D)

 =

−−−− F̃⊤
x̃1

−−−−
...

...
...

−−−− F̃⊤
x̃D

−−−−


is full rank.

Define:

Y =

Y(x1)
...

Y(xD)

 , Ỹ =

 Ỹ(x1)
...

Ỹ(xD)

 .
Let y = (y1, . . . ,yD) and ỹ = (ỹ1, . . . , ỹD).

Observe that

Y = FZ

Ỹ = F̃Z̃

Using the formula for transformation of random variables,

p (Y = y) = |det (F)| p
(
Z = F−1y

)
, ∀y ∈ RD×T

p
(
Ỹ = y

)
=
∣∣∣det(F̃)∣∣∣ p(Z̃ = F̃−1y

)
, ∀y ∈ RD×T

Applying (15) for the points {x1, . . . , xD}, we can obtain

|det (F)| p
(
Z = F−1y

)
=
∣∣∣det(F̃)∣∣∣ p(Z̃ = F̃−1y

)
, ∀y ∈ RD×T

=⇒ p
(
Z = F−1y

)
=

∣∣∣det(F̃)∣∣∣
|det (F)|

× p
(
Z̃ = F̃−1y

)
, ∀y ∈ RD×T .

2See for example https://math.stackexchange.com/questions/3516189/
prove-existence-of-evaluation-points-such-that-the-matrix-has-nonzero-determinan
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Making the substitution z = F−1y and writing M = F̃−1F yields:

p (Z = z) =

∣∣∣det(F̃)∣∣∣
|det (F)|

× p
(
Z̃ = Mz

)
, ∀y ∈ RD×T .

for the invertible matrix M. Thus, we can recover the latent distribution up to transformation via an
invertible matrix.

A.2 Implementation Details

A.2.1 Loss Terms

We explain how we implement the various loss terms in Equation (7).

The first term log pθ

(
X(1:T ),n|Z(1:T ),n,F

)
in Equation (7) represents the conditional likelihood of

the observed data X(1:T ),n conditioned on Z(1:T ),n and F. This is calculated as the mean squared
error (MSE) between the recovered and original time series:

log pθ

(
X(1:T ),n|Z(1:T ),n,F

)
=

L∑
ℓ=1

∥∥∥X(1:T ),n
ℓ − X̂

(1:T ),n
ℓ

∥∥∥2
where X̂

(t),n
ℓ = gℓ

(
[FZ]

(t)
ℓ

)
is the reconstructed time-series from the spatial factor F and latent

time series Z sampled from the variational distributions.

The term log pθ

(
Z(1:T ),n|G

)
denotes the conditional likelihood of the latent time-series given the

sampled graph G.

For SPACY-L, this is implemented as follows:

log pθ

(
Z(1:T ),n

∣∣∣G) =

T∑
t=L

D∑
d=1

log pθ

(
Z

(t),n
d

∣∣∣PadG(≤ t)
)

=

T∑
t=L

D∑
d=1

Z(t),n
d −

τ∑
k=0

D∑
j=1

(G ◦W )
k
j,d × Z

(t−k),n
j

2

.

For SPACY-NL, the equation follows from the conditional spline flow model employed in Durkan
et al. [2019], Gong Wenbo and Nick [2022]. The conditional spline flow model handles more flexible
noise distributions, and can also model history-dependent noise. The structural equations are modeled
as follows:

Z
(t)
d = fd

(
PadG(< t),PadG(t)

)
+ wd

(
PadG(< t)

)
,

where fd
(
PadG(< t),PadG(t)

)
takes the form presented in (2). The spline flow model uses hyper-

network that predicts parameters for the conditional spline flow model, with embeddings E , and
hypernetworks ξη and λη. The only difference is that the output dimension of ξη is different, being
equal to the number of spline parameters.

The noise variables η(t)d are described using a conditional spline flow model,

pwd
(wd(η

(t)
d ) | PadG(< t)) = pη(η

(t)
d )

∣∣∣∣∣∂(wd)−1

∂η
(t)
d

∣∣∣∣∣ , (16)

with η(t)d modeled as independent Gaussian noise.

15



The marginal likelihood becomes:

log pθ

(
Z(1:T ),n

∣∣∣G) =

T∑
t=τ

D∑
d=1

log pθ

(
Z

(t),n
d

∣∣∣PadG(< t),PadG(t)
)

=

T∑
t=τ

D∑
d=1

log pwd

(
u
(t),n
d

∣∣∣PadG(< t)
)

(17)

where u(t),nd = Z
(t),n
d − fd

(
PadG(< t),PadG(t)

)
.

