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ABSTRACT

Autoregressive Language Models instantiate a factorized likelihood over token se-
quences, yet their strictly sequential decoding process imposes an intrinsic lower
bound on inference latency. This bottleneck has emerged as a central obstacle
to the scalable deployment of large-scale generative models. Existing acceler-
ation techniques partially mitigate token-level latency — by relying on auxil-
iary draft models or introducing an additional training phase — but fail to ad-
dress the dominant memory and communication costs. We present READER
(Retrieval-Assisted Drafter for Efficient LLM Inference), a provably lossless spec-
ulative decoding framework that bypasses the training of the auxiliary draft model.
READER formalizes speculative decoding as a stochastic tree construction prob-
lem and exploits the empirical redundancy structure of natural language to gen-
erate high-probability candidate continuations. Our method revisits the problem
of constructing draft trees, establishing substantial statistical improvements over
stochastic draft-tree methods and providing a complexity-theoretic analysis that
characterizes the optimality frontier of speculative decoding under bounded com-
putation and memory resources. Beyond the single-sequence regime tradition-
ally considered in prior work, we introduce a memory-optimal key-value cache-
serving strategy that guarantees amortized sublinear overhead in the batch dimen-
sion, allowing READER to scale to realistic inference workloads. Comprehen-
sive experiments demonstrate up to 6.13× wall-clock speedup on single-prompt
inference and up to 5.92× on batched inference — consistently surpassing prior
speculative decoding baselines — while preserving exact output equivalence, with
even more pronounced gains in retrieval-augmented generation pipelines. Our re-
sults close a key gap between theoretical parallelism limits and practical LLM
inference, suggesting a new standard for efficient deployment.

1 INTRODUCTION

The widespread adoption of large language models (LLMs) has drawn attention to their substantial
energy costs (Strubell et al., 2019), motivating extensive research on improving inference efficiency.
Recently, reasoning-focused models such as OpenAI o1 (Jaech et al., 2024) and DeepSeek-R1 (Guo
et al., 2025) have emerged. These models achieve strong performance by generating longer “think-
ing” trajectories at inference time. While inference-time scaling improves accuracy, it also dramat-
ically increases the number of generated tokens, exacerbating latency and energy costs Zhang et al.
(2025). This makes efficient decoding strategies critical for the next generation of reasoning LLMs.

LLMs generate tokens autoregressively, one at a time. This strictly sequential dependency inherently
resists parallelization: each decoding step requires a full forward pass conditioned on all previously
generated tokens. As model sizes and context lengths grow, the cost of this step-by-step process
scales poorly. In practice, memory and communication overheads dominate. Each token requires
accessing and updating the Key-Value (KV) cache, whose bandwidth demands become the primary
bottleneck in high-throughput or long-context settings.

A promising line of work seeks to reduce this sequential bottleneck is speculative decoding (Stern
et al., 2018; Leviathan et al., 2023). At its core, speculative decoding decouples speculation from
verification: a candidate continuation is generated in parallel, and the base model verifies the entire
block in a single forward pass. If the candidate aligns with the base model’s distribution, multiple
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tokens are accepted at once, collapsing many sequential steps into one. Early work has shown that
even simple draft strategies can yield significant speedups without changing the underlying model’s
output distribution (Chen et al., 2023; Xia et al., 2024). Despite this, existing speculative decoding
approaches leave important gaps. Speedups often remain bounded by shallow draft structures or by
additional overheads, while scaling to realistic batch-serving workloads remains ineffective.

In this paper, we present READER (Retrieval-Assisted Drafter for Efficient LLM Inference), a prov-
ably lossless speculative decoding framework that directly addresses these challenges. READER ex-
ploits the theoretical limits of draft-tree expansion, generating high-probability continuations with-
out requiring additional training. An important contribution of READER is its complexity-theoretic
analysis of speculative decoding: we characterize the optimality frontier under bounded computation
and memory, analyzing the inherent limits of draft construction strategies. Beyond single-sequence
decoding, READER introduces a memory-optimal KV cache rearrangement strategy that guarantees
amortized sublinear overhead in batch serving. This makes speculative decoding viable at the scales
relevant for modern LLM deployment.

READER augments the standard drafting with a heterogeneous tree that blends tokens from two
sources: (i) a lightweight speculator that proposes short, high-confidence branches, and (ii) a deter-
ministic retrieval path constructed via CPU-side search over a short-term trie (prompt and generated
history) and a long-term datastore indexed with a suffix array. We attach a deep retrieval-driven
branch to the root (”widening”) and deepen internal nodes by seeding search from partial draft-
model prefixes. This design preserves a fixed per-sample tree shape, while substantially increasing
token diversity at negligible marginal latency.

Experiments across diverse tasks demonstrate that READER achieves up to 6.13x wall-clock
speedup on single-prompt inference and up to 5.92x on batched inference, consistently surpass-
ing prior speculative decoding baselines, with especially pronounced gains in retrieval-augmented
generation pipelines with more than 10× speedup. By pushing speculative decoding closer to its
theoretical parallelism limits, READER advances the efficiency frontier of LLM inference.

2 RELATED WORK

A large number of studies accelerate LLM inference through model compression. Quantization
methods such as LLM.int8 (Dettmers et al., 2022), SmoothQuant (Xiao et al., 2023) and AWQ
(Lin et al., 2024) reduce activation and weight precision while preserving accuracy, and pruning
approaches like SparseGPT (Frantar & Alistarh, 2023) remove redundant weights with minimal
perplexity increase. Knowledge distillation can further shrink models for faster decoding. These
approaches, however, typically modify the model and may introduce accuracy drops (Lang et al.,
2024), while our goal is lossless acceleration of the unmodified target model.

