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Abstract

Recent advances in Visual Language Models (VLMs) have demonstrated excep-
tional performance in visual reasoning tasks. However, geo-localization presents
unique challenges, requiring the extraction of multigranular visual cues from im-
ages and their integration with external world knowledge for systematic reasoning.
Current approaches to geo-localization tasks often lack robust reasoning mecha-
nisms and explainability, limiting their effectiveness. To address these limitations,
we propose the Geo Reason Enhancement (GRE) Suite, a novel framework that
augments VLMs with structured reasoning chains for accurate and interpretable
location inference. The GRE Suite is systematically developed across three key
dimensions: dataset, model, and benchmark. First, we introduce GRE30K, a
high-quality geo-localization reasoning dataset designed to facilitate fine-grained
visual and contextual analysis. Next, we present the GRE model, which employs a
multi-stage reasoning strategy to progressively infer scene attributes, local details,
and semantic features, thereby narrowing down potential geographic regions with
enhanced precision. Finally, we construct the Geo Reason Evaluation Benchmark
(GREval-Bench), a comprehensive evaluation framework that assesses VLMs
across diverse urban, natural, and landmark scenes to measure both coarse-grained
(e.g., country, continent) and fine-grained (e.g., city, street) localization perfor-
mance. Experimental results demonstrate that GRE significantly outperforms
existing methods across all granularities of geo-localization tasks, underscoring the
efficacy of reasoning-augmented VLMs in complex geographic inference. Code
and data will be released at https://github.com/Thorin215/GRE.

1 Introduction

Worldwide image geo-localization [40, |58]] aims to predict the geographical coordinates of the
shooting location based on any given photo taken anywhere on Earth. Unlike geo-localization within
specific regions [25, 136152, global geo-localization, unrestricted to any specific region but covering
the entire Earth, greatly unleashes the potential of geo-localization, which has significant applications
across multiple domains, such as autonomous driving system positioning, social media image geo-
tagging, and cultural heritage preservation. However, precise global-scale image geo-localization still
faces substantial technical challenges due to the vast diversity of global geographical environments,
visual ambiguity between similar locations, and the variability of shooting conditions including
weather patterns, seasonal changes, and lighting conditions.

Geo-localization requires predicting the geographic coordinates of a photograph solely from the
ground-view image. Extracting general geographical visual semantics is insufficient for the task, as
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Figure 1: Performance comparison of our reasoning-based GRE versus traditional alignment-based
approaches and MLLM baselines on image geo-localization.

two distant locations could potentially share similar image-level features. Instead, models need to
identify and reason with geographically relevant visual elements from complex visual information.
As illustrated in Fig. [T} when inferring the target location - San Diego Convention Center, the model
is expected to jointly leverage explicit indicators such as the “white sail” roof design and implicit
indicators such as flat terrain. However, existing approaches [21,57] rely on data-driven cross-modal
alignment strategies, which establish correspondences through large-scale annotated image-GPS
pairs while neglecting the inherent logical relationships among fine-grained geographical indicators
within images. In addition, models need to predict geographic coordinates for images captured at
any location in the world. However, existing methods based on closed-domain assumptions either
maintain a candidate database of GPS coordinates [21}87] or images [32, 156161} 163} 190, or divide the
entire geographical space into fixed grids for classification purposes [8, 19,135,140} 57, compromising
the continuity of coordinate prediction. Thus, it is essential for image geo-localization models to
possess the ability to predict open-ended coordinates without relying on candidate information, a
feature that current methods inadequately address.

Recently, DeepSeek-R1 [12] has successfully applied Reinforcement Learning (RL) to induce the
self-emergence of complex cognitive reasoning ability in LLMs. Image geolocalization is inherently
a multi-step cognitive process that requires progressive reasoning - from identifying visual cues in
images, to inferring geographical correlations among these cues, and ultimately determining specific
locations. This progressive reasoning process aligns naturally with the sequential decision-making
characteristics of RL. Through RL, models can learn to formulate optimal reasoning strategies
based on identified visual features, gradually narrowing down potential geographical regions, and
ultimately arriving at accurate location predictions, rather than simply relying on pre-established
image-GPS correspondences. Unfortunately, this direct RL training is challenged, as it struggles to
effectively guide MLLMs generating complex CoT reasoning in absence of large-scale, high-quality
multimodal data and prolonged training [17]. What’s more, fine-grained analysis of intermediate
reasoning processes has proved beneficial for both evaluating and further improving models’ reasoning
capabilities [22,165]]. However, existing image geo-localization benchmarks [} [13]] focus solely on
terminal prediction accuracy while ignoring reasoning quality assessment.

To address the aforementioned challenges, we propose Geo Reason Enhancement (GRE), a novel
reasoning solution that integrates cold-start supervised fine-tuning and two-stage reinforcement
learning training for worldwide image geolocalization. To facilitate the training process, we establish
a geography reasoning dataset GRE30k by leveraging 03 to generate chain-of-thought demonstrations
for geography seed questions. Our curated GRE30K consists of two sub-datasets: GRE30K-CoT,
which contains format-standardized CoT content and answers refined through annotator filtering,
and GRE30K-Judge, which comprises reasoning chain judgment tasks constructed through regular
expression matching. GRE30k-CoT serves as a cold start dataset to establish basic reasoning
capabilities of the base model. Then, we need to apply two-stage Group Relative Policy Optimization
(GRPO) [12/45] on a GRE30K-Judge and seed questions to enhance the model’s reasoning capability.
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Figure 2: Summary of current image geo-localization model architectures.

Furthermore, to rigorously assess models’ ability to leverage geographical visual cues for geo-
localization and evaluate the quality of their reasoning chains, we develop a benchmark named Geo
Reason Evaluation Benchmark (GREval-Bench). Specifically, we design an automated pipeline to
filter images containing geographical indicators and provide each image with a corpus of explicit and
implicit geographical identifiers along with high-quality CoT annotations. We summarize the key
contributions of our work as follows:

» We present GRE, a novel reasoning solution for the worldwide image geo-localization task. Our
proposed methodology integrates cold-start initialization with a two-stage reinforcement learning
training paradigm to effectively leverage geographical indicators within images and enable open-
ended geolocalization.

* We introduce GER30K, comprising a high-quality CoT dataset and a judgement task dataset. We
anticipate the dataset will benefit more future work for location-aware visual reasoning.

 Furthermore, to comprehensively evaluate the image geo-localization capability of the models,
we develop GREval-Bench, consisting of higher quality images, CoT quality assessments, and a
corpus of geographic indicators.

2 Related Work

Image Geo-localization. Image Geo-localization is an important task in computer vision [91-
93]l, spatial data mining [82], and GeoAl [83]. As shown in Fig. 2| previous work in image
geo-localization can be divided into four main modes: classification mode, retrieval mode, prior
knowledge mode and RAG mode. (1) Retrieval mode treat the image geo-localization task as a
retrieval problem, typically maintaining a database of images [32, 156, 161,163} 189, 90] or a gallery of
GPS coordinates [S7]]. They take the most similar images and GPS coordinates to the query image as
the predicted values. However, maintaining a global-level image database or GPS gallery is infeasible.
(2) Classification mode [8}, [35] 140l 1441 |58 |60] divide the entire earth into multiple grid cells and
assign the center coordinates as predicted values. Models are then trained to classify the input image
into the correct cell. However, if the actual location of the image is far from the center of the predicted
cell, there can still be significant errors, even if the cell prediction is correct. (3) Prior Knowledge
mode approaches [57]] incorporate higher-level geographical information, such as continental-scale
priors, to enhance performance. Nevertheless, this approach essentially provides partial solutions,
contradicting the fundamental purpose of the task. (4) RAG mode [21} [87] leverage large language
models by retrieving relevant image-GPS pairs as references to optimize predictions. While there
are also some tries based on diffusion method like Around the World [11], with application of flow
matching and diffusion [[16, 28| |47, [78| 180, [81] . However, these approaches rely on establishing
large-scale aligned databases. In contrast to existing global image geo-localization approaches,
we propose a reasoning-based methodology that leverages both explicit and implicit geographical
indicators within images to predict open-ended coordinate prediction. Recent advances in MLLMs
have enabled novel approaches leveraging their reasoning capabilities for geographic inference.
While some works [10} 27, 55]employ explicit reasoning chains, they lack systematic evaluation of
reasoning quality. Complementary work has developed datasets [2,49] and reinforcement learning
frameworks [55]] to enhance human-like geospatial reasoning.