The prior distribution p(G) is modeled as follows:

p(G) ∝ exp

(
−α

∥∥∥G(0:T )
∥∥∥2 − σh

(
G0
))

. (18)

The first term is a sparsity prior and h (G0) is the acyclicity constraint from [Zheng et al., 2018].

The terms Eqϕ(Z(1:T ),n|X(1:T ),n)

[
− log qϕ

(
Z(1:T ),n|X(1:T ),n

)]
,Eqϕ(G)[− log qϕ(G)] and

Eqϕ(F)[− log qϕ(F)] represent the entropies of the variational distributions and are evalu-
ated in closed form, since their parameters are modeled as samples from Gaussian and Bernoulli
distributions.

Finally, the prior term p(F ) is evaluated based on the assumed generative distribution mentioned in
Equation (3).

A.2.2 Spatial Factors

To capture more complex spatial structures, we model the scale γd by introducing two additional

parameter matrices A and B. The matrix A =

[
a b
c d

]
and the vector B =

[
e
g

]
together influence

the covariance structure of the RBF. Specifically, the covariance matrix Σ is constructed as:

Σ = AAT + exp(B), (19)

This covariance structure enables the RBF to capture anisotropic scaling in different directions. The
matrix AAT provides a base covariance matrix, while the exponential of B controls the overall scale
of each spatial factor. As a result, the RBF kernel, which determines the spatial factor F, is defined
as:

Fℓd = exp

(
−1

2
∥xℓ − ρd∥2Σ−1

)
, (20)

where ∥xℓ − ρd∥2Σ−1 = (xℓ − ρd)
TΣ−1(xℓ − ρd) represents a Mahalanobis distance, allowing the

RBF to have a more sophisticated shape that depends on the learned covariance Σ.

A.2.3 Training Details

We train the SPACY model for 700 epochs, using an 80/20 training and validation split to evaluate
the validation likelihood during training.

Freezing Latent Causal Modules. To stabilize the training and ensure accurate causal discovery,
we freeze the parameters of the latent SCM and causal graph, and only train the spatial factors and
encoder for the first 200 epochs. This allows the spatial factor parameters to be learned without
interference from incorrect causal relationships in the latent space. Once these modules are unfrozen
after 200 epochs, the complete forward model and variational distribution parameters are trained
jointly for the remaining 500 epochs.

This approach ensures that the inferred latent representations are sufficiently robust before learning
the causal structure of the latent SCM.

A.2.4 Evaluation Details

The mean correlation coefficient (MCC) is adapted as a measure of alignment between the inferred
and true latent variables, widely used in causal representation learning works [Yao et al., 2022a,b].
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Here, MCC is computed as the mean of the correlation coefficients between each pair of true and
inferred latent variables, providing a balanced metric that captures how well the inferred variables
match the true underlying causal structure.

To evaluate the accuracy of inferred causal graphs and representations, we match the nodes of the
inferred graph to the ground truth using a permutation-invariant approach. Specifically, we apply
the Hungarian algorithm to find the optimal permutation of nodes that aligns the inferred graph’s
adjacency matrix with the ground truth, minimizing the discrepancies between them. This optimal
permutation is then used to calculate both the F1 Score and the Mean Correlation Coefficient (MCC),
providing consistent node alignment across these metrics.

A.3 Synthetic Experiment

This section provides more details about how we set up and run experiments using SPACY on
synthetic datasets.

A.3.1 Dataset generation

We experiment with several configurations of synthetic data. The latent time series are generated
using either (1) a linear structural causal model (SCM) with randomly initialized weights and additive
Gaussian noise, or (2) a nonlinear SCM, where the structural equations are modeled by randomly
initialized MLPs, combined with additive history-dependent conditional-spline noise.

The spatial decoder, represented by the function gℓ, is configured either as linear or nonlinear,
depending on the experiment setting. For nonlinear scenarios, we use randomly initialized MLPs.
We generate N = 100 samples of data, with T = 100 time length each and represented on a grid of
size 100× 100. This brings the total data dimension to 100× 100× 100× 100. We vary the number
of nodes (D = 10, 20 and 30) in each setting.

For ground-truth latents, we generate two separate sets of synthetic datasets: a linear dataset with
independent Gaussian noise and a nonlinear dataset with history-dependent noise modeled using
conditional splines Durkan et al. [2019]. We generate one random graph (specifically, Erdős-Rényi
graphs) and treat them as ground-truth causal graphs.

