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ABSTRACT

Disentangled representation learning (DRL) methods are often leveraged to im-
prove the generalization of representations. Recent DRL methods have tried to han-
dle attribute correlations by enforcing conditional independence based on attributes.
However, the complex multi-modal data distributions and hidden correlations under
attributes remain unexplored. Existing methods are theoretically shown to cause the
loss of mode information under such hidden correlations. To solve this problem, we
propose Supervised Disentanglement under Hidden Correlations (SD-HC), which
discovers data modes under certain attributes and minimizes mode-based condi-
tional mutual information to achieve disentanglement. Theoretically, we prove
that SD-HC is sufficient for disentanglement under hidden correlations, preserving
mode information and attribute information. Empirically, extensive experiments on
one toy dataset and five real-world datasets demonstrate improved generalization
against the state-of-the-art baselines. Codes are available at anonymous Github
https://anonymous.4open.science/r/SD-HC.

1 INTRODUCTION

Disentangled representation learning (DRL)
aims to encode one single data attribute in
each representation subspace, which holds
great promise in enhancing generalization to
unseen scenarios (Matthes et al., 2023}, |Q1an
et al.| |2021), enabling controllable genera-
tive modeling (Yuan et al., |2021), and im-
proving fairness (Locatello et al.,|2019a)). In
the supervised setting, each representation
subspace is learned under the label super-
vision of its corresponding attribute, while
being disentangled from other attributes.

Supervised DRL methods typically assume
independence between attributes. In ad-
dition to supervised prediction, mutual in-
formation (MI) minimization (Kwon et al.}
2020; [Yuan et al.l 2021 Su et al., 2022) is
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Figure 1: Correlated human activity data. The distribu-
tions of (a) “walking” / “standing”, and (b) “stroll”
/ “skip walk” under “walking” differ between users,

exhibiting correlations.

commonly adopted to enforce independence between the representations of different attributes and
achieve disentanglement. The independence assumption is often violated in real-world data, where
correlations are prevalent. Taking human activities as an example, different users have different
behavior patterns, and each user tends to engage in some activities more frequently than others,
exhibiting correlations between activity and user identity (ID) attributes, as shown in Figure[Th. For
correlated attributes, enforcing representation independence causes at least one subspace to lose
attribute-related information (Funke et al.| 2022).

To disentangle correlated attributes, attribute-based conditional mutual information minimization (A-
CMI) (Funke et al.|[2022) enforces conditional representation independence that preserves attribute-
related information. However, when a certain attribute takes a value, underlying variations related
to this attribute may lead to complex multi-modal data distributions rather than simple uni-modal
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data distributions. The mode under this value of this attribute may be correlated with other attributes.
Continuing with the human activity example, when activity attribute takes the value “walking”,
variations in pace, stride, and posture may lead to different walking modes, the casual “stroll”
and energetic “skip walk”; different users have more subtle differences in their behavior patterns,
exhibiting correlations between walking mode and user ID attribute, as shown in Figure[Tp. In this
case, A-CMI may cause the loss of mode information (as proved in Proposition 1), which is important
for attribute prediction with multi-modality (Nie et al., 2020; [Sugiyama, 2021} L1 et al.,[2017). For
example, in human activity recognition, losing the information about walking modes might lead to
the confusion between “skip walk” and another activity “climbing down”, while encoding mode
information can better distinguish these similar activities.

To address the above problem, we propose Supervised Disentanglement under Hidden Correlations
(SD-HC). Instead of focusing on attribute correlations as existing works, we delve into the complex
data distributions and hidden correlations under certain attributes. Our contributions are:

* We introduce a novel supervised DRL paradigm named SD-HC, which discovers data modes
under certain attributes and disentangles these attributes with mode-based CMI minimization.
Under hidden correlations, SD-HC can preserve mode information that current methods
tend to lose.

* We theoretically prove that mode-based CMI minimization is the necessary and sufficient
condition for supervised disentanglement under both hidden correlations and attribute
correlations. This result can be extended to show that CMI minimization can achieve
disentanglement under correlations in general, establishing the first sufficient condition for
disentanglement under correlations.

