
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

READER: RETRIEVAL-ASSISTED DRAFTER FOR EF-
FICIENT LLM INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoregressive Language Models instantiate a factorized likelihood over token se-
quences, yet their strictly sequential decoding process imposes an intrinsic lower
bound on inference latency. This bottleneck has emerged as a central obstacle
to the scalable deployment of large-scale generative models. Existing acceler-
ation techniques partially mitigate token-level latency — by relying on auxil-
iary draft models or introducing an additional training phase — but fail to ad-
dress the dominant memory and communication costs. We present READER
(Retrieval-Assisted Drafter for Efficient LLM Inference), a provably lossless spec-
ulative decoding framework that bypasses the training of the auxiliary draft model.
READER formalizes speculative decoding as a stochastic tree construction prob-
lem and exploits the empirical redundancy structure of natural language to gen-
erate high-probability candidate continuations. Our method revisits the problem
of constructing draft trees, establishing substantial statistical improvements over
stochastic draft-tree methods and providing a complexity-theoretic analysis that
characterizes the optimality frontier of speculative decoding under bounded com-
putation and memory resources. Beyond the single-sequence regime tradition-
ally considered in prior work, we introduce a memory-optimal key-value cache-
serving strategy that guarantees amortized sublinear overhead in the batch dimen-
sion, allowing READER to scale to realistic inference workloads. Comprehen-
sive experiments demonstrate up to 6.13× wall-clock speedup on single-prompt
inference and up to 5.92× on batched inference — consistently surpassing prior
speculative decoding baselines — while preserving exact output equivalence, with
even more pronounced gains in retrieval-augmented generation pipelines. Our re-
sults close a key gap between theoretical parallelism limits and practical LLM
inference, suggesting a new standard for efficient deployment.

1 INTRODUCTION

The widespread adoption of large language models (LLMs) has drawn attention to their substantial
energy costs (Strubell et al., 2019), motivating extensive research on improving inference efficiency.
Recently, reasoning-focused models such as OpenAI o1 (Jaech et al., 2024) and DeepSeek-R1 (Guo
et al., 2025) have emerged. These models achieve strong performance by generating longer “think-
ing” trajectories at inference time. While inference-time scaling improves accuracy, it also dramat-
ically increases the number of generated tokens, exacerbating latency and energy costs Zhang et al.
(2025). This makes efficient decoding strategies critical for the next generation of reasoning LLMs.

LLMs generate tokens autoregressively, one at a time. This strictly sequential dependency inherently
resists parallelization: each decoding step requires a full forward pass conditioned on all previously
generated tokens. As model sizes and context lengths grow, the cost of this step-by-step process
scales poorly. In practice, memory and communication overheads dominate. Each token requires
accessing and updating the Key-Value (KV) cache, whose bandwidth demands become the primary
bottleneck in high-throughput or long-context settings.

A promising line of work seeks to reduce this sequential bottleneck is speculative decoding (Stern
et al., 2018; Leviathan et al., 2023). At its core, speculative decoding decouples speculation from
verification: a candidate continuation is generated in parallel, and the base model verifies the entire
block in a single forward pass. If the candidate aligns with the base model’s distribution, multiple

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

tokens are accepted at once, collapsing many sequential steps into one. Early work has shown that
even simple draft strategies can yield significant speedups without changing the underlying model’s
output distribution (Chen et al., 2023; Xia et al., 2024). Despite this, existing speculative decoding
approaches leave important gaps. Speedups often remain bounded by shallow draft structures or by
additional overheads, while scaling to realistic batch-serving workloads remains ineffective.

In this paper, we present READER (Retrieval-Assisted Drafter for Efficient LLM Inference), a prov-
ably lossless speculative decoding framework that directly addresses these challenges. READER ex-
ploits the theoretical limits of draft-tree expansion, generating high-probability continuations with-
out requiring additional training. An important contribution of READER is its complexity-theoretic
analysis of speculative decoding: we characterize the optimality frontier under bounded computation
and memory, analyzing the inherent limits of draft construction strategies. Beyond single-sequence
decoding, READER introduces a memory-optimal KV cache rearrangement strategy that guarantees
amortized sublinear overhead in batch serving. This makes speculative decoding viable at the scales
relevant for modern LLM deployment.

READER augments the standard drafting with a heterogeneous tree that blends tokens from two
sources: (i) a lightweight speculator that proposes short, high-confidence branches, and (ii) a deter-
ministic retrieval path constructed via CPU-side search over a short-term trie (prompt and generated
history) and a long-term datastore indexed with a suffix array. We attach a deep retrieval-driven
branch to the root (”widening”) and deepen internal nodes by seeding search from partial draft-
model prefixes. This design preserves a fixed per-sample tree shape, while substantially increasing
token diversity at negligible marginal latency.

Experiments across diverse tasks demonstrate that READER achieves up to 6.13x wall-clock
speedup on single-prompt inference and up to 5.92x on batched inference, consistently surpass-
ing prior speculative decoding baselines, with especially pronounced gains in retrieval-augmented
generation pipelines with more than 10× speedup. By pushing speculative decoding closer to its
theoretical parallelism limits, READER advances the efficiency frontier of LLM inference.

2 RELATED WORK

A large number of studies accelerate LLM inference through model compression. Quantization
methods such as LLM.int8 (Dettmers et al., 2022), SmoothQuant (Xiao et al., 2023) and AWQ
(Lin et al., 2024) reduce activation and weight precision while preserving accuracy, and pruning
approaches like SparseGPT (Frantar & Alistarh, 2023) remove redundant weights with minimal
perplexity increase. Knowledge distillation can further shrink models for faster decoding. These
approaches, however, typically modify the model and may introduce accuracy drops (Lang et al.,
2024), while our goal is lossless acceleration of the unmodified target model.

Another line of research targets the memory- and system-level bottlenecks of autoregressive decod-
ing. FlashAttention optimizes attention with IO-aware kernels (Dao et al., 2022), multi-query at-
tention reduces key-value storage by sharing across heads (Shazeer, 2019), and systems like vLLM
introduce paged KV caches and continuous batching to improve throughput (Kwon et al., 2023).
Such techniques are complementary to speculative decoding, which reduces the number of sequen-
tial steps rather than the cost of each step.

Speculative decoding (Leviathan et al., 2023) itself originates from blockwise parallel decoding
(Stern et al., 2018) and speculative sampling (Chen et al., 2023). In these methods, a small drafter
proposes multiple tokens while the base model verifies them in one pass, accepting the longest
correct prefix to preserve exactness. Learned drafters such as Medusa (Cai et al., 2024), EAGLE
family (Li et al., 2024a;b; 2025) increase acceptance by aligning proposal distributions with the
verifier and by constructing deeper, context-aware draft trees. Other draft-based approaches have
explored alternative designs: CTC-style drafters that exploit conditional independence for parallel
speculation (Wen et al., 2024), diffusion-based drafters that generate multi-token proposals through
iterative refinement (Christopher et al., 2024), and hybrid models such as SpecInfer (Miao et al.,
2024). A complementary “self-speculative” direction derives the drafter from the target model itself
(e.g., layer skipping / early-exit) to avoid an auxiliary network while remaining lossless under strict
verification rules (Zhang et al., 2024). Despite these gains, trained or self-derived drafters can

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

introduce additional engineering, storage, or scheduling complexity, and their speedups often depend
on careful batching and KV-cache management.

In contrast, training-free approaches avoid extra model training by leveraging explicit structure in
text. REST drafts from a retrieval datastore to capture frequent local continuations, while ANPD
constructs and adapts an n-gram module online using real-time statistics (He et al., 2024; Ou et al.,
2024). Lookahead decoding dispenses with any drafter entirely by expending more compute per
step to verify multiple n-gram candidates directly with the target model, trading FLOPs for fewer
sequential steps while remaining exact (Fu et al., 2024). These strategies are attractive for their sim-
plicity and exactness, yet they often under-exploit the statistical regularities that govern acceptance
across branches or ignore serving-time constraints (e.g., KV-cache bandwidth and batch scheduling).

Finally, several recent studies emphasize batch-serving and KV-cache efficiency. MagicDec demon-
strates that speculative decoding can improve both latency and throughput when caches are managed
carefully (Sadhukhan et al., 2024). EAGLE-3 paper (Li et al., 2025) also provides analysis on large
batch size acceleration.

3 THEORETICAL ANALYSIS

In this section, we present a complexity-theoretic analysis of speculative decoding with tree attention
and examine the potential for theoretical acceleration in speculative decoding methods.

3.1 SPECULATIVE DECODING

Model-based speculative decoding employs an auxiliary draft model, also referred to as a speculator.
In each forward pass, the draft model generates multiple candidate tokens predicting the continuation
of the output sequence. These tokens are then validated in parallel by the main model within a
single forward pass. If the predictions are confirmed, multiple tokens can be committed in a single
inference step. The degree of alignment between the predicted tokens and the true continuation
directly determines the speedup achieved.

The depth of speculation influences the cost of the drafting stage. For model-based approaches, this
cost scales linearly with the depth of speculation, as it requires one call to the draft model.

As shown in Leviathan et al. (2023), using the draft token acceptance probability α, the expected
acceptance length for a single-branch draft sequence of length γ is

E(γ, α) = E [acceptance length] =
1− αγ+1

1− α
. (1)

Sadhukhan et al. Sadhukhan et al. (2024) extend this analysis to batched inference. Let TV (γ,B, S)
denote the time required for the base model to verify γ draft tokens with batch size B and KV-cache
size S, and let TD(B,S) denote the time to generate one draft token under the same conditions.
Then, the time for a single decoding step is

TSD(γ,B, S) = γ · TD(B,S) + TV (γ,B, S). (2)
The corresponding average acceleration relative to autoregressive decoding is

E(γ, α) · TAR

TSD(γ,B, S)
=

1− αγ+1

1− α
· TAR

γ · TD(B,S) + TV (γ,B, S)
.

Optimizing over γ yields the optimal number of draft tokens. This formulation, however, applies
only to single-branch decoding with a draft model. Our analysis generalizes this framework to (1)
tree-structured decoding and (2) heterogeneous draft tokens obtained from multiple sources. In the
following sections, we formalize heterogeneous tree-structured speculative decoding and establish a
theorem on the optimal tree structure for acceleration.

3.2 TREE DECODING

Tree decoding (Miao et al., 2024; Sun et al., 2023) augments model-based speculative decoding
by expanding multiple plausible continuations per step. The speculator proposes several high-
probability tokens at each node, forming a decoding tree; the base model then verifies all proposed

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

tokens in parallel. This increases the expected acceptance length and mitigates memory stalls by
processing the tree jointly. We also consider decoding mask M ∈ {0, 1}γ×γ , with Mij = 1 iff node
i is an ancestor of node j, is consistent across the batch.

Let b be the batch size, γ the tree size (speculative length), s the KV-cache length, and h the hidden
dimension. We measure cost in FLOPs and memory reads.

Computing Q,K, V for the γ new tokens (and the output Y) requires

Θ(bγh2) FLOPs, Θ(bγh+ h2) reads.

Scaled dot-product attention over the γ queries against s+ γ keys/values requires

Θ(bhγ(γ + s)) FLOPs, Θ(bh(γ + s)) reads.

The FLOPs/read ratio is Θ(h) = O(1) for Q,K, V and Y , hence these stages remain memory-bound
(for fixed h). For attention it is Θ(γ), so as γ grows the computation dominates. Consequently, in-
creasing γ is effectively free while inference is memory-bound; beyond the compute-bound regime,
γ should be increased only if the expected acceptance length grows faster than the attention compute,
i.e., faster than Θ(γ).

3.3 OPTIMAL TREE-STRUCTURED HETEROGENEOUS SPECULATIVE DECODING

Tree-structured drafting is widely used in speculative decoding but tends to push verification into
the compute-bound regime; consequently, adding low-acceptance tokens can reduce throughput.
We analyze heterogeneous trees in which tokens may be proposed by different mechanisms (model-
based, self-speculative, search-based), each with its own generation cost.

Fix a rooted tree T with |T | nodes. For node i at depth d(i), let

αi = Pr
(
X1:d(i) = prefix(i)

)
be its acceptance frequency (cumulative prefix probability). Equivalently, αi is the limiting em-
pirical frequency with which node i is accepted if verification is repeated over i.i.d. draws. For
simplicity of the following derivation, we also use α0 = 1 is the acceptance rate of the root token
(which is generated by the base model). These rates depend on the tree structure T , dataset and base
model’s output distribution.
Lemma 1 (Tree-structured expected accepted length). The expected number of accepted speculative
tokens when verifying against T is

E(T) =

|T |∑
i=0

αi.

This expression does not depend on node depths beyond their role in determining αi. When T is
a single branch of length γ, Lemma 1 reduces to the single-branch formula (Equation (1)), up to
whether the depth-0 root is counted in the acceptance length.

Different drafting mechanisms incur different costs. We model these via per-node generation times.
In practice, one of the following obtains:

1. Layerwise: a single forward pass generates an entire depth layer l (cost tl1);
2. Treewise: a single forward pass generates the entire tree (cost t2);
3. Nodewise: each node is generated individually (cost ti3 for node i).

To unify these cases, we define an effective per-node time ti ≥ 0 by apportioning layerwise or
treewise costs to nodes (e.g., divide tl1 equally among nodes in layer l, and divide t2 equally among
all nodes). This yields the following lemma.
Lemma 2 (Drafting time). With effective per-node times {ti}i∈T , the total drafting time is

TD(T) =

|T |∑
i=1

ti.

Formal justification of this reduction, along with illustrative scheme, is provided in Section C.2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Let TV (T) denote the verification time for tree T . While TV (T) scales linearly (see Section 3.2)
with |T | under fixed architecture, its constants are hardware dependent. Combining Lemmas 1 and 2
we can formulate the following theorem:
Theorem 1. An optimal tree structure solves

T ∗ ∈ argmax
T — rooted tree

 |T |∑
i=0

αi

 ·
 |T |∑

i=1

ti + TV (T)

−1

. (3)

Proof is deferred to Section C.3. This objective immediately implies that nodes with large ratios
ti/αi harm acceleration and should be pruned, subject to the interaction captured by TV (T). In
Section F we provide a simple constructive algorithm for tree selection based on this criterion.
When a closed-form or empirically calibrated model for TV (T) is available, the optimization can be
evaluated accurately for a given hardware stack.

4 METHOD

In this section, we introduce READER, a speculative decoding algorithm, based on the heteroge-
neous draft tree, which has optimal structure and optimized KV Cache serving strategy. Firstly, we
provide the theoretical analysis of the draft model predictive ability and search-based theoretical
upper-bounds.

4.1 ACCEPTANCE LENGTH OF HETEROGENEOUS TOKENS

We study the average acceptance length—the number of consecutive draft tokens accepted per for-
ward pass—in model-based speculative decoding. We also introduce a self-repetitiveness metric for
natural text that provides a theoretical upper bound on the acceptance length achievable by search-
derived tokens.

We begin by measuring acceptance statistics for the draft model on GSM (mathematics) (Cobbe
et al., 2021) and HumanEval (coding) (Chen et al., 2021). Figure 1 reports the distribution of
accepted tokens per forward pass for Llama-3.1-8B-Instruct (Grattafiori et al., 2024) using the
EAGLE-3 speculative method. We set the draft tree depth to 8 and the total number of draft to-
kens to 60, with batch size 1 on an 8B LLM. In approximately 30% of forward passes, the verifier
accepts the maximum number of draft tokens.

1 2 3 4 5 6 7 8 9
Acceptance length

0.0

0.1

0.2

Fr
eq

ue
nc

y

HumanEval

1 2 3 4 5 6 7 8 9
Acceptance length

0.0

0.2

GSM

Figure 1: Acceptance length distribution for HumanEval (left) and GSM (right) datasets

READER’s draft tree also includes search-based tokens. Because these tokens exploit repetitions
in the target text, more repetition leads to faster inference. We are particularly interested in long
repetitions: short repeats are typically captured by the draft model (as shown above), whereas long
repeats are where search contributes most. This phenomenon appears in both human-written and
model-generated natural text, and it is especially relevant for code generation—one of the most
important LLM applications.

To quantify how repetitions accelerate inference, we define the following metric. Given a tokenized
input (prompt) and a pre-generated response, apply:

1. Place a pointer at the start of the response.
2. Find the longest substring beginning at the pointer that also appears in the input or in the

already-processed prefix of the response.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Dataset W/o DS W/ DS

Magpie-Qwen2.5-Coder 1.38 1.90
Magpie-R1-Llama-70B 2.86 3.54
Hagrid (RAG) 10.32 —

Table 1: Self-repetition metric for different datasets (W/o DS: without datastore; W/ DS: with datas-
tore, consisting of 100 responses that are not used for metric calculation. This datastore can be built
online by appending generated responses)

3. If no continuation is found (length zero), advance the pointer by one token; otherwise,
advance it by the continuation length.

The metric equals the total number of response tokens divided by the number of pointer advances.
This value matches the average acceptance length of speculative decoding with an infinite decoding
tree that indexes all previously seen history. In practice, inference can further benefit from a large
external datastore of tokens drawn from other prompts, which speeds up common phrases.

Table 1 reports this metric on several datasets with generated answers—coding, chain-of-thought
(Xu et al., 2024), and RAG (Kamalloo et al., 2023). The results indicate that for tasks such as rea-
soning and RAG, where repetitions are frequent, our approach can substantially accelerate existing
speculative decoding methods.

4.2 READER

Our approach accelerates speculative decoding by constructing a heterogeneous draft tree that blends
search- (retrieval-) derived tokens with tokens proposed by a draft model. Building on the theoretical
foundations, we empirically identify effective tree shapes and techniques that raise the quality of
drafted tokens.

For the short-term context, we maintain a trie that supports:
1. inserting a sequence S in O(|S|) time;
2. searching for a sequence S in O(|S|) time.

During decoding, the trie is populated with the input prompt, self-generated tokens, and (optionally)
external text. To build the draft tree, we take a suffix S of the generated tokens, descend the trie
with S, and extract a subtree of a prescribed shape. The suffix length is a hyperparameter. If S is
not present, we drop its first token and retry.

A common extraction strategy fixes both a maximum depth and a maximum token budget, then
performs a depth-first traversal subject to these limits. To improve acceptance length, trie nodes are
sorted by continuation frequency so that high-frequency successors are explored first.

To capture long-term context, we augment the system with a large auxiliary datastore comprising
many responses, ideally produced by the base model. A trie is impractical here due to memory
growth at scale. Because this datastore is static at inference time, we index it with a suffix array.
Lookups reduce to binary search over prefixes since the array stores substrings in lexicographic
order. To ensure broad task coverage, the datastore mixes texts from diverse sources; we use the
Magpie dataset in our experiments. The resulting index fits in RAM and remains under 1GB.

Unlike purely model-based drafting, the wall-clock time of our drafting stage depends only on the
size of the produced tree. Trie and suffix-array queries run on CPU and can proceed in parallel with
the model-based speculator. Moreover, each sample in a batch searches independently, enabling
per-sample multithreading. With multithreading, search latency is effectively determined by the
final tree size. Because statistical search is substantially faster than draft-model calls, the overall
drafting time is dominated by the latter.

Draft Tree Widening. We widen the draft model’s proposal by attaching a single retrieval-driven
path to the root of the draft tree. Suppose the draft model emits a fixed-shape tree of depth ddraft.
In parallel, we build a deterministic path of depth dsearch (often dsearch ≫ ddraft) via search over the
datastore and trie keyed by the current context suffix S. At each level, candidate continuations are
ranked by datastore frequency; we append the top continuation and proceed.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

he

runs was

3 very a the

times km

a

runs

3

kms

3

times

a

week

Tokens generated by
a draft model

Statistically found
predictionthenand

Already generated tokens (suffix)

(2a) Appending a branch to the draft model tree.
If both the branch and the tree have fixed struc-
tures, the resulting tree will also maintain a fixed
structure. For maximum acceleration, the branch
obtained from statistical search should be signifi-
cantly deeper than the draft model tree.

Already generated tokens (suffix)

sitting

on at

the a home

is

my

friend

the

chair

and

He

Tokens generated
by a draft model

Tree deepening
with new tokens

(2b) An example of deepening the first branch of
the draft model tree using statistical search. In this
case, the generated tokens are “He” and “is” (the
root token in the draft model corresponds to the last
accepted token). First, the algorithm runs the draft
model to generate the draft tree. We then attempt
to extend the branch “sitting on” by performing a
one-branch search using the tokens “He”, “is”, “sit-
ting”, “on”.

This attachment preserves a fixed per-sample tree shape, enabling efficient batching, while exploit-
ing: (i) the low marginal cost of CPU-side, parallelizable search, which supports a much deeper
branch with negligible latency; and (ii) increased token diversity—search-derived tokens frequently
differ from the draft model’s proposals, expanding the candidate set and improving acceptance.

Empirically, adding multiple search branches increases verifier load without improving accepted
length; therefore we attach exactly one deep branch (see Figure 2a).

Draft Tree Deepening. We also deepen the tree by using draft-model tokens to seed search. Con-
cretely, we take a suffix of the generated sequence together with a prefix from a draft-model branch,
then search for continuations of this combined sequence. We attach only a single resulting branch,
as using multiple branches yielded no measurable gains in our experiments. The new branch is ap-
pended to the node where the search was initiated (illustrated in Figure 2b). Unlike widening, some
appended tokens may go unverified if the draft prefix is later rejected by the base model. As before,
we avoid merging intersecting tokens to preserve a fixed tree shape. This deepening is particularly
effective at smaller batch sizes, where allocating a larger decoding tree is computationally feasible.

Lossless Decoding. We formalize that READER is lossless with respect to the base model’s de-
coding policy. Intuitively, READER never alters the distribution — or, in the deterministic case, the
exact identity — of the generated sequence; it only reduces the number of verifier calls. The proof
of this can be found in Section D.

4.3 KV CACHE REARRANGEMENT

The methods above operate efficiently when KV cache movement is not the limiting factor — for
7-8B models this typically holds up to batch size 8. For larger batches, however, naive KV layout
with per-prompt padding introduces avoidable memory traffic: when statistical search proposes a
long accepted span, that span must be appended to the cache while other prompts are padded with
zeros to match the new maximum length (see Figure 3a). In practice, most verification tokens come

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

from the draft model, but intermittently the search path yields long acceptances, which increases the
average acceptance length and, under padding, inflates the transient cache footprint.

This effect amplifies with batch size. Let p be the probability that statistical search produces a long
accepted span in a step, and b the batch size. The probability that at least one prompt extends by a
long span in that step is 1− (1− p)b, which rises rapidly with b. Thus, without care, larger batches
induce disproportionately more padding and superfluous KV transfers.

We address this with a periodic KV cache rearrangement pass every N -th decoding step: for
each prompt, we remove internal zero-padding and tightly concatenate non-zero entries, produc-
ing a compact, contiguous layout (Figure 3b). The hyperparameter N trades compaction overhead
against padding accumulation: too small N adds unnecessary maintenance work; too large N al-
lows padding to grow. In our experiments we set N = 25, though the optimal value is hardware-
dependent. Our strategy makes the KV cache overhead sublinear, compared to the sequence length.

Combining the widening and deepening strategies increases the total number of draft-tree nodes, yet
with rearrangement the wall-clock time of draft generation remains comparable to a purely model-
based speculator.

Pseudocode for the READER method can be found in Section B.

Prompts Step 1 Step 2 Step 3

(3a) An example of the KV cache structure during inference
with the READER algorithm. Batch size = 8. Purple denotes
tokens from the input. Green denotes tokens from the draft
model, and blue denotes tokens from statistical search. White
spaces are zeros. Horizontal lines represent the KV caches
for each of the 8 prompts. In step 1, all accepted tokens are
generated by the draft model. In step 2, the base model ac-
cepts long sequences for prompts 3 and 7. The same occurs
for prompt 6 in step 3. When the base model accepts a large
sequence, the KV cache fills with many auxiliary zeros.

Prompts Concatenated KVs

(3b) After rearranging, zeros may only re-
main at the end of the prompts. Total KV
cache size is decreased.

5 EXPERIMENTS

5.1 SETUP

We evaluate READER across multiple LLMs, datasets, and batch sizes. Our external datastore is a
suffix array built from the Magpie corpus (Xu et al., 2024), with no overlap with any evaluation set.
Datastore and trie lookups run on CPU in parallel with the draft model; because these lookups finish
well before the draft model call, they do not increase the end-to-end drafting time.

Experiments are conducted on Llama2-7B (Touvron et al., 2023), Llama3.1-8B (Grattafiori et al.,
2024) and Vicuna-7B (Chiang et al., 2023) using the GSM (Cobbe et al., 2021) dataset for mathe-
matical reasoning, HumanEval (Chen et al., 2021) for code generation and MT-Bench (Zheng et al.,
2023) for general prompts. Results are presented in Table 2. Test results for sampling inference
(temperature 1) are presented in Section E. We employ an optimized tree structure obtained via a
search-based optimization algorithm, detailed in Section F. The resulting tree structures are also
included in Section G.

We further evaluate READER on a RAG task using the hagrid dataset (Kamalloo et al., 2023), where
the model must find the correct answer in a given context. Speculative decoding typically achieves
high acceleration on such tasks, as the draft model can easily predict the continuation by copying
some parts of the text from the prompt. However, model-based approaches are constrained by the
number of draft model calls they can afford. In contrast, our method enables the generation of long

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

GSM HumanEval MT-Bench

Model Method Batch size Batch size Batch size
1 8 16 32 1 8 16 32 1 32

– Autoregression 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x

Llama2-7B

Lookahead (Zhao et al., 2024) 1.65x 1.61x 1.53x 1.38x 2.03x 1.94x 1.56x 1.40x — —
Search + datastore (ours) 2.91x 2.66x 2.71x 2.31x 3.27x 3.13x 2.70x 2.25x — —
EAGLE (Li et al., 2024a) 2.71x 2.50x 2.51x 1.82x 3.16x 3.00x 2.79x 1.84x 2.58x 1.60x
EAGLE (opt. tree) 3.02x 2.84x 2.77x 2.28x 3.58x 3.40x 2.97x 2.23x — —
READER (EAGLE backend) 3.94x 3.63x 3.25x 2.66x 4.30x 4.18x 3.56x 2.65x 3.32x 2.29x

Vicuna-7B EAGLE 2.61x 2.43x 2.35x 2.10x 3.30x 3.13x 2.65x 2.01x 2.52x —
REST He et al. (2024) — — — — — — — — 1.69x∗ —
READER (EAGLE backend) 3.09x 2.97x 2.89x 2.56x 4.24x 3.95x 3.26x 2.37x 2.76x —

Llama3.1-8B EAGLE-3 4.42x 4.35x 4.05x 3.42x 4.90x 4.80x 4.46x 3.77x 4.36x 3.25x
READER (EAGLE-3 backend) 5.02x 4.92x 4.43x 3.99x 6.13x 5.92x 5.21x 4.34x 4.97x 3.67x

Table 2: Speedup ratio vs. autoregressive decoding (temperature 0) on GSM, HumanEval, and MT-
Bench (BS 1 and 32). EAGLE (opt. tree) is an original EAGLE algorithm with tree structure
optimized by our method. ∗Taken from the open-source paper.

continuations at almost no additional cost, resulting in a significantly higher average acceptance
length and improved acceleration. Detailed results are provided in Table 3.

Table 3: Test results on the hagrid dataset for RAG tasks. All tests were run with a batch size 1 and
Llama3.1-8B model.

Method Speedup Avg. Acceptance Length

Autoregression 1.00x 1.00
EAGLE-3 5.31x 6.7
READER 10.24x 14.03

5.2 ABLATION STUDY

We assess the contribution of each component of READER on GSM, HumanEval, and MT-Bench.

• Tree Optimization. Search-based adjustment of the draft tree improves throughput by
∼10% for batch sizes 8-16 and up to ∼23% at batch size 32.

• Statistical Search Branch. Adding one retrieval-driven branch yields the largest gain
(∼20% on average), with the strongest effect at small batches where expansion is inex-
pensive.

• Tree Deepening. Seeding search from draft-model prefixes provides modest improvements
(∼5% at batch size 8) and is enabled only for small-batch inference.

• KV Cache Rearrangement. Periodic compaction (every 25 steps for batch size 32, every 50
for size 16) lowers generation time by ∼7-8%.

6 CONCLUSION

This paper introduces READER, a lossless speculative decoding framework that recasts specula-
tive decoding as a stochastic tree-construction problem and instantiates a retrieval-assisted drafter
to realize this formulation in practice without additional training. Our complexity-theoretic analysis
delineates the optimality frontier under bounded computation and memory, and we further present
a memory-optimal KV cache serving strategy that guarantees amortized sublinear overhead in the
batch dimension. READER preserves exact output equivalence while achieving up to 6.13x wall-
clock speedup on single-prompt inference and up to 5.92x in batched settings, with more than 10x
gains on RAG pipelines. By exploiting the empirical redundancy of natural language through a
theoretically grounded draft-tree design, READER closes a key gap between the parallelism limits
suggested by theory and practical LLM inference, pointing to a new standard for efficient deploy-
ment.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

The comprehensive description with a pseudocode of READER can be found in Sections B and 4.

REFERENCES

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. In
Proceedings of the 41st International Conference on Machine Learning, ICML’24. JMLR.org,
2024. URL https://dl.acm.org/doi/10.5555/3692070.3692273.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and
John Jumper. Accelerating large language model decoding with speculative sampling. CoRR,
abs/2302.01318, 2023. doi: 10.48550/ARXIV.2302.01318. URL https://doi.org/10.
48550/arXiv.2302.01318.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. 2021.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Jacob K Christopher, Brian R Bartoldson, Tal Ben-Nun, Michael Cardei, Bhavya Kailkhura, and
Ferdinando Fioretto. Speculative diffusion decoding: Accelerating language generation through
diffusion. arXiv preprint arXiv:2408.05636, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344–16359, 2022.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix multi-
plication for transformers at scale, 2022. URL https://arxiv.org/abs/2208.07339.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International conference on machine learning, pp. 10323–10337. PMLR, 2023.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm infer-
ence using lookahead decoding. arXiv preprint arXiv:2402.02057, 2024.

Jacob Gardner, Matt Kusner, Zhixiang, Kilian Weinberger, and John Cunningham. Bayesian
optimization with inequality constraints. In Eric P. Xing and Tony Jebara (eds.), Proceed-
ings of the 31st International Conference on Machine Learning, volume 32 of Proceedings
of Machine Learning Research, pp. 937–945, Bejing, China, 22–24 Jun 2014. PMLR. URL
https://proceedings.mlr.press/v32/gardner14.html.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

10

https://dl.acm.org/doi/10.5555/3692070.3692273
https://doi.org/10.48550/arXiv.2302.01318
https://doi.org/10.48550/arXiv.2302.01318
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2208.07339
https://proceedings.mlr.press/v32/gardner14.html
https://arxiv.org/abs/2501.12948

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason Lee, and Di He. REST: Retrieval-based speculative
decoding. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 1582–1595, Mexico City, Mexico,
June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.88.
URL https://aclanthology.org/2024.naacl-long.88/.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card, 2024. URL
https://arxiv.org/abs/2412.16720.

Ehsan Kamalloo, Aref Jafari, Xinyu Zhang, Nandan Thakur, and Jimmy Lin. Hagrid: A human-llm
collaborative dataset for generative information-seeking with attribution, 2023. URL https:
//arxiv.org/abs/2307.16883.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems princi-
ples, pp. 611–626, 2023.

Jiedong Lang, Zhehao Guo, and Shuyu Huang. A comprehensive study on quantization tech-
niques for large language models. In 2024 4th International Conference on Artificial Intelligence,
Robotics, and Communication (ICAIRC), pp. 224–231. IEEE, 2024.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via spec-
ulative decoding. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engel-
hardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Con-
ference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp. 19274–19286. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/
v202/leviathan23a.html.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative sampling requires
rethinking feature uncertainty. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian
Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st
International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 28935–28948. PMLR, 21–27 Jul 2024a. URL https://proceedings.mlr.
press/v235/li24bt.html.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-2: Faster inference of lan-
guage models with dynamic draft trees. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
(eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 7421–7432, Miami, Florida, USA, November 2024b. Association for Computational
Linguistics. doi: 10.18653/v1/2024.emnlp-main.422. URL https://aclanthology.org/
2024.emnlp-main.422/.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-3: Scaling up inference
acceleration of large language models via training-time test, 2025. URL https://arxiv.
org/abs/2503.01840.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of machine learning and systems,
6:87–100, 2024.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chunan Shi, Zhuoming Chen, Daiyaan
Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating large language model serv-
ing with tree-based speculative inference and verification. In Proceedings of the 29th ACM In-
ternational Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 3, pp. 932–949. ACM, April 2024. doi: 10.1145/3620666.3651335. URL
http://dx.doi.org/10.1145/3620666.3651335.

11

https://aclanthology.org/2024.naacl-long.88/
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2307.16883
https://arxiv.org/abs/2307.16883
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v235/li24bt.html
https://proceedings.mlr.press/v235/li24bt.html
https://aclanthology.org/2024.emnlp-main.422/
https://aclanthology.org/2024.emnlp-main.422/
https://arxiv.org/abs/2503.01840
https://arxiv.org/abs/2503.01840
http://dx.doi.org/10.1145/3620666.3651335

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jie Ou, Yueming Chen, and Prof. Tian. Lossless acceleration of large language model via adaptive n-
gram parallel decoding. In Yi Yang, Aida Davani, Avi Sil, and Anoop Kumar (eds.), Proceedings
of the 2024 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 6: Industry Track), pp. 10–22, Mexico
City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
naacl-industry.2. URL https://aclanthology.org/2024.naacl-industry.2/.

Ranajoy Sadhukhan, Jian Chen, Zhuoming Chen, Vashisth Tiwari, Ruihang Lai, Jinyuan Shi, Ian En-
Hsu Yen, Avner May, Tianqi Chen, and Beidi Chen. Magicdec: Breaking the latency-throughput
tradeoff for long context generation with speculative decoding. arXiv preprint arXiv:2408.11049,
2024.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep au-
toregressive models. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/
paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in NLP. In Anna Korhonen, David Traum, and Lluı́s Màrquez (eds.), Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 3645–3650, Florence,
Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1355. URL
https://aclanthology.org/P19-1355/.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, Felix Yu,
Michael Riley, and Sanjiv Kumar. Spectr: Fast speculative decoding via optimal transport.
In Workshop on Efficient Systems for Foundation Models @ ICML2023, 2023. URL https:
//openreview.net/forum?id=d0mGsaheuT.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models, 2023. URL https://arxiv.org/abs/2307.09288.

Zhuofan Wen, Shangtong Gui, and Yang Feng. Speculative decoding with ctc-based draft model
for llm inference acceleration. Advances in Neural Information Processing Systems, 37:92082–
92100, 2024.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey
of speculative decoding. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of
the Association for Computational Linguistics: ACL 2024, pp. 7655–7671, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.
456. URL https://aclanthology.org/2024.findings-acl.456/.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
conference on machine learning, pp. 38087–38099. PMLR, 2023.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned llms with
nothing. ArXiv, abs/2406.08464, 2024. URL https://api.semanticscholar.org/
CorpusID:270391432.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft
& verify: Lossless large language model acceleration via self-speculative decoding. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 11263–11282,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.607. URL https://aclanthology.org/2024.acl-long.607/.

12

https://aclanthology.org/2024.naacl-industry.2/
https://proceedings.neurips.cc/paper_files/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://aclanthology.org/P19-1355/
https://openreview.net/forum?id=d0mGsaheuT
https://openreview.net/forum?id=d0mGsaheuT
https://arxiv.org/abs/2307.09288
https://aclanthology.org/2024.findings-acl.456/
https://api.semanticscholar.org/CorpusID:270391432
https://api.semanticscholar.org/CorpusID:270391432
https://aclanthology.org/2024.acl-long.607/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan
Guo, Yufei Wang, Niklas Muennighoff, et al. A survey on test-time scaling in large language
models: What, how, where, and how well? arXiv preprint arXiv:2503.24235, 2025.

Yao Zhao, Zhitian Xie, Chen Liang, Chenyi Zhuang, and Jinjie Gu. Lookahead: An inference
acceleration framework for large language model with lossless generation accuracy. In Proceed-
ings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
’24, pp. 6344–6355, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
9798400704901. doi: 10.1145/3637528.3671614. URL https://doi.org/10.1145/
3637528.3671614.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL https://arxiv.org/
abs/2306.05685.

13

https://doi.org/10.1145/3637528.3671614
https://doi.org/10.1145/3637528.3671614
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A USAGE OF LLMS

We used LLMs in our paper for improving readability and better formatting.

B READER PSEUDOCODE

Algorithm 1 READER: Retrieval-Enhanced Drafting for Speculative Decoding
Inputs:
• x — tokenized prompt
• Tshort — short-term trie (prompt + self-generated history + optional external text)
• Dlong — long-term datastore indexed by a suffix array
Parameters:
• Lsuffix — suffix length for search keys
• ddraft — depth of draft-model tree
• dsearch — depth of the (single) retrieval branch for widening
• ddeep — max depth of the (single) deepening branch per step
• Btokens — max token budget per step (fixed shape)
• N — KV-cache rearrangement period
• EOS, Tmax — end conditions
Black boxes:
• SPECULATOR(x, ddraft, Btokens) — proposes a fixed-shape draft tree
• VERIFY(x, tree) — base-model verification; returns accepted prefix ∆
Output: completed sequence y

1: y ← []; t← 0
2: TRIEINSERT(Tshort, x)
3: while t < Tmax and last token of y ̸= EOS do
4: S ← RIGHTSUFFIX(x ∥ y, Lsuffix)
5: tree← SPECULATOR(x ∥ y, ddraft, Btokens)
6: // Widen: attach one deep retrieval-driven branch at root
7: Pwide ← SEARCHPATH(S, dsearch, Tshort,Dlong)
8: ATTACHATROOT(tree, Pwide)
9: // Deepen: seed search from a draft prefix, attach one branch

10: u← PICKDRAFTNODEFORDEEPENING(tree)
11: S′ ← CONCAT

(
S, PREFIXFROMROOT(u)

)
12: Pdeep ← SEARCHPATH(S′, ddeep, Tshort,Dlong)
13: ATTACHATNODE(tree, u, Pdeep)
14: // Verify and accept
15: ∆← VERIFY(x ∥ y, tree) {accepts a contiguous prefix of some path}
16: y ← y ∥∆; t← t+ 1
17: TRIEINSERT(Tshort,∆)
18: if t mod N = 0 then
19: KVCACHEREARRANGE()
20: end if
21: end while
22: return y

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2 SearchPath: CPU-side retrieval over trie + suffix array
Input: suffix S, depth d, structures (Tshort,Dlong)
Output: path P = (t1, . . . , tk) with k ≤ d

1: P ← []; C ← S
2: for i = 1 to d do
3: A← TRIENEXTTOKENS(Tshort, C)
4: B ← SUFFIXARRAYNEXTTOKENS(Dlong, C)
5: L← RANKBYFREQUENCY(A ∪B) {stable sort: higher freq first}
6: if L = ∅ then
7: break
8: end if
9: t⋆ ← L[1] {take top continuation}

10: P ← P ∥ t⋆; C ← C ∥ t⋆
11: end for
12: return P

Algorithm 3 PickDraftNodeForDeepening (fixed-shape friendly)
Input: draft tree tree
Output: node u for deepening

1: u← first node on the leftmost (max-prob) path at depth min(2, ddraft)
2: return u

Algorithm 4 KVCacheRearrange (periodic compaction)

1: for each sample cache KV in batch (in parallel) do
2: KV ← REMOVEINTERNALZEROPADDING(KV)
3: KV ← TIGHTCONCATENATE(KV)
4: end for

Algorithm 5 Verify (standard speculative verification sketch)
Input: context c, heterogeneous tree tree
Output: accepted contiguous token span ∆

1: Expand base model along candidate paths in tree (batched by depth)
2: Compare base logits with drafted tokens; find longest prefix consistent with base
3: return that prefix as ∆ (possibly length 0)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C PROOFS

C.1 PROOF OF LEMMA 1

Proof. For each non-root node i, define the indicator Ii = 1{node i is accepted}. Exactly those
nodes on the verified path are accepted, so the total number of accepted tokens is

N =

t∑
i=1

Ii.

Taking expectations and using linearity,

E[N] =

t∑
i=1

E[Ii] =

t∑
i=1

Pr(Ii = 1).

By definition of αi as the cumulative probability of the node’s prefix, Pr(Ii = 1) = αi. Hence

E[N] =

t∑
i=1

αi.

C.2 PROOF OF LEMMA 2

Proof. Let the node set be V = {1, . . . , t}. In a given speculative-drafting routine, nodes are
produced by (possibly mixed) mechanisms:

(i) Layerwise: for each produced layer l there is a subset Vl ⊆ V of nodes generated by a
single forward pass with cost tl1;

(ii) Treewise: there is a subset Vtw ⊆ V of nodes generated by a single forward pass with cost
t2;

(iii) Nodewise: there is a subset Vnw ⊆ V of nodes generated individually, where node i takes
time ti3.

These subsets form a disjoint partition of V up to the natural indexing by layers: V =
(⊔

l Vl

)
⊔

Vtw ⊔ Vnw.

The true wall-clock drafting time is, by definition of the mechanisms above,

T true
D =

∑
l

tl1 + t2 +
∑

i∈Vnw

ti3.

Define the effective nodewise generation time ti for each node i ∈ V by

ti =


tl1
|Vl|

, i ∈ Vl (layerwise),

t2
|Vtw|

, i ∈ Vtw (treewise),

ti3, i ∈ Vnw (nodewise).

Then summing over all nodes yields

t∑
i=1

ti =
∑
l

∑
i∈Vl

tl1
|Vl|

+
∑
i∈Vtw

t2
|Vtw|

+
∑

i∈Vnw

ti3 =
∑
l

tl1 + t2 +
∑

i∈Vnw

ti3 = T true
D .

Hence the total drafting time equals the sum of the effective nodewise times, which proves

TD

(
T (α1, . . . , αt), t1, . . . , tt

)
=

t∑
i=1

ti.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

This construction shows that type 1 (layerwise) and type 2 (treewise) nodes can be accounted for as
type 3 (nodewise) nodes without changing the total time — simply distribute the cost of each group’s
forward pass uniformly over the nodes it produces. The argument trivially extends to multiple
treewise groups {V (g)

tw }g with costs {t(g)2 }g by replacing t2/|Vtw| with t
(g)
2 /|V (g)

tw | and summing
over g.

The illustration of this lemma is shown in Figure 4.

Type 1 nodes Type 2 nodes Type 3 nodes

Type 3 nodes

Figure 4: Converting type 1 and type 2 nodes into equivalent type 3 generation times.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.3 PROOF OF THEOREM 1

Proof. Fix a rooted decoding tree T with |T | nodes, acceptance frequencies α1, . . . , αt (where
αi = Pr(node i is accepted)), and effective nodewise generation times t1, . . . , t|T |. Consider one
speculative step that (i) drafts the tree T and (ii) verifies it.

Let AT be the random number of tokens accepted in this step, and let CT be the random time spent
in this step (drafting + verification). Running the same procedure repeatedly with the same T , the
long-run throughput (tokens per second) is

throughput(T) = lim
N→∞

∑N
n=1 A

(n)
T∑N

n=1 C
(n)
T

=
E[AT]

E[CT]
,

where the equality follows from the law of large numbers.

By Lemma 1, the expected number of accepted tokens in a single verification of T is

E[AT] = E
(
T
)

=

|T |∑
i=0

αi.

Decompose the step time into drafting and verification:

E[CT] = TD

(
T
)
+ TV (T).

By Lemma 2, the drafting time aggregates nodewise as

TD

(
T
)

=

|T |∑
i=1

ti,

so that

E[CT] =

|T |∑
i=1

ti + TV (T).

Therefore the throughput achieved by T is

E[AT]

E[CT]
=

∑|T |
i=0 αi∑|T |

i=1 ti + TV (T)
=

 |T |∑
i=0

αi

 ·
 |T |∑

i=1

ti + TV (T)

−1

.

Maximizing throughput over all rooted trees T is thus equivalent to solving

T ∗ ∈ argmax
T — rooted tree

 |T |∑
i=0

αi

 ·
 |T |∑

i=1

ti + TV (T)

−1

,

which is exactly the statement of Theorem 1.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D LOSSLESS DECODING OF READER

Let Pθ(· | x<t) denote the base model’s conditional distribution at step t. Let π be the target
decoding policy (e.g., greedy/top-1 with fixed tie-break; or sampling with temperature and top-
p/top-k filtering). Let X1:T be the sequence produced by running the base model alone with policy
π. Let X̂1:T be the sequence produced by READER.

We say that READER is lossless iff:

• for deterministic π (e.g., greedy), pathwise equality holds: X̂1:T = X1:T ;

• for randomized π (e.g., temperature + top-p/k sampling), the laws agree: X̂1:T
d
= X1:T .

READER builds speculative draft trees using any mixture of model proposals and search-derived
continuations (trie/suffix-array/datastore). Correctness requires only the following invariants:

1. The verifier is the same base model Pθ using the same temperature, filtering, and tie-
breaking as π.

2. A token is committed only after explicit verification against Pθ(· | current prefix). Multi-
token acceptance means committing the longest prefix that matches the verifier step-by-
step.

3. Upon the first mismatch, all speculative tokens beyond that point are discarded, and the
next token is obtained by applying π to Pθ at the current prefix.

4. For randomized π, READER uses the same underlying randomness as the base run (for-
malized via coupling below).

Deterministic decoding (greedy/top-1). Assume π(Pθ(· | x<t)) = argmaxy Pθ(y | x<t) with a
fixed tie-break rule.

Theorem (Deterministic losslessness). Under the verification invariants, X̂1:T = X1:T .

Proof. We prove by induction on t that after committing at step t, X̂t = Xt. For t = 1, READER
either accepts a proposed token equal to argmaxPθ(· | ∅) or rejects and falls back to that argmax; in
both cases X̂1 = X1. Assume X̂<t = X<t. By the acceptance rule, READER accepts a proposed
yt only if yt = argmaxy Pθ(y | X<t); otherwise it rejects and commits exactly that argmax. Hence
X̂t = argmaxy Pθ(y | X<t) = Xt. Therefore X̂1:T = X1:T . □

Randomized decoding (sampling). Let π be any randomized policy implementable as a measur-
able map

F :
(
∆|V|−1, [0, 1]

)
→ V such that Xt = F

(
Pθ(· | X<t), Ut

)
,

for i.i.d. uniforms Ut ∼ Unif[0, 1]; this covers temperature scaling, top-p/top-k filtering, and
inverse-CDF sampling (with deterministic tie-breaking on measure-zero boundaries).

Theorem (Randomized losslessness). Couple READER and the base run with the same i.i.d. uni-
forms (Ut)t≥1. Under the verification invariants, X̂1:T and X1:T are equal almost surely, hence

X̂1:T
d
= X1:T .

Proof. Induct on t. Assume X̂<t = X<t. Let x⋆
t := F (Pθ(· | X<t), Ut) be the token the base

policy would emit. READER verifies its speculative draft at prefix X<t. If x⋆
t appears among the

verified candidates at step t, READER commits it. If not, READER discards the speculative step
and falls back to committing F (Pθ(· | X<t), Ut) = x⋆

t . Thus in all cases X̂t = x⋆
t = Xt almost

surely. Therefore the entire sequences coincide almost surely. □

Under the stated invariants, READER commits exactly the tokens that the base model would pro-
duce under π (pathwise for deterministic π; in distribution for randomized π). Hence, READER is
lossless.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E TEST RESULTS WITH SAMPLING

The test results for speculative decoding with sampling with temperature 1 are presented in Table 4.

GSM HumanEval MT-Bench

Model Method Batch size Batch size Batch size
1 8 16 32 1 8 16 32 1 32

– Autoregression 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x

Llama2-7B
EAGLE (Li et al., 2024a) 2.30x 2.07x 2.15x 1.54x 2.59x 2.48x 2.36x 1.52x 2.09x 1.38x
EAGLE (opt. tree) 2.45x 2.32x 2.33x 1.94x 2.87x 2.86x 2.54x 1.90x — —
READER (EAGLE backend) 3.19x 2.99x 2.64x 2.17x 3.56x 3.35x 2.98x 2.19x 2.69x 1.88x

Llama3.1-8B EAGLE-3 3.37x 3.29x 3.21x 2.83x 4.15x 4.04x 3.81x 3.19x 3.02x 2.34x
READER (EAGLE-3 backend) 3.96x 3.91x 3.71x 3.28x 5.17x 4.76x 4.28x 3.57x 3.82x 2.80x

Table 4: Speedup ratio vs. decoding with sampling (temperature 1) on GSM, HumanEval, and MT-
Bench.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F CHOOSING TREE STRUCTURE

Fixed-size draft trees offer simplicity, but the throughput-optimal configuration depends on the base
model, batch size, and hardware characteristics (e.g., KV-cache bandwidth, memory hierarchy, and
compute occupancy). These factors interact nonlinearly, making a closed-form derivation of the
optimal tree size and shape intractable.

We identify tree configurations empirically while guarding against dataset-specific bias. For exam-
ple, code-generation workloads can favor deeper trees than arithmetic reasoning, but such prefer-
ences do not always transfer. We therefore calibrate using a general-purpose benchmark (MT-Bench
(Zheng et al., 2023)) to obtain settings that generalize across tasks.

We begin from an overprovisioned seed tree T0. Running the drafter/verification loop, we estimate
for each node v its acceptance probability α(v), defined as the probability that v contributes to
an ultimately accepted continuation. Empirically and by construction of speculative verification,
descendants have acceptance at most that of their ancestors, i.e.,

α(child) ≤ α(parent).

We exploit this monotonicity by iteratively pruning the n lowest-acceptance leaves to obtain Tn.
This preserves connectivity and ensures Tn remains a valid prefix subtree of T0 at every iteration.

Our goal is to select the pruning level n⋆ that maximizes end-to-end throughput (tokens/sec), ac-
counting for drafting, verification, and KV/cache effects:

n⋆ ∈ argmax
n

throughput(Tn).

We treat throughput as a black-box objective and apply Bayesian optimization (Gardner et al., 2014),
where each benchmarked tree Tn yields a (noisy) observation of the target metric. In practice, the
response curve in n is close to unimodal; when wall-clock budget is tight, a golden-section search
provides a lightweight alternative with comparable solutions.

A schematic of one pruning iteration—estimating per-node acceptance and removing the lowest-
acceptance leaves—is shown in Figure 5.

G DECODING TREE STRUCTURES

This subsection presents the tree structures used for the Llama2-7B test results in the paper.

For a batch size of 8, the tree structure is shown in Figure 6, which incorporates both the statistical
search branch and tree deepening methods.

For batch sizes 16 and 32, the corresponding tree structures are shown in Figures 7 and 8, respec-
tively. For these batch sizes, only the statistical search branch is applied in the decoding trees.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

1.0

0.8 0.12 0.03 0.01

0.6 0.1 0.02 0.05 0.02 0.01

0.5 0.05 0.03 0.05

0.4 0.05 0.02 0.01

0.01 0.01 0.02

0.00

0.0

Take default tree

Calculate frequencies

Find optimal threshold

Remove tokens with
frequency < threshold

Threshold = 0.025

1.0

0.8 0.12 0.03

0.6 0.1 0.05

0.5 0.05 0.03 0.05

0.4 0.05

Resulting tree

Figure 5: An example of the tree structure determination workflow. The process begins with a
benchmark on an excessively large tree to obtain node acceptance rates. Subsequently, subtrees with
acceptance probabilities below a threshold are removed.

ROOT

x20

x14

Figure 6: Decoding tree structure for batch size 8.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

ROOT

x14

Figure 7: Decoding tree structure for batch size 16.

ROOT

x8

Figure 8: Decoding tree structure for batch size 32.

23

	Introduction
	Related Work
	Theoretical Analysis
	Speculative Decoding
	Tree Decoding
	Optimal Tree-Structured Heterogeneous Speculative Decoding

	Method
	Acceptance Length of Heterogeneous Tokens
	READER
	KV Cache Rearrangement

	Experiments
	Setup
	Ablation Study

	Conclusion
	Reproducibility Statement
	Usage of LLMs
	READER pseudocode
	Proofs
	Proof of lemm:1
	Proof of lemm:2
	Proof of thm:1

	Lossless Decoding of READER
	Test Results with Sampling
	Choosing Tree Structure
	Decoding Tree Structures