Linear Latent SCM. We model the data as:

Z
(t)
d =

τ∑
k=0

D∑
d′=1

(G ◦W )kd′,d × Zdt−k + ηtd (21)

with ηtd ∈ N (0, 0.5). Each entry of the matrix W is drawn from U [0.1, 0.5] ∪ U [−0.5,−0.1]

Non-linear Latent SCM. We model the data as:

Z
(t)
d = fd

(
PadG(< t),PadG(t)

)
+ η

(t)
d

where fd are randomly initialized multi-layer perceptions (MLPs), and the random noise η(t)d is
generated using history-conditioned quadratic spline flow functions [Durkan et al., 2019].

Spatial Factors To generate the spatial factor matrices F, we first sample the centers ρd of the RBF
kernels uniformly over the grid while enforcing a minimum distance constraint to ensure separation
between centers. Specifically, the minimum distance between any two centers is set to be 1

10 of
the grid dimension. The scales γd are sampled to define the extent of each RBF kernel, drawn
uniformly from the range U [3, 6]. With these parameters, each entry of the spatial factor matrix Fℓd is
determined by the RBF kernel as follows:

Fℓd = exp

(
−||xℓ − ρd||2

exp(γd)

)
,

where xℓ denotes the spatial coordinates of the ℓth grid point, ρd is the center, and γd is the scale of
the dth latent variable.
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Linear SCM, 
Non-linear Mapping 

Non-Linear SCM, 
Linear Mapping 

Non-Linear SCM, 
Non-linear Mapping 

Figure 7: Visualization of the ground-truth and inferred spatial factors for different combinations of
linear and nonlinear functions for SCMs and spatial mappings (top row: ground-truth, bottom row:
predicted/inferred). We demonstrate the visualization when latent dimension D = 10

.

Spatial Mapping For the generation of Xℓ, we pass the product of the spatial factors and the latent
time series through a non-linearity gℓ:

Xℓ = gℓ ([FZ]ℓ) + εℓ, εℓ ∼ N (0, σ2
ℓ I) (22)

where gℓ is the spatial mapping. It is implemented as a randomly initialized multi-layer perception
(MLP) with the embedding of dimension 1 in the non-linear map setting, or as an identity function in
the linear map setting. εℓ is the grid-wise Gaussian noise added.

Baselines For all baselines, we used the default hyperparameter values. We use the Mapped-
PCMCI implementation from [Tibau, 2022]3. For Linear-Response we refer to the implementation
from [Falasca et al., 2024]4For LEAP and TDRL, we implemented the encoder and decoder using
convolution neural networks as this choice best fits our data modality. For LEAP we used the CNN
encoder and decoder architecture from the mass-spring system experiment 5. For TDRL we used the
CNN encoder and decoder architecture from the modified cartpole environment experiment 6.

A.3.2 Qualitative Results

Figure 7 shows a comparison between the ground truth and inferred spatial factors F on synthetic
datasets. Overall, we observe that the modes from inferred spatial factors align well with the ground
truth modes in terms of location and scales with minor deviations in shape. In the non-linear SCM
dataset, the model shows some slight errors with at most 1 missing mode. However, the model still
maintains the overall spatial representation recovery. This is also reflected by the quantitative results
as performance falls slightly short for non-linear SCM.

A.3.3 Visualization details

In this section, we describe how we visualize the spatial factors for both synthetic and global temper-
ature experiments. We represent the spatial influence of different modes on a grid by highlighting the
areas where certain modes are active. The method identifies significant regions in the grid by applying
a threshold based on a chosen percentile of the weights (for example, 95%). This thresholding helps
to isolate areas where a mode’s spatial influence is particularly strong, creating a mask that highlights
these regions.

3Mapped-PCMCI: https://github.com/xtibau/savar
4Linear-Response: https://github.com/FabriFalasca/Linear-Response-and-Causal-Inference
5LEAP: https://github.com/weirayao/leap
6TDRL: https://github.com/weirayao/tdrl
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These masked regions are then combined to generate a comprehensive view of how all modes
influence the spatial grid. The visualization distinguishes the areas affected by different modes,
allowing for easy identification of their spatial patterns and overlaps. This approach allows for a
clear visual interpretation of the complex spatial structure represented by the modes, facilitating the
analysis of their respective influences and interactions.

For complex spatial factors and graphs, we use a merging process that simplifies the causal global
dynamics by combining nodes based on the proximity of node centers. The process identifies merging
clusters in the grid by applying a threshold based on a chosen percentile of all the pair-wise distances
(for example, lower 5%), and merging nodes that fall below the threshold.