Another line of research targets the memory- and system-level bottlenecks of autoregressive decod-
ing. FlashAttention optimizes attention with IO-aware kernels (Dao et al., 2022), multi-query at-
tention reduces key-value storage by sharing across heads (Shazeer, 2019), and systems like vLLM
introduce paged KV caches and continuous batching to improve throughput (Kwon et al., 2023).
Such techniques are complementary to speculative decoding, which reduces the number of sequen-
tial steps rather than the cost of each step.

Speculative decoding (Leviathan et al., 2023) itself originates from blockwise parallel decoding
(Stern et al., 2018) and speculative sampling (Chen et al., 2023). In these methods, a small drafter
proposes multiple tokens while the base model verifies them in one pass, accepting the longest
correct prefix to preserve exactness. Learned drafters such as Medusa (Cai et al., 2024), EAGLE
family (Li et al., 2024a;b; 2025) increase acceptance by aligning proposal distributions with the
verifier and by constructing deeper, context-aware draft trees. Other draft-based approaches have
explored alternative designs: CTC-style drafters that exploit conditional independence for parallel
speculation (Wen et al., 2024), diffusion-based drafters that generate multi-token proposals through
iterative refinement (Christopher et al., 2024), and hybrid models such as SpecInfer (Miao et al.,
2024). A complementary “self-speculative” direction derives the drafter from the target model itself
(e.g., layer skipping / early-exit) to avoid an auxiliary network while remaining lossless under strict
verification rules (Zhang et al., 2024). Despite these gains, trained or self-derived drafters can
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introduce additional engineering, storage, or scheduling complexity, and their speedups often depend
on careful batching and KV-cache management.

In contrast, training-free approaches avoid extra model training by leveraging explicit structure in
text. REST drafts from a retrieval datastore to capture frequent local continuations, while ANPD
constructs and adapts an n-gram module online using real-time statistics (He et al., 2024; Ou et al.,
2024). Lookahead decoding dispenses with any drafter entirely by expending more compute per
step to verify multiple n-gram candidates directly with the target model, trading FLOPs for fewer
sequential steps while remaining exact (Fu et al., 2024). These strategies are attractive for their sim-
plicity and exactness, yet they often under-exploit the statistical regularities that govern acceptance
across branches or ignore serving-time constraints (e.g., KV-cache bandwidth and batch scheduling).

Finally, several recent studies emphasize batch-serving and KV-cache efficiency. MagicDec demon-
strates that speculative decoding can improve both latency and throughput when caches are managed
carefully (Sadhukhan et al., 2024). EAGLE-3 paper (Li et al., 2025) also provides analysis on large
batch size acceleration.

3 THEORETICAL ANALYSIS

In this section, we present a complexity-theoretic analysis of speculative decoding with tree attention
and examine the potential for theoretical acceleration in speculative decoding methods.

3.1 SPECULATIVE DECODING

Model-based speculative decoding employs an auxiliary draft model, also referred to as a speculator.
In each forward pass, the draft model generates multiple candidate tokens predicting the continuation
of the output sequence. These tokens are then validated in parallel by the main model within a
single forward pass. If the predictions are confirmed, multiple tokens can be committed in a single
inference step. The degree of alignment between the predicted tokens and the true continuation
directly determines the speedup achieved.

The depth of speculation influences the cost of the drafting stage. For model-based approaches, this
cost scales linearly with the depth of speculation, as it requires one call to the draft model.

As shown in Leviathan et al. (2023), using the draft token acceptance probability α, the expected
acceptance length for a single-branch draft sequence of length γ is

E(γ, α) = E [acceptance length] =
1− αγ+1

1− α
. (1)

Sadhukhan et al. Sadhukhan et al. (2024) extend this analysis to batched inference. Let TV (γ,B, S)
denote the time required for the base model to verify γ draft tokens with batch size B and KV-cache
size S, and let TD(B,S) denote the time to generate one draft token under the same conditions.
Then, the time for a single decoding step is

TSD(γ,B, S) = γ · TD(B,S) + TV (γ,B, S). (2)
The corresponding average acceleration relative to autoregressive decoding is

E(γ, α) · TAR

TSD(γ,B, S)
=

1− αγ+1

1− α
· TAR

γ · TD(B,S) + TV (γ,B, S)
.

Optimizing over γ yields the optimal number of draft tokens. This formulation, however, applies
only to single-branch decoding with a draft model. Our analysis generalizes this framework to (1)
tree-structured decoding and (2) heterogeneous draft tokens obtained from multiple sources. In the
following sections, we formalize heterogeneous tree-structured speculative decoding and establish a
theorem on the optimal tree structure for acceleration.

3.2 TREE DECODING

Tree decoding (Miao et al., 2024; Sun et al., 2023) augments model-based speculative decoding
by expanding multiple plausible continuations per step. The speculator proposes several high-
probability tokens at each node, forming a decoding tree; the base model then verifies all proposed
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tokens in parallel. This increases the expected acceptance length and mitigates memory stalls by
processing the tree jointly. We also consider decoding mask M ∈ {0, 1}γ×γ , with Mij = 1 iff node
i is an ancestor of node j, is consistent across the batch.

Let b be the batch size, γ the tree size (speculative length), s the KV-cache length, and h the hidden
dimension. We measure cost in FLOPs and memory reads.

Computing Q,K, V for the γ new tokens (and the output Y ) requires

Θ(bγh2) FLOPs, Θ(bγh+ h2) reads.

Scaled dot-product attention over the γ queries against s+ γ keys/values requires

Θ(bhγ(γ + s)) FLOPs, Θ(bh(γ + s)) reads.

The FLOPs/read ratio is Θ(h) = O(1) for Q,K, V and Y , hence these stages remain memory-bound
(for fixed h). For attention it is Θ(γ), so as γ grows the computation dominates. Consequently, in-
creasing γ is effectively free while inference is memory-bound; beyond the compute-bound regime,
γ should be increased only if the expected acceptance length grows faster than the attention compute,
i.e., faster than Θ(γ).

3.3 OPTIMAL TREE-STRUCTURED HETEROGENEOUS SPECULATIVE DECODING

Tree-structured drafting is widely used in speculative decoding but tends to push verification into
the compute-bound regime; consequently, adding low-acceptance tokens can reduce throughput.
We analyze heterogeneous trees in which tokens may be proposed by different mechanisms (model-
based, self-speculative, search-based), each with its own generation cost.

Fix a rooted tree T with |T | nodes. For node i at depth d(i), let

αi = Pr
(
X1:d(i) = prefix(i)

)
be its acceptance frequency (cumulative prefix probability). Equivalently, αi is the limiting em-
pirical frequency with which node i is accepted if verification is repeated over i.i.d. draws. For
simplicity of the following derivation, we also use α0 = 1 is the acceptance rate of the root token
(which is generated by the base model). These rates depend on the tree structure T , dataset and base
model’s output distribution.
Lemma 1 (Tree-structured expected accepted length). The expected number of accepted speculative
tokens when verifying against T is

E(T ) =

|T |∑
i=0

αi.

This expression does not depend on node depths beyond their role in determining αi. When T is
a single branch of length γ, Lemma 1 reduces to the single-branch formula (Equation (1)), up to
whether the depth-0 root is counted in the acceptance length.

Different drafting mechanisms incur different costs. We model these via per-node generation times.
In practice, one of the following obtains:

1. Layerwise: a single forward pass generates an entire depth layer l (cost tl1);
2. Treewise: a single forward pass generates the entire tree (cost t2);
3. Nodewise: each node is generated individually (cost ti3 for node i).

To unify these cases, we define an effective per-node time ti ≥ 0 by apportioning layerwise or
treewise costs to nodes (e.g., divide tl1 equally among nodes in layer l, and divide t2 equally among
all nodes). This yields the following lemma.
Lemma 2 (Drafting time). With effective per-node times {ti}i∈T , the total drafting time is

TD(T ) =

|T |∑
i=1

ti.

Formal justification of this reduction, along with illustrative scheme, is provided in Section C.2.
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Let TV (T ) denote the verification time for tree T . While TV (T ) scales linearly (see Section 3.2)
with |T | under fixed architecture, its constants are hardware dependent. Combining Lemmas 1 and 2
we can formulate the following theorem:
Theorem 1. An optimal tree structure solves

T ∗ ∈ argmax
T — rooted tree

 |T |∑
i=0

αi

 ·
 |T |∑

i=1

ti + TV (T )

−1

. (3)

Proof is deferred to Section C.3. This objective immediately implies that nodes with large ratios
ti/αi harm acceleration and should be pruned, subject to the interaction captured by TV (T ). In
Section F we provide a simple constructive algorithm for tree selection based on this criterion.
When a closed-form or empirically calibrated model for TV (T ) is available, the optimization can be
evaluated accurately for a given hardware stack.

4 METHOD

In this section, we introduce READER, a speculative decoding algorithm, based on the heteroge-
neous draft tree, which has optimal structure and optimized KV Cache serving strategy. Firstly, we
provide the theoretical analysis of the draft model predictive ability and search-based theoretical
upper-bounds.

4.1 ACCEPTANCE LENGTH OF HETEROGENEOUS TOKENS

We study the average acceptance length—the number of consecutive draft tokens accepted per for-
ward pass—in model-based speculative decoding. We also introduce a self-repetitiveness metric for
natural text that provides a theoretical upper bound on the acceptance length achievable by search-
derived tokens.

We begin by measuring acceptance statistics for the draft model on GSM (mathematics) (Cobbe
et al., 2021) and HumanEval (coding) (Chen et al., 2021). Figure 1 reports the distribution of
accepted tokens per forward pass for Llama-3.1-8B-Instruct (Grattafiori et al., 2024) using the
EAGLE-3 speculative method. We set the draft tree depth to 8 and the total number of draft to-
kens to 60, with batch size 1 on an 8B LLM. In approximately 30% of forward passes, the verifier
accepts the maximum number of draft tokens.

1 2 3 4 5 6 7 8 9
Acceptance length

0.0

0.1

0.2

Fr
eq

ue
nc

y

HumanEval

1 2 3 4 5 6 7 8 9
Acceptance length

0.0

0.2

GSM

Figure 1: Acceptance length distribution for HumanEval (left) and GSM (right) datasets

READER’s draft tree also includes search-based tokens. Because these tokens exploit repetitions
in the target text, more repetition leads to faster inference. We are particularly interested in long
repetitions: short repeats are typically captured by the draft model (as shown above), whereas long
repeats are where search contributes most. This phenomenon appears in both human-written and
model-generated natural text, and it is especially relevant for code generation—one of the most
important LLM applications.

To quantify how repetitions accelerate inference, we define the following metric. Given a tokenized
input (prompt) and a pre-generated response, apply:

1. Place a pointer at the start of the response.
2. Find the longest substring beginning at the pointer that also appears in the input or in the

already-processed prefix of the response.
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Dataset W/o DS W/ DS

Magpie-Qwen2.5-Coder 1.38 1.90
Magpie-R1-Llama-70B 2.86 3.54
Hagrid (RAG) 10.32 —

Table 1: Self-repetition metric for different datasets (W/o DS: without datastore; W/ DS: with datas-
tore, consisting of 100 responses that are not used for metric calculation. This datastore can be built
online by appending generated responses)

3. If no continuation is found (length zero), advance the pointer by one token; otherwise,
advance it by the continuation length.