» We extensively evaluate SD-HC on five real-world datasets, which demonstrates that SD-HC
outperforms the state-of-the-art DRL methods for attribute prediction on out-of-distribution
data and data under train-test correlation shifts. We conduct comprehensive investigations on
toy data and real-world data regarding the behavior of different methods, the impact of train
correlation strength, noise level, train-test correlation shifts, and the learned representations,
which demonstrate the superiority of SD-HC under various circumstances.

2 RELATED WORK

Disentanged Representation Learning DRL methods can be roughly divided into unsupervised,
weakly-supervised, and supervised DRL. Unsupervised DRL learns independent representation dimen-
sions that each correspond to an unknown attribute by self-supervised tasks, e.g., self-reconstruction
in variational auto-encoders (VAEs) (Higgins et al., 2016; |Kim & Mnih| 2018} |Chen et al., [2018)
or contrastive learning (Zimmermann et al., 2021; Matthes et al., 2023). Yet, the feasibility of
purely unsupervised disentanglement has been questioned (Locatello et al.,|2019b), which prompts
DRL with weak supervision (Shu et al.,|2020), e.g., similarity (Chen & Batmanghelich, [2020) or
grouping information (Bouchacourt et al.,2018)). In contrast, supervised DRL learns individual multi-
dimensional representation subspaces that each encode an attribute under label supervision (Qian
et al.;2021; Yuan et al.}2021). Generally, DRL methods assume attribute independence and enforce
representation independence between different attributes as a means of disentanglement. In particular,
supervised DRL usually minimizes the MI between attribute representations (Kwon et al., [2020;
Yuan et al., {2021} [Su et al., [2022), minimizes the Maximum Mean Discrepancy (MMD) between
representation distributions (Li et al.,[2018} |Lin et al.,[2020), or makes one attribute unpredictable
from the representations of another by adversarial training (Qian et al., 2021} |Li et al.,[2022; [Lee
et al.,[2021). Our work falls under supervised DRL.

Disentanglement Under Attribute Correlations Recent works have revealed that independence
assumption-based DRL fails on correlated attributes, where independence constraints cause en-
tanglement for unsupervised DRL (i.e., one dimension encodes two or more correlated attributes)
(Trauble et al) [2021)) or hurt the predictive ability of representations for supervised DRL (Funke
et al.} 2022). To disentangle correlated attributes for unsupervised DRL, Triuble et al. (Trauble et al.,
2021) and Dittadi et al. (Dittadi et al., [2021) add weak supervision or a few labels to correct the
model. Differently, Wang et al. (Wang & Jordan, [2021)) and Roth et al. (Roth et al., 2023) relax
independence constraints with Hausdorff distance to encourage only factorized supports instead of
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factorized distributions. These methods can somewhat alleviate entanglement but do not guarantee
disentanglement theoretically (Funke et al.| 2022; Wang & Jordan, [2021]).

More recent works have introduced conditional independence constraints to disentangle correlated
attributes. For supervised DRL, Funke et al. (Funke et al.| [2022) introduces attribute-based CMI
minimization (A-CMI). For each attribute, A-CMI minimizes the MI conditioned on this attribute
between its representation and the joint representations of all other attributes. A-CMI is proved to be
the necessary condition for disentanglement under attribute correlations, whereas unconditional MI is
proved to fail. For unsupervised DRL in reinforcement learning, Dunion et al. (Dunion et al., [2023))
follow A-CMI, but condition on history information to make up for the unknown current values.

To the best of our knowledge, existing works have only established necessary conditions for disentan-
gling correlated attributes (Wang & Jordan, |2021; [Funke et al., [2022), and the sufficiency of CMI has
only been validated on linear regression examples rather than proved theoretically. We are the first
to give sufficient conditions for disentanglement under correlations, theoretically proving that CMI
minimization can achieve disentanglement. Our results hold under various cases, including multiple
attributes under attribute correlations and hidden correlations.