A.4 Scalability

Figure 8: Comparison of runtime (in minutes) and F1 score across different grid sizes. The left plot
shows how the runtime increases with grid size, while the right plot displays the corresponding F1
scores for causal discovery. Average over 5 runs reported.

We also measure the scalability of SPACY with increasing grid-size. For this experiment, we used
the dataset with linear SCM and linear spatial mapping. Figure 8 demonstrates the scalability and
performance of SPACY compared to the baseline methods as the grid size L increases. The runtime
plot indicates that, while all methods experience an increase in runtime with increasing grid size,
SPACY strikes a good balance, exhibiting moderate growth in computational time while maintaining
strong causal discovery performance. Although Mapped-PCMCI is the most efficient in terms of
runtime, it underperforms in causal discovery. LEAP and TDRL show similar or higher computational
costs than SPACY but fail to match its performance. Linear-Response, in particular, scales poorly in
terms of runtime with increasing grid size.

A.5 Ablation Study

(a) Ground truth modes (b) Inferred modes

D∗ SPACY-L SPACY-L
(D = D∗) (D = D∗ + 10)

10 0.623± 0.06 0.642± 0.07
20 0.752± 0.03 0.549± 0.03
30 0.596± 0.05 0.529± 0.06

(c) Causal discovery performance (F1-score)

Figure 9: Overview of the results for over-specification ablation study. (a) Visualization of the
ground-truth location and scale of the spatial modes. (b) Visualization of the inferred location and
scale when we over-specify the number of nodes. (c) Causal discovery performance after matching
and eliminating nodes. Average over 5 seeds reported

Over-specifying D. SPACY requires specifying the number of latent variables D as a hyperparam-
eter. In practice, the exact number of underlying factors is often unknown. We examine the effect
of overspecifying D by setting it to D∗ + 10, where D∗ represents the true number of nodes used
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Figure 10: The causal discovery performance (F1 score) of SPACY using different kernel functions
as spatial factors. Average of 5 seeds reported

to generate the data. We use the synthetic dataset with grid dimensions 100× 100, linear SCM and
non-linear mapping.

Figure 9 illustrates the results of our experiment. When D∗ = 10, despite over-specifying the number
of nodes, the inferred spatial modes’ general locations align well with the ground truth. The presence
of additional modes does not significantly detract from the accuracy of detecting the primary spatial
modes. This suggests that SPACY maintains robust learning of spatial representations even when
D exceeds the true number of spatial factors. This observation also holds true when comparing the
causal discovery performance using the F1 score.

Different Kernels We experiment with different kernel functions in to test SPACY’s robustness to
the choice of kernel used in modeling the spatial factors. We use the synthetic dataset with linear
SCM and nonlinear spatial mapping.

The Matérn kernel is a generalization of the RBF kernel that introduces an additional parameter ν
controlling the smoothness of the function. The Matérn kernel is defined as:

kMatérn(r) =
21−ν

Γ(ν)

(√
2ν
r

ℓ

)ν
Kν

(√
2ν
r

ℓ

)
,

where:

• r = ∥x− x′∥ is the Euclidean distance between points x and x′,
• ℓ is the length scale,
• ν > 0 controls the smoothness of the function,
• Γ(·) is the gamma function,
• Kν(·) is the modified Bessel function of the second kind.

For specific values of ν, the Matérn kernel simplifies to closed-form expressions:

• When ν = 1.5:

k1.5Matérn(r) =

(
1 +

√
3r

ℓ

)
exp

(
−
√
3r

ℓ

)
.

• When ν = 2.5:

k2.5Matérn(r) =

(
1 +

√
5r

ℓ
+

5r2

3ℓ2

)
exp

(
−
√
5r

ℓ

)
.
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By adjusting ν, the Matérn kernel can model functions with varying degrees of smoothness, providing
more flexibility than the RBF kernel.

We replace the RBF kernel in SPACY with the Matérn kernel using ν = 1.5 and ν = 2.5. The
inferred spatial modes’ general locations and scales align well with the ground truth across all kernel
settings (illustrated in Figure 11). This consistency demonstrates that SPACY’s spatial representations
are robust to the choice of kernel function.

Figure 10 presents the F1-Score and MCC for SPACY using the RBF kernel and both Matérn kernel
settings. The results show that SPACY achieves similar performance with the Matérn kernels com-
pared to the RBF kernel, indicating that the variational inference framework effectively generalizes
across different kernel functions.