The metric equals the total number of response tokens divided by the number of pointer advances.
This value matches the average acceptance length of speculative decoding with an infinite decoding
tree that indexes all previously seen history. In practice, inference can further benefit from a large
external datastore of tokens drawn from other prompts, which speeds up common phrases.

Table 1 reports this metric on several datasets with generated answers—coding, chain-of-thought
(Xu et al., 2024), and RAG (Kamalloo et al., 2023). The results indicate that for tasks such as rea-
soning and RAG, where repetitions are frequent, our approach can substantially accelerate existing
speculative decoding methods.

4.2 READER

Our approach accelerates speculative decoding by constructing a heterogeneous draft tree that blends
search- (retrieval-) derived tokens with tokens proposed by a draft model. Building on the theoretical
foundations, we empirically identify effective tree shapes and techniques that raise the quality of
drafted tokens.

For the short-term context, we maintain a trie that supports:
1. inserting a sequence S in O(|S|) time;
2. searching for a sequence S in O(|S|) time.

During decoding, the trie is populated with the input prompt, self-generated tokens, and (optionally)
external text. To build the draft tree, we take a suffix S of the generated tokens, descend the trie
with S, and extract a subtree of a prescribed shape. The suffix length is a hyperparameter. If S is
not present, we drop its first token and retry.

A common extraction strategy fixes both a maximum depth and a maximum token budget, then
performs a depth-first traversal subject to these limits. To improve acceptance length, trie nodes are
sorted by continuation frequency so that high-frequency successors are explored first.

To capture long-term context, we augment the system with a large auxiliary datastore comprising
many responses, ideally produced by the base model. A trie is impractical here due to memory
growth at scale. Because this datastore is static at inference time, we index it with a suffix array.
Lookups reduce to binary search over prefixes since the array stores substrings in lexicographic
order. To ensure broad task coverage, the datastore mixes texts from diverse sources; we use the
Magpie dataset in our experiments. The resulting index fits in RAM and remains under 1GB.

Unlike purely model-based drafting, the wall-clock time of our drafting stage depends only on the
size of the produced tree. Trie and suffix-array queries run on CPU and can proceed in parallel with
the model-based speculator. Moreover, each sample in a batch searches independently, enabling
per-sample multithreading. With multithreading, search latency is effectively determined by the
final tree size. Because statistical search is substantially faster than draft-model calls, the overall
drafting time is dominated by the latter.

Draft Tree Widening. We widen the draft model’s proposal by attaching a single retrieval-driven
path to the root of the draft tree. Suppose the draft model emits a fixed-shape tree of depth ddraft.
In parallel, we build a deterministic path of depth dsearch (often dsearch ≫ ddraft) via search over the
datastore and trie keyed by the current context suffix S. At each level, candidate continuations are
ranked by datastore frequency; we append the top continuation and proceed.

6
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runs was
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times km
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runs

3

kms

3

times

a

week

Tokens generated by
a draft model

Statistically found
predictionthenand

Already generated tokens (suffix)

(2a) Appending a branch to the draft model tree.
If both the branch and the tree have fixed struc-
tures, the resulting tree will also maintain a fixed
structure. For maximum acceleration, the branch
obtained from statistical search should be signifi-
cantly deeper than the draft model tree.

Already generated tokens (suffix)

sitting

on at

the a home

is

my

friend

the

chair

and

He

Tokens generated
by a draft model

Tree deepening
with new tokens

(2b) An example of deepening the first branch of
the draft model tree using statistical search. In this
case, the generated tokens are “He” and “is” (the
root token in the draft model corresponds to the last
accepted token). First, the algorithm runs the draft
model to generate the draft tree. We then attempt
to extend the branch “sitting on” by performing a
one-branch search using the tokens “He”, “is”, “sit-
ting”, “on”.

This attachment preserves a fixed per-sample tree shape, enabling efficient batching, while exploit-
ing: (i) the low marginal cost of CPU-side, parallelizable search, which supports a much deeper
branch with negligible latency; and (ii) increased token diversity—search-derived tokens frequently
differ from the draft model’s proposals, expanding the candidate set and improving acceptance.

Empirically, adding multiple search branches increases verifier load without improving accepted
length; therefore we attach exactly one deep branch (see Figure 2a).

Draft Tree Deepening. We also deepen the tree by using draft-model tokens to seed search. Con-
cretely, we take a suffix of the generated sequence together with a prefix from a draft-model branch,
then search for continuations of this combined sequence. We attach only a single resulting branch,
as using multiple branches yielded no measurable gains in our experiments. The new branch is ap-
pended to the node where the search was initiated (illustrated in Figure 2b). Unlike widening, some
appended tokens may go unverified if the draft prefix is later rejected by the base model. As before,
we avoid merging intersecting tokens to preserve a fixed tree shape. This deepening is particularly
effective at smaller batch sizes, where allocating a larger decoding tree is computationally feasible.

Lossless Decoding. We formalize that READER is lossless with respect to the base model’s de-
coding policy. Intuitively, READER never alters the distribution — or, in the deterministic case, the
exact identity — of the generated sequence; it only reduces the number of verifier calls. The proof
of this can be found in Section D.

4.3 KV CACHE REARRANGEMENT

The methods above operate efficiently when KV cache movement is not the limiting factor — for
7-8B models this typically holds up to batch size 8. For larger batches, however, naive KV layout
with per-prompt padding introduces avoidable memory traffic: when statistical search proposes a
long accepted span, that span must be appended to the cache while other prompts are padded with
zeros to match the new maximum length (see Figure 3a). In practice, most verification tokens come

7
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from the draft model, but intermittently the search path yields long acceptances, which increases the
average acceptance length and, under padding, inflates the transient cache footprint.

This effect amplifies with batch size. Let p be the probability that statistical search produces a long
accepted span in a step, and b the batch size. The probability that at least one prompt extends by a
long span in that step is 1− (1− p)b, which rises rapidly with b. Thus, without care, larger batches
induce disproportionately more padding and superfluous KV transfers.

We address this with a periodic KV cache rearrangement pass every N -th decoding step: for
each prompt, we remove internal zero-padding and tightly concatenate non-zero entries, produc-
ing a compact, contiguous layout (Figure 3b). The hyperparameter N trades compaction overhead
against padding accumulation: too small N adds unnecessary maintenance work; too large N al-
lows padding to grow. In our experiments we set N = 25, though the optimal value is hardware-
dependent. Our strategy makes the KV cache overhead sublinear, compared to the sequence length.

Combining the widening and deepening strategies increases the total number of draft-tree nodes, yet
with rearrangement the wall-clock time of draft generation remains comparable to a purely model-
based speculator.

Pseudocode for the READER method can be found in Section B.

Prompts Step 1 Step 2 Step 3

(3a) An example of the KV cache structure during inference
with the READER algorithm. Batch size = 8. Purple denotes
tokens from the input. Green denotes tokens from the draft
model, and blue denotes tokens from statistical search. White
spaces are zeros. Horizontal lines represent the KV caches
for each of the 8 prompts. In step 1, all accepted tokens are
generated by the draft model. In step 2, the base model ac-
cepts long sequences for prompts 3 and 7. The same occurs
for prompt 6 in step 3. When the base model accepts a large
sequence, the KV cache fills with many auxiliary zeros.

Prompts Concatenated KVs

(3b) After rearranging, zeros may only re-
main at the end of the prompts. Total KV
cache size is decreased.

5 EXPERIMENTS

5.1 SETUP

We evaluate READER across multiple LLMs, datasets, and batch sizes. Our external datastore is a
suffix array built from the Magpie corpus (Xu et al., 2024), with no overlap with any evaluation set.
Datastore and trie lookups run on CPU in parallel with the draft model; because these lookups finish
well before the draft model call, they do not increase the end-to-end drafting time.

Experiments are conducted on Llama2-7B (Touvron et al., 2023), Llama3.1-8B (Grattafiori et al.,
2024) and Vicuna-7B (Chiang et al., 2023) using the GSM (Cobbe et al., 2021) dataset for mathe-
matical reasoning, HumanEval (Chen et al., 2021) for code generation and MT-Bench (Zheng et al.,
2023) for general prompts. Results are presented in Table 2. Test results for sampling inference
(temperature 1) are presented in Section E. We employ an optimized tree structure obtained via a
search-based optimization algorithm, detailed in Section F. The resulting tree structures are also
included in Section G.

We further evaluate READER on a RAG task using the hagrid dataset (Kamalloo et al., 2023), where
the model must find the correct answer in a given context. Speculative decoding typically achieves
high acceleration on such tasks, as the draft model can easily predict the continuation by copying
some parts of the text from the prompt. However, model-based approaches are constrained by the
number of draft model calls they can afford. In contrast, our method enables the generation of long
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GSM HumanEval MT-Bench

Model Method Batch size Batch size Batch size
1 8 16 32 1 8 16 32 1 32

– Autoregression 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x

Llama2-7B

Lookahead (Zhao et al., 2024) 1.65x 1.61x 1.53x 1.38x 2.03x 1.94x 1.56x 1.40x — —
Search + datastore (ours) 2.91x 2.66x 2.71x 2.31x 3.27x 3.13x 2.70x 2.25x — —
EAGLE (Li et al., 2024a) 2.71x 2.50x 2.51x 1.82x 3.16x 3.00x 2.79x 1.84x 2.58x 1.60x
EAGLE (opt. tree) 3.02x 2.84x 2.77x 2.28x 3.58x 3.40x 2.97x 2.23x — —
READER (EAGLE backend) 3.94x 3.63x 3.25x 2.66x 4.30x 4.18x 3.56x 2.65x 3.32x 2.29x

Vicuna-7B EAGLE 2.61x 2.43x 2.35x 2.10x 3.30x 3.13x 2.65x 2.01x 2.52x —
REST He et al. (2024) — — — — — — — — 1.69x∗ —
READER (EAGLE backend) 3.09x 2.97x 2.89x 2.56x 4.24x 3.95x 3.26x 2.37x 2.76x —

Llama3.1-8B EAGLE-3 4.42x 4.35x 4.05x 3.42x 4.90x 4.80x 4.46x 3.77x 4.36x 3.25x
READER (EAGLE-3 backend) 5.02x 4.92x 4.43x 3.99x 6.13x 5.92x 5.21x 4.34x 4.97x 3.67x

Table 2: Speedup ratio vs. autoregressive decoding (temperature 0) on GSM, HumanEval, and MT-
Bench (BS 1 and 32). EAGLE (opt. tree) is an original EAGLE algorithm with tree structure
optimized by our method. ∗Taken from the open-source paper.

continuations at almost no additional cost, resulting in a significantly higher average acceptance
length and improved acceleration. Detailed results are provided in Table 3.

Table 3: Test results on the hagrid dataset for RAG tasks. All tests were run with a batch size 1 and
Llama3.1-8B model.

Method Speedup Avg. Acceptance Length

Autoregression 1.00x 1.00
EAGLE-3 5.31x 6.7
READER 10.24x 14.03

5.2 ABLATION STUDY

We assess the contribution of each component of READER on GSM, HumanEval, and MT-Bench.

• Tree Optimization. Search-based adjustment of the draft tree improves throughput by
∼10% for batch sizes 8-16 and up to ∼23% at batch size 32.

• Statistical Search Branch. Adding one retrieval-driven branch yields the largest gain
(∼20% on average), with the strongest effect at small batches where expansion is inex-
pensive.

• Tree Deepening. Seeding search from draft-model prefixes provides modest improvements
(∼5% at batch size 8) and is enabled only for small-batch inference.

• KV Cache Rearrangement. Periodic compaction (every 25 steps for batch size 32, every 50
for size 16) lowers generation time by ∼7-8%.

6 CONCLUSION

This paper introduces READER, a lossless speculative decoding framework that recasts specula-
tive decoding as a stochastic tree-construction problem and instantiates a retrieval-assisted drafter
to realize this formulation in practice without additional training. Our complexity-theoretic analysis
delineates the optimality frontier under bounded computation and memory, and we further present
a memory-optimal KV cache serving strategy that guarantees amortized sublinear overhead in the
batch dimension. READER preserves exact output equivalence while achieving up to 6.13x wall-
clock speedup on single-prompt inference and up to 5.92x in batched settings, with more than 10x
gains on RAG pipelines. By exploiting the empirical redundancy of natural language through a
theoretically grounded draft-tree design, READER closes a key gap between the parallelism limits
suggested by theory and practical LLM inference, pointing to a new standard for efficient deploy-
ment.

9
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7 REPRODUCIBILITY STATEMENT

The comprehensive description with a pseudocode of READER can be found in Sections B and 4.
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A USAGE OF LLMS

We used LLMs in our paper for improving readability and better formatting.

B READER PSEUDOCODE

Algorithm 1 READER: Retrieval-Enhanced Drafting for Speculative Decoding
Inputs:
• x — tokenized prompt
• Tshort — short-term trie (prompt + self-generated history + optional external text)
• Dlong — long-term datastore indexed by a suffix array
Parameters:
• Lsuffix — suffix length for search keys
• ddraft — depth of draft-model tree
• dsearch — depth of the (single) retrieval branch for widening
• ddeep — max depth of the (single) deepening branch per step
• Btokens — max token budget per step (fixed shape)
• N — KV-cache rearrangement period
• EOS, Tmax — end conditions
Black boxes:
• SPECULATOR(x, ddraft, Btokens) — proposes a fixed-shape draft tree
• VERIFY(x, tree) — base-model verification; returns accepted prefix ∆
Output: completed sequence y

1: y ← []; t← 0
2: TRIEINSERT(Tshort, x)
3: while t < Tmax and last token of y ̸= EOS do
4: S ← RIGHTSUFFIX(x ∥ y, Lsuffix)
5: tree← SPECULATOR(x ∥ y, ddraft, Btokens)
6: // Widen: attach one deep retrieval-driven branch at root
7: Pwide ← SEARCHPATH(S, dsearch, Tshort,Dlong)
8: ATTACHATROOT(tree, Pwide)
9: // Deepen: seed search from a draft prefix, attach one branch

10: u← PICKDRAFTNODEFORDEEPENING(tree)
11: S′ ← CONCAT

(
S, PREFIXFROMROOT(u)

)
12: Pdeep ← SEARCHPATH(S′, ddeep, Tshort,Dlong)
13: ATTACHATNODE(tree, u, Pdeep)
14: // Verify and accept
15: ∆← VERIFY(x ∥ y, tree) {accepts a contiguous prefix of some path}
16: y ← y ∥∆; t← t+ 1
17: TRIEINSERT(Tshort,∆)
18: if t mod N = 0 then
19: KVCACHEREARRANGE()
20: end if
21: end while
22: return y
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Algorithm 2 SearchPath: CPU-side retrieval over trie + suffix array
Input: suffix S, depth d, structures (Tshort,Dlong)
Output: path P = (t1, . . . , tk) with k ≤ d

1: P ← []; C ← S
2: for i = 1 to d do
3: A← TRIENEXTTOKENS(Tshort, C)
4: B ← SUFFIXARRAYNEXTTOKENS(Dlong, C)
5: L← RANKBYFREQUENCY(A ∪B) {stable sort: higher freq first}
6: if L = ∅ then
7: break
8: end if
9: t⋆ ← L[1] {take top continuation}

10: P ← P ∥ t⋆; C ← C ∥ t⋆
11: end for
12: return P

Algorithm 3 PickDraftNodeForDeepening (fixed-shape friendly)
Input: draft tree tree
Output: node u for deepening

1: u← first node on the leftmost (max-prob) path at depth min(2, ddraft)
2: return u

Algorithm 4 KVCacheRearrange (periodic compaction)

1: for each sample cache KV in batch (in parallel) do
2: KV ← REMOVEINTERNALZEROPADDING(KV)
3: KV ← TIGHTCONCATENATE(KV)
4: end for

Algorithm 5 Verify (standard speculative verification sketch)
Input: context c, heterogeneous tree tree
Output: accepted contiguous token span ∆

1: Expand base model along candidate paths in tree (batched by depth)
2: Compare base logits with drafted tokens; find longest prefix consistent with base
3: return that prefix as ∆ (possibly length 0)
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C PROOFS

C.1 PROOF OF LEMMA 1

Proof. For each non-root node i, define the indicator Ii = 1{node i is accepted}. Exactly those
nodes on the verified path are accepted, so the total number of accepted tokens is

N =

t∑
i=1

Ii.

Taking expectations and using linearity,

E[N ] =

t∑
i=1

E[Ii] =

t∑
i=1

Pr(Ii = 1).

By definition of αi as the cumulative probability of the node’s prefix, Pr(Ii = 1) = αi. Hence

E[N ] =

t∑
i=1

αi.

C.2 PROOF OF LEMMA 2

Proof. Let the node set be V = {1, . . . , t}. In a given speculative-drafting routine, nodes are
produced by (possibly mixed) mechanisms:

(i) Layerwise: for each produced layer l there is a subset Vl ⊆ V of nodes generated by a
single forward pass with cost tl1;

(ii) Treewise: there is a subset Vtw ⊆ V of nodes generated by a single forward pass with cost
t2;

(iii) Nodewise: there is a subset Vnw ⊆ V of nodes generated individually, where node i takes
time ti3.

These subsets form a disjoint partition of V up to the natural indexing by layers: V =
(⊔

l Vl

)
⊔

Vtw ⊔ Vnw.

The true wall-clock drafting time is, by definition of the mechanisms above,

T true
D =

∑
l

tl1 + t2 +
∑

i∈Vnw

ti3.

Define the effective nodewise generation time ti for each node i ∈ V by

ti =


tl1
|Vl|

, i ∈ Vl (layerwise),

t2
|Vtw|

, i ∈ Vtw (treewise),

ti3, i ∈ Vnw (nodewise).

Then summing over all nodes yields

t∑
i=1

ti =
∑
l

∑
i∈Vl

tl1
|Vl|

+
∑
i∈Vtw

t2
|Vtw|

+
∑

i∈Vnw

ti3 =
∑
l

tl1 + t2 +
∑

i∈Vnw

ti3 = T true
D .

Hence the total drafting time equals the sum of the effective nodewise times, which proves

TD

(
T (α1, . . . , αt), t1, . . . , tt

)
=

t∑
i=1

ti.
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This construction shows that type 1 (layerwise) and type 2 (treewise) nodes can be accounted for as
type 3 (nodewise) nodes without changing the total time — simply distribute the cost of each group’s
forward pass uniformly over the nodes it produces. The argument trivially extends to multiple
treewise groups {V (g)

tw }g with costs {t(g)2 }g by replacing t2/|Vtw| with t
(g)
2 /|V (g)

tw | and summing
over g.

The illustration of this lemma is shown in Figure 4.

Type 1 nodes Type 2 nodes Type 3 nodes

Type 3 nodes

Figure 4: Converting type 1 and type 2 nodes into equivalent type 3 generation times.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.3 PROOF OF THEOREM 1

Proof. Fix a rooted decoding tree T with |T | nodes, acceptance frequencies α1, . . . , αt (where
αi = Pr(node i is accepted)), and effective nodewise generation times t1, . . . , t|T |. Consider one
speculative step that (i) drafts the tree T and (ii) verifies it.

Let AT be the random number of tokens accepted in this step, and let CT be the random time spent
in this step (drafting + verification). Running the same procedure repeatedly with the same T , the
long-run throughput (tokens per second) is

throughput(T ) = lim
N→∞

∑N
n=1 A

(n)
T∑N

n=1 C
(n)
T

=
E[AT ]

E[CT ]
,

where the equality follows from the law of large numbers.

By Lemma 1, the expected number of accepted tokens in a single verification of T is

E[AT ] = E
(
T
)

=

|T |∑
i=0

αi.

Decompose the step time into drafting and verification:

E[CT ] = TD

(
T
)
+ TV (T ).

By Lemma 2, the drafting time aggregates nodewise as

TD

(
T
)

=

|T |∑
i=1

ti,

so that

E[CT ] =

|T |∑
i=1

ti + TV (T ).

Therefore the throughput achieved by T is

E[AT ]

E[CT ]
=

∑|T |
i=0 αi∑|T |

i=1 ti + TV (T )
=

 |T |∑
i=0

αi

 ·
 |T |∑

i=1

ti + TV (T )

−1

.

Maximizing throughput over all rooted trees T is thus equivalent to solving

T ∗ ∈ argmax
T — rooted tree

 |T |∑
i=0

αi

 ·
 |T |∑

i=1

ti + TV (T )

−1

,

which is exactly the statement of Theorem 1.
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D LOSSLESS DECODING OF READER

Let Pθ(· | x<t) denote the base model’s conditional distribution at step t. Let π be the target
decoding policy (e.g., greedy/top-1 with fixed tie-break; or sampling with temperature and top-
p/top-k filtering). Let X1:T be the sequence produced by running the base model alone with policy
π. Let X̂1:T be the sequence produced by READER.

We say that READER is lossless iff:

• for deterministic π (e.g., greedy), pathwise equality holds: X̂1:T = X1:T ;

• for randomized π (e.g., temperature + top-p/k sampling), the laws agree: X̂1:T
d
= X1:T .

READER builds speculative draft trees using any mixture of model proposals and search-derived
continuations (trie/suffix-array/datastore). Correctness requires only the following invariants:

1. The verifier is the same base model Pθ using the same temperature, filtering, and tie-
breaking as π.

2. A token is committed only after explicit verification against Pθ(· | current prefix). Multi-
token acceptance means committing the longest prefix that matches the verifier step-by-
step.

3. Upon the first mismatch, all speculative tokens beyond that point are discarded, and the
next token is obtained by applying π to Pθ at the current prefix.

4. For randomized π, READER uses the same underlying randomness as the base run (for-
malized via coupling below).

Deterministic decoding (greedy/top-1). Assume π(Pθ(· | x<t)) = argmaxy Pθ(y | x<t) with a
fixed tie-break rule.

Theorem (Deterministic losslessness). Under the verification invariants, X̂1:T = X1:T .

Proof. We prove by induction on t that after committing at step t, X̂t = Xt. For t = 1, READER
either accepts a proposed token equal to argmaxPθ(· | ∅) or rejects and falls back to that argmax; in
both cases X̂1 = X1. Assume X̂<t = X<t. By the acceptance rule, READER accepts a proposed
yt only if yt = argmaxy Pθ(y | X<t); otherwise it rejects and commits exactly that argmax. Hence
X̂t = argmaxy Pθ(y | X<t) = Xt. Therefore X̂1:T = X1:T . □

Randomized decoding (sampling). Let π be any randomized policy implementable as a measur-
able map

F :
(
∆|V|−1, [0, 1]

)
→ V such that Xt = F

(
Pθ(· | X<t), Ut

)
,

for i.i.d. uniforms Ut ∼ Unif[0, 1]; this covers temperature scaling, top-p/top-k filtering, and
inverse-CDF sampling (with deterministic tie-breaking on measure-zero boundaries).

Theorem (Randomized losslessness). Couple READER and the base run with the same i.i.d. uni-
forms (Ut)t≥1. Under the verification invariants, X̂1:T and X1:T are equal almost surely, hence

X̂1:T
d
= X1:T .

Proof. Induct on t. Assume X̂<t = X<t. Let x⋆
t := F (Pθ(· | X<t), Ut) be the token the base

policy would emit. READER verifies its speculative draft at prefix X<t. If x⋆
t appears among the

verified candidates at step t, READER commits it. If not, READER discards the speculative step
and falls back to committing F (Pθ(· | X<t), Ut) = x⋆

t . Thus in all cases X̂t = x⋆
t = Xt almost

surely. Therefore the entire sequences coincide almost surely. □

Under the stated invariants, READER commits exactly the tokens that the base model would pro-
duce under π (pathwise for deterministic π; in distribution for randomized π). Hence, READER is
lossless.
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E TEST RESULTS WITH SAMPLING

The test results for speculative decoding with sampling with temperature 1 are presented in Table 4.

GSM HumanEval MT-Bench

Model Method Batch size Batch size Batch size
1 8 16 32 1 8 16 32 1 32

– Autoregression 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x

Llama2-7B
EAGLE (Li et al., 2024a) 2.30x 2.07x 2.15x 1.54x 2.59x 2.48x 2.36x 1.52x 2.09x 1.38x
EAGLE (opt. tree) 2.45x 2.32x 2.33x 1.94x 2.87x 2.86x 2.54x 1.90x — —
READER (EAGLE backend) 3.19x 2.99x 2.64x 2.17x 3.56x 3.35x 2.98x 2.19x 2.69x 1.88x

Llama3.1-8B EAGLE-3 3.37x 3.29x 3.21x 2.83x 4.15x 4.04x 3.81x 3.19x 3.02x 2.34x
READER (EAGLE-3 backend) 3.96x 3.91x 3.71x 3.28x 5.17x 4.76x 4.28x 3.57x 3.82x 2.80x

Table 4: Speedup ratio vs. decoding with sampling (temperature 1) on GSM, HumanEval, and MT-
Bench.
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F CHOOSING TREE STRUCTURE

Fixed-size draft trees offer simplicity, but the throughput-optimal configuration depends on the base
model, batch size, and hardware characteristics (e.g., KV-cache bandwidth, memory hierarchy, and
compute occupancy). These factors interact nonlinearly, making a closed-form derivation of the
optimal tree size and shape intractable.

We identify tree configurations empirically while guarding against dataset-specific bias. For exam-
ple, code-generation workloads can favor deeper trees than arithmetic reasoning, but such prefer-
ences do not always transfer. We therefore calibrate using a general-purpose benchmark (MT-Bench
(Zheng et al., 2023)) to obtain settings that generalize across tasks.

We begin from an overprovisioned seed tree T0. Running the drafter/verification loop, we estimate
for each node v its acceptance probability α(v), defined as the probability that v contributes to
an ultimately accepted continuation. Empirically and by construction of speculative verification,
descendants have acceptance at most that of their ancestors, i.e.,

α(child) ≤ α(parent).

We exploit this monotonicity by iteratively pruning the n lowest-acceptance leaves to obtain Tn.
This preserves connectivity and ensures Tn remains a valid prefix subtree of T0 at every iteration.

Our goal is to select the pruning level n⋆ that maximizes end-to-end throughput (tokens/sec), ac-
counting for drafting, verification, and KV/cache effects:

n⋆ ∈ argmax
n

throughput(Tn).

We treat throughput as a black-box objective and apply Bayesian optimization (Gardner et al., 2014),
where each benchmarked tree Tn yields a (noisy) observation of the target metric. In practice, the
response curve in n is close to unimodal; when wall-clock budget is tight, a golden-section search
provides a lightweight alternative with comparable solutions.

A schematic of one pruning iteration—estimating per-node acceptance and removing the lowest-
acceptance leaves—is shown in Figure 5.

G DECODING TREE STRUCTURES

This subsection presents the tree structures used for the Llama2-7B test results in the paper.

For a batch size of 8, the tree structure is shown in Figure 6, which incorporates both the statistical
search branch and tree deepening methods.

For batch sizes 16 and 32, the corresponding tree structures are shown in Figures 7 and 8, respec-
tively. For these batch sizes, only the statistical search branch is applied in the decoding trees.
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1.0

0.8 0.12 0.03 0.01

0.6 0.1 0.02 0.05 0.02 0.01

0.5 0.05 0.03 0.05

0.4 0.05 0.02 0.01

0.01 0.01 0.02

0.00

0.0

Take default tree

Calculate frequencies

Find optimal threshold

Remove tokens with
frequency < threshold

Threshold = 0.025

1.0

0.8 0.12 0.03

0.6 0.1 0.05

0.5 0.05 0.03 0.05

0.4 0.05

Resulting tree

Figure 5: An example of the tree structure determination workflow. The process begins with a
benchmark on an excessively large tree to obtain node acceptance rates. Subsequently, subtrees with
acceptance probabilities below a threshold are removed.

ROOT

x20

x14

Figure 6: Decoding tree structure for batch size 8.
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ROOT

x14

Figure 7: Decoding tree structure for batch size 16.

ROOT

x8

Figure 8: Decoding tree structure for batch size 32.
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