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ABSTRACT

Understanding the dynamics of distributed stochastic optimization requires ac-
counting for several major factors that affect convergence, such as gradient noise,
communication compression, and the use of adaptive update rules. While each
factor has been studied in isolation, their joint effect under realistic assumptions
remains poorly understood. In this work, we develop a unified theoretical frame-
work for Distributed Compressed SGD (DCSGD) and its sign variant Distributed
SignSGD (DSignSGD) under the recently introduced (L0, L1)-smoothness con-
dition. Our analysis leverages stochastic differential equations (SDEs), and we
show that while standard first-order SDEs might lead to misleading conclusions,
including higher-order terms helps capture the fine-grained interaction between
learning rates, gradient noise, compression, and the geometry of the loss land-
scape. These tools allow us to inspect the dynamics under general gradient noise
assumptions, including heavy-tailed and affine-variance regimes, which extend
beyond the classical bounded-variance setting. Our results show that normalizing
the updates of DCSGD emerges as a natural condition for stability, with the degree
of normalization precisely determined by the gradient noise structure, the land-
scape’s regularity, and the compression rate. In contrast, our model predicts that
DSignSGD converges even under heavy-tailed noise with standard learning rate
schedules, a finding which we empirically verify. Together, these findings offer
both new theoretical insights and practical guidance for designing stable and robust
distributed learning algorithms.

1 INTRODUCTION

Understanding the dynamics of stochastic optimization algorithms is crucial for the success of large-
scale machine learning, particularly in the distributed setting where multiple factors simultaneously
affect convergence. Modern distributed training pipelines must cope with three intertwined challenges:

1. Batch noise. Stochastic gradient methods rely on mini-batches to reduce computational cost,
but this introduces variance in the gradient estimates. In practical scenarios, this noise may not
only be non-vanishing but can also exhibit complex, heavy-tailed behavior (Simsekli et al., 2019).
Such noise has a profound impact on convergence rates, stability, and generalization, especially in
nonconvex landscapes.

2. Communication compression. In distributed systems, communicating full-precision gradients is
often prohibitively expensive. To alleviate this bottleneck, gradient compression techniques such
as sparsification, quantization, and sign-based schemes are commonly used. While these methods
reduce communication overhead, they alter the optimization dynamics by introducing bias and
additional variance (Alistarh et al., 2017). Understanding the trade-off between efficiency and
convergence guarantees under compression remains a central question.

3. Adaptivity. Many successful optimizers in deep learning, such as Adam, AdaGrad, or SignSGD,
incorporate some form of normalization or adaptivity in their update rules. Adaptivity has been
empirically shown to mitigate the detrimental effects of noise and ill-conditioning (Safaryan and
Richtarik, 2021), yet a rigorous understanding of why adaptivity helps in distributed, noisy, and
compressed scenarios is still incomplete. In particular, the interaction between adaptivity and the
statistical properties of the gradient noise is far from fully understood.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Despite a substantial body of work on each of these components in isolation, their joint interplay
remains underexplored, especially under realistic assumptions on the loss landscape. Most existing
theoretical results rely on L-smoothness, i.e., the assumption that the gradient of the objective
function is globally Lipschitz continuous (Bubeck et al., 2015). While this simplifies analysis, it fails
to capture the complexities of many practical problems, including those encountered in nonconvex
optimization for deep learning. In contrast, the (L0, L1)-smoothness condition allows the norm
of the Hessian of the loss to grow at most affinely with its gradient norm, sensibly relaxing the
aforementioned regularity condition (Zhang et al., 2020b). Similarly, while most of the literature
relies on the assumption that the gradient noise is bounded or has bounded variance, more realistic
models, such as affine variance and heavy-tailed noise, are increasingly being adopted in recent work.

While the use of SDEs to study optimization algorithms has seen significant growth in recent years (Li
et al., 2017)1, to the best of our knowledge, no prior work has employed SDEs to analyze stochastic
optimizers under the (L0, L1)-smoothness framework. This represents a significant gap, as (L0, L1)-
smoothness has emerged as a realistic alternative to L-smoothness for modeling modern nonconvex
landscapes. Following the standard approach, we first considered first-order SDE approximations.
However, these models yield fundamentally wrong conclusions: they do not prescribe any learning
rate constraints and incorrectly suggest that constant-stepsize SGD converges unconditionally. A
natural next step is to move to second-order models. Yet the classic second-order SDE from the
literature turns out to be even more problematic: it again fails to enforce learning rate restrictions
and, due to its curvature-dependent correction, even predicts accelerated convergence at large
stepsizes where SGD in fact diverges. Beyond this, neither of these models captures the more
subtle dynamics that arise under (L0, L1)-smoothness, where no universal stepsize can guarantee
stability. To overcome these limitations, we derive new SDE approximations that correctly recover
the standard learning rate restrictions and stability threshold, and align closely with the dynamics of
their respective optimizers. These new SDEs form the foundation of our analysis.

Building on these models, we develop a comprehensive analysis of DCSGD and DSignSGD under
(L0, L1)-smoothness with flexible gradient noise assumptions encompassing affine variance and
heavy-tailed noise. In settings already examined in the literature, such as (L0, L1)-smoothness with
affine variance of the noise,2 our results are consistent with established findings. In previously
unexplored regimes, where (L0, L1)-smoothness, affine variance, heavy-tailed noise, and gradient
compression are brought together under a unified framework, our analysis provides novel insights
that advance the understanding of the interaction of these factors.

Beyond these specific contributions, our results conceptually and technically establish the importance
of deriving proper SDE models for analyzing optimization in deep learning. We summarize our
contributions below and provide Table 1 to facilitate comparison with existing results.

Contributions. Building on the above motivations, this work makes the following contributions:

1. Deriving new SDE models that correctly capture the learning rate restrictions and stability thresh-
olds also under (L0, L1)-smoothness;

2. Proving convergence bounds for the models of DCSGD and DSignSGD under (L0, L1)-
smoothness and more general batch noise assumptions than those commonly used in the literature;

3. Demonstrating that the degree of normalization required for DCSGD to converge is precisely
determined by the interplay between the compression rate, the structure of gradient noise, and the
smoothness constants of the loss;

4. Highlighting that an adaptive method such as DSignSGD converges even under heavy-tailed noise
with standard assumptions on the learning rate scheduler, while DCSGD would diverge.

2 RELATED WORK

SDE Approximations in Optimization. Continuous-time models in the form of (stochastic) differen-
tial equations are a well-established tool to study discrete-time optimizers, e.g. (Helmke and Moore,
1994; Kushner and Yin, 2003). Recent works also derived differential equations to model SGD
under heavy-tailed batch noise (Simsekli et al., 2019), and (Zhou et al., 2020) derived a Lévy-driven

1We provide a comprehensive literature review in Section 2.
2This setting is studied for Normalized SGD and AdaGrad (Faw et al., 2023; Wang et al., 2023; Chen et al.,

2023), and not for DCSGD or DSignSGD.
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Table 1: Comparison of existing convergence results for stochastic methods applied to (L0, L1)-
smooth problems. All results are derived for non-convex problems, and the bounds are given in
expectation unless stated otherwise. All works assume bounded noise or bounded variance unless
stated otherwise. Abbreviations: “HT” = heavy-tailed noise, “Affine var.” = affine variance.

Reference Dynamics Noise
(L0, L1)-smooth Compression

HT Affine var.

(Zhang et al., 2020b;a)
(Zhao et al., 2021)
(Crawshaw et al., 2022)
(Koloskova et al., 2023)
(Li et al., 2023)(1) (2)

(Hübler et al., 2024)
(Li et al., 2024)(1) (3)

(Gaash et al., 2025)(1) (3)

Discrete ✗ ✗ ✓ ✗

(Faw et al., 2023)(1) (2)

(Wang et al., 2023)(1) (2)

(Chen et al., 2023)
Discrete ✗ ✓ ✓ ✗

(Khirirat et al., 2024) Discrete ✗ ✗ ✓ ✓

(Chezhegov et al., 2025)(1) (3) Discrete ✓ ✗ ✓ ✗

(Compagnoni et al., 2025a) Continuous ✓ ✗ ✗ ✓
This work Continuous ✓ ✓ ✓ ✓
(1) High-probability convergence analysis.
(2) Convergence bounds have inverse-power dependence on the failure probability.
(3) Derived for convex problems.

stochastic differential equation to model the non-Gaussianity of the noise. Importantly, it was (Li
et al., 2017) that first introduced a rigorous theoretical framework to derive SDEs that faithfully
model the stochastic behavior intrinsic to optimization algorithms widely employed in machine learn-
ing. Since then, such SDE-based formulations have been applied across several domains, including
stochastic optimal control for tuning stepsizes (Li et al., 2017; 2019) and batch sizes (Zhao et al.,
2022). Notably, SDEs have been instrumental in analyzing convergence bounds and stationary distri-
butions (Compagnoni et al., 2023; 2024; 2025b), scaling laws (Jastrzebski et al., 2018; Compagnoni
et al., 2025b;a), implicit regularization effects (Smith et al., 2021; Compagnoni et al., 2023), and
implicit preconditioning (Xiao et al., 2025; Marshall et al., 2025). We refer the interested reader
to (Orvieto and Lucchi, 2019b;a) for a didactic introduction to this topic, especially for how Itô
calculus is used in the derivation of these results.

We contribute to this line by highlighting a key gap: both the classic first-order and the second-order
SDEs from the literature can yield conclusions that contradict the discrete-time dynamics of SGD.
While this is somewhat expected from a first-order model, it is surprising that a higher-order one
also fails, possibly even more catastrophically. While previous studies did derive second-order SDEs
for various optimizers (Li et al., 2017; 2019; Luo et al., 2024), they did not exploit them to obtain
theoretical insights and thus overlooked these limitations. By contrast, we derive new SDE models
whose dynamics agree with the respective algorithms better.
Interplay of noise, compression, and adaptivity under (L0, L1)-smoothness. Previous research
has extensively studied the effect of batch noise, compression, and adaptivity on the convergence
of optimizers. Batch noise significantly influences stochastic gradient algorithms, affecting their
convergence speed and stability (Simsekli et al., 2019; Zhang et al., 2020b; Kunstner et al., 2024;
Compagnoni et al., 2025b). Noise characteristics such as heavy-tailed distributions have been shown to
profoundly impact the optimization trajectories, necessitating robust algorithmic strategies (Şimşekli
et al., 2019; Gorbunov et al., 2021). Compression methods, including unbiased techniques such as
sparsification and quantization (Alistarh et al., 2017; Stich et al., 2018; Mishchenko et al., 2024) and
biased approaches such as SignSGD (Bernstein et al., 2018; Balles and Hennig, 2018), are critical
for reducing communication overhead in distributed training. These compression techniques come
with theoretical guarantees under various smoothness assumptions (Alistarh et al., 2017; Gorbunov
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et al., 2020; Mishchenko et al., 2024; Compagnoni et al., 2025a), and recent results also develop
linear-rate or near-optimal behavior under generalized/(L0, L1)-smoothness (Vankov et al., 2025;
Tyurin, 2024). Adaptive methods such as SignSGD normalize gradient elements to cope effectively
with large or heavy-tailed gradient noise, thus demonstrating improved empirical robustness (Safaryan
and Richtarik, 2021; Compagnoni et al., 2025b;a; Kornilov et al., 2025).

However, most of the works mentioned above rely on restrictive assumptions such as L-smoothness,
i.e., the L-Lipschitz continuity of the gradient. To relax this condition, Zhang et al. (2020b) introduces
and empirically validates the (L0, L1)-smoothness assumption, which allows the norm of the Hessian
to be bounded by an affine function of the gradient norm, thereby significantly expanding the class
of admissible problems. A growing body of work now analyzes (stochastic) first-order methods
under (L0, L1) or more “generalized-smoothness” assumptions, including Clip-SGD and related
clipping schemes (Zhang et al., 2020b;c; Koloskova et al., 2023; Reisizadeh et al., 2025; Gorbunov
et al., 2025; Vankov et al., 2025; Gaash et al., 2025; Pethick et al., 2025), Normalized SGD and
variants with normalization-based schedules (Zhao et al., 2021; Chen et al., 2023; Hübler et al.,
2024; Yang et al., 2024), SignSGD (Crawshaw et al., 2022), AdaGrad (Faw et al., 2023; Wang
et al., 2023), Adam (Li et al., 2024; Zhang et al., 2024), and SGD (Li et al., 2023). Beyond these,
there are accelerated and proximal/mirror-descent developments under generalized or (L0, L1)-
smoothness (Tyurin, 2025; Yu et al., 2025a; Tovmasyan et al., 2025; Yu et al., 2025b), nonlinearly
preconditioned methods (Oikonomidis et al., 2025), results on escaping saddle points (Cao et al.,
2025), zero-/first-order complexity under generalized smoothness (Lobanov and Gasnikov, 2025),
and decentralized/federated formulations with generalized smoothness and local steps (Demidovich
et al., 2024; Jiang et al., 2025). For compressed communication, Khirirat et al. (2024) proposed and
analyzed a momentum-based variant of normalized EF21-SGD (Richtárik et al., 2021) under bounded
variance. Additional generalized-smoothness analyses further connect normalization, compression,
and relaxed smoothness guarantees (Lobanov et al., 2024; Tyurin, 2024; Yang et al., 2024).

In summary, while prior works have leveraged SDEs to model optimization dynamics, they have not
addressed the interplay of (L0, L1)-smoothness, affine variance, heavy-tailed noise, and compression.
This gap motivates our analysis.

3 PRELIMINARIES

Distributed Setup. Let us consider the problem of minimizing an objective function expressed as
an average of N functions: minx∈Rd

[
f(x) := 1

N

∑N
i=1 fi(x)

]
, where each fi : Rd → R is lower

bounded and twice continuously differentiable, and represents the loss over the local data of the i-th
agent. In our stochastic setup, each agent only has access to gradient estimates: let ni be the number
of datapoints accessible to agent i; at a given x ∈ Rd, agent i estimates ∇fi(x) using a batch of
data γi ⊆ {1, . . . , ni}, sampled uniformly with replacement and uncorrelated from the previously
sampled batches. Given the sampling properties above, this estimate, which we denote by ∇fi,γi

(x),
can be modeled as a perturbation of the global gradient: ∇fi,γi

(x) = ∇f(x) + Zi(x).

Noise assumptions. We assume the sampling process and agent configurations are such that, for all
x ∈ Rd and each agent pair (i, j) with i ̸= j, Zi(x) is independent of Zj(x). Regarding assumptions
on the noise structure, we always assume that at each x ∈ Rd, Zi(x) is absolutely continuous and
has a coordinate-wise symmetric distribution. For context, we highlight that numerous works in the
literature assume a much more restrictive assumption, e.g. that Zi(x) are Gaussian (Ahn et al., 2012;
Chen et al., 2014; Mandt et al., 2016; Stephan et al., 2017; Zhu et al., 2019; Wu et al., 2020; Xie
et al., 2021), and Li et al. (2017); Mertikopoulos and Staudigl (2018); Raginsky and Bouvrie (2012);
Zhu et al. (2019); Mandt et al. (2016); Ahn et al. (2012); Jastrzebski et al. (2018) even assume the
covariance matrix of the batch noise to be constant: we refer the reader to Jastrzebski et al. (2018) for
the intuition behind this modeling choices. Finally, if we discuss the setting Zi(x) ∈ L1(Rd), then
we assume E[Zi(x)] = 0. Lastly, if Zi(x) ∈ L2(Rd), we denote Σi(x) := Cov(Zi(x)).

Next, we define our two structural assumptions. The first one strictly concerns the global landscape;
the second concerns how global landscape features affect the noise distribution of each agent.

Definition 3.1. f is (L0, L1)-smooth (L0, L1 ≥ 0) if, ∀x ∈ Rd,
∥∥∇2f(x)

∥∥ ≤ L0 + L1∥∇f(x)∥2.

Definition 3.2 (Extension of the assumptions from Schmidt and Roux (2013); Vaswani et al. (2019)).
The gradient noise for agent i has affine (σ2

0,i, σ
2
1,i)-variance if ∥Σi(x)∥∞ ≤ σ2

0,i + σ2
1,i∥∇f(x)∥22.

If σ1,i = 0, the noise has bounded variance.
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Finally, we define which compressors we use to reduce the communication costs of gradients.

Definition 3.3. An unbiased compressor is a stochastic map Cξ : Rd → Rd such that (a)Eξ [Cξ(x)] =
x and (b) Eξ

[
∥Cξ(x)− x∥22

]
≤ ω∥x∥22 for some compression rate ω ≥ 0.

SDE approximations. The following definition presents the most commonly used notion that
formalizes the idea that an SDE can be a “reliable surrogate” to model an optimizer. It is drawn from
the field of numerical analysis of SDEs (see Mil’shtein (1986)) and it quantifies the disparity between
the discrete and the continuous processes.

Definition 3.4. A continuous-time stochastic process (Xt)t∈[0,T ] is an α-order weak approximation
of a discrete stochastic process (xk)

⌊T/η⌋
k=0 if for every polynomial growth function g, there exists a

positive constant C, independent of η, such that maxk=0,...,⌊T/η⌋ |Eg (xk)− Eg (Xkη)| ≤ Cηα. We
will often refer to 1-order and 2-order weak approximations as first- and second-order SDEs.

To illustrate the difference between a first-order and a second-order SDE, we present here those of
SGD in the single-node case, originally formally derived in Theorem 1 of (Li et al., 2017). As we
denote the covariance batch noise with Σ(x) = 1

n

∑n
i=1(∇f(x)−∇fi(x))(∇f(x)−∇fi(x))

T , the
first-order SDE of SGD is

dXt = −∇f(Xt)dt+
√
η
√
Σ(Xt)dWt, (1)

while the second-order one is

dXt = −∇f(Xt)dt−
η

2
∇2f(Xt)∇f(Xt)dt+

√
η
√

Σ(Xt)dWt, (2)

where term in purple color characterizes the higher-order SDE. We will revisit these formulations in
Sec. 4.3 and show that they both lead to misleading conclusions, motivating our new approximation:

dXt = −∇f(Xt)dt +
η

2
∇2f(Xt)∇f(Xt)dt+

√
η
√

Σ(Xt)dWt. (3)

Optimizers and SDEs. We study: 1) DCSGD defined as xk+1 = xk − η
N

∑N
i=1 Cξi

(
∇fi,γi(xk)

)
,

with unbiased compressors Cξi with SDE models in Eq. 87–106; 2) DSignSGD defined as xk+1 =

xk − η
N

∑N
i=1 sign(∇fi,γi

(xk)), with SDE models in Eq. 126–134.

4 THEORETICAL RESULTS

Recall that, in the continuous-time setup, the dynamics of the iterates is modeled by a stochastic
process Xt solution to an SDE model. In this setting, the learning rate is a scalar factor in the SDE
influencing both its drift and diffusion. To decouple adaptivity from scheduling, we parametrize
our learning rate as a product: ηηt. To ensure convergence, we always assume ηt satisfying
the Robbins and Monro (1951) conditions: For ϕi

t =
∫ t

0
(ηs)

ids, we require ϕ1
t

t→∞→ ∞, ϕ2
t

ϕ1
t

t→∞→ 0.

For example, these conditions are met for ηt = 1
(1+t)a

for a ∈ (0, 1)\{ 1
2
}, as ϕ1

t
t→∞∼ 1

ta−1

t→∞→ ∞ and
ϕ2
t

ϕ1
t

t→∞∼ 1
ta

t→∞→ 0. The values a ∈ { 1
2
, 1} are possible, and the expressions are more convoluted.

Overview Our insights concern the conditions on the learning rate ηηt for convergence, where ηt is
a predetermined scheduler. We aim to determine how factors such as compression, noise structure,
and adaptivity influence the level of normalization required to guarantee convergence. First, we
show how first- and second-order continuous-time models from the literature lead to misleading
conclusions, as they fail to capture the stability thresholds of the learning rate of GD. Then, we justify
the derivation of new models that capture this aspect of the dynamics. Finally, we present Thm. 4.2
and Thm. 4.3, which are derived under these new formulations and empirically validated in Fig. 1.

4.1 ON THE FAILURE OF CLASSIC FIRST-ORDER SDE MODELS

We start our analysis with a classical approach: As per the literature, we derive a convergence bound
for DCSGD from its first-order SDE: On the one hand, this result is very insightful and certainly
captures important aspects of the dynamics. On the other hand, we quickly figure out its limitations
as it fails to capture the fact that Gradient Descent on an L-smooth loss only converges if ηηt < 2

L .
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Figure 1: We optimize f(x) =
∑1000

j=1 (xj)
4

4 with batch noise of variance σ2∥∇f(x)∥22 and use Random
Sparsification for different compression rates ω: as per Thm. 4.2, DCSGD diverges faster and faster
for larger values of ω if normalization is not employed (Top-Left) but always converges if it is
employed (Bottom-Left). We optimize f(x) = x4

4 with batch noise of unbounded expected value
and for different scale parameters σ: as per Thm. 4.3, DSignSGD does not converge to 0 without a
proper learning rate scheduler (Top-Right), but does converge with (Bottom-Right).

Theorem 4.1. (DCSGD, unbiased compression, affine variance) Let f be (L0, L1)-smooth, and
each agent have (σ2

0,i, σ
2
1,i)-variance. Define σ2

0 := 1
N

∑N
i=1 σ

2
0,i, σ

2
1 := 1

N

∑N
i=1 σ

2
1,i, σ

2
0ω :=

1
N

∑N
i=1 σ

2
i,0ωi, and σ2

1ω := 1
N

∑N
i=1 σ

2
i,1ωi. For an arbitrary ϵ ∈ (0, 1), assume

ηηt <
2ϵ

(L0 + L1E [∥∇f(Xt)∥2]) ω+d(σ2
1ω+σ2

1)

N
+

L1d
(
σ2
0+σ2

0ω
)

N

. (4)

Then, for a random time t̂ with distribution ηt

ϕ1
t

and S0 := f(X0)− f(X∗), we have that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

(1− ϵ)ϕ1
t

S0 + ϕ2
t

L0(ω + d(σ2
1ω + σ2

1)) + L1d
(
σ2
0 + σ2

0ω
)

2N

 t→∞→ 0. (5)

Intuition: This result highlights the role of the regularity of the loss landscape and its interaction with
both gradient noise and compression. On the one hand, Eq. 4 provides numerous meaningful insights:
A larger number of clients N relaxes the restrictions on the learning rate, while an increasing number
of trainable parameters d, together with larger noise levels σ0 and σ1, tighten them; We can notice the
intriguing nonlinear interaction between the smoothness constants L0 and L1 with noise constants
σ0 and σ1, and even the need for the learning rate to somewhat scale inversely to the expected
gradient norm; Gradient compression ω > 0 introduces an additional source of adaptivity pressure,
independently of the noise structure. Specifically, it shows how the compression rate ω̄ nonlinearly
interacts with L0, σ0, σ1, and L1: In particular, the term L1(ω + d(σ2

1ω + σ2
1)) > 0 communicates

that stronger compressions of the gradients in a noisy distributed scenario pose constraints on ηηt,
especially when L1 > 0. On the other hand, it is important to stress the limitations of the first-order

6
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analysis: If we focus on the noiseless and L-smooth scenario with no compression, i.e., we set
σ0,i = σ1,i = ωi = L1 = 0, we realize that Eq. 4 does not restrict ηηt in any way, which is clearly
unsatisfactory. This highlights the limitations of the first-order SDE approximation in accurately
capturing even the most basic learning-rate condition.

Similarly, in Theorem B.8, we leverage the first-order SDE of DSignSGD to derive the convergence
bound of DSignSGD. While it recovers the results from (Compagnoni et al., 2025a) when L1 =
σ1 = 0, it also predicts no restrictions on the learning rate in the noiseless scenario.

4.2 CLASSIC SECOND-ORDER MODELS FAIL AS WELL: WE NEED NEW MODELS

In this subsection, we examine how and why both first- and second-order classical models fail to
capture this essential aspect of the dynamics.

Quadratic Function To avoid overloading the discussions with technicalities intrinsic in Itô
calculus, we restrict the analysis to the noiseless and single-node case. In this setting, GD is modeled
via ODEs, e.g., Σ = 0 in Eq. 1 and Eq. 2. We focus on a 1-dimensional quadratic function where the
dynamics can be studied tightly and in closed form: For f(x) = λx2

2 for λ > 0, a discrete GD step is
stable only if η < 2/λ. As per Eq. 1, the first-order ODE model is

dXt = −∇f(Xt)dt = −λXtdt, =⇒ f(Xt) = f(X0)e
−2λt t→∞→ 0, (6)

suggesting convergence independently of η and missing the stability threshold, which is not realistic.
As per Eq. 2, the second-order ODE from the literature is

dXt = −∇f(Xt)dt−
η

2
∇2f(Xt)∇f(Xt)dt =⇒ f(Xt) = f(X0)e

−2λ

(
1+

λη
2

)
t t→∞→ 0, (7)

thus missing the threshold and predicting faster convergence as η increases. This is inconsistent with
discrete GD, where large η causes divergence, making this result even more puzzling.

Comparison With Discrete-Time Analysis Here, we take a step back and closely compare the
dynamics of the loss function in discrete-time with that in continuous time as prescribed by the ODEs
of GD. Consider GD with constant stepsize η > 0:

xt+1 = xt − η∇f(xt). (8)

Using a second-order Taylor expansion around xt along the GD step gives

f(xt+1)− f(xt) = −η∥∇f(xt)∥2 + η2

2 ∇f(xt)
⊤∇2f(xt)∇f(xt) +Oxt(η

3). (9)

However, the first-order ODE of GD implies that

df(Xt) = −∥∇f(Xt)∥22dt. (10)

We immediately notice that this ODE describing the dynamics of the loss function in continuous time
is completely missing the second-order information highlighted in purple color. The natural step is to
shift to the second-order ODE, which implies that

df(Xt) = −∥∇f(Xt)∥22dt − η
2∇f(Xt)

⊤∇2f(Xt)∇f(Xt)dt. (11)

While this ODE of the loss does incorporate some second-order information highlighted in purple
color, we notice that its sign is flipped with respect to that of the discrete dynamics in Eq. 9. This
flipped sign is exactly the factor responsible for the failures of this second-order ODE.

Deriving a New Model: An Ansatz Approach. Therefore, we understand that choosing the right
model for the iterates is critical to capture the aspects of the dynamics under analysis. Inspired by a
classic approach in mathematical physics, we propose an ansatz for an ODE of the iterates of GD
and look for one that models the loss dynamics more closely. For a real number α, we propose:

dXt = −∇f(Xt)dt+ α∇2f(Xt)∇f(Xt)dt, (12)

which implies that the loss dynamics is driven by

df(Xt) = −∥∇f(Xt)∥22dt+ α∇f(Xt)
⊤∇2f(Xt)∇f(Xt)dt. (13)

To match the discrete dynamics of the loss in Eq. 9, we need α = η
2 . Therefore, we get that

7
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Table 2: Comparison of the learning rate product constraints ηηt derived from classic SDEs (left
column) and our SDEs (right column). Each row corresponds to the theorem pairs: DCSGD Thm. 4.1
vs. Thm. 4.2), and DSignSGD (Thm. B.8 vs. Thm. 4.3). The numeric constants ℓν and Mν are
defined in Theorem B.9, while G := (L0 + L1E [∥∇f(Xt)∥2]).

Setting Classic SDEs Our SDEs

DCSGD 2ϵ

G
ω+d(σ2

1ω+σ2
1)

N +
L1d

(
σ2
0+σ2

0ω
)

N

2ϵ

G

(
1+

ω+d(σ2
1ω+σ2

1)
N

)
+

L1d
(
σ2
0+σ2

0ω
)

N

DSignSGD ℓν
K s.t. K =

L1dσH,1

2N
ℓν
K s.t. K =

L1dσH,1

2N +
√
d (L0 + L1)Mν

dXt = −∇f(Xt)dt +
η

2
∇2f(Xt)∇f(Xt)dt, (14)

is our candidate ODE for GD: We formalize this in Section A. The key observation is that while our
new model for the iterates is only a first-order one, it induces an ODE for the loss function that is a
second-order model for the dynamics of the discrete-time loss of GD. Importantly, in the quadratic
case studied above, it implies that

f(Xt) = f(X0)e
−2λ

(
1−λη

2

)
t
, (15)

which, consistently with GD, converges only if η < 2
λ . Finally, we refer the interested reader to

Section A.3.2 where we compare the modeling properties of all three ODEs on a quartic function: We
find that both classic models predict unconditional convergence of GD, while ours does capture the
instability of GD if the learning rate does not scale inversely to the norm of the iterates, in accordance
to the discrete dynamics of GD.

Conclusion: This analysis suggests that the order of a continuous-time model does not necessarily
translate into it better modeling the discrete-time dynamics, not even in the simplest cases, and even
less in the (L0, L1)-smoothness setting.

4.3 RESULTS DERIVED VIA OUR SDES

In this subsection, we report the convergence bounds for newly derived models of DCSGD and
DSignSGD. Compared to standard first- and second-order models, our proposed models reveal the
interaction between learning rate schedules, loss landscape, batch noise, and compression in a way
that is consistent with the discrete dynamics of known cases in the literature. Before presenting these
results, Table 2 summarizes how the constraint on ηηt changes when moving from leveraging the
classic SDEs to ours. The orange color indicates terms that only appear due to the use of our SDEs.
Theorem 4.2. (DCSGD, unbiased compression, affine variance) Let f be (L0, L1)-smooth, and
each agent have (σ2

0,i, σ
2
1,i)-variance. Define σ2

0 := 1
N

∑N
i=1 σ

2
0,i, σ

2
1 := 1

N

∑N
i=1 σ

2
1,i, σ

2
0ω :=

1
N

∑N
i=1 σ

2
i,0ωi, and σ2

1ω := 1
N

∑N
i=1 σ

2
i,1ωi. For an arbitrary ϵ ∈ (0, 1), assume

ηηt <
2ϵ

(L0 + L1E [∥∇f(Xt)∥2])
(
1+

ω+d(σ2
1ω+σ2

1)

N

)
+

L1d
(
σ2
0+σ2

0ω
)

N

. (16)

Then, for a random time t̂ with distribution ηt

ϕ1
t

, we have that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

(1− ϵ)ϕ1
t

(
f(X0)− f(X∗) + ϕ2

t
η(L0 + L1)d(σ2

0 + σ2
0ω)

2N

)
t→∞→ 0. (17)

Intuition: The interpretation of this result is fully in line with that of Theorem 4.1. However, we
notice that the baseline term 1 is crucial as it allows us to recover the standard stepsize schedule
bound derived under L-smoothness, i.e., ηηt < 2

L0
, when we set σ0,i = σ1,i = ωi = L1 = 0.

Additionally, it ensures consistency with the noiseless or affine-variance case: i) In the noiseless
setup σ0 = σ1 = 0, normalizing the update step naturally emerges as a condition for convergence,
in accordance with (Gorbunov et al., 2025); ii) When L1σ2

1 > 0, stronger adaptivity is required, in
line with insights derived from analyses of related methods (Wang et al., 2023; Chen et al., 2023).
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Finally, we highlight that all insights encompassing compression and affine variance under (L0, L1)-
smoothness are novel. They reveal how the right amount of normalization is dictated jointly by the
compression rate, the variance structure of the noise, and the geometry of the landscape, offering
practitioners concrete guidance on when and how to stabilize DCSGD in challenging regimes.

DSignSGD, structured noise, unbounded expected value. To provide informative results for the
convergence of DSignSGD under heavy-tailed batch noise, we additionally assume structured noise
following a student-t distribution: ∇fγi(x) = ∇f(x) +

√
ΣiZi s.t. Zi ∼ tν(0, Id), ν are the d.o.f, and

scale matrices3 Σi = diag(σ2
1,i, · · · , σ2

d,i). Note that if ν = 1, the expected value of Zi is unbounded,
thus modeling much more pathological noise than simple affine (σ2

0 , σ
2
1)-variance.

Theorem 4.3. Let f be (L0, L1)-smooth, Σi ≤ σ2
max,i, σH,1 be the harmonic mean of {σmax,i},

Mν > 0 and ℓν > 0 be constants, and K :=
(

L1dσH,1

2N
+

√
d(L0 + L1)Mν

)
. Then, for a scheduler

ηηt <
ℓν
K , a random time t̃ with distribution ηtℓν−η2

t ηK

ϕ1
t ℓν−ϕ2

tηK
, and S0 := f(X0)− f(X∗), we have that

E
[
∥∇f (Xt̃)∥

2
2

]
≤ σH,1

ϕ1
t ℓν − ϕ2

tηK

(
S0 + ϕ2

tη(L0 + L1)d

(
1

2N
+

Mν

σH,1

√
d

))
t→∞→ 0. (18)

Intuition: Higher noise levels, captured by σmax,i, and heavier tails, captured by the degrees of
freedom ν, both tighten the upper bound on ηηt. This effect is further amplified by large values of
L0, L1, and by the dimensionality d of the parameter space. In contrast to DCSGD (see Eq. 16),
DSignSGD does not require ηηt to scale inversely with the gradient norm: its adaptive design
already incorporates a form of normalization. The crucial difference from the first-order SDE
analysis (Theorem B.8) is the appearance of an additional baseline term,

√
d(L0 + L1)Mν . As a

consequence, setting σmax,i = 0 no longer eliminates the restriction on ηηt; rather, it yields the bound
ηηt <

1√
d(L0+L1)

. These findings are confirmed in the right column of Figure 1.

5 CONCLUSION

In this paper, we provided the first application of SDEs to (L0, L1)-smooth problems, deriving the first
convergence guarantees for the models of DCSGD and DSignSGD under such conditions, coupled
with flexible batch noise assumptions. From a technical perspective, we exposed a fundamental
limitation of the classic first- and second-order SDEs: although widely used in the literature, they
fail to capture essential aspects of the dynamics. In particular, they do not enforce learning rate
constraints, predict qualitatively wrong behaviors such as unconditional convergence or even spurious
acceleration, and miss the fact that under (L0, L1)-smoothness, no fixed stepsize is universally stable.
To overcome these issues, we introduced new SDEs that faithfully track the discrete dynamics of the
respective optimizers, recover the standard learning rate restrictions and stability threshold on known
settings, and enable novel theoretical and practical insights in unexplored ones.

From a practical perspective, our analysis clarifies the role of adaptivity in ensuring convergence
of stochastic optimizers. On one hand, an adaptive method such as DSignSGD converges even
under heavy-tailed noise with unbounded expectation. On the other hand, normalizing the updates
for DCSGD emerges naturally as a strategy to ensure convergence, especially when either the
compression rate ω or the variance parameter σ2

1 is positive. Importantly, our analysis — treating
compression and affine variance together within (L0, L1)-smoothness — is novel, and it shows that
the appropriate normalization level of the gradients is set by the joint influence of compression, noise
structure, and landscape geometry, yielding concrete guidance on when and how to stabilize DCSGD
in difficult regimes. Taken together, these findings help explain the empirical success of adaptive
methods in deep learning: their updates are, to a significant extent, normalized, counteracting the
destabilizing effects of ill-conditioned landscapes and large, possibly heavy-tailed noise.

Our contribution is intentionally foundational: rather than proposing new optimizers, we build a
rigorous, unified framework that captures the joint effects of noise, compression, and adaptivity for
distributed methods under (L0, L1)-smoothness. We view this work as a basis for future extensions
(e.g., heterogeneous clients, error-feedback, and general biased compressors) and for subsequent
analyses that further systematize stochastic optimization. More broadly, we believe this is only
a first step in harnessing second-order information in SDEs for optimization, and anticipate that
further developments along this direction will yield even deeper insights into the dynamics of modern
stochastic optimizers.

3These are not covariance matrices, but we use the same notation to facilitate comparability.
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A NEW ODES AND SDES FOR GD AND SGD

A.1 COMPARISON WITH DISCRETE-TIME ANALYSIS

In this section, we closely compare the dynamics of the loss function in discrete-time with that in
continuous time as prescribed by the ODEs of GD. Consider GD with constant stepsize η > 0:

xt+1 = xt − η∇f(xt). (19)

Using a second-order Taylor expansion around xt gives

f(xt+1)− f(xt) = −η∥∇f(xt)∥2 + η2

2 ∇f(xt)
⊤∇2f(xt)∇f(xt) +Oxt

(η3). (20)

However, the first-order ODE of GD implies that

df(Xt) = −∥∇f(Xt)∥22dt. (21)

We immediately notice that this ODE describing the dynamics of the loss function in continuous time
is completely missing the second-order information highlighted in purple color. The natural step is to
shift to the second-order ODE, which implies that

df(Xt) = −∥∇f(Xt)∥22dt − η
2∇f(Xt)

⊤∇2f(Xt)∇f(Xt)dt. (22)

While this ODE of the loss does incorporate some second-order information highlighted in purple
color, we notice that its sign is flipped with respect to that of the discrete dynamics in Eq. 20. This
flipped sign is exactly the factor responsible for the failures of this second-order ODE.

Deriving a New Model: An Ansatz Approach. Therefore, we understand that choosing the right
model is critical to capture the aspects of the dynamics under analysis. Inspired by a classic approach
in mathematical physics, we propose an ansatz for an ODE of the iterates of GD and look for one that
models the loss dynamics more closely. For a real number α, we propose:

dXt = −∇f(Xt)dt+ αη∇2f(Xt)∇f(Xt)dt, (23)
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which implies that the loss dynamics is driven by

dXt = −∇f(Xt)dt +
η

2
∇2f(Xt)∇f(Xt)dt, (24)

To match the discrete dynamics of the loss in Eq. 20, we need α = 1
2 . Therefore, we get that

dXt = −∇f(Xt)dt+
η

2
∇2f(Xt)∇f(Xt)dt, (25)

is our new candidate ODE for GD.

A.2 NEW MODELS

First, we define two new models for GD and SGD. Then, we introduce a technical lemma and proceed
to prove that our new models are first-order models for (S)GD.

Definition A.1. Based on the discussion above, we define the new ODE model for GD:

dXt = −∇f(Xt)dt+
η
2∇

2f(Xt)∇f(Xt)dt, (26)

and the new SDE model for SGD:

dXt = −∇f(Xt)dt+
η
2∇

2f(Xt)∇f(Xt)dt+
√
η
√

Σ(Xt)dWt. (27)

Remark A.2. Notice that, contrary to the second-order ODE and SDE from the literature, there is a
+ rather than a − in front of the η

2∇
2f(Xt)∇f(Xt). The same logic of flipping the sign has to be

applied to all classic second-order ODEs and SDEs to obtain the same benefits as those obtained on
GD and SGD.

Theorem A.3. Under the dynamics ẋ = F (x) such that F ∈ C3(R), fix t. One has the expansion

x(t+ η) = x+ ηF +
η2

2
F ′F +

η3

6

(
F ′′F 2 + (F ′)2F

)
+O(η4),

where all derivatives of F are with respect to x, evaluated at x(t).

Proof. By Taylor’s theorem about t,

x(t+ η) = x(t) + ηx′(t) +
η2

2
x′′(t) +

η3

6
x′′′(t) +O(η4).

Note that:

x′(t) = F (x(t)), x′′(t) = F ′(x(t))F (x(t)), x′′′(t) = F ′′(x(t))F (x(t))2+
(
F ′(x(t))

)2
F (x(t)).

Theorem A.4 (ODE approximations of Gradient Descent). Consider gradient descent (GD) with
constant stepsize η > 0. The following ODEs are all weak-approximations of GD:

1. The first-order approximation from the literature:

dXt = −∇f(Xt) dt. (28)

2. The second-order approximation from the literature:

dXt = −∇f(Xt) dt−
η

2
∇2f(Xt)∇f(Xt) dt. (29)

3. Our newly proposed first-order approximation:

dXt = −∇f(Xt) dt+
η

2
∇2f(Xt)∇f(Xt) dt. (30)
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Proof. For simplicity, we consider gradient descent in one dimension, as generalizing to higher
dimensions follows the same steps:

xk+1 = xk − ηf ′(xk).

We now seek a flow of the form
F (x) = −f ′(x) + αf ′(x)f ′′(x),

and just substitute in the expressions in the previous result. Then, we will study the error as a function
of α. Note that we want to compute

x(t+ η) = x+ ηF +
η2

2
F ′F +

η3

6

(
F ′′F 2 + (F ′)2F

)
+O(η4).

We have:
F = −f ′ + αf ′f ′′, F ′ = −f ′′ + α

(
(f ′′)2 + f ′f ′′′), F ′′ = −f ′′′ + α

(
3f ′′f ′′′ + f ′f ′′′′).

So
x(t+ η) = x+ η

(
− f ′ + αf ′f ′′

)
+

η2

2

[
f ′f ′′ − α

(
f ′2f ′′′ + 2f ′(f ′′)2

)
+ α2

(
f ′2f ′′f ′′′ + f ′(f ′′)3

)]
+

η3

6

[
−
(
f ′2f ′′′ + f ′(f ′′)2

)
+ α

(
f ′3f ′′′′ + 7f ′2f ′′f ′′′ + 3f ′(f ′′)3

)
− α2

(
2f ′3f ′′f ′′′′ + f ′3(f ′′′)2 + 11f ′2(f ′′)2f ′′′ + 3f ′(f ′′)4

)
+ α3

(
f ′3(f ′′)2f ′′′′ + f ′3f ′′(f ′′′)2 + 5f ′2(f ′′)3f ′′′ + f ′(f ′′)5

)]
+O(η4).

Assume now that α = βη, we get

x(t+ η) = x− η f ′

+ η2
(
β + 1

2

)
f ′f ′′

− η3

6

[
(3β + 1) f ′2f ′′′ + (6β + 1) f ′(f ′′)2

]
+O(η4),

For α = 0 we get gradient flow and hence

x(t+ η) = x− ηf ′ + 1
2 η

2f ′f ′′ − 1
6 η

3
(
f ′2f ′′′ + f ′(f ′′)2

)
+O(η4),

which is the first-order ODE from the literature.

For α = −η/2

x(t+ η) = x− ηf ′ + η3
(

1
12 f

′2f ′′′ + 1
3 f

′(f ′′)2
)
+O(η4),

which is the second-order ODE from the literature.

Finally, for α = η/2,

x(t+ η) = x− ηf ′ + η2f ′f ′′ − 5
12 η

3f ′2f ′′′ − 2
3 η

3f ′(f ′′)2 +O(η4),

which is our newly proposed first-order ODE.
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The following theorem formalizes that our new SDE model from Eq. 27 is formally a first-order weak
approximation for SGD: Its proof is a trivial combination of the arguments in the previous theorem,
and Lemma 1 and Lemma 2 in (Li et al., 2017).
Theorem A.5 (SDE approximations of Stochastic Gradient Descent). Consider stochastic gradient
descent with constant stepsize η > 0. Its continuous-time approximations are given by the following
SDEs:

1. The first-order approximation from the literature:

dXt = −∇f(Xt) dt+
√

ηΣ(Xt)dWt. (31)

2. The second-order approximation from the literature:

dXt = −∇f(Xt) dt−
η

2
∇2f(Xt)∇f(Xt) dt+

√
ηΣ(Xt)dWt. (32)

3. Our newly proposed first-order approximation:

dXt = −∇f(Xt) dt+
η

2
∇2f(Xt)∇f(Xt) dt+

√
ηΣ(Xt)dWt. (33)

A.3 COMPARING ODES - AN INSIGHT PERSPECTIVE

In this section, we showcase how models from the literature fail to properly model the dynamics of
GD, especially regarding the constraints on the learning rate to ensure convergence. In contrast, we
show that our model is in accordance with GD.

A.3.1 QUADRATIC FUNCTION

For didactic reasons, we now compare the proofs for a convergence bound on the loss value f(x)

when the loss is a 1-dimensional convex quadratic function λx2

2 . To avoid overloading the proof with
technicalities intrinsic in Itô calculus, we restrict the analysis to the noiseless and single-node case.
The first-order ODE is

dXt = −∇f(Xt)dt = −λXtdt, (34)
which implies that

df(Xt) = −2λf(Xt)dt =⇒ f(Xt) = f(X0)e
−2λt t→∞→ 0, (35)

somewhat implying that GD converges independently of the constant L and of the learning rate η.
Much differently, the second-order ODE from the literature is

dXt = −∇f(Xt)dt− η
2∇

2f(Xt)∇f(Xt)dt, (36)

which implies that

df(Xt) = −∥∇f(Xt)∥22dt− η
2
∇f(Xt)

⊤∇2f(Xt)∇f(Xt)dt = −2λf(Xt)dt−
η

2
λX⊤

t λλXt (37)

= −2λ

(
1 +

λη

2

)
f(Xt)dt =⇒ f(Xt) = f(X0)e

−2λ(1+λη
2 )t t→∞→ 0, (38)

which is also inconsistent with the discrete-time analysis since we get convergence for any η > 0.

Now, we try to leverage our new ODE derived in Theorem A.4 and get that:

df(Xt) = −∥∇f(Xt)∥22dt+ η
2
∇f(Xt)

⊤∇2f(Xt)∇f(Xt)dt = −2λf(Xt)dt+
η

2
λX⊤

t λλXt (39)

= −2λ

(
1− λη

2

)
f(Xt)dt =⇒ f(Xt) = f(X0)e

−2λ(1−λη
2 )t t→∞→ 0, (40)

which only converges if η < 2
λ . This is consistent with the analysis in discrete time.

Conclusion: First of all, it is immediately apparent that while first-order approximations may lead to
relevant insights, they prevent us from having a full picture. Second, we demonstrated that the classic
second-order SDE also led us to results that are inconsistent with the discrete-time analysis. Finally,
our model provides a qualitatively faithful description of the true GD dynamics.
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A.3.2 QUARTIC FUNCTION

Here, we compare the three ODEs listed above as they describe the optimization of a quartic function
f(x) = x4

4 : We find that the classic ones both fail. First of all, a single step of gradient descent with
stepsize η reads

xk+1 = xk − η∇f(xk) = xk − ηx3
k,

meaning that if η > 2
x2
k

the dynamics explodes. In particular,

f(xk+1)− f(xk)

η
= −x6

k +
3

2
ηx8

k +O(η2). (41)

Using the first-order ODE, we get that

dXt = −X3
t dt =⇒ f(Xt) =

1

4(2t+X−2
0 )2

(42)

This model predicts universal convergence with a polynomial rate, but it does not capture the
exploding behaviour observed in GD. Using the second-order ODE, we get that

dXt = −X3
t dt−

3η
2 X5

t dt =⇒ df(Xt) = −X6
t dt−

3η
2 X8

t dt, (43)

from which we understand that since the additional term is negative, this ODE suggests faster
convergence for larger η. Using our new ODE, we get that

dXt = −X3
t dt+

3η
2 X5

t dt =⇒ df(Xt) = −X6
t dt+

3η
2 X8

t dt, (44)

which matches the dynamics of the loss of GD up to order 2. Importantly, it captures the phenomenon
that the learning rate η needs to scale inversely to the norm of the iterates for GD to converge.

Conclusion. On the quartic loss, the first-order ODE predicts convergence for all η, missing the
instability. The second-order ODE from the literature predicts accelerated convergence for larger
η, in direct contradiction with GD. In contrast, our new ODE reproduces the key phenomenon: the
learning rate η needs to scale inversely to the norm of the iterates for GD to converge. Hence, our
model provides a qualitatively faithful description of the true GD dynamics.

A.4 DIFFUSION APPROXIMATION FOR THE LOSS IN SGD

In this section, we propose an alternative approach to the derivation of a continuous-time model for
SGD. Rather than modeling the iterates and use the Itô Lemma to study the SDE of the loss function,
we try a new approach: We directly investigate the possibility of directly modeling the dynamics of
the loss. Consider stochastic gradient descent (SGD) with constant stepsize η > 0:

xt+1 = xt − ηgt, gt = ∇f(xt) + ζt, (45)

where f : Rd → R is smooth, ζt is the gradient noise satisfying

E[ζt | xt] = 0, Cov(ζt | xt) = Σ(xt).

We study the dynamics of the loss process Yt := f(xt).

Step 1. Taylor expansion of the loss. Using a second-order Taylor expansion around xt, for
h = −ηgt we have

f(xt+1) = f(xt + h)

= f(xt) +∇f(xt)
⊤h+ 1

2h
⊤∇2f(xt)h+O(∥h∥3). (46)

Substituting h = −ηgt gives

f(xt+1)− f(xt) = −η∇f(xt)
⊤gt +

η2

2 g⊤t ∇2f(xt) gt +O(η3). (47)

Step 2. Expansion of stochastic terms. Expanding with gt = ∇f(xt) + ζt yields

f(xt+1)− f(xt) = −η∥∇f(xt)∥2 − η∇f(xt)
⊤ζt

+ η2

2 ∇f(xt)
⊤∇2f(xt)∇f(xt) (48)

+ η2

2 ζ⊤t ∇2f(xt)ζt + η2∇f(xt)
⊤∇2f(xt)ζt +O(η3). (49)
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Step 3. Drift and volatility. Taking the conditional expectation given xt,

E[f(xt+1)− f(xt) | xt] = −η∥∇f(xt)∥2

+ η2

2 ∇f(xt)
⊤∇2f(xt)∇f(xt) +

η2

2 tr
(
∇2f(xt)Σ(xt)

)
+O(η3).

(50)

The stochastic fluctuations arise from the linear terms in ζt,

−η∇f(xt)
⊤ζt + η2∇f(xt)

⊤∇2f(xt)ζt,

whose leading-order contribution is
−η∇f(xt)

⊤ζt.

This term has conditional variance

Var
(
−η∇f(xt)

⊤ζt
∣∣xt

)
= η2∇f(xt)

⊤Σ(xt)∇f(xt).

Step 4. Continuous-time limit. Rescaling time by s = tη and letting η → 0, the increments
equation 49 converge in distribution to the diffusion

dYs =
(
−∥∇f(Xs)∥2+η

2∇f(Xs)
⊤∇2f(Xs)∇f(Xs)+

η
2 tr
(
∇2f(Xs)Σ(Xs)

))
ds+G(Xs) dWs,

(51)
where Ws is a standard Brownian motion and the scalar volatility G(x) is defined by

G(x)2 = ∇f(x)⊤Σ(x)∇f(x). (52)

Interestingly, this SDE is the same one that one gets by applying Itô’s Lemma on f(Xt) under the
dynamics of our newly proposed SDE in Eq. 27, which consolidates the intuition that our model
properly captures the dynamics of SGD faithfully.

B THEORETICAL RESULTS

Assumptions and notation. In line with (Compagnoni et al., 2025a), we assume that the stochastic
gradient of the i-th agent is given by ∇fγi

(x) = ∇f(x) + Zi(x), where Zi(x) denotes the gradient
noise and Zi(x) is independent of Zj(x) for i ̸= j. If Zi(x) ∈ L1(Rd), we assume E[Zi(x)] = 0,
and if Zi(x) ∈ L2(Rd), we assume Cov(Zi(x)) = Σi(x) (we omit the size of the batch γ unless
relevant) s.t.

√
Σi(x) is bounded, Lipschitz, satisfies affine growth, and together with its derivatives,

it grows at most polynomially fast (Definition 2.5 in Malladi et al. (2022)). Importantly, we assume
that all Zi(x) have a smooth and bounded probability density function whose derivatives are all
integrable: A common assumption in the literature is for Zi(x) to be Gaussian Ahn et al. (2012);
Chen et al. (2014); Mandt et al. (2016); Stephan et al. (2017); Zhu et al. (2019); Wu et al. (2020); Xie
et al. (2021): See Jastrzebski et al. (2018) for the justification why this could be the case. Differently,
our assumption allows for heavy-tailed distributions such as the Student’s t. It is important to point
out that Li et al. (2017); Mertikopoulos and Staudigl (2018); Raginsky and Bouvrie (2012); Zhu et al.
(2019); Mandt et al. (2016); Ahn et al. (2012); Jastrzebski et al. (2018) use a Gaussian noise with a
constant covariance matrix to model batch noise.

B.1 DISTRIBUTED SGD

B.1.1 FIRST ORDER SDE

The following is the first-order SDE model of DSGD (see Theorem 3.2 in Compagnoni et al. (2025a)).
Let us consider the stochastic process Xt ∈ Rd defined as the solution of

dXt = −∇f(Xt)dt+

√
η

N

√
Σ̂(Xt)dWt, (53)

where Σ̂(x) := 1
N

∑N
i=1 Σi(x) is the average of the covariance matrices of the N agents.
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Theorem B.1. Let f be (L0, L1)-smooth, ∥Σi(x)∥∞ < σ2
0,i + σ2

1,i∥∇f(x)∥22, the learning rate

scheduler ηt s.t. ϕi
t =

∫ t

0
(ηs)

ids, ϕ1
t

t→∞→ ∞, ϕ2
t

ϕ1
t

t→∞→ 0, σ2
0 := 1

N

∑N
i=1 σ

2
0,i, and σ2

1 :=

1
N

∑N
i=1 σ

2
1,i. Then, for 0 < ϵ < 1,

ηηt <
2Nϵ

d
(
σ2
1L0 + σ2

0L1 + L1σ2
1E [∥∇f(Xt)∥2]

) , (54)

and for a random time t̂ with distribution ηt

ϕ1
t

, we have that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

ϕ1
t (1− ϵ)

(
f(X0)− f(X∗) + ϕ2

t

ηd(L0 + L1)(σ2
0 + σ2

1)

2N

)
t→∞→ 0. (55)

Proof. Using Itô’s Lemma and using a learning rate scheduler ηt during the derivation of the SDE,
we have

d(f(Xt)− f(X∗)) =− ηt∥∇f(Xt)∥22dt+O(Noise) + (ηt)
2 η

2N
Tr(∇2f(Xt)Σ̃(Xt))dt (56)

≤− ηt∥∇f(Xt)∥22dt+O(Noise) (57)

+ (ηt)
2 η(σ

2
0 + σ2

1∥∇f(Xt)∥22)d(L0 + L1∥∇f(Xt)∥)
2N

dt, (58)

where we used that Tr
(
∇2f(x)Σ̃(x)

)
≤ d∥∇2f(x)∥∞∥Σ̃(x)∥∞ together with the smoothness and

noise assumptions.

Phase 1: If ∥∇f(Xt)∥ ≤ 1, we have that

d(f(Xt)− f(X∗)) ≤ −ηt∥∇f(Xt)∥22dt+ (ηt)
2 η(σ

2
0 + σ2

1)d(L0 + L1)

2N
dt+O(Noise), (59)

Phase 2: If ∥∇f(Xt)∥ > 1, we have

d(f(Xt)− f(X∗)) = −ηt∥∇f(Xt)∥22dt+O(Noise) + (ηt)
2 η

2N
Tr(∇2f(Xt)Σ̃(Xt))dt (60)

≤ −ηt∥∇f(Xt)∥22dt+O(Noise) (61)

+ (ηt)
2 η(σ

2
0 + σ2

1∥∇f(Xt)∥22)d(L0 + L1∥∇f(Xt)∥)
2N

dt (62)

= −ηt∥∇f(Xt)∥22
(
1− ηtηd

2N

(
σ2
1L0 + σ2

0L1 + L1σ2
1∥∇f(Xt)∥2

))
dt

(63)

+ (ηt)
2 ησ

2
0dL0

2N
dt+O(Noise). (64)

By taking a worst-case scenario approach, we merge these two bounds into a single one:

d(f(Xt)− f(X∗)) ≤ −ηt∥∇f(Xt)∥22
(
1− ηtηd

2N

(
σ2
1L0 + σ2

0L1 + L1σ2
1∥∇f(Xt)∥2

))
dt

(65)

+ (ηt)
2 ηd(L0 + L1)(σ2

0 + σ2
1)

2N
dt+O(Noise). (66)

Therefore, for 0 < ϵ < 1 we have that if

ηηt <
2Nϵ

d
(
σ2
1L0 + σ2

0L1 + L1σ2
1∥∇f(Xt)∥2

) , (67)

by integrating over time and by the Law of the Unconscious Statistician, we have that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

ϕ1
t (1− ϵ)

(
f(X0)− f(X∗) + ϕ2

t

ηd(L0 + L1)(σ2
0 + σ2

1)

2N

)
t→∞→ 0, (68)
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where t̂, is a random time with distribution ηt̂

ϕ1
t

.

Finally, for practical reasons, we leverage the distributed setting to tighten the requirements on the
learning rate scheduler to make it experimentally viable (see Section C.3 for the details), and require

ηηt <
2Nϵ

d
(
σ2
1L0 + σ2

0L1 + L1σ2
1E [∥∇f(Xt)∥2]

) . (69)

B.1.2 SECOND-ORDER SDE

The following is the second-order SDE model of DSGD and is a straightforward generalization of
Theorem 3.2 in Compagnoni et al. (2025a) and Remark A.2. Let us consider the stochastic process
Xt ∈ Rd defined as the solution of

dXt = −∇f(Xt)dt+
η

2
∇2f(Xt)∇f(Xt)dt+

√
η

N

√
Σ̂(Xt)dWt, (70)

where Σ̂(x) := 1
N

∑N
i=1 Σi(x) is the average of the covariance matrices of the N agents.

Theorem B.2. Let f be (L0, L1)-smooth, ∥Σi(x)∥∞ < σ2
0,i + σ2

1,i∥∇f(x)∥22, the learning rate

scheduler ηt s.t. ϕi
t =

∫ t

0
(ηs)

ids, ϕ1
t

t→∞→ ∞, ϕ2
t

ϕ1
t

t→∞→ 0, σ2
0 := 1

N

∑N
i=1 σ

2
0,i, and σ2

1 :=

1
N

∑N
i=1 σ

2
1,i. Then, for 0 < ϵ < 1,

ηηt <
2ϵ

L0 + L1E [∥∇f(Xt)∥] + d
N

(
σ2
1L0 + σ2

0L1 + L1σ2
1E [∥∇f(Xt)∥]

) , (71)

and for a random time t̂ with distribution ηt

ϕ1
t

, we have that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

ϕ1
t (1− ϵ)

(
f(X0)− f(X∗) +

ηϕ2
t

2N
(L0 + L1)dσ2

0

)
t→∞→ 0. (72)

Proof. Using Itô’s Lemma and using a learning rate scheduler ηt during the derivation of the SDE,
we have

d(f(Xt)− f(X∗)) = −ηt∥∇f(Xt)∥22dt+
ηη2t
2

(∇f(Xt))
⊤ ∇2f(Xt)∇f(Xt)dt (73)

+O(Noise) + (ηt)
2 η

2N
Tr(∇2f(Xt)Σ̃(Xt))dt (74)

≤ −ηt∥∇f(Xt)∥22dt+
ηη2t
2

(L0 + L1∥∇f(Xt)∥)∥∇f(Xt)∥2dt (75)

+O(Noise) + (ηt)
2 η(σ

2
0 + σ2

1∥∇f(Xt)∥22)d(L0 + L1∥∇f(Xt)∥)
2N

dt. (76)

Phase 1: If ∥∇f(Xt)∥ ≤ 1,

d(f(Xt)− f(X∗)) ≤ ∥∇f(Xt)∥22

(
ηt −

ηη2t
2

(L0 + L1∥∇f(Xt)∥2)

(
1 +

dσ2
1

N

))
dt (77)

+
ηη2t
2N

.(L0 + L1)dσ2
0dt+O(Noise). (78)
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Phase 2: If ∥∇f(Xt)∥ > 1, we have

d(f(Xt)− f(X∗)) = −ηt∥∇f(Xt)∥22dt+O(Noise) + (ηt)
2 η

2N
Tr(∇2f(Xt)Σ̃(Xt))dt (79)

≤ −ηt∥∇f(Xt)∥22dt+
ηη2t
2

(L0 + L1∥∇f(Xt)∥)∥∇f(Xt)∥2dt (80)

+O(Noise) + (ηt)
2 η(σ

2
0 + σ2

1∥∇f(Xt)∥22)d(L0 + L1∥∇f(Xt)∥)
2N

dt (81)

= −ηt∥∇f(Xt)∥22

[
1− ηtη

2

[
(L0 + L1∥∇f(Xt)∥)

[
1 +

dσ2
1

N

]
+

dσ2
0L1

N

]]
dt

+ (ηt)
2 ησ

2
0dL0

2N
dt+O(Noise). (82)

By taking a worst-case scenario approach, we merge these two bounds into a single one:

d(f(Xt)− f(X∗)) ≤ −ηt∥∇f(Xt)∥22

[
1− ηtη

2

[
(L0 + L1∥∇f(Xt)∥)

[
1 +

dσ2
1

N

]
+

dσ2
0L1

N

]]
dt

+ (ηt)
2 η

2N
(L0 + L1)dσ2

0dt+O(Noise). (83)

Therefore, for 0 < ϵ < 1 we have that if

ηηt <
2ϵ

L0 + L1∥∇f(Xt)∥+ d
N

(
σ2
1L0 + σ2

0L1 + L1σ2
1∥∇f(Xt)∥2

) , (84)

by integrating over time and by the Law of the Unconscious Statistician, we have that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

ϕ1
t (1− ϵ)

(
f(X0)− f(X∗) +

ηϕ2
t

2N
(L0 + L1)dσ2

0

)
t→∞→ 0, (85)

where t̂, is a random time with distribution ηt̂

ϕ1
t

.

Finally, for practical reasons, we leverage the distributed setting to tighten the requirements on the
learning rate scheduler to make it experimentally viable, and rather require

ηηt <
2ϵ

L0 + L1E [∥∇f(Xt)∥] + d
N

(
σ2
1L0 + σ2

0L1 + L1σ2
1E [∥∇f(Xt)∥]

) . (86)

B.2 DISTRIBUTED COMPRESSED SGD WITH UNBIASED COMPRESSION

B.2.1 FIRST ORDER SDE

The following is the first-order SDE model of DCSGD (see Theorem 3.6 in Compagnoni et al.
(2025a)). Let us consider the stochastic process Xt ∈ Rd defined as the solution of

dXt = −∇f(Xt)dt+

√
η

N

√
Σ̃(Xt)dWt, (87)

where for Φξi,γi
(x) := Cξi (∇fγi

(x))−∇fγi
(x)

Σ̃(x) =
1

N

N∑
i=1

(
Eξiγi

[
Φξi,γi(x)Φξi,γi(x)

⊤
]
+Σi(x)

)
. (88)
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Theorem B.3. Let f be (L0, L1)-smooth, the learning rate scheduler ηt such that ϕi
t =

∫ t

0
(ηs)

ids, ϕ1
t

t→∞→ ∞,
ϕ2
t

ϕ1
t

t→∞→ 0, and σ2ω := 1
N

∑N
i=1 σ

2
i ωi. Then, for 0 < ϵ < 1,

ηηt <
2Nϵ

ωL0 +
(
σ2d+ dσ2ω

)
L1 + ωL1E [∥∇f(Xt)∥2]

, (89)

and for a random time t̂ with distribution ηt
ϕ1
t

, we have that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

ϕ1
t (1− ϵ)

f(X0)− f(X∗) + ϕ2
t

η(L0 + L1)d
(
σ2 + σ2ω

)
2N

 t→∞→ 0. (90)

Proof. Since it holds that

Eξi,γi∥(Cξi (∇fγi(x))−∇f(x))∥22 ≤ ωi∥∇f(x)∥22 + dσ2
i (ωi + 1),

we have that

d(f(Xt)− f(X∗)) = −ηt∥∇f(Xt)∥22dt+O(Noise) (91)

+ (ηt)
2 η(L0 + L1∥∇f(Xt)∥2)

2N

(
1

N

N∑
i=1

Eξi,γi∥(Cξi (∇fγi(x))−∇f(x))∥22

)
dt

(92)

≤ −ηt∥∇f(Xt)∥22dt+O(Noise) (93)

+ (ηt)
2 η(L0 + L1∥∇f(Xt)∥2)

2N

(
ω∥∇f(Xt)∥22 + σ2d+ dσ2ω

)
dt. (94)

Phase 1: If ∥∇f(Xt)∥2 ≤ 1, then we have that

d(f(Xt)− f(X∗)) ≤ −∥∇f(Xt)∥22
(
ηt −

η(L0 + L1)ω

2N
(ηt)

2

)
dt (95)

+ (ηt)
2 η(L0 + L1)d

2N

(
σ2 + σ2ω

)
dt+O(Noise). (96)

Phase 2: If ∥∇f(Xt)∥2 > 1, we have that

d(f(Xt)− f(X∗)) ≤ −ηt∥∇f(Xt)∥22dt+O(Noise) (97)

+ (ηt)
2 η(L0 + L1∥∇f(Xt)∥2)

2N

(
ω∥∇f(Xt)∥22 + σ2d+ dσ2ω

)
dt (98)

≤ −ηt∥∇f(Xt)∥22
(
1− ηtη

2N

(
ωL0 + d

(
σ2 + σ2ω

)
L1 + ωL1∥∇f(Xt)∥2

))
dt

(99)

+ η2
t
ηL0d

2N

(
σ2 + σ2ω

)
dt+O(Noise). (100)

By taking a worst-case scenario approach, we merge these two bounds into a single one, and have that for
0 < ϵ < 1, we have that if

ηηt <
2Nϵ

ωL0 + d
(
σ2 + σ2ω

)
L1 + ωL1∥∇f(Xt)∥2

, (101)

by integrating over time and by the Law of the Unconscious Statistician, we have that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

ϕ1
t (1− ϵ)

f(X0)− f(X∗) + ϕ2
t

η(L0 + L1)d
(
σ2 + σ2ω

)
2N

 t→∞→ 0, (102)

where t̂, is a random time with distribution ηt̂
ϕ1
t

.

Finally, for practical reasons, we leverage the distributed setting to tighten the requirements on the learning rate
scheduler to make it experimentally viable, and rather require

ηηt <
2Nϵ

ωL0 +
(
σ2d+ dσ2ω

)
L1 + ωL1E [∥∇f(Xt)∥2]

. (103)
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Finally, one can generalize this result to cover the (σ2
0 , σ

2
1)-Variance.

Theorem B.4. Let f be (L0, L1)-smooth, max(Σi(x)) < σ2
i,0 + σ2

i,1∥∇f(x)∥22, the learning rate scheduler

ηt such that ϕi
t =

∫ t

0
(ηs)

ids, ϕ1
t

t→∞→ ∞, ϕ2
t

ϕ1
t

t→∞→ 0, σ2
0 := 1

N

∑N
i=1 σ

2
0,i, σ2

1 := 1
N

∑N
i=1 σ

2
1,i, σ2

0ω :=

1
N

∑N
i=1 σ

2
i,0ωi, and σ2

1ω := 1
N

∑N
i=1 σ

2
i,1ωi. Then, for 0 < ϵ < 1,

ηηt <
2Nϵ

L0(ω + d(σ2
1ω + σ2

1)) + L1d
(
σ2
0 + σ2

0ω
)
+ L1(ω + d(σ2

1ω + σ2
1))E [∥∇f(Xt)∥2]

, (104)

and for a random time t̂ with distribution ηt
ϕ1
t

, we have that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

(1− ϵ)ϕ1
t

f(X0)− f(X∗) + ϕ2
t

L0(ω + d(σ2
1ω + σ2

1)) + L1d
(
σ2
0 + σ2

0ω
)

2N

 t→∞→ 0.

(105)

B.2.2 SECOND-ORDER SDE

The following is the second-order SDE model of DCSGD and is a straightforward generalization of Theorem
3.6 in Compagnoni et al. (2025a) and Remark A.2. Let us consider the stochastic process Xt ∈ Rd defined as
the solution of

dXt = −∇f(Xt)dt+
η

2
∇2f(Xt)∇f(Xt)dt+

√
η

N

√
Σ̃(Xt)dWt, (106)

where for Φξi,γi(x) := Cξi (∇fγi(x))−∇fγi(x)

Σ̃(x) =
1

N

N∑
i=1

(
Eξiγi

[
Φξi,γi(x)Φξi,γi(x)

⊤
]
+Σi(x)

)
. (107)

Theorem B.5. Let f be (L0, L1)-smooth, the learning rate scheduler ηt such that ϕi
t =

∫ t

0
(ηs)

ids, ϕ1
t

t→∞→ ∞,
ϕ2
t

ϕ1
t

t→∞→ 0, and σ2ω := 1
N

∑N
i=1 σ

2
i ωi. Then, for 0 < ϵ < 1,

ηηt <
2ϵ

L0 + L1E [∥∇f(Xt)∥2] +
ωL0+d(σ2+σ2ω)L1+ωL1E[∥∇f(Xt)∥2]

N

, (108)

and for a random time t̂ with distribution ηt
ϕ1
t

, we have that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

ϕ1
t (1− ϵ)

(
f(X0)− f(X∗) + ϕ2

t
η(L0 + L1)d

2N

(
σ2 + σ2ω

))
t→∞→ 0. (109)

Proof. Since it holds that

Eξi,γi∥(Cξi (∇fγi(x))−∇f(x))∥22 ≤ ωi∥∇f(x)∥22 + dσ2
i (ωi + 1),

we have that

d(f(Xt)− f(X∗)) = −ηt∥∇f(Xt)∥22dt+
ηη2

t

2
(∇f(Xt))

⊤ ∇2f(Xt)∇f(Xt)dt+O(Noise) (110)

+
ηη2

t

2

(L0 + L1∥∇f(Xt)∥2)
N

(
1

N

N∑
i=1

Eξi,γi∥(Cξi (∇fγi(x))−∇f(x))∥22

)
dt

(111)

≤ −ηt∥∇f(Xt)∥22dt+
ηη2

t

2
(L0 + L1∥∇f(Xt)∥)∥∇f(Xt)∥2dt+O(Noise) (112)

+
ηη2

t

2

(L0 + L1∥∇f(Xt)∥2)
N

(
ω∥∇f(Xt)∥22 + σ2d+ dσ2ω

)
dt. (113)

Phase 1: If ∥∇f(Xt)∥2 ≤ 1, then we have that

d(f(Xt)− f(X∗)) ≤ ∥∇f(Xt)∥22
(
ηt −

η2
t η

2
(L0 + L1)

(
1 +

ω

N

))
dt (114)

+ (ηt)
2 η(L0 + L1)d

2N

(
σ2 + σ2ω

)
dt+O(Noise). (115)
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Phase 2: If ∥∇f(Xt)∥2 > 1, we have that

d(f(Xt)− f(X∗)) ≤ −ηt∥∇f(Xt)∥22dt+
ηη2

t

2
(L0 + L1∥∇f(Xt)∥)∥∇f(Xt)∥2dt+O(Noise) (116)

+ (ηt)
2 η(L0 + L1∥∇f(Xt)∥2)

2N

(
ω∥∇f(Xt)∥22 + σ2d+ dσ2ω

)
dt (117)

≤ −ηt∥∇f(Xt)∥22

1− ηtη

2

(L0 + L1∥∇f(Xt)∥2)
[
1 +

ω

N

]
+

d
(
σ2 + σ2ω

)
L1

N


+ η2

t
ηL0d

2N

(
σ2 + σ2ω

)
+O(Noise). (118)

By taking a worst-case scenario approach, we merge these two bounds into a single one, and have that for
0 < ϵ < 1, we have that if

ηηt <
2ϵ

L0 + L1∥∇f(Xt)∥2 +
ωL0+d(σ2+σ2ω)L1+ωL1∥∇f(Xt)∥2

N

, (119)

by integrating over time and by the Law of the Unconscious Statistician, we have that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

ϕ1
t (1− ϵ)

(
f(X0)− f(X∗) + ϕ2

t
η(L0 + L1)d

2N

(
σ2 + σ2ω

))
t→∞→ 0, (120)

where t̂, is a random time with distribution ηt̂
ϕ1
t

.

Finally, for practical reasons, we leverage the distributed setting to tighten the requirements on the learning rate
scheduler to make it experimentally viable, and rather require

ηηt <
2ϵ

L0 + L1E [∥∇f(Xt)∥2] +
ωL0+d(σ2+σ2ω)L1+ωL1E[∥∇f(Xt)∥2]

N

. (121)

Finally, one can generalize this result to cover the (σ2
0 , σ

2
1)-Variance.

Theorem B.6. Let f be (L0, L1)-smooth, max(Σi(x)) < σ2
i,0 + σ2

i,1∥∇f(x)∥22, the learning rate scheduler

ηt such that ϕi
t =

∫ t

0
(ηs)

ids, ϕ1
t

t→∞→ ∞, ϕ2
t

ϕ1
t

t→∞→ 0, σ2
0 := 1

N

∑N
i=1 σ

2
0,i, σ2

1 := 1
N

∑N
i=1 σ

2
1,i, σ2

0ω :=

1
N

∑N
i=1 σ

2
i,0ωi, and σ2

1ω := 1
N

∑N
i=1 σ

2
i,1ωi. Then, for 0 < ϵ < 1,

ηηt <
2ϵ

L0 + L1E [∥∇f(Xt)∥2] +
L0(ω+d(σ2

1ω+σ2
1))+L1d

(
σ2
0+σ2

0ω
)
+L1(ω+d(σ2

1ω+σ2
1))E[∥∇f(Xt)∥2]

N

, (122)

and for a random time t̂ with distribution ηt
ϕ1
t

, we have that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

(1− ϵ)ϕ1
t

(
f(X0)− f(X∗) + ϕ2

t
η(L0 + L1)d(σ2

0 + σ2
0ω)

2N

)
t→∞→ 0. (123)

B.3 DISTRIBUTED SIGNSGD

B.3.1 FIRST ORDER SDE

The following is the first-order SDE model of DSignSGD (see Theorem 3.10 in Compagnoni et al. (2025a)). Let
us consider the stochastic process Xt ∈ Rd defined as the solution of

dXt = − 1

N

N∑
i=1

(1− 2P(∇fγi(Xt) < 0)) dt+

√
η

N

√
Σ(Xt)dWt. (124)

where

Σ(Xt) :=
1

N

N∑
i=1

Σi(Xt), (125)

and Σi(x) = E[ξγi(x)ξγi(x)
⊤] where ξγi(x) := sign(∇fγi(x)) − 1 + 2P(∇fγi(x) < 0) the noise in the

sample sign (∇fγi(x)).
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Corollary B.7 (Corollary C.10 in Compagnoni et al. (2025a)). If the stochastic gradients are ∇fγi(x) =
∇f(x) +

√
ΣiZi such that Zi ∼ tν(0, Id) does not depend on x, ν are the degrees of freedom, and scale

matrices Σi = diag(σ2
1,i, · · · , σ2

d,i). Then, the SDE of DSignSGD is

dXt = − 2

N

N∑
i=1

Ξν

(
Σ

− 1
2

i ∇f(Xt)

)
dt+

√
η

N

√
Σ̃(Xt)dWt. (126)

where Ξν(x) is defined as Ξν(x) := x
Γ( ν+1

2 )
√
πνΓ( ν

2 )
2F1

(
1
2
, ν+1

2
; 3
2
;−x2

ν

)
, 2F1 (a, b; c;x) is the hypergeometric

function, and

Σ̃(Xt) := Id − 4

N

N∑
i=1

(
Ξν

(
Σ

− 1
2

i ∇f(Xt)

))2

. (127)

Theorem B.8. Let f be (L0, L1)-smooth, ηt a learning rate scheduler such that ϕi
t =

∫ t

0
(ηs)

ids, ϕ1
t

t→∞→ ∞,
ϕ2
t

ϕ1
t

t→∞→ 0, Σi ≤ σ2
max,i, σH,1 be the harmonic mean of {σmax,i}, and ℓν := 2Ξ

′
ν(0) > 0 a constant. Then, for

a scheduler ηηt < 2Nℓν
σH,1dL1

and a random time t̃ with distribution
ηtℓνσ−1

H,1
−η2

t
ηL1d
2N

ϕ1
t ℓνσ−1

H,1
−ϕ2

t
ηL1d
2N

, we have that

E∥∇f (Xt̃)∥
2
2 ≤ 1

ϕ1
t ℓνσ

−1
H,1 − ϕ2

t
ηL1d
2N

(
f(X0)− f(X∗) +

η(L0 + L1)dϕ
2
t

2N

)
t→∞→ 0. (128)

Proof. By Itô Lemma on f(Xt)− f(X∗), we have that

d(f(Xt)− f(X∗)) ≤ −ℓνσ
−1
H,1ηt∥∇f(Xt)∥22dt+

ηη2
t d

2N
(L0 + L1∥∇f(Xt)∥2)dt+O(Noise) (129)

Phase 1: ∥∇f(Xt)∥2 ≤ 1:

d(f(Xt)− f(X∗)) ≤ −ℓνσ
−1
H,1ηt∥∇f(Xt)∥22dt+

ηη2
t d

2N
(L0 + L1)dt+O(Noise). (130)

Phase 2: ∥∇f(Xt)∥2 > 1:

d(f(Xt)− f(X∗)) ≤ −ℓνσ
−1
H,1ηt∥∇f(Xt)∥22dt+

ηη2
t dL1∥∇f(Xt)∥22

2N
+

ηη2
t dL0

2N
dt+O(Noise). (131)

By taking the worst case of these two phases, we have that

d(f(Xt)− f(X∗)) ≤ −ℓνσ
−1
H,1ηt∥∇f(Xt)∥22dt+

ηη2
t dL1∥∇f(Xt)∥22

2N
dt+

ηη2
t d

2N
(L0 + L1)dt+O(Noise),

(132)

meaning that

E∥∇f (Xt̃)∥
2
2 ≤ 1

ϕ1
t ℓνσ

−1
H,1 − ϕ2

t
dηL1
2N

(
f(X0)− f(X∗) +

η(L0 + L1)dϕ
2
t

2N

)
t→∞→ 0. (133)

B.3.2 SECOND-ORDER SDE

The following is the second-order SDE model of DSignSGD and is a straightforward generalization of Corollary
C.10 in Compagnoni et al. (2025a) and Remark A.2. We observe that Ξ

′
ν(x) is bounded by the positive finite

constant Mν .

dXt = − 2

N

N∑
i=1

Ξν

(
Σ

− 1
2

i ∇f(Xt)

)
dt

+
η

N

N∑
i=1

Σ
− 1

2
i ∇2f(Xt)

(
Ξ

′
ν

(
Σ

− 1
2

i ∇f(Xt)

)
◦ Ξν

(
Σ

− 1
2

i ∇f(Xt)

))
dt

+

√
η

N

√
Σ̃(Xt)dWt. (134)
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Theorem B.9. Let f be (L0, L1)-smooth, Σi ≤ σ2
max,i, σH,1 be the harmonic mean of {σmax,i}, Mν :=

sup{Ξ
′
ν(x)} > 0 and ℓν := 2Ξ

′
ν(0) > 0 constants, and K :=

(
L1
2N

+
(L0+L1)σ

−1
H,1

Mν
√
d

)
. Then, for a

scheduler ηηt < ℓνK−1

σH,1d
and a random time t̃ with distribution

ηtℓνσ−1
H,1

−η2
tK

ϕ1
t ℓνσ−1

H,1
−ϕ2

tK
, we have that

E∥∇f (Xt̃)∥
2
2 ≤ 1

ϕ1
t ℓνσ

−1
H,1 − ϕ2

tK

(
f(X0)− f(X∗) + ϕ2

tη(L0 + L1)d

(
1

2N
+

Mν

σH,1

√
d

))
t→∞→ 0.

(135)

Proof. By Itô Lemma on f(Xt)− f(X∗), we have that

d(f(Xt)− f(X∗)) ≤ −ℓνσ
−1
H,1ηt∥∇f(Xt)∥22dt+ ηη2

t σ
−1
H,1(L0 + L1∥∇f(Xt)∥2)Mν∥∇f(Xt)∥1dt

(136)

+
ηη2

t d

2N
(L0 + L1∥∇f(Xt)∥2)dt+O(Noise). (137)

Phase 1: ∥∇f(Xt)∥2 ≤ 1:

d(f(Xt)− f(X∗)) ≤ −ℓνσ
−1
H,1ηt∥∇f(Xt)∥22dt+ ηη2

t σ
−1
H,1(L0 + L1)Mν

√
ddt (138)

+
ηη2

t d

2N
(L0 + L1)dt+O(Noise). (139)

Phase 2: ∥∇f(Xt)∥2 > 1: Since ∥∇f(Xt)∥1 <
√
d∥∇f(Xt)∥2 <

√
d∥∇f(Xt)∥22, we have that

d(f(Xt)− f(X∗)) ≤ −ℓνσ
−1
H,1ηt∥∇f(Xt)∥22dt+ ηη2

t σ
−1
H,1(L0 + L1)Mν

√
d∥∇f(Xt)∥22dt (140)

+
ηη2

t dL1∥∇f(Xt)∥22
2N

+
ηη2

t dL0

2N
dt+O(Noise). (141)

By taking the worst case of these two phases, we have that

d(f(Xt)− f(X∗)) ≤ −ℓνσ
−1
H,1ηt∥∇f(Xt)∥22dt+ ηη2

t σ
−1
H,1(L0 + L1)Mν

√
d∥∇f(Xt)∥22dt (142)

+
ηη2

t dL1∥∇f(Xt)∥22
2N

dt+ ηη2
t (L0 + L1)d

(
1

2N
+

Mν

σH,1

√
d

)
dt+O(Noise),

(143)

meaning that

E∥∇f (Xt̃)∥
2
2 ≤ 1

ϕ1
t ℓνσ

−1
H,1 − ϕ2

tK

(
f(X0)− f(X∗) + ϕ2

tη(L0 + L1)d

(
1

2N
+

Mν

σH,1

√
d

))
t→∞→ 0.

(144)

B.4 LIMITATIONS

Our analysis focuses on homogeneous client distributions to isolate the effects of noise, compression, and
adaptivity without the additional complexity of data heterogeneity. Extending the results to heterogeneous
settings—where clients may have different tail indices, variance structures, or asymmetric noise—is an important
direction for future work, and our framework is fully compatible with such extensions. We also restrict attention
to unbiased and signed gradient compression, while many practical distributed optimizers employ general biased
compressors or use error-feedback (EF) mechanisms to recover convergence guarantees. Our SDE framework
naturally accommodates EF by modifying the drift term to include the memory state and can be extended to
biased compressors via suitable bias-correction terms in the continuous-time limit, providing a direct foundation
for these future developments.

Finally, our contribution is intentionally foundational: Rather than proposing new optimizers, we build a rigorous,
unified framework that captures the joint effects of noise, compression, and adaptivity for distributed methods
under (L0, L1)-smoothness. We view this work as a basis for future extensions (e.g., heterogeneous clients,
error-feedback, and general biased compressors) and for subsequent analyses that further systematize large-scale
stochastic optimization.

Acknowledgments. We acknowledge the use of OpenAI’s ChatGPT as a writing assistant to help us rephrase
and refine parts of the manuscript. All technical content, derivations, and scientific contributions remain the sole
responsibility of the authors.
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C EXPERIMENTS

Our experiments are intentionally minimalistic: They are designed to validate the fidelity of the derived insights
and to illustrate the qualitative phenomena predicted by our theory, rather than to benchmark performance on
specific tasks. This aligns with the theoretical nature of our contribution.

C.1 DCSGD - FIGURE 1 - (LEFT COLUMN)

We optimize f(x) =
∑1000

j=1 (xj)
4

4
as we inject Gaussian noise with mean 0 and variance σ2∥∇f(x)∥22 on the

gradient. The learning rate is η = 0.1, σ = 0.1}, we use random sparsification with ω ∈ {4, 8, 16}, and we
average over 1000 runs. In the top figure, we use no scheduler, while in the bottom one we use a scheduler as
per Eq. 16.

C.2 DSIGNSGD - FIGURE 1 - (RIGHT COLUMN)

We optimize f(x) = x4

4
as we inject student’s t noise with ν = 1 and scale parameters σ on the gradient. The

learning rate is η = 0.1, σ ∈ {0.25, 0.5, 1, 2, 8, 16}, and we average over 10000 runs. In the top figure, we use
no scheduler, while in the bottom one we use a scheduler as per Theorem 4.3, e.g. ηt = 1√

t+1
.

C.3 CONSTRUCTIVE FORM OF THE NORMALIZATION CONDITION

The sufficient conditions for convergence of DCSGD (see Eq. 16) indicate that the learning rate schedule ηηt
should scale inversely with E∥∇f(Xt)∥. While this may appear abstract, it admits a natural and practical
implementation in the distributed setting.

Client-side estimation. At iteration t, each client i already computes a stochastic gradient ∇fi,γi(Xt) on a
local mini-batch γi. We define the local norm estimate as

ĝti = ∥∇fi,γi(Xt)∥. (145)

This requires no additional computation beyond what is standard for mini-batch gradient methods.

Server-side aggregation. The server maintains an estimate of the global gradient norm by averaging the
client-side estimates as

Ĝt =
1

N

N∑
i=1

ĝti , (146)

which provides a consistent approximation of E∥∇f(Xt)∥.

Normalized learning rate. A learning rate of the form

ηηt ∼
η0

1 + Ĝt

(147)

satisfies the normalization condition in our bounds up to stochastic error. This adjustment can be implemented
with negligible communication overhead, requiring each client to transmit only a single scalar per iteration.
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