We also visualize the spatial factors learned by SPACY. From the visualization in 11 when D = 10,
despite changing the kernel function type, the modes from inferred spatial factors align well with the
ground truth in terms of location and scale. This suggests that SPACY is robust to the kernel choice
in modeling the spatial factors.

Figure 11: Overview of the visualization of the spatial factor when using different kernel functions.
We compare inferred spatial factors using RBF, Matern Kernel (ν = 1.5), and Matern Kernel
(ν = 2.5) with the ground truth spatial factors

A.6 Hyperparameter Details

In this section, we list the hyperparameters choices for SPACY in our experiments.

Dataset Synthetic-L (D = 10, 20, 30) Synthetic-NL Global Temperature
Hyperparameter
Matrix LR 10−3 10−3 10−3

SCM LR 10−3 10−3 10−3

Spatial Encoder LR 10−3 10−3 10−3

Spatial Factor LR 10−2 10−2 10−2

Spatial Decoder LR 10−3 10−3 10−3

Batch Size 100 100 100
# Outer auglag steps 60 60 60
# Max inner auglag steps 6000 6000 6000
ξf , λf embedding dim none 64 none
Sparsity factor α 10 10 10
Spline type None Quadratic None
gℓ embedding dim 32 32 32

Table 1: Table showing the hyperparameters used with SPACY.

For SPACY, we used an augmented Lagrangian training procedure to enforce the acyclicity constraint
in the model [Zheng et al., 2018]. We closely follow the procedure employed by Gong Wenbo and
Nick [2022] for scheduling the learning rates (LRs) across different modules of our model. For
the Synthetic-L, Synthetic-NL, and Global Temperature datasets, the outer augmented Lagrangian
(auglag) steps are set to 60, with a maximum of 6000 inner auglag steps.

We used the rational spline flow model described in Durkan et al. [2019]. We use the quadratic or
linear rational spline flow model in all our experiments, both with 8 bins. The MLPs ξf and λf have
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Figure 12: Visualization of (left) the learned spatial factors and causal graph (right) the learned spatial
factors and causal graph after merging based on proximity and graph links.

2 hidden layers each and LeakyReLU activation functions, where e is the embedding dimension. We
also use layer normalization and skip connections. Table 1 summarizes the hyperparameters used for
training.

A.7 Global Temperature

The Global Temperature Dataset is a comprehensive, mixed real-simulated dataset encompassing
monthly global temperature data spanning the years 1999 to 2001. It contains 7531 simulated samples,
each with a time sequence of 24 months, covering the entire globe at a fine spatial resolution. The
grid size is 145 × 192, which corresponds to a spatial division of approximately 1.24◦ latitude and
1.875◦ longitude. This spatial resolution allows the dataset to provide detailed global coverage,
capturing temperature variations across diverse geographical regions. The resulting data dimensions
are 7531× 24× 145× 192, representing the total number of samples, the temporal sequence, and
the spatial grid, respectively.

To facilitate causal analysis of complex climate phenomena beyond seasonal patterns, we applied
a deseasonalization procedure. This normalization process involved computing the monthly mean
for each month across all years and then adjusting the data accordingly (for example, normalizing
all January data by the mean of all January values). This approach aims to remove regular seasonal
influences and identify potential drivers of change within the climate system.

For our analysis, we employ the SPACY method to uncover latent representations within the data.
These representations capture regions of similar weather properties and help identify causal links
between these regions and weather phenomena occurring elsewhere. We use the SPACY-L variant for
our experiment. Specifically, we use 25 latent variables (denoted as D = 25) and a maximum lag of
three months (τ = 3).

Figure13 demonstrates the visualization of the individual modes inferred by Varimax-PCA. Some
nodes/components exhibit clear spatial patterns that are interpretable in terms of physical or location-
based information. However, multiple components are more diffuse and have less interpretable
locations. For instance, it may be hard to attribute physical location for node 13, 14, 19, 25. There are
also clusters of nodes that show similar spatial features, such as node 4, 6, suggesting they capture
similar underlying components.

The visualization of the modes and causal graph deduced by Mapped-PCMCI is shown in Figure 14.
While the locality pattern can be observed in important regions such as Australia, Africa, and East
Asia, many of the inferred modes appear diffused across the map. This suggests that the underlying
spatial structure is not cleanly partitioned into distinct, interpretable modes.
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Figure 13: Visualization of the spatial nodes inferred by Varimax-PCA from the Global Temperature
Dataset

a) Learned spatial factors
and causal graph

Figure 14: Visualization of the spatial factor inferred by Varimax-PCA and causal graph inferred by
PCMCI+, following the procedure in section A.3.3
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