Vision Language Models (VLMs). Models in the vein of GPT-4o0 [37]] achieve excellent visual
understanding ability by integrating both visual and textual data. This integration enhances the models’
ability to understand complex multi-modal inputs and enables more advanced Al systems [26), 29,
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Figure 3: Overview of our GRE framework. The geographical reasoning pipeline begins with data
preparation, incorporating automated CoT generation, regular expression matching, and manual
filtering. Based on our constructed GRE30K dataset, we employ a post-training procedure that
consists of supervised fine-tuning to learn reasoning patterns, followed by two-stage rule-based
reinforcement learning to enhance image geo-localization reasoning capabilities.

59, [75]] capable of processing and responding to both images and text. Generally, the training of
LVLMs involves two steps: (a) pre-training and (b) post-training which contains supervised fine-
tuning and reinforcement learning. Post-training is crucial in improving the model’s response quality,
instruction following, and reasoning abilities. While there has been significant research on using
reinforcement learning to enhance LLMs during post-training [1} 15,139,142, 146} 50, 1511166 [72} 85 194]],
the progress for LVLMs has been slower. In this paper, we propose GRE-RL, which used GRPO-
based reinforcement algorithms and verifiable reward during the post-training phase to enhance the
model’s visual perception and reasoning capabilities.

Reinforcement Learning. Recently, with the emergence of reasoning models like OpenAI’s ol [20]
and Deepseek-R1 [12]], the research focus in Large Language Models (LLMs) has increasingly
shifted towards enhancing the models’ reasoning capabilities through reinforcement learning (RL)
techniques. Studies have explored improving LLMs’ performance in reasoning tasks such as solving
mathematical problems [4} 34, 45| 62| [70] and coding [18} 23| (741 [79]. A notable breakthrough in
this area is Deepseek-R1-Zero [[12], which introduced a new approach to achieving robust reasoning
capabilities using RL merely, eliminating the supervised fine-tuning (SFT) stage. However, current
research on RL-based reasoning has largely been confined to the language domain, with limited
exploration of its application in multi-modal settings. For LVLMs, RL has primarily been used
for tasks like mitigating hallucinations and aligning models with human preference [33| 148 167
69, [71,[77], 184} 86]. Interpretable visual reasoning, once a longstanding challenge [14], now benefits
from RL-finetuned LVLMs acting as decision agents [7/3]]. Cutting-edge models like Kimi [53]
demonstrate advanced capabilities, with research expanding beyond hallucination mitigation to core
reasoning enhancement. However, there remains a significant gap in research focusing on enhancing
reasoning and visual perception of Large Vision Language Models. To address this gap, our work
uses a novel reinforcement fine-tuning strategy , applying verifiable rewards with GRPO-based [45]
RL to visual geo-localization tasks. Our approach aims to improve the performance of LVLMs in
processing various geo-localization tasks, especially when the high-quality fine-tuning data is limited.

3 Methodology

Fig. Blillustrates the comprehensive reasoning pipeline of GRE. This method begins with a cold-
start using a high-quality geo-localization Chain-of-Thought dataset, which initially teaches the
base model to reason step-by-step following human-like patterns. Subsequently, we apply a two-
stage reinforcement learning training to the cold-start initialized model GRE-CI to guide it towards
adopting the correct geographical reasoning process, thereby enhancing the geo-localization reasoning
capability in the final model GRE.



In the following sections, we first describe our approach to create a high-quality geo-localization
reasoning dataset GRE30K in Section Then we introduce our proposed Post-Training Strategy,
comprising cold-start supervised fine-tuning ( Section[3.2.T)) and two-stage reinforcement learning
training ( Section [3.2.2). Correspondingly, our GRPO-based training strategy and two-stage reward
function design will be described in Section[3.3]

3.1 GRE30K Construction

In this section, we present GRE30K, a geo-localization reasoning dataset designed to enhance the
visual reasoning capability of MLLMs. Specifically, GRE30K consists of GRE30K-CoT for cold-start
Initialization and GRE30K-Judge for reinforcement learning. Examples of the generated data are
provided in Appendix While GWS15k [8] reveals Im2GPS3k [[13]]’s non-uniform distribution
(with landmark repetition risks), our geographic filtering ensures clean evaluation.

Reasoning Process Generation. We make full use of the publicly available dataset MP16-Pro [21]]
with GPS coordinates. However, the source dataset only contains images, coordinates, and discrete
geographical information including the corresponding county and state for each image, which are
insufficient to train an MLLM. Our goal is to construct a CoT dataset that encompasses complex
cognitive processes to facilitate our training strategy, enabling GRE to reason in a manner that closely
resembles human cognitive patterns. Furthermore, GPT-03 has demonstrated the capabilities in
generating CoT reasoning that mirrors natural cognitive processes and has proven to have strong
reasoning capability. Leveraging these insights, we employ GPT-03 to generate image-CoT-coordinate
triples through meticulously designed prompt templates. Please refer to Appendix[A.2]for the detailed
prompts for GPT-03.

GRE30K-CoT. To address potential errors and mismatches in source CoT data, we combine
automated filtering and manual verification to ensure the quality and reliability of the test data.
Please refer to Appendix [A.3]for more details. Finally, we collect 20k high-quality CoT samples.
By acquiring CoT data in this manner, which closely mimics human cognitive behavior, reasoning
processes exhibit natural and logical thinking.

GRE30K-Judge. In addition to standardizing the model’s reasoning process through high-quality
CoT data, we develop GRE30K-Judge, a judgment task dataset. This dataset is created by comparing
extracted predictions with ground truth using threshold 6, labeling images as "Truth" or "False"
accordingly. The resulting dataset is incorporated into reinforcement learning training, enabling
the model to learn from both correct and incorrect reasoning patterns and thereby enhancing its
geographical reasoning abilities. In total, we obtain 10k judgment samples.

3.2 Post-Training Strategy

To enhance visual reasoning capabilities, we introduce a three-stage post-training strategy consisting
of cold-start initialization and two-stage rule-based reinforcement learning (RL). SFT stabilizes the
model’s reasoning process and standardizes its output format, while RL further improves generaliza-
tion across various geo-localization tasks.

3.2.1 Cold-start Initialization

Leveraging the GRE30K-CoT dataset, we conduct SFT on a pretrained MLLM as the base MLLM
for cold-start initialization. The MLLM after cold start initialization is named as GRE-CI. At this
stage, the base MLLM had learned the complex reasoning mode from 03 [38]]. Through SFT with
the GRE30K-CoT dataset, the model standardize output format and establish a systematic reasoning
framework. This critical phase facilitates the model’s acquisition of high-quality structured reasoning
patterns, thereby constructing a solid foundation for subsequent RL procedures.