3 DISENTANGLEMENT UNDER HIDDEN CORRELATIONS

3.1 PROBLEM FORMULATION

Data Generation Process. We assume that data are generated from the causal process in Definition 1
and Figure @, which mainly relies on the independent mechanism assumption (Scholkopf et al.,2012)
that attributes are casually independent, i.e., each attribute arises on its own, allowing changes or
interventions on one attribute without affecting others. Still, confounding may exist.

Definition 1. (Disentangled Causal Process). Consider a causal gener-
ative model p(x|a) for data x with K attributes a = (a1, az, ..., af). @ @

A certain attribute ay, is associated with a categorical mode variable )V 4\
my. Attributes a could be influenced by L confounders c¢* = (cf, ..., c3).

Conditioned on ay, mode variable my, and other attributes a_j, could @ @ @
be influenced by Q) confounders c™ = (¢, ..., cg) This causal model

is called disentangled if and only if it can be described by a structural @

causal model (SCM) (Pearl, 2009) of the form:

c® +— n ™+ n" e
ap < hy(Sp,ng), Sy C {cf,....ct},ke{l,..,K}
. Figure 2: Causal graph
e h9(Se, S ng),SE C{ct, by, S C el L ch i Ak a4 grap
K in( 7y in) j Al erh, 57 o ghi# of data generation with
my < h"™(ag, ™, n™) multi-modality and hid-
x + g(a_g, my,n") den correlations under a
(1) certain a.
with functions g, h¢, A", jointly independent noise variables n°*, n“", n¢, n™, n”, and confounder
subsets Si', 57", fori = 1,..,K,j =1,...k — 1,k +1,.., K. —k denotes the set of attribute
indices {j};.x. Note that Vi # ¢/, a; /4 a;.

Correlations. We denote mutual information (MI) and entropy function as I(-;-) and H (-), respec-
tively. The MI between attributes measures their correlations, e.g., I(a;; a;),i # i’, while the MI
between a representation and an attribute measures the amount of information the representation
contains about the attribute, e.g., I(z;; a;/). We denote attribute correlations as I(a;; a;-) and hidden
correlations as I (my; a_|ax), which are induced by confounders ¢® and ¢, respectively.

Multi-Modality and Hidden Correlations. Under some value « of ay, the data distribution is
assumed to be multi-modal due to underlying variations related to this attribute, i.e., p(x|ar = @)
is a mixture model, e.g., Gaussian mixture model, and a mode corresponds to a component of the
mixture. The modes under different attribute values are labeled altogether to formulate the categorical
variable my, e.g., for aj, with 2 values (|.Ax| = 2) and 3 modes under each value, the 6 modes in total
will be labeled from O to 5 to formulate m;. The modes under a; = « may be correlated with other
attributes a_y, i.e., I (my; a—g|ar = ) > 0. Hidden correlations are defined as the expectation over
different attribute values, i.e., I (my; a—glar) = D e 4, Pay(ar = @)I(my;a_glay = a).
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Intuitive Example. Figure [1]illustrates hidden correlations in the realistic application of human
activity recognition: Under different values of activity attribute a;, two walking modes and one
standing mode are labeled altogether to formulate variable mq, i.e., m; = 0,1, 2 indicates “stroll”,
“skip walk”, and “stand”, respectively; The modes “stroll” and “skip walk” under “walking” activity
might be correlated with user ID attribute ao, i.e., I(m1;as]a; = 0) > 0, where a; = 0 indicates
“walking” activity and m1|a; = 0 indicates walking modes m; = 0, 1. For activity recognition, the
goal is to learn disentangled activity representations that fully capture the activity and its modes,
while remaining unaffected by personalized user patterns.

3.2 THE DEFINITIONS OF DISENTANGLED REPRESENTATIONS

The goal of supervised DRL is to learn disentangled representations z; for each attribute a; by
a mapping f(x) = z = (21,292,...,2K),2; € RPi = 1,..., K. Disentangled z; should (1)
contain all information about a,; (Informativeness), which includes mode information for attributes
with multi-modality, and (2) reflect the causal independence between attributes, such that external
interventions by changing another attribute a;(¢ # j) alone should not affect z; (Independence),
which is formalized in Definition 2 following (Wang & Jordan, 2021} [Suter et al.,[2019).

