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Abstract

The rapid evolution of deep learning and large language
models has led to an exponential growth in the demand for
training data, prompting the development of Dataset Dis-
tillation methods to address the challenges of managing
large datasets. Among these, Matching Training Trajecto-
ries (MTT) has been a prominent approach, which repli-
cates the training trajectory of an expert network on real
data with a synthetic dataset. However, our investigation
found that this method suffers from three significant lim-
itations: 1. Instability of expert trajectory generated by
Stochastic Gradient Descent (SGD); 2. Low convergence
speed of the distillation process; 3. High storage consump-
tion of the expert trajectory. To address these issues, we
offer a new perspective on understanding the essence of
Dataset Distillation and MTT through a simple transforma-
tion of the objective function, and introduce a novel method
called Matching Convexified Trajectory (MCT), which aims
to provide better guidance for the student trajectory. MCT
creates convex combinations of expert trajectories by se-
lecting a few expert models, guiding student networks to
converge quickly and stably. This trajectory is not only eas-
ier to store, but also enables continuous sampling strategies
during the distillation process, ensuring thorough learning
and fitting of the entire expert trajectory. The comprehen-
sive experiment of three public datasets verified that MCT
is superior to the traditional MTT method.

1. Introduction

The advancement of deep learning has catalyzed an expo-
nential surge in the requisite volume of training data [19].

*Corresponding author.

With the emergence of Large Language Models (LLMs),
there has been a corresponding rise in model complexity,
further intensifying the demand for extensive datasets to
facilitate the training of these intricate models. However,
collecting and managing large datasets presents significant
challenges, including storage requirements, computational
load, privacy concerns, and the costs of data labeling. To
mitigate these challenges, Dataset Distillation (DD) has
emerged as a compelling strategy [20]. DD endeavors to
distill the essence of a large, real-world dataset into a more
compact, synthetic dataset that can train models with com-
parable efficacy.

In the landscape of DD methods, Matching Training Tra-
jectories has emerged as a prominent approach. The MTT
method aims to generate a synthetic dataset that guides the
learning trajectory of the student network to approximate
the expert trajectory of this network on real data. In other
words, the expert trajectory should provide the guidance
training dynamic during each distillation iteration, which is
often defined as V⃗T = ∥θ(t+M)

T −θ
(t)
T ∥22, where θ(t+M)

T and
θ
(t)
T denotes the parameter of the (t+M)-th and t-th model

on the expert trajectory. Despite the great progress [1, 6] in
this field, we have identified several inherent limitations of
the traditional MTT method due to poor training dynamics:

1. Instability of Expert Trajectory: As shown in Fig-
ure 1a, the validation accuracy of the expert network on the
MTT trajectory exhibits oscillations. Matching the trajec-
tory locally in each iteration will lead to similar oscillation
in the trajectory of the synthetic data, thereby impeding ro-
bust distillation.

2. Low Convergence Speed: The learning process for
the expert trajectory is often slow. As in Figure 1b, a consid-
erable number of distillation iterations are required to gen-
erate a synthetic dataset capable of achieving satisfactory
test accuracy, resulting in time-consuming procedures.
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(a) Visualization of the expert trajectory. (b) Illustration of Convergence Speed (c) Cosine Angle Between Training Dynamics

Figure 1. (a): PCA projection of all waypoints model in the expert trajectory, where z-axis represents the value of (1−validation accuracy);
(b): The required number of iterations to achieve convergence for CIFAR-10 and CIFAR-100 under different ipc (images per class) for the
MCT and MTT methods during distillation, respectively. The convergence is defined by the condition where the difference between the
accuracy at any iteration and the maximum accuracy is less than ϵ = 2%; (c): The cosine angle between the guidance vectors on the expert
trajectory, where the step size M = 1.

3. High Storage Consumption: During the distillation
process, the conventional MTT approach necessitates the
storage of model weights along all timesteps, which is par-
ticularly burdensome in terms of storage (about 50 mod-
els should be stored). This high storage consumption is a
significant limitation for applying existing DD methods to
large-scale models.

Another simple pre-experiment gave us more insights
into the above issues. As the heatmap in Figure 1c, we saved
all 50 midpoint models on the expert trajectory and calcu-
lated the cosine angle between all generated guidance train-
ing dynamics along this trajectory. As we can conclude,
only the direction of the vectors near the beginning phase
is relatively consistent. However, as training progresses,
the adjacent guidance vectors often appear nearly perpen-
dicular. These results once again confirm the instability of
expert trajectory, which are also the reason for low con-
vergence speed.

To avoid the zigzag of the guidance training dynamics,
we reformulated the vanish loss function of MTT, and in-
troduced a novel perspective to interpret the essence of DD
and MTT: obtaining a synthetic dataset that offers accurate
guidance regarding the magnitude and direction of the next
update for any given point in the parameter space of the
student model, with this guidance determined by the expert
trajectory’s update vector at that point. From this perspec-
tive, those three limitations can be easily addressed: to find
an optimized expert trajectory that can guide the model to
stably converge at each iteration, which is also easy to fit
and simple to save.

How to find such a trajectory? We present a simple

yet novel Matching Convexified Trajectory (MCT) method.
The MCT method creates a convex combination expert
trajectory based on the network’s training process real
data. This trajectory, which starts from a random initial-
ization model, sequentially passes through a few intermedi-
ate points before pointing at the optimal point, facilitating
stable and rapid convergence of the distillation. Moreover,
recovering this trajectory only needs storing a few mod-
els and a set of constants. Distinct from the MTT method,
the convexified trajectory also permits a “continuous sam-
pling” strategy during the distillation, ensuring comprehen-
sive learning and fitting of the expert trajectory.

The contributions of this paper are as follows: 1. We
highlight the three limitations of traditional MTT methods,
and offer a novel perspective for understanding the objec-
tive of DD through a simple reformulation of MTT’s loss
function; 2. We propose the MCT method, which creates
an easy-to-store convexified expert trajectory with a contin-
uous sampling strategy to enable rapid and stable distilla-
tion; 3. Comprehensive experiments on three datasets have
verified the superiority of our MCT and the effectiveness of
the continuous sampling strategy.

2. Preliminaries and Related Work

2.1. Preliminaries
We first formally define the dataset distillation task. A large
scale real dataset T = {(x(i)

T , y
(i)
T )}|T |

i=1 is first provided,
where x

(i)
T ∈ Rd and y

(i)
T ∈ Y = {1, 2, . . . , C} are the

i-th instance and the corresponding label. C denotes the
number of classes. The core idea of this task is to learn a
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tiny synthetic dataset S = {(x(i)
S , y

(i)
S )}|S|

i=1 from the orig-
inal dataset T , where x

(i)
S ∈ Rd and y

(i)
S ∈ Y . Typically,

ipc instances are crafted for each class, culminating in a to-
tal count for S of |S| = C · ipc. It is always expected
that |S| ≪ |T |, while S still preserves the majority of the
pivotal information in T . Consequently, a model trained
on S should achieve performance comparable to the model
trained with the original dataset T under the real data dis-
tribution PD. Formally, the optimization of DD task can be
formulated as:

argmin
S

L(S, T ), (1)

where L is the certain objective function, which may differ
from different DD methods.

2.2. Dataset Distillation Methods.
The field of DD contains four principal approaches. a.
Meta-model Matching methods [15, 16, 20, 24] involve
a bi-level optimization algorithm where the inner loop up-
dates the weights of a differentiable model using gradient
descent on a synthetic dataset while caching recursive com-
putation graphs, and the outer loop validates models trained
in the inner loops on a real dataset, back-propagating the
validation loss through the unrolled computation graph to
the synthetic dataset. b. Distribution Matching methods
[19, 22] align synthetic and real data by optimizing within
a set of embedding spaces using maximum mean discrep-
ancy. However, inaccurate estimation of the data distribu-
tion often results in suboptimal performance. c. Single-step
Gradient Matching methods [21, 23] aim to align the gra-
dient of the synthetic dataset with that of the real dataset
during each training step. To enhance generalization with
improved gradients, recent research efforts have focused
on further optimizing the gradient matching objective by
incorporating class-related information [7, 10]. d. Multi-
step Trajectory Matching methods [1, 6] address the accu-
mulated trajectory errors of single-step methods by match-
ing the multi-step training trajectories of models separately
trained on synthetic and real datasets.

Our research primarily focuses on multi-step trajectory
matching methods. The first method in this branch is MTT
[1]. Based on MTT, Du et al. [3] presented to incorporate
the random noise to the initialized model weights to miti-
gate accumulated trajectory errors, and Cui et al. [2] pro-
posed to decompose the objective function of MTT to im-
prove computational efficiency and reduce GPU memory
without performance degradation. Further research has ex-
plored the robustness of the synthesized dataset [4, 6, 13]
and applied this technique to downstream tasks [11, 12].

Despite their successes, none of these approaches ad-
dress the detriment of oscillations in the MTT expert tra-
jectory on the stability and convergence speed of the dis-
tillation process. Furthermore, the necessity to retain all

waypoint networks along the expert trajectory has yet to be
addressed.

3. Motivation
3.1. Review of Multi-step Trajectory Matching
In this section, we first review the multi-step trajectory
matching methods. The essence of them is to minimize the
discrepancy of the student training trajectory of S and the
expert training trajectory of T . Here we take MTT [1] as
an example. Firstly, an expert trajectory τmtt = {θ(t)T |0 ≤
t ≤ K} is generated by training a randomly initialized
model θ(0)T on the real dataset T with K timesteps. Af-
terward, MTT matches the student trajectory with the ex-
pert τmtt through massive iterations. During each iteration,
MTT samples a random timestep θ

(t)
T and captures the tar-

get timestep θ
(t+M)
T after M steps from τmtt. Meanwhile,

θ
(t)
T is also trained on synthetic dataset S for N steps to get

the updated student parameters θ
(t+N)
S . Formally, the ob-

jective is to minimize the normalized squared L2 error be-
tween the updated student parameters θ(t+N)

S and the future
expert (target) parameters θ(t+M)

T :

L(S, T ) =
∥θ(t+N)

S − θ
(t+M)
T ∥22

∥θ(t)T − θ
(t+M)
T ∥22

(2)

θ
(t+1)
S = θ

(t)
S − αS∇ℓ(S; θ(t)S ) (3)

θ
(t+1)
T = θ

(t)
T − αT ∇ℓ(T ; θ

(t)
T ), (4)

where θ
(t)
T = θ

(t)
S . ℓ is the loss function for model training,

where the cross-entropy loss is often adopted, and αS and
αT are the learning rates for training on the synthetic and
real datasets, respectively. To ensure generalization, MTT
usually performs the above trajectory matching process on a
large number of expert trajectories from different θ(0)T . Al-
though the subsequent methods have focused on optimiz-
ing model parameters [3, 4] and objective functions [2], the
overall process remains roughly the same as MTT.

3.2. Motivation: A New Perspective to Optimize the
Trajectory

Through a lot of preliminary experiments and visualiza-
tions, we found that the MTT method have three serious
shortcomings: 1) Instability of the expert trajectory gener-
ated by mini-batch SGD; 2) Low convergence speed of the
distillation process; 3) High storage consumption of the ex-
pert trajectory.

To better explain the internalization of these drawbacks,
we propose a novel perspective to view the dataset distilla-
tion and explain the essence of the MTT approach: The ob-
jective of DD task can be regarded as obtaining a set of pa-
rameters (i.e., the synthetic dataset S) that enables accurate
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prediction of how far (magnitude) and where (direction)
to step next for any given network parameters θ (i.e., pro-
vides appropriate guidance V⃗S to update the current net-
work parameters θ). From this perspective, each distilla-
tion iteration of the MTT method can be viewed as updat-
ing the synthetic dataset S to provide the network update
guidance V⃗S = ∥θ(t+N)

S − θ
(t)
T ∥22 of N -step SGD train-

ing on S, which aligns closer to the M -step SGD guidance
V⃗T = ∥θ(t+M)

T −θ
(t)
T ∥22 obtained from the expert trajectory,

given an arbitrary initialized point θ(t)T . A simple reformu-
lation of Equ. 2 yields the same result:

{(θ(t)T , V⃗
(t)
T )|θ(t)T ∈ τmtt, 0 ≤ t ≤ K} (5)

where V⃗
(t)
T denotes the “label” of θ(t)T .

From this perspective, the first two drawbacks can be
easily explained: Given that the models on the expert trajec-
tory τmtt are all obtained by SGD training, and considering
the variations in sample distribution across mini-batches,
the expert trajectory τmtt has huge oscillations. Therefore,
the training dynamics V⃗

(t)
T obtained by sampling two ar-

bitrary points with an interval of M steps from τmtt cannot
guarantee to always provide a favorable direction for V⃗ (t)

S to
learn. The final result is: 1) poor V⃗ (t)

T leads to instability; 2)
considerable time is expended in identifying the optimal op-
timization direction to achieve convergence. This raises the
question: Is there a superior trajectory τ̂ that consistently
delivers more advantageous V⃗

(t)
T to optimize the synthetic

dataset S through V⃗
(t)
S ?

We believe that an ideal expert trajectory should: 1) For
any θ̂

(t)
T on τ̂ , the obtained V⃗

(t)
T should always point to the

direction that guides the target loss ℓ(T ; θ
(t)
T ) to decrease.

2) This trajectory is easier to fit for S, because the size of
S is much smaller than the original dataset T . 3) The tra-
jectory cannot be too simple, since it should capture various
patterns of real dataset. 4) The trajectory is easy to save and
restore.

First, since deep learning is essentially a non-convex
problem, if we can make expert trajectories exhibit more
convex properties, optimization becomes much less diffi-
cult. How to find convex trajectories? We believe that re-
placing the original trajectory with a convex combination
trajectory would be much more effective. The starting and
ending points of this trajectory are the same as τmtt, and
all the waypoints are distributed along this line. This tra-
jectory meets our needs very well: 1) The visualization in
Figure 1a verifies that the validation accuracy of the model
on this trajectory consistently increases. 2) The direction
of any V⃗

(t)
T sampled from this trajectory is always from the

starting point to the ending (optimal) point, which is easy to
fit for distilled data. 3) Only the parameters of its starting
and ending points need to be stored, and the trajectory can

be reconstructed by linear interpolation. 4) This trajectory
is continuous, rather than consisting of intermittently sam-
pled points like the original path, which greatly enriches our
training set.

4. Our proposed MCT Method
4.1. Matching Convexified Trajectory
The expert trajectory τmtt is pre-generated with the param-
eter of all waypoint models stored in memory, i.e., τmtt =

{θ(0)T , θ
(1)
T , . . . , θ

(t)
T , . . . , θ

(K)
T }, where θ

(t)
T is computed by

multiple steps of mini-batch SGD [1].
However, the trajectory generated by vanilla mini-batch

SGD exhibits strong non-convexity, which makes synthetic
data challenging to converge to an optimal solution. To this
end, we proposed MCT, which creates a convexified trajec-
tory τconv and is defined as:

τconv = {θ̂(t)|0 ≤ t ≤ K},

∀θ̂(t) = (1− β(t))θ
(0)
T + β(t)θ

(K)
T ,

(6)

where β(t) ∈ (0, 1) is a weight value that determines the
distribution of all waypoints. The starting point θ̂(0) and
ending point θ̂(K) are same as θ

(0)
T and θ

(K)
T in τconv. Par-

ticularly, the generated trajectory τconv directly points from
θ
(0)
T to θ

(K)
T , and β(t) is determined by the ratio of the dif-

ference between θ
(t−1)
T and θ

(t)
T in τmtt to the total length of

τmtt as:

β(0) = 0,

β(t) =

∑t−1
l=0 Norm(θ

(l+1)
T − θ

(l)
T )∑K−1

l=0 Norm(θ
(l+1)
T − θ

(l)
T )

, t = 1, 2, . . . ,K,

(7)

where Norm(·) is L2 normalization. To mitigate discrep-
ancies among different network layers, we calculate the
L2 normalization for each layer individually, i.e., β(t) =

[β
(t)
1 , β

(t)
2 , . . . , β

(t)
n ]T, where each element in β(t) repre-

sents the weight value of a network layer. Note that our tra-
jectory is generated based on τmtt, and the calculation of β(t)

does not require saving all the intermediate models θ(t)T . It
only needs to save Norm(θ

(l+1)
T −θ

(l)
T ) obtained in each step

of the expert trajectory τmtt, allowing β(t) to be calculated at
the end of expert training. Given this expert trajectory τconv,
the distillation in Equ. 2 can be conducted. During distilla-
tion, our MCT method always provides a convexified guid-
ance V⃗

(t)
T with the direction from θ

(0)
T to θ

(K)
T , leading to

the steady optimization of V⃗ (t)
S , and thus, the convergence

of S will be rapid.

4.2. Interpolated Points
To enhance the full exploration of the model parameter
space by our linearly convexified trajectories (this explo-
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Figure 2. An illustration of the proposed MCT method. The left figure illustrates a schematic of the landscape in the model parameter
space, while the right figure shows the validation accuracy of waypoint models extracted from expert trajectories of both the MTT method
and our MCT method. In the left figure, the original trajectory τmtt exhibits constant oscillations, causing V⃗

(t)
T to continuously change,

resulting in fluctuating accuracy of the expert model in the right figure. In contrast, the trajectory τconv of our MCT method is very stable,
thereby ensuring a consistent guidance direction, which leads to a steady improvement of the expert model as shown in the right figure.

ration is also important for data distillation), we also sam-
ple a small number of interpolated points on τmtt. This pro-
cess turns the linear trajectory described above into poly-
line segments, which enhances the trajectory’s exploration
of the model parameter space with only a small increase in
storage requirements. Formally, in addition to the starting
and ending points θ(0)T and θ

(K)
T , we sample a few interpo-

lated points {θ(pi)
T }Ii=1 on the original expert trajectory τmtt,

where pi ∈ (0,K) is the index of i-th interpolated point and
I is the number of interpolated points. Thereafter, an inter-
polated trajectory τint is formulated as:

τint =τconv[θ
(0)
T → θ

(p1)
T ] + τconv[θ

(p1)
T → θ

(p2)
T ] + · · ·+

[θ
(pI−1)
T → θ

(pI)
T ] + [θ

(pI)
T → θ

(K)
T ]

(8)
where τconv[θ

(pi−1)
T → θ

(pi)
T ] denotes the linear segment of

τint between the interpolated points θ
(pi−1)
T and θ

(pi)
T . This

linear segment has the similar definition as that of τconv as
follows:

τconv[θ
(pi−1)
T → θ

(pi)
T ] = {θ̂(t)|pi−1 ≤ t ≤ pi},

∀θ̂(t) = (1− β(t)
pi

)θ
(pi−1)
T + β(t)

pi
θ
(pi)
T ,

(9)

where β
(t)
pi determines the chosen waypoints on the lin-

ear segment τconv[θ
(pi−1)
T → θ

(pi)
T ], which is calculated in

a manner similar to Equ.7. In training, the proportion of
sampled waypoints on this segment relative to the total K
matches the proportion of the segment’s projection on the

convexified trajectory τconv relative to its total length. To
maintain trajectory simplicity and storage efficiency, we
uniformly sample only two interpolation points, i.e., I = 2.
We have also conducted some experimental explorations re-
garding the quantity for the selection of interpolation points.
More details can be found in Appendix.

4.3. Continuous Sampling
Due to the continuity of our convexified trajectory, we can
perform continuous sampling from the trajectory during
distillation. This approach is completely different from the
MTT method, enabling the selection of intermediate po-
sitions such as ”the 1.5th point”. Specifically, the MTT
method only performs discrete sampling on the expert tra-
jectory (i.e., selecting θ

(t)
T with an integer t ). In contrast,

for τconv with the starting point θ̂(0) and ending point θ̂(K),
since all points are on a straight line, we can obtain any
timestep θ̂(c) with a real-valued c ∈ [0,K] on this line by
interpolation:

θ̂(c) = (1− β̂)θ̂(0) + β̂θ̂(K),

β̂ = (1− η)β(⌊c⌋) + ηβ(⌈c⌉),

η = c− ⌊c⌋,
(10)

After θ̂(c) and θ̂(c+M) are obtained, the distillation process
can be conducted. This continuous sampling strategy en-
sures sufficient learning and fitting of the entire expert tra-
jectory τconv, facilitating thorough learning of the synthetic
dataset S .
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4.4. Memory-Efficient Storage
In conventional MTT, the learning of the expert trajectory
requires storing the parameters of all timesteps in memory,
which will incur significant storage overhead. Formally, let
W denote the size of the network parameter θ(t)T and C de-
note the size of other irrelevant parameters. Since there are
K timesteps on τmtt, the entire required storage will be:

Smtt = K ×W + C = O(KW ), (11)

where Smtt denotes the required storage of the MTT method.
In contrast, our method only requires storing the starting
point θ̂(0), the ending point θ̂(K), and point distribution
{β(t)|0 ≤ t ≤ K} along the trajectory. Therefore, the en-
tire storage cost becomes:

Sconv = 2×W + I ×W +K × (β(t)) + C, (12)

where Sconv denotes the required storage of our method and
C denotes a constant. Since β(t) is a floating-point number,
the storage cost will be Storageconv = O(W ). In practice,
K is usually set to 50. Once the surrogate models in distilla-
tion become complex (e.g. LLMs), K and W will increase
simultaneously, highlighting the significant storage advan-
tages of our MCT method.

5. Experiment
5.1. Experiment Setup
Experiment Settings: We evaluated our method on
three datasets: CIFAR-10 and CIFAR-100 [8], and Tiny-
ImageNet [9]. We first generated the convexified trajecto-
ries with our MCT method. Similar to MTT, we applied
Kornia [17] Zero component analysis (ZCA) whitening on
CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets, and
utilized Differentiable Siamese Augmentation (DSA) [21]
technique during training and evaluation.

Evaluation and Baselines: Our MCT method is com-
pared with several baselines from different branches, in-
cluding Dataset Condensation (DC) [23], Distribution
Matching (DM) [22], DSA [21], Condense Aligning FEa-
tures (CAFE) [19], dataset distillation using Parameter
Pruning (PP) [14], and MTT. Following the conventional
settings, we conducted dataset distillation using 1/10/50 im-
ages per class (ipc) for evaluations, respectively. The im-
ages with the resolution of 32 × 32 and 64 × 64 were syn-
thesized on the CIFAR and Tiny-ImageNet datasets, respec-
tively. Subsequently, five randomly initialized networks
were trained in 1000 iterations with the cross-entropy loss
on the distilled dataset. These trained networks were then
evaluated on the real validation set, and their average accu-
racy (Acc) was reported as the evaluation metric. To main-
tain consistency with MTT and DC, we use ConvNet [5] as
the surrogate model. This model comprises 128 filters with

a 3 × 3 kernel size. Following the filters, instance normal-
ization [18] and ReLU activation are applied. Additionally,
an average pooling layer with a kernel size of 2 × 2 and a
stride of 2 is incorporated into the network.

Implementation Details: We adopt the same settings
of MTT in most cases. Specifically, 100 expert trajecto-
ries are generated, each spanning 50 epochs of training (i.e.,
51 timesteps). For large-scale synthetic data configurations
(e.g., CIFAR-100 with IPC = 50 and Tiny-ImageNet with
IPC = {10, 50}), we set batch syn = 200 to balance the
memory cost. During the distillation process, 5,000 distilla-
tion iterations are conducted. For each iteration, θ̂(c) is gen-
erated from Equ. 10, where the decimal c is randomly sam-
pled within [0, MaxStartEpoch]. We adopt the SGD opti-
mizer, and a learnable learning rate is employed to distill the
synthetic data. All experiments are run on four RTX3090
GPUs. The algorithm and more hyper-parameter settings
are in the Appendix.

5.2. Experiment Result

Validation Accuracy Comparison. Table 1 presents a
comparison of validation accuracy between our method and
various baselines across three datasets, where the best re-
sults are highlighted and the second best ones are itali-
cized. Although performance is not the main focus of our
MCT method, it is evident that our method achieves the
best performance on the three metrics of the CIFAR-10
dataset as well as the ipc = 1 metric of the Tiny ImageNet
dataset. Notably, compared to the crucial MTT method, our
MCT method demonstrates performance improvements in
most metrics, indicating that our convexified trajectory and
continuous sampling strategy can indeed provide enhanced
guidance to the optimization of synthetic datasets.

Convergence of Distillation Process. Figure 3a and 3b
illustrate the distillation processes utilizing the MCT and
MTT methods for the CIFAR-10 and CIFAR-100 datasets.
After every 100 distillation iterations, five networks with
random initialization are trained on the current distillation
dataset and their average accuracy on the validation set are
recorded. The figures present the validation accuracy trends
of both methods over the initial 2,500 iterations. As de-
picted, under all ipc settings, our MCT method achieves a
substantial performance much sooner (200-1,200 iterations
ahead), indicating a faster convergence speed; after near-
ing convergence, the performance of the MCT method re-
mains consistently stable as iterations proceed, whereas the
MTT method still experiences significant performance fluc-
tuations. These two phenomena suggest that our method
effectively enhances training stability and accelerates the
convergence process.

Comparison of Storage Requirement. Figure 3c com-
pares the required storage of the expert trajectory between
MTT and our MCT method. As demonstrated in Sec. 4.4,
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(a) Convergence on CIFAR-10 (b) Convergence on CIFAR-100 (c) Storage Comparison

Figure 3. (a) and (b): Convergence comparisons of distillation process on CIFAR-10 and CIFAR-100, where the symbol “star” denotes the
convergence point. (c): Storage comparisons on three datasets.

Table 1. Performance of Various Algorithms on Different Datasets

Dataset CIFAR-10 CIFAR-100 Tiny-ImageNet
ipc 1 10 50 1 10 50 1 10 50
Random 15.4±0.3 31.0±0.5 50.6±0.3 4.2±0.3 14.6±0.5 33.4±0.4 1.4±0.1 5.0±0.2 15.0±0.4
DC [23] 28.3±0.5 44.9±0.5 53.9±0.5 12.8±0.3 25.2±0.3 - - - -
DSA [21] 28.8±0.7 52.1±0.5 60.6±0.5 13.9±0.3 32.3±0.3 42.8±0.4 - - -
CAFE [19] 30.3±1.1 46.3±0.6 55.5±0.6 12.9±0.3 27.8±0.3 37.9±0.3 - - -
DM [22] 26.0±0.8 48.9±0.6 63.0±0.4 11.4±0.3 29.7±0.3 43.6±0.4 3.9±0.2 12.9±0.4 24.1±0.3
PP [14] 46.4±0.6 65.5±0.3 71.9±0.2 24.6±0.1 43.1±0.3 48.4±0.3 - - -
MTT [1] 46.3±0.8 65.3±0.7 71.6±0.2 24.3±0.3 40.1±0.4 47.7±0.2 8.8±0.3 23.2±0.2 28.0±0.3
Ours 48.5±0.2 66.0±0.3 72.3±0.3 24.5±0.5 42.5±0.5 46.8±0.2 9.6±0.5 22.6±0.8 27.6±0.4
Full dataset 84.8±0.1 56.2±0.3 37.6±0.4

it is clear that our convex trajectories require significantly
less memory (approximately 8%) compared to the expert
trajectories needed by the MTT method. It is foreseeable
that as model sizes and expert trajectories continue to grow,
the space savings offered by our method will become even
more substantial.

Visualization of Distilled Data. The visualization re-
sults of the synthetic data on CIFAR-10 with ipc = 10 and
CIFAR-100 with ipc = 1 are presented in Figure 5a and
5b. As we can see, the synthetic set learned from our expert
trajectories exhibits notable degrees of recognizability and
authenticity, while it also tends to integrate various charac-
teristic features of images within the same category.

5.3. Ablation Studies

Effects of Continuous Sampling. To verify the effect of
the continuous sampling, we set ipc = 10 and randomized
the starting epoch parameter within the range [0, 5] on the
CIFAR-10 dataset. The validation accuracy over iterations
and the optimal accuracy throughout the entire distillation
process are reported in Figure 4c and Table. 2, respectively.
Overall, the integration of continuous sampling can improve
the validation performance under all conditions. Moreover,

the fewer the number of expert trajectories, the more pro-
nounced the performance improvement brought about by
the continuous sampling strategy. Those results prove that
our continuous sampling can effectively expand the sam-
pling space, ultimately leading to the enhancement of the
final distillation outcomes.

Effects of expert updating step M . Table 3 shows the
effects of the updating step M of the expert trajectory τconv
on the CIFAR-10 dataset. N is set to 50 for all results. As
we can see, when ipc = 1, the optimal performance can
be obtained at M = 5, while when ipc = 10 and ipc =
50, the optimal performance can be obtained at M = 6.
Overall, our MCT method is robust to the selection of M
and will not experience significant performance degradation
with changes in M .

6. Conclusion
To address three major limitations of traditional MTT,
this paper proposes a novel perspective to understand the
essence of dataset distillation and MTT. A simple yet novel
Matching Convexified Trajectory method is introduced to
create a simplified, convexified expert trajectory that en-
hances the optimization process, leading to more stable and
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(a) 1 Expert Trajectory (b) 10 Expert Trajectories (c) 50 Expert Trajectories

Figure 4. Effects of Continuous Sampling over iterations with different expert trajectory numbers.

(a) CIFAR-10, ipc=10 (b) CIFAR-100, ipc=1

Figure 5. Visualization of synthetic dataset.

Table 2. Effects of Continuous Sampling with different numbers of expert trajectories on CIFAR-10.

Number of expert trajectories 1 5 10 20 50
w/o. Continuous Sampling 54.8±0.2 60.6±0.2 61.5±0.3 62.3±0.3 62.1±0.4
w. Continuous Sampling 56.2±0.3 61.3±0.5 61.8±0.6 62.8±0.3 62.8±0.2

Table 3. Effects of different M with different ipc on CIFAR-10.

M 3 4 5 6 7
ipc = 1 46.7 47.1 48.5 48.0 45.6

ipc = 10 62.3 62.6 65.0 66.0 65.2
ipc = 50 70.0 71.4 71.8 72.3 71.8

rapid convergence and reduced memory consumption. The
convexified trajectory allows for continuous sampling dur-

ing distillation, enriching the learning process and ensuring
thorough fitting of the expert trajectory. Our experiments
on CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets
demonstrate MCT’s superiority over MTT and other base-
lines. MCT’s ablation studies confirm the benefits of contin-
uous sampling and the impact of the convexified trajectory
on distillation performance.The results indicate that MCT is
a promising solution for training complex models with re-
duced data needs, offering an efficient, stable, and memory-
friendly approach to dataset distillation.
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