3.2.2 Reinforcement Learning on the GRE-CI

Building upon the SFT-trained model, we employ rule-based reinforcement learning (RL) to optimize
structured reasoning and ensure output validity. Specifically, we define two kinds of reward rules
inspired by R1 and update the model using Group Relative Policy Optimization (GRPO). The RL
stage further encourages the model to generate reliable outputs and enhances its generalization



capabilities in geographical reasoning tasks. Please refer to Appendix [C.I|for more details about the
two-stage RL training pipeline.

Rule-Based Rewards. We define two kinds of reward rules that evaluate the generated answers
from two perspectives:

* Accuracy Reward: The accuracy reward rule evaluates the correctness of the final answer by
extracting final answer via regular expressions and verifying them against the ground truth. For
image geo-localization task, the final answer must be provided in a specified format to enable
reliable rule-based verification. In RL stage I, given an input image along with its CoT and
predicted answer, the model evaluates the correctness of both the reasoning process and the final
answer. The model receives a reward score of r; = 1 only if the generated final result aligns with
the ground truth; otherwise, it receives a score of r; = 0. In RL stage II, where the model directly
predicts coordinates based on the input image, the reward is determined by the threshold metric 6.

* Format Reward: In order to ensure the existence of the reasoning process, the format reward
rule requires that the response must follow a strict format where the model’s reasoning is enclosed
between <think> and </think>. A regular expression ensures the presence and correct ordering
of these reasoning markers. What’s more, <answer> and </answer> are used to ensure model
have given a answer.

3.3 Group Relative Policy Optimization

We employ GRPO to achieve balanced integration of consistent policy updates and robust reward
signals in a controlled manner. For each token in the generated output, GRPO first compute the
log probabilities under both the new policy (7y) and a reference policy (7f). It then calculates the
probability ratio and clips it to the range [1 — €, 1+ €] to constrain policy updates and avoid divergence.
The normalized reward (treated as an advantage estimate) is subsequently used in a PPO-style loss
function, combining policy optimization with KL-divergence (weighted by ) regularization:

Leip = —E [min (ratiot - Advy, clipped_ratio, - Advt)]. (D

Lcreo(0) = —]E{ min (ratiot - Advy, clipped_ratio, - Advt)

~ 8- KL(moly | 2), maly | 2))].

Here, Adv, denotes the advantage function, capturing how much better (or worse) a particular action
is compared to a baseline policy value.

@

Compared to other methods, the GRPO clipping mechanism prevents extreme policy shifts, while
the KL regularization keeps the updated policy aligned with the baseline. This combination ensures
that our model integrates rule-based rewards efficiently without compromising training stability.
Subsequently, we will introduce the reward function R adopted for second-stage( Eq. () and
third-stage( Eq. ().

= geodesic((Ppred; Apred); (Pirue; Atrue
d = geodesic ((prea: Aprea): (Siaue: M) ©)
1.0 if g(ypred) = g(ytrue)
€s/no red ) rue = 1 ( 4
Ryesto(Yprea: Yirue) {0.0 otherwise @
2 ifYy , = True
Ryeo (ypredaytrue) _ ) T+exp(d/0) (ypfed Ytrue) 5)
0 otherwise

Here, 0 denotes the threshold, it is used as a factor to control the range of reward in this reward
function Eq. (5). £ mean the boolean value of the prediction and V mean the values of prediction
and ground truth are valid.



4 GREval-Bench

To comprehensively evaluate the image geo-localization capability of the models, we develop a
geographical reasoning benchmark named GREval-Bench. Existing benchmarks [13| |54] are
directly constructed from geotagged Flickr images without appropriate filtering. Specifically, these
benchmarks contain numerous images that lack geographical relevance cues, such as portraits
and object-focused photographs. The inclusion of such geographically uninformative samples
compromises the validity of evaluation results. Moreover, these benchmarks primarily focus on
final predictions while neglecting the evaluation of the entire CoT process. The CoT process
reflects multiple aspects of geographical reasoning capabilities and serves as a critical medium for
understanding models’ reasoning patterns and limitations.

To address these challenges, we propose an semi-automated pipeline for geo-localization image
filtering and CoT annotation generation in our GREval-Bench. Fig.[d]and Table[I|provide data statis-
tics, respectively. Please refer to Appendix [B.T|for more details of the GREval-Bench construction
and evaluation pipeline. GREval-Bench comprises 3K triplets, each containing: (1) geographical
inference images filtered through our pipeline, (2) a corresponding corpus of geographical indicators
categorized into explicit and implicit types, with detailed subcategories presented in Appendix [B.2}
and (3) reference GPS coordinates and annotated key Chain-of-Thought steps, where step categories
and partitioning follow [22]. Through our construction pipeline, we have enhanced both the image
quality and complexity of the benchmark by eliminating noisy images lacking geographical indicators
while increasing the proportion of samples that require reasoning based on implicit indicators. This
improvement facilitates a more accurate assessment of models’ geo-localization capabilities.
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As illustrated in Fig. 5] we instruct GPT-40 [37] to categorize each reasoning step into three
categories: background information, image caption, and logical inference. We calculate the recall
between background information and the corresponding geography corpus. Then, we employ
RefCLIPScore [[15] to evaluate the semantic alignment between image captions and visual content,
and utilize BertScore [76] to assess the similarity between predicted and ground-truth logical inference
steps. As these components are crucial for visual reasoning, we calculate CoT-quality by the follow

equation ( Eq. (6)).
Recall 4+ RefCLIPS + BertS

3

CoT-quality = 6)

5 Experiment

Datasets and Evaluation details: We randomly sample 5% of MP-16 [24], a dataset containing 4.72
million geotagged images from Flickrﬂ as geography seed datasets to construct our GRE30K. This
dataset is strategically utilized across our three-stage training process: GRE30K-CoT, comprising
20k high-quality Chain-of-Thought examples curated by geography experts and standardized in
format, serves for cold-start initialization; GRE30K-Judge, consisting of 10k CoT judgment tasks,
is employed for Stage I reinforcement learning training and the remaining 170k seed datasets are
utilized for Stage II reinforcement learning training. We test our trained model on Im2GPS3k [[13]]
and Google World Streets 15k (GWS15k) [8]. To ensure a fair comparison with existing methods in
the evaluation of Im2GPS3k, both our proposed model and transformer-based models are trained
using only 5% of the MP-16 dataset. Follow the protocol followed in previous works [21} 57]], we

3https://www.flickr.com/
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Figure 5: A detailed illustration of the evaluation pipeline.

report our results using a threshold metric. Given the predicted coordinates and the ground truths,
this metric quantifies the percentage of predictions where the distance to the ground truth falls within
specified thresholds (1km, 25km, 200km, 750km, and 2500km).

Implementation details: We adopt Qwen2.5-VL-7B as base model, the SFT experiments are
conducted with a batch size of 128, a learning rate of 1e-5, and training over 1 epochs. Then, we
perform RL on our dataset and experiment with training subsets of 10k for a single epoch each. All
experiments are conducted with PyTorch and 8 NVIDIA H20(96G) GPUs.

5.1 Comparison with State-of-the-art methods

We perform a comparative analysis of GRE against worldwide Geo-Localization benchmarks,
Im2GPS3k and GWS15k. The results on Im2GPS3k [13] and GWS15k [8]] are shown in Ta-
ble Q} In all metrics, our method surpasses the previous state-of-the-art (SOTA) model on Im2GPS3k,
achieving improvements of +0.5%, +4.2%, +3.0%, +1.7% and +2.5% in the 1km, 25km, 200km,
750km, and 2500km thresholds respectively. The results on additional geographical benchmarks are
put in Appendix [C.2] where we also observe a similar trend.

Moreover, our approach exhibits a large gain on the more challenging GWS15k dataset, surpass-
ing the previous SOTA model with significant accuracy improvements of +0.2%, +1.0%, +2.0%,
and +4.2% in the lkm, 25km, 200km and 2500km thresholds respectively. Our model achieves
superior performance over previous state-of-the-art approaches while utilizing merely 5% of the
data, compared to their use of the complete MP-16 dataset. The GWS15k contains samples that
are uniformly sampled across the Earth and are not biased towards any specific geographic location.
Moreover, the images in this dataset have a large distribution shift compared to the training set,
making the geo-localization task tough and challenging for brute-force alignment approaches. Our
substantial improvement can be attributed to effective reasoning that leverages both explicit and
implicit geographical indicators within images.

Geo-localization in Vision-Language Models (VLMs) indeed highlights their ability to integrate
world knowledge for inference—an emergent capability developed during training. To provide a
comprehensive comparison, we have benchmarked both LLaVA-1.5 [31] and Molmo-D-7B [9] on
the Im2GPS3k dataset, which use open-source training data.



Table 2: We compare the performance of GRE with the state-of-the-art methods on (a) Im2GPS3k [13]] and (b)
GWS15k [8] datasets. Our method yields consistent gains across datasets and different distance thresholds.
denotes transformer-based models. The asterisk () signifies that for a direct comparison, GeoReasoner was
prompted to output coordinates, which differs from its default city-name output format.

(a) Results on the Im2GPS3k [13]] dataset (b) Results on the recent GWS15k [8]] dataset

Street City Region Country Continent Street City Region Country Continent

Method H 1km 25km 200km 750 km 2500 km Method H 1km 25km 200km 750 km 2500 km
[LIKNN, o =4 [38] || 7.2 194 269 389 55.9 ISNs [35] 005 06 42 155 385
PlaNet [60] 8.5 248 343 484 64.6 Translocator! [40] || 0.5 1.1 8.0 25.5 483
CPlaNet [44] 102 265 34.6 48.6 64.6 GeoDecoder' [8] 0.7 1.5 8.7 26.9 50.5
ISNs [35] 32 96 143 25.1 439 GeoCLIP! [57] 06 3.1 16.9 457 74.1
Translocator! [40] 7.6 203 27.1 40.7 63.3 GeoReasoner™ [27] || 0.01 0.01 2.3 10.9 18.0
GeoDecoder' [8] 5.7 103 214 28.9 38.6 GeoReasoner [27 - 0.9 - 65.4 -
GeoCLIP! [57] 108 31.1 487 67.6 83.2 SeekWorld [553] || 02 1.9 9.5 34.1 673
GeoReasoner* [27] 0.2 1.6 2.1 39 6.8 Ours 0.9 4.1 18.9 54.8 78.3
GeoReasoner [27] 9.9 33.8 46.1 65.3 80.3
SeekWorld [55] 43 298 449 59.1 67.3
Qwen25-VL-7B[3] || 32 166 280 42.1 53.0
LLaVA-v1.5-7B[30]|| 1.7 7.5 113 20.8 44.6
Molmo-D-7B [9] 21 98 196 36.3 55.7
Ours 11.3 353 51.7 69.3 85.7

5.2 Performance on GREval-Bench

We compare our approach on GREval-Bench with the previous generalist models, including In-
ternVL2.5 series [7]], InternVL3 series [88], Qwen2.5-VL series [3]. We conduct comprehensive
evaluations of models, analyzing the above metric across different distance thresholds and scenarios,
while also assessing the quality of its reasoning chains. Table 3| presents the comparison results. Our
approach achieves the leading average performance in various evaluation metrics while demonstrating
more coherent reasoning processes that avoid local cognitive traps. Models with smaller parameter
sizes like Qwen2.5VL-3B and InternVL3-2B exhibit significantly greater difficulty in extracting
implicit cues compared to their larger counterparts. These models frequently commit errors in the
early stages of CoT reasoning, compromising subsequent logical coherence. Fig. [6]illustrates a
typical visual comparison.

N%treet
Method Street City Region Country Continent CoT X“
1km 25km 200km 750km 2500 km quality CoT ) City
ISNs 176 1123 1694 2308 264 - .
GeoCLIP 245 1571 34.08 64.85 76.61 - >
InternVL2.5-4B || 0.05 2.74 5.09 12.08 18.96 31.22
InternVL2.5-8B || 0.33 3.44 6.75 14.62 22.64 34.29
InternVL3-2B || 0.19 075 156  3.82 618 2341 ContincT? Region
InternVL3-8B 1.32 750 1434 25.90 35.38 36.48
Qwen2.5VL-3B || 0.19 0.61 2.03 3.40 5.14 37.93
Qwen2.5VL-7B || 0.33 4.34 6.84 9.39 10.90 50.36 Country
Qwen2.5VL-32B|| 545 23.12 37.41 54.33 65.00 55.56 GRE-7B(ours) Qwen2.5VL-32B GeoCLIP
Ours 6.14 26.15 44.67 66.56 83.16 59.54 InternVL3-8B InernVL2.5-8B ISNs

Table 3: Performance comparisons among traditional leading models, Figure 6: Visual demonstration of
open-source MLLMs, and our GRE on GREval-Bench. the performance of models.

5.3 Ablation Study

To evaluate the effectiveness of our training data and training strategies, we compare the model’s
performance under four distinct training strategies: (1) applying Cold-start Initialization on our
dataset, (2) further optimizing the GRE-CI with RL stage I, (3) further optimizing the GRE-CI with
RL stage II, and (4) further optimizing the GRE-CI with RL stage I and stage II. As illustrated
in Table[d] the application of CI on our dataset significantly enhances the model’s performance
on both the coarse-grained (e.g., country, continent) and fine-grained (e.g., city, street) localization
performance. For (2) and (3) , (3) reach a comparable performance and (2) dropped at some levels of
granularity, attributed to the misalignment between training and test task (reward) types in Stage I.
Overall, (4) demonstrates superior performance to (3) due to its more robust reasoning capabilities.
We also conduct additional ablation study on larger scale model and other open source model in
Appendix materials can be found in the repository.



Table 4: Ablation study on (a) Im2GPS3k [13] and (b) GWS15k [8] datasets.
(a) Results on the Im2GPS3k [13]] dataset (b) Results on the recent GWS15k [8]] dataset

Street City Region Country Continent Street City Region Country Continent

Method ‘ 1km 25km 200km 750 km 2500 km Method ‘ 1km 25km 200km 750 km 2500 km
Quen25VL7B|| 320 1662 2803 4214 5209 Quen25VL7B]| 005 029 139 443 866
a 777 2030 4478 6243 788 aI 045 217 1201 3758 6183
I+l 716 2813 4241 6329 786l I+l 035 203 128 3788 6216
Cl+ll 1096 3611 5217 6726 8332 Cl+11 088 391 1869 5561 7803
Clsl+I  [[1133 3528 5172 6933 8567 Cl+l+1 || 091 413 1886 5482  78.28

6 Conclusion

In this paper, we introduce a comprehensive framework for visual geo-localization reasoning, built
upon a formalization approach that unifies data construction, model training, and evaluation. Our
framework is designed to address the limitations of the current methods, enabling model to reason
in geo-localization task. The ability of extracting of multigranular visual cues from images and
integrating with external world knowledge will also inspire us in other domains of VLMs. This
framework has led to the creation of the GRE dataset, a rich resource featuring detailed step-by-step
reasoning annotations designed to enhance model training and evaluation on geo-localization task.
The GRE model, trained using this framework, demonstrates strong geo-localization reasoning
capabilities and exhibits robust generalization across a diverse range of scenes, from implicit scenes
to explicit scenes. To further support the evaluation of geo-localization, we introduce GREval-Bench,
a comprehensive benchmark that rigorously assesses model performance across various geospatial
scenario. Our extensive experiments validate the effectiveness of our approach, showing significant
improvements over state-of-the-art open-source models.
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A More Details of GRE30K

A.1 Example llustrations of GRE30K

We provide several examples to illustrate the reasoning data in our GRE30K dataset, including the
high-quality CoT data in Fig.[7]and the judgment data in Fig.[§]

<think> 1. Street-level analysis: Two-storey corner hotel with full-length veranda, corrugated-iron roof and brick chimney is
a classic late-19th- / early- 20th-century “country pub” style seen throughout rural Australia. Vehicles have right-hand drive
and narrow number plates consistent with Australian states. Wooden power poles with cross-arms and exposed phone wires
are typical of small-town New South Wales/Queensland. // 2. Textual clues: English signage (“Bistro”) and pub layout
suggest an Aussie hotel rather than UK/US. No bilingual or metric/imperial mix points away from North America. // 3.
Vegetation/biome: Open grassy verge, sparse street trees that appear to be eucalypts; bright, dry light and cloud-free sky
indicate an inland, temperate-semi-arid Australian setting (western slopes & plains). // 4. Terrain: Flat town grid with wide
asphalt roadway—characteristic of NSW western plains settlements sited on gently undulating country. // 5. Transport
context: Mix of utes and sedans parked at an old pub—all common in regional Australian service centres. </think>
<answer> “Latitude™: “-31.28°”, “Longitude™: “149.28°” </answer>

<think> 1. Street-level inspection shows awning-style storefront signs stacked vertically — a common sight on the narrow,
densely merchandised blocks of lower Manhattan where many import/wholesale businesses operate. // 2. Text clues:
“Trading of NY, Inc.”, “Handbag & Ladies Goods”, “Empire Trading Company NY Inc.” — the wording and emphasis on
low-margin fashion accessories match the Canal Street / Chinatown wholesale district in New York City. // 3. No palm trees
or desert flora; climate appears temperate with no visible vegetation, consistent with northeast U.S. city canyons. / 4. Terrain
looks flat; Manhattan’s southern half is largely level at sea level, matching the view. // 5. Vehicle is a graffiti-covered box
truck typical of NYC curbside deliveries; heavy tagging is common in Lower Manhattan freight streets. </think>

<answer> “Latitude”: “40.717°”, “Longitude™: “-73.999°” </answer>

GT: (40.746°, -73.990°)

»— <think> 1. Architecture: Grey-stone palace with steep slate roofs, dormers and a single crenellated tower flying two flags.
This matches the early- 20th-century Palacio de la Magdalena used by the Spanish royal family in Santander. // 2. Street-level
/ shoreline context: Building sits on a wooded headland above a small sandy cove and jagged limestone rocks — characteristic
of the Cantabrian coast of northern Spain. // 3. Textual clues: Though no close signage is readable, the dual flags on the tower
are consistent with Spain’s national flag plus the regional flag of Cantabria that normally fly over this palace. // 4. Vegetation
& biome: Mix of maritime pine, Holm oak and lush Atlantic broad-leaf trees fits the temperate oceanic biome along Spain’s
Bay of Biscay rather than the drier Mediterranean coast. / 5. Terrain: Low cliff headland with gentle rise; this matches the
topography of the La Magdalena Peninsula plotted on Santander nautical charts. // 6. Urban context/transport: Absence of tall
urban waterfront buildings and presence of a heritage palace in parkland is consistent with the dedicated public park and
university conference area of the La Magdalena neighbourhood rather than a dense downtown waterfront. </think>
<answer> “Latitude™ “43.475°”, “Longitude”: “-3.767°” </answer>

GT: (43.464°, -3.799°)

Figure 7: Three examples to show CoT data in GRE30K-CoT.

Think:

1. 'Architecture & street furniture' — Gothic-Revival stone church with a *crossing* spire (set on the roof-ridge
rather than at the front), stepped buttresses capped by finials, and a raised entrance reached by short exterior steps.
That composition is typical of late-19th-century Anglican churches built of local limestone in Ontario/Quebec,
rather than the brick or wood more common on the Prairies or in the U.S. Midwest. The unpaved road and plank
sidewalk, together with the single utility pole carrying half-dozen open-wire telephone/telegraph lines, date the
scene to ¢. 1890-1905 and suggest a medium-sized Canadian city that was just beginning to modernise. // 2.
'Textual clues' — No signage or licence plates are visible; only the negative number scratched in the emulsion (a
hallmark of William J. Topley’s Ottawa studio). // 3. 'Vegetation / biome' — Young deciduous street trees (likely
maple/elm) and mown turf match the Great-Lakes—St-Lawrence mixed-forest zone (~43-46 ° N). // 4. 'Terrain' —
Level ground with no hills on the skyline is consistent with the flat river-terrace neighbourhoods just east of

GT Coordinate: (45.418°, -75.708°)

03 Answer: (45.425°, -75.679°) Parliament Hill in Ottawa. / 5. 'Transport context' — Absence of street-rail tracks or heavy commercial fagades
T ’ suggests a residential district rather than the downtown retail core. Pulling these threads together, the building
Judgment GT: True most closely resembles St Alban’s Anglican Church (built 1867-74) in Ottawa’s historic *Sandy Hill* district.

That puts it just east of the Rideau Canal, a few blocks from the present-day University of Ottawa campus.

Think:

1. Street-level analysis: Mid-century modern A-frame church with mint-green steel ribs, full-glass fagade, and a
free-standing tapered brick campanile. That combination closely matches photographs of the Assumption of the
Blessed Virgin Mary 'Greek Orthodox Church' built in 1959 in Long Beach, California. // 2. Textual clues: Over
the doors, the inscription repeats the Greek word AI'IOX (“Holy”), confirming Greek Orthodox affiliation and
pointing to an English-speaking city with a sizeable Greek community on the U.S. West Coast. // 3.
Vegetation/biome: Trimmed box hedges, ornamental trees and warm-season turf are typical of a Mediterranean-
type coastal climate (dry summers, mild winters) such as coastal Southern California (33-34 °N). // 4. Terrain: Site
is flat with no visible foothills in the immediate backdrop—consistent with the coastal plain of Long Beach rather
. than the hillier Los Angeles basin edges. // 5. Urban context: Concrete sidewalks, U.S.-style streetlamps and
GT Coordinate: (40.724°, -73.901°) adjacent low brick parish hall fit a post-war suburban neighborhood pattern common in East Long Beach (Park
Estates/Los Altos district) where the documented church stands.
03 Answer: (33.773°, -118.121°)

Judgment GT: False

Figure 8: Two examples to show Judgment data in GRE30K-Judge. Red option indicates the wrong
reasoning steps.
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A.2 Detailed prompt for GPT-03

Please refer to Fig.[9]for more details.

@ Instruction Prompt

Analyze the provided image to infer both the approximate latitude/longitude and the
specific neighborhood/district. Prioritize these steps:

1. Identify architectural patterns, street furniture, and unique infrastructure

2. Decode textual clues (signage/license plates) for language or local references

3. Cross-reference vegetation types with regional biomes

4. Match terrain contours to topographic maps

5. Analyze transportation modes (vehicles/tracks) for urban context

The response must include neighborhood hypothesis even with partial evidence, using
format:

<think>“Reasoning Process”</think>

<answer>“Latitude”, “Longitude”</answer>

You must answer the question in this format, whether you have obtained the latitude and
longitude through reasoning or not. If not, provide the closest possible values.

GT: (30.321°, 35.472°)

® GPT-03

<think>

1. Street-level cues: Rose-colored, carved sandstone facade with classical columns and lintels is iconic of the
Nabataecan monuments inside Petra (e.g., the Treasury/Al-Khazneh). No modern street furniture; setting is
archaeological rather than urban.

2. Textual clues: None visible, but the absence of Latin alphabet signage and the presence of a traditionally dressed
Bedouin guard/guide are consistent with tourist areas in southern Jordan.

3. Vegetation/biome: Arid, canyon-like walls of sandstone with no greenery point to a hot-desert biome of the
Levant/Arabian plateau.

4. Terrain: Sheer sandstone walls in a narrow gorge match the Siq and surrounding carved monuments of Petra.
Elevation ~800-900 m.

5. Transportation context: No vehicles—tourists in Petra traverse on foot or by animal, matching the pedestrian
archaeological park setting.

</think>

<answer>

“Latitude™: “30.322°”, “Longitude”: “35.452°”

</answer>

Figure 9: One example to illustrate the prompt for GPT-03 to generate CoT data. The top block
indicates the contexts including the image and instruction used to prompt 03, and the bottom block
shows the response.

A.3 Review and Refinement Pipeline for GRE30K-CoT

Review and Refinement Pipeline for GRE30K-CoT. After the data generation process, we employ
regular expression matching to filter out samples where the predicted coordinates deviate from the
ground truth beyond a threshold #. Notably, these filtered samples are not discarded but rather
incorporated into GRE30K-Judge. To ensure the high quality of the generated samples, we apply
manual verification after automated filtering. The process is conducted by three trained annotators
with geographic-relevant professional backgrounds. The annotators examine and correct halluci-
nated image descriptions and inconsistent geographical reasoning in the CoT, ensuring that 03’s
output adheres to “<think> </think><answer> </answer>” format. Additionally, they maintain
alignment between the reasoning process and the instruction structure.

Examples of Manual Filtering. As illustrated in Fig.[T0] through a combination of regular expression
matching and manual filtering, we enhance the quality of 03 generated Chain-of-Thought outputs,
ultimately constructing a high-quality CoT dataset, GRE30K-CoT.
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'The scene is an indoor community-hall with British-style stackable plastic chairs, noticeboards and pale
interior finishes—common civic architecture in the UK Midlands. Crucially, the mug in the foreground
bears the line “QUINTON ROAD WEST”, a well-known arterial street m the Quinton suburb of
Bu’mmgham That textual clue anchorﬁ the locatlon Matching this ¢

and the urban pattern of Qumton s local halls and
churches leads to a neighbourhood hypothesis of Quinton, Birmingham, centred on

Quinton Road West.",", @

<think>

1. Architectural context: Generic Midlands civic infrastructure (stackable chairs/noticeboards/pale
finishes) lacks regional specificity but aligns with UK community hall typology.

2. Material culture clue: Commercial mug displaying "QUINTON ROAD WEST" provides nominal
locational anchoring to Birmingham's Quinton district, pending verification of souvenir distribution
patterns.

3. Urban morphology hypothesis: Presumed correlation between community facilities' distribution
(halls/churches) and Quinton's documented urban fabric remains conjectural without cadastral map
alignment.

</think>

GT: (52.452°, -1.982°) <answer>

“Latitude™: “52.46°”, “Longitude”: “-1.99°”

L</answer>

J

Figure 10: An illustrative example of Chain-of-Thought refinement and format normalization. The red
strikethrough-text denotes hallucinated content where the instructor model (03) generated descriptions
that are not actually present in the image.

B More Details of GREval-Bench

B.1 Detail of GREval-Bench Construction and Evaluation Pipeline

For image filtering, we construct a geographical reasoning corpus based on GRE30K-CoT, utilizing
Named Entity Recognition (NER) to identify locations and architectural entities, and Semantic Role
Labeling (SRL) to extract geographical reasoning patterns (e.g., “spire style — European church”).
The geographical indicators in the corpus are then categorized into explicit and implicit types. Explicit
indicators encompass artificial landmarks, natural geographical features, and textual symbols, while
implicit indicators include architectural styles, urban planning patterns, social characteristics, and
environmental characteristics. Please refer to Appendix [B.2]for detailed sub-categories. We employ
CLIP [41]] to compute similarity scores between images and geography-relevant textual prompts from
our geographical corpus (e.g., "base of Eiffel Tower", "Arabic text", "redwood forest"), retaining
samples with high relevance scores. Subsequently, images with single facial regions occupying more
than 50% of the area are removed through face detection [43]. The rule-filtered images then undergo
manual verification, where annotators answer the question: “Can the approximate geographical
location (country/city level) be inferred solely from this image?” Images are excluded if two or more
out of three annotators respond negatively.

Inspired by previous CoT evaluation [6, 22, [63]], we provide key steps annotation and reference GPS
coordinate for all samples. We initially leverage o3 to generate the answer rationale. For the rationale,
we provide both instructions and ground truth coordinates to 03. Subsequently, three geography
domain annotators review and annotate key intermediate steps, utilizing 03’s responses as reference.
For cases where 03 fails to generate reasonable rationales, annotators develop geo-localization
reasoning process independently.

B.2 Detailed Subcategories of Geographical Indicators

In the image geolocation task, geolocation indicators refer to the visual elements in the image that
can directly or indirectly infer the geographic location. Table[5]shows the classification and specific
examples of geolocation clues.
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Table 5: Detailed subcategories of geographical indicators.

Type [[ Subcategory

Scenario

Global/National Landmarks: Eiffel Tower (Paris); Statue of Liberty (New York);
Great Wall (Beijing)

Regional Architecture: Neuschwanstein Castle (Bavaria, Germany); Kiyomizu-dera

Explicit nature Temple (Kyoto, Japan); Prague Astronomical Clock (Czech Republic)
fandmark Unique Structures: Bridges (Golden Gate Bridge); Ferris Wheel (London Eye);
Religious Buildings (Mosque Domes, Gothic Church Spires)
* Global/National Landmarks: Eiffel Tower (Paris); Statue of Liberty (New York);
Great Wall (Beijing)
o o * Regional Architecture: Neuschwanstein Castle (Bavaria, Germany); Kiyomizu-dera
Explicit b 1?(:1{110 Temple (Kyoto, Japan); Prague Astronomical Clock (Czech Republic)
uildings * Unique Structures: Bridges (Golden Gate Bridge); Ferris Wheel (London Eye);
Religious Buildings (Mosque Domes, Gothic Church Spires)
o » Language signs: Language on road signs and store signs (Arabic — Middle Eastern;
Explicit language Cyrillic — Eastern European).
* Administrative signs: License plates (German license plates "D")
Explicit symbolic Currency and flags: Euro coins (European countries); Canadian maple leaf flag
* Unique landforms: Uyuni Salt Flats (Bolivia); Grand Canyon (USA); Guilin Karst
landforms
Implicit || geographical * Vegetation types: Cactus (desert areas); coconut trees (tropical coastal areas); birch
features trees (northern temperate zones)
* Water features: Victoria Falls (Africa); Dead Sea (high salinity water bodies)
 Architectural style: Spanish colonial style (Mexico); neoclassicism (Washington,
DC); earthen building (Fujian)
Implicit arch}tectural * Street characteristics: Narrow cobblestone roads (European ancient towns); grid
style layout (Manhattan, New York); tricycles (Southeast Asian cities)
* Clothing and customs: Kimono (Japan); Scottish plaid skirt; Indian sari
Implicit soc1a} . * Transportation: Tunisian carriage; Venetian gondola; London red bus
characteristics
o ) * Seasons and Weather: Aurora (high latitudes); monsoon rainforest (rainy season in
Implicit climate Southeast Asia); sandstorms (deserts in the Middle East)

C More Experiments

C.1 More Details on Training

Please refer to Fig.[TT]and Fig.[I2]for more details. During the training process, the threshold is
continuously updated. If the model can stably maintain enough rewards at the current granularity

level, the threshold is further refined to a finer granularity level.

C.2 Additional Main Results

We also conduct evaluations on the Google StreetView dataset( Table @, where we observe similar
performance trends. Additionally, we demonstrate the performance of our base model, Qwen-2.5VL
series, on Im2GPS3k and GWS15k datasets( Table . The results align with our conclusions from
the main results, further validating the effectiveness of our proposed training strategy. We also
have compared our model on the OSV-5M [2] in Table where our model emonstrates excellent
performance. As Around the World demonstrates excellent performance, we conduct study on MP16

dataset, and materials can be found in the repository.
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4 Jud Prompt
You will receive the following inputs:
1. An image (provided by the user, potentially containing geographical features, landmarks,
natural landscapes, or other visual cues).
2. Instructor model's analysis and answer: A reasoning process where the instructor model
guesses the latitude and longitude of the city depicted in the image, including steps such as
----------------- coordinate calculations, comparison of geographical features, and the final answer.
Your task:
. Determine whether the instructor model correctly identified the city, answering "Yes" or "No".
@ G l Provide a detailed analysis covering:
coordinate 7y, logical validity of the instructor's reasoning (e.g., whether coordinates align with
geographical features).
2. Whether visual cues in the image support the instructor's conclusion (e.g., landmarks,
terrain, vegetation).
3. Contradictions or critical details overlooked by the instructor (e.g., coordinates matching
r=0 another city, mi: hed visual features).
@ UnMatched . Instructor r);mdcl's analysis is % <think></think> |, and answer is .
The response must include neighborhood hypothesis even with partial evidence, using format:
<think>"Reasoning Process : "</think>
® Matched =1 <answer> Yes/No </answer>
You must answer the question in this format, whether you have obtained the latitude and
longitude through reasoning or not. If not, provide the closest possible values.

L)

@ Judge the correctness. Ak
Judgment Prompt

\

Figure 11: RL stage I training pipeline and Judgment Prompt.

/—| ‘T. Inference Prompt

Analyze the provided image to infer both the approximate latitude/longitude and the specific
GT coordinate neighborhood/district. Prioritize these steps:

1. Identify architectural patterns, street furniture, and unique infrastructure

2. Decode textual clues (signage/license plates) for language or local references

3. Cross-reference vegetation types with regional biomes

4. Match terrain contours to topographic maps

5. Analyze transportation modes (vehicles/tracks) for urban context

The response must include neighborhood hypothesis even with partial evidence, using format:
<think>“Reasoning Process”</think>

I <answer>“Latitude”, “Longitude”</answer>

You must answer the question in this format, whether you have obtained the latitude and

-
A @ longitude through reasoning or not. If not, provide the closest possible values.
t

Inference Promp

1i = Rgeo WVpred: Yerue)

Figure 12: RL stage II training pipeline and Inference Prompt.

C.3 Additional Ablation Study

We also conduct additional ablation study on Qwen2.5VL-32B and LLaVA-v1.5-7B [64](Table
[9), where we observe similar performance trends. The results demonstrate the efficacy and broad
applicability of the proposed method.

C.4 Qualitative Results

In the supplementary materials, we provide additional visual examples illustrating the reasoning
performance on the image geo-localization task. These examples demonstrate GRE’s capability to
generate remarkable chains of thought for accurate coordinate prediction in challenging scenarios.

D Limitations and Future Work

D.1 Limitations

The primary limitations of GRE include (1) substantial computational resource requirements, specifi-
cally utilizing 8 NVIDIA H20 GPUs for model training, and (2) the associated API costs for dataset
generation. GeoCLIP requires 155.63 GFLOPs per inference. In comparison, our model requires
262.27 GFLOPs for the visual encoder and 24,117.47 GFLOPs for the language model, which
corresponds to 13.0506 GFLOPs per token. All FLOPs are measured using the THOP package.

D.2 Future Work
Leveraging geo-localization reasoning capabilities, we can implement geographic information privacy

identification and protection mechanisms. Furthermore, this approach can be extended through agent-
based architectures that integrate reasoning capacities with tool invocation functionalities.
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Table 6: Results on the Google StreetView dataset.
Street City Region Country Continent
Method 11" 11 95km 200km 750 km 2500 km
Qwen2.5VL-3B || 447 4692 68.22 78.26 83.89
Qwen2.5VL-7B || 7.99 61.00 70.42 83.20 85.56
Qwen2.5VL-32B || 14.62 67.50 69.04 88.42 92.59

CI 1553 6425 7446  94.20 96.14
CI+1 13.59 63.75 7519  92.30 96.02
Ours 18.15 71.01 7536 91.30 92.75

Table 7: We test the Qwen2.5VL series on (a) Im2GPS3k [[13]] and (b) GWS15k [8] datasets for reference here.

(a) Results on the Im2GPS3k [13] dataset (b) Results on the recent GWS15k [8]] dataset
Street City Region Country Continent Street City Region Country Continent
Method ‘ 1km 25km 200km 750 km 2500 km Method 11"} km 25km 200 km 750 km 2500 km
Qwen2.5VL-3B || 033 120 3.57 537 731 Qwen2.5VL-3B|[ 0.02 0.17 041 2.14 6.70
Qwen2.5VL-7B || 320 16.62 28.03  42.14 52.99 Qwen2.5VL-7B || 0.05 029 139 443 8.66
Qwen2.5VL-32B|| 6.47 25.12 40.96  59.87 75.32 Qwen2.5VL-32B|| 0.06 036 7.53  28.46 52.39

D.3 Broader Impacts

The reasoning capacity improvement in geo-localization facilitates the extraction of multi-granularity
geographic indicators from imagery, offering dual benefits for geospatial data mining applications
and location privacy preservation frameworks.

E More Qualitative Results

We present additional visual examples to highlight the geographic reasoning performance. Fig.[I3]
displays more visual cases involving diverse locations. GRE is capable to generate explainable
predictions with robust capabilities in these challenging scenarios. Furthermore, Fig.[T4and Fig.[I3]
provides comparisons with previous alignment-based methods and existing MLLMs with reasoning
capabilities. Our approach exhibits superior image geo-localization results with implicit geographic
indicators.

Table 8: Results on the recent OSV-5M [2]] dataset

Method Street City Region Country Continent dist
1km 25km 200km 750 km 2500 km Average Distance
Qwen2.5VL-7B || 1.0 1.9 4.8 19.0 43.1 4942
Molmo-D-7B 0.7 1.1 1.3 7.2 32.1 6172
LLaVA-V1.5-7B|| 0.1 0.2 0.7 5.0 21.9 6895
SeekWorld 1.0 1.3 7.0 27.6 51.3 4326
SC Retrieval - 19.9 458 73.4 - 1386
RFM S, - 5.4 442 76.2 - 1069
Ours 5.7 9.7 3557 72.53 91.11 1192
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Table 9: More ablation study on (a) Im2GPS3k and (b) GWS15k [8] datasets.

(a) Results on the Im2GPS3k [13] dataset (b) Results on the recent GWS15k [8]] dataset
Street City Region Country Continent Street City Region Country Continent
Method ‘ 1km 25km 200km 750 km 2500 km Method 1km 25km 200km 750 km 2500 km
LLaVAvi57B || 1.7 75 113 208 146 Qwen2.5-VL-32B| 0.06 036 75 285 524
CI(LLaVA) 42 102 249 429 58.9 I 051 28 151 434 68.1
CI+II(LLaVA) || 6.1 146 313 476 63.1 CI+1 042 23 139 436 68.1
Qwen2.5-VL-32B|| 6.5 251 410 599 75.3 CI+1+1 097 49 201 570 81.3
CI(Qwen) 81 314 465 697 81.1
Cl+IQwen) | 7.6 30.1 402 712 822
CI+1+1II(Qwen) || 123 36.6 59.3 78.3 88.6

<think>

1. Architectural patterns: The image shows a large sculpture resembling a giant pencil
surrounded by modern architecture, including a glass-roofed structure that could be part of a
train station or transit hub.

2. Textual clues: The presence of Italian signage ("Yaris Il Piccolo Genio" and "APITALIA")
suggests the location is in Italy. The design of the building and the style of the sculpture are
consistent with Milan's urban landscape.

</think>

<answer>

"Latitude": "45.465°", "Longitude": "9.191°"

</answer>

<think>

~ 1. Textual clues: Based on the signage of DiBruno Bros., which is known as 'The House of
" Cheese' and has been established since 1939, it is located in Philadelphia, Pennsylvania.

} </think>

& <answer>

J "Latitude": ”39.952°", "Longitude": ”-75.165°"

</answer>

<think>

1. Architectural patterns: The image shows a street view of a city with tall buildings,
including one that is notably the Willis Tower (formerly known as the Sears Tower), which is
located in Chicago, Illinois.

</think>

<answer>

"Latitude": ”41.882°", "Longitude": ”-87.630°"

</answer>

Figure 13: Visual examples of GRE.
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GeoCLIP (17.966°, 102.608°)

(17.966°,102.611°)  (17.969°, 102.611°)  (17.965°, 102.606°)  (17.970°, 102.610°)

@ GPT-03 (10.770°, 106.770°)

Architectural patterns — The covered five-foot-way with French-colonial arches,
wrought-iron folding shop-gates, and the distinctive yellow interlocking-arc sidewalk
tiles are characteristic of older shophouse blocks in central Ho Chi Minh City. Textual
clues — The large café umbrella reads “TRUNG NGUYEN Coffee”, a well-known
Vietnamese brand; the small printed signs nearby use the Latin alphabet with diacritics
typical of Vietnamese. No non-Vietnamese scripts are visible. 3. Vegetation/biome —
Sparse ornamental plants and the bright sun point to a tropical low-latitude city; nothing
indicates high elevation. Terrain contours — Entirely flat ground, consistent with the
(10.784°, 106.681°) Saigon River delta plain. Transportation modes — Dense rows of scooters/motorbikes
dominate the curb, matching commuting habits in Ho Chi Minh City’s core.

5@ InternVL2.5 (21.03°, 105.84°)

Architectural Patterns and Infrastructure: The image shows a narrow street with shops on either side, typical of

Southeast Asian urban areas. The buildings have a colonial architectural style, with arched doorways and tiled

roofs. Textual Clues: The signage includes Vietnamese text, such as "Trung Nguyen," which is a well-known

Vietnamese coffee brand. This suggests the location is in Vietnam. Vegetation and Biomes: The vegetation is not

clearly visible, but the general environment suggests a tropical or subtropical climate, consistent with Vietnam.

Terrain Contours: The street is flat, which is common in urban areas of Vietnam. Transportation Modes:
L Motorbikes are parked along the street, a common mode of transportation in Vietnam.

)
Y Qwen2.5VL (0°,-107%)
Architectural Patterns: The architecture suggests a style commonly found in markets across parts of Vietnam,
such as Hanoi's Old Quarter. Textual Clues: There is signage visible on one umbrella which reads "TRUNG
NGUYEN," indicating Vietnamese branding often associated with coffee shops and cafes throughout the country.
Street Furniture & Unique Infrastructure: Red plastic stools typical of local markets can also hint at locations
where similar items might still dominate public spaces today; Vegetation Types : No distinct plant species stand
out here but rather seem consistent with tropical climates common among many Asian nations including Vietnam
Terrain Contours : Not discernible enough given only ground level view Transportation Modes: Motorbikes
parked along side suggest proximity to areas heavily reliant upon them - again indicative towards places

L popularizing motorbike culture alongside traditional retail setups.

J

-
@ GRE (10.823°, 106.630°)

The image depicts a market scene with a distinct Southeast Asian architectural style, likely in Vietnam given the
signage on the umbrella which reads "Trung Nguyen." This is a well-known coffee brand in Vietnam. The market
appears to be located in an urban area, possibly in Ho Chi Minh City or another major city in Vietnam.

Figure 14: Qualitative comparisons with previous alignment-based methods and existing MLLMs
with reasoning capabilities. (Lat, Lon) denotes the ground truth coordinates, (Lat, Lon) denotes
the models’ predicted answer, Indicator denotes the explicit indicator and Indicator denotes the

implicit indicator. Notably, GeoCLIP generate five candidates coordinates and select the candidate
with the maximum probability score as the answer.
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(19.891°, -99.404°)

GeoCLIP

(-12.123°,-77.033°)  (-12.045°,-77.031°)

(-12.123°,-77.029°)

(-12.118°,-77.024°)  (-12.122°-77.027°)

N

@ GPT-03 (19.433°,-99.133°)

Architectural patterns & street furniture — The
heavy ash-grey volcanic-stone facade behind
the kiosk, the wide concrete paver sidewalks, a
Telmex pay-phone, and a glass “estanquillo”
news-kiosk are hallmarks of Mexico’s capital-
city historic core. Textual clues — The green
fascia reads “MILENIO”, a national Mexican
newspaper; the pay-phone logo is Telmex; the
green-and-white Volkswagen Vocho is the
livery used by Mexico City taxis until 2007.
Terrain contours — Flat valley floor with no
discernible upslope, matching the valley plain
of the Distrito Federal. Transportation context —
A vertical green totem traffic sign with a right-
turn arrow is typical of the “Eje Vial” one-way
grid in the Centro Historico, and the traffic

|density fits the Cuauhtémoc borough hub.

@ Qwen2.5VL (-70° to -68 °, 19° to 23°)
Step 1: Architectural Patterns - The image shows modern
buildings typical of many Latin American countries. Step 2:
Textual Clues/Language References - There is signage that
reads "Milenio," which suggests Spanish influence but does
not specify an exact location within Spain as it's also used
elsewhere like Mexico City where Milenio refers to a
newspaper chain rather than being tied directly to any
particular district name on its own without further context
from license plate or other identifiers visible here." Step 3 &
Step 4: Vegetation Types and Terrain Contours don't offer
much additional information beyond suggesting temperate
climate zones common across several parts globally
including some areas in North America too! Step 5:
Transportation Modes show cars parked along streets
indicating urban setting; however again no clear indication
narrows down precise city due solely upon vehicles present
nor their design styles."

& GrE

(19.433°,-99.133°)

The image shows a street scene with cars parked along the curb, a newspaper stand, and a building with signage
that reads "Milenio". This suggests a location where Spanish is spoken, as "Milenio" is a well-known Spanish
newspaper. The architecture and street layout resemble those found in Latin America, particularly in Mexico City.

Figure 15: Qualitative comparisons.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We summarize the contributions and scope in the abstract and introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have mentioned the limitations of our work in Appendix [D.T]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We have contained the formula derivation process and the experimental results
to prove the assumptions.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have introduced all the details of GRE in our paper. In addition, our
submission also contains the materials to reproduce the main experimental results, including
code, data, experiments settings, etc.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include the link to the GitHub repository in our paper to provide open
access to the data and code.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to Section[5]and Appendix [C.2]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conducted repeated experiments and calculated the average to mitigate the
variability of the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have included the cost information in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work conforms with the NeurIPS Code of Ethics.
Guidelines:
¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We mention the societal impact on the Appendix[D.3]
Guidelines:
» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work does not have such risk.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The creators or original owners of assets are properly credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets introduced in the paper are well documented and is the documenta-
tion provided alongside the assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No potential risks are found in this work.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We use LLM to generating our dataset and we have described it in Section
and Appendix [A.3]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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