Definition 2. (Disentangled Representation). Representation z is disentangled, if fori =1, ..., K:

p(zildo(a—;)) = p(2:) @)
where —i indicates the set of attribute indices {j},-;, a_; indicates the joint variable of {a; } j+;, and
do(+) operation sets the values of some attributes by external intervention and leaves other attributes
unchanged. Such external intervention is isolated from the causal effects within the causal process.

3.3 THEORETICAL GUARANTEES FOR DISENTANGLING WITH MODE-BASED CMI
MINIMIZATION

We focus on the disentanglement of a certain attribute with multi-modality, and show that under the
independent mechanism assumption, mode-based CMI minimization is the necessary and sufficient
condition for supervised disentanglement under hidden correlations and attribute correlations, while
A-CMI fails under hidden correlations. For simplicity, we take K = 2 as an example, with a;
exhibiting multi-modality. Then, the results are generalized to multiple attributes and simple cases.

The Necessary Condition for Disentanglement. Based on the data generation process of Definition
1, we build the causal graphs of the true latent representations (denoted as z,lg), which are only causally
dependent on the corresponding attribute or mode, and are inherently disentangled.

Since the ideally disentangled z;, should capture the true
latent z,lC and retain its properties, we find conditional in- @
dependence between the true latent representations as the
necessary condition for disentanglement. As stated by @ @ @
the causal graph theorems in Appendix [C] two variables
X, Y are conditionally independent given a variable that
blocks all backdoor paths between them, i.e., the paths that
flow backward from X or Y. In Figure Eh, we consider @ @ @
only attribute correlations as A-CMI, where a; blocks the
only backdoor path between z! and z}. In comparison, e
we consider hidden correlations and potential attribute I(z{;25)+0 I(2{;24|a)#0
correlations in Figpre Bb. where.ml blqcks all backdoor [ (z};zla;))=0 I(zl;24m) =0
paths whether attribute correlations exist or not, yet a;
fails to block the path containing ¢”. This means that un-
der hidden correlations and potential attribute correlations, Figure 3: Causal graphs of the true latent
disentangled representations should retain the conditional representations. Red arrows indicate the
independence of the true latent representations as: backdoor paths between z! and z.. The
dashed circle and arrows indicate that at-
[(z1:2m1) =0 = I(zi522/m1) =0 (3) tribute correlations may or may not exist.

(a) A-CMI (b) SD-HC (ours)

A-CMI Fails Under Hidden Correlations. As shown in Figure 3p, disentangled representations z;
and z, are not conditionally independent given a; under hidden correlations. We further show that
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enforcing such conditional independence could hurt the predictive ability of representations, which is
formalized in Proposition 1 and proved in Appendix [B.2]

Proposition 1. For representations z1, zo of my, as, respectively, if I(mq; az|a1) > 0, then enforcing
I(z1; z2]a1) = 0 leads to at least one of I(z1;m1) < H(my) and I(z2;a2) < H(a2).

where I(z1;m1) < H(mq) indicates that z; fails to contain mode information for predicting a;,
and I(z2; a2) < H(ag) indicates that z, fails to contain attribute-related information for predicting
as. Either way, attribute-based CMI minimization I(z1; z2|a;) = 0 hurts the predictive ability of
representations under hidden correlations. This is an extension of Proposition 3.1 in (Funke et al.,
2022), which proves that unconditional MI minimization fails under attribute correlations.

The Sufficient Condition for Disentanglement. Since inappropriate independence constraints
could hurt the predictive ability of representations, the key to disentanglement is to find suitable
independence constraints. We show that mode-based CMI minimization (Equation[3) is sufficient for
supervised disentanglement under the independent mechanism assumption with various correlations.

For the two criteria of disentanglement: (1) Informativeness requires I(z1;a;) = H(a1) and
I(z1;my) = H(my), which can be achieved by cross-entropy minimization (Boudiaf et al.,[2020).
Since mode-based CMI minimization has been proven necessary for disentanglement, it preserves
the predictive ability of representations. (2) Independence is a bit tricky, as the impact of external
interventions cannot be directly evaluated (Wang & Jordan, |2021). We prove that mode-based CMI
minimization ensures representations are conditionally independent of other attributes (Proposition 2,
Appendix [B3), and then prove that under the independent mechanism assumption, this conditional
independence yields disentanglement in the sense of Definition 2 (Proposition 3, Appendix [B-4).

Proposition 2. For representations z1,zs of my,as, respectively, if 1(z1;my) = H(my),
I(z2;a2) = H(az), and I(z1; z2|m1) = 0, then I(z1;a2) = I(m1;az2) and I(z1;azlmy) = 0.

where I(mq;as) is denoted as the roral hidden correlations between my and as. As proved in
Appendix [B] total hidden correlations are the sum of attribute correlations and hidden correlations,
ie., I(mi;a2) = I(a1;az) + I(mq;az|ar). Thereby, I(z1;as) = I(mq;az) shows that z; contains
information about a9 only if it is induced by correlations regarding its attribute or mode. Furthermore,
I(z1;as|my) = 0 shows that z; contains no additional information about a5 knowing its mode.

Proposition 3. Under the data generation assumption of Definition 1 (K = 2, k = 1) with
independent mechanisms, if 1(z1;as|my) = 0 for representation z1, then p(z1|do(as)) = p(z1).

This is proved by do-calculous (Pearl, |2009), linking to Definition 2 and completing our proof.

Generalization to Multiple Attributes and Simple Cases. Our theoretical results naturally gen-
eralize to (1) K > 2, where the extension mainly involves replacing single variables as, zo with
joint variables a_y, z_j, as discussed in Appendix [B-3} (2) simple uni-modal data with attribute
correlations, where the number of modes under each attribute value reduces to 1, and mode-based
CMI degrades to attribute-based CMI; and (3) simple uncorrelated data, where confounding can be
neglected, and mode-based CMI performs similarly to attribute-based CMI, as shown in Figure [8cd.

Theoretical Contributions. We prove the sufficiency of CMI for disentanglement, while the work
of A-CMI only validates CMI on linear regression examples without formal proof. This is the first
attempt to establish sufficient conditions for disentanglement under correlations, unlike necessary
conditions before (Wang & Jordan, 2021} Funke et al., 2022). Our results generalize to multiple
attributes, various correlation types, and simple uni-modal and uncorrelated data, showing that one
independence constraint is sufficient for the supervised disentanglement of one representation zy.
Formally, under the independent mechanism assumption in Definition 1, given the label supervision
of all attributes and modes, when the supervised losses on all attributes and modes are optimized, and
the CMI of zy, (I(zx; 2—x|my) for multi-modal or I(zy; z_g|ay) for uni-modal cases) is minimized,
the learned z, is disentangled in the sense of Definition 2, as elaborated in Appendix [B.3]

4 METHOD

Framework. We show the framework of SD-HC for disentangling a certain attribute a; with hidden
correlations in Figure [4] which consists of encoder F' for learning representations F(x) = z =
(21,29, ..., 2K), 2 € RP i = 1,..., K, predictors {C;}[ | for predicting each attribute, predictor
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Figure 4: Framework of SD-HC for disentangling a certain a, k € {1, ..., K} with multi-modality.

C}* for predicting mode my,, and discriminator Dy, for minimizing mode-based CMI. SD-HC is
architecture-agnostic and can be used in various applications.

The framework can be expanded to disentangle multiple attributes by adding one independence
constraint to disentangle each attribute. The form of independence constraints depends on the
correlation types, i.e., minimizing attribute-based CMI under attribute correlations or mode-based
CMI under hidden correlations. Supervised constraints I(z;; a;) = H (a;) are always required for
i = 1,..., K with one additional constraint I(z;;m;) = H(m,) for each attribute a; with multi-
modality. For additional constraints, discriminators and mode predictors should be added accordingly.

Mode Label Estimation. We assume the attribute labels are known, while the number of modes
and the mode labels are unknown. To estimate mode labels for a, we perform clustering on the
representations of a pre-trained encoder, which is trained with the supervised loss of ay. Specifically,
given the number of modes N,,, clustering is performed under each value of ay, then the discovered
modes under different values of ay, are labeled altogether to formulate m;. We adopt k-means as
the clustering method, which works well across our experiments. The numbers of modes /V,,, under
different values of a;, are set to be equal and tuned as a hyper-parameter. We also provide practical
guidance for different scenarios in Appendix[l] including the alternative clustering methods and mode
number estimation methods for reducing the computational costs of hyper-parameter tuning.

Losses. The losses are strictly designed according to the sufficient conditions for disentanglement.
As commonly done in adversarial training (Chen et al.||2023)), optimizations w.r.t. different losses are
performed alternatively. The detailed training process is given in Appendix

(1) For supervised learning, attribute and mode prediction losses L., L, are formulated as:

Lae = Ba[S5 1ee (CelFr(@)), 08)] » Lone = Enlleo (CF (Fi (@), my)] o)
Ec = Eac + wp, - me (5)

where w,, is the weight of mode prediction loss, and I..(-) denotes cross entropy function.

(2) Since I(zp;z—i|mi) = 0 if and only if p(zg, z_g|mir) = p(zk|mir)p(z—k|mi), we min-
imize CMI by matching the joint distribution p(zy,z_x|my) with the marginal distribution
p(zk|mi)p(z—_k|my) with adversarial training (Belghazi et al., 2018). To sample from the two
distributions, we loop over the values of mode labels i € {0, ..., N;p, * |Ag| — 1}. For each value
1, we select the representations in the mini-batch with label m; = p. The samples from the joint
distribution are obtained by concatenating the selected representations, and those from the marginal
distribution are obtained by shuffling the selected z_j jointly then concatenating them with the
selected z;. Jensen-Shannon Divergence is used to measure the discrepancy between the two dis-
tributions for stability (Hjelm et al,[2019)). Discrimination loss £, is formulated as follows, where
Ipee(+) denotes binary cross entropy function:

Li =By [Eizy 2 ) m lbee (D(2h, 2— 1, M), D]FEz, jmy 2 fmg lbee (D (21, 2— 1, M), 0)]] (6)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate on one toy dataset and five real-world datasets in various applications, i.e.,
digit recognition, wearable human activity recognition (WHAR), and machine fault diagnosis. The
datasets are described as follows. See Appendix [ for more details.
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(1) Toy dataset is constructed as two-dimensional data with two binary attributes a1, as, as shown
in Figure [Sh. a; has three modes under each attribute value. Data are generated through linearly
mapping m; and as to two-dimensional spaces and adding noises with noise level o.

(2) Colored MNIST (CMNIST) is constructed from MNIST (LeCun et al., {1998), as shown in Figure
[Bb. Parity check identifies whether a digit is even or odd with multiple digits under each parity value.
Accordingly, a; represents parity, m; represents the digits, and as represents the color of digits,
which is often correlated with digits, e.g., a player’s jersey number may be associated with a specific
color in sports. Noises are introduced to both digits and colors, and digit noises are generated as
occlusions with occlusion ratio as the noise level o (Chai et al.| 2021)).

(3) UCI-HAR (Anguita et al.,|2013)), RealWorld (Sztyler & Stuckenschmidt, [2016), HHAR (Stisen
et al., 2015)) record wearable sensor data, from which WHAR identifies activities with variations
under each activity. Accordingly, a; represents activity, m; represents unknown activity modes, and
as represents user ID, which is often correlated with activity due to personal behavior patterns.

(4) MFD (Lessmeier et al.,[2016) record sensor data from bearing machines, from which machine
fault diagnosis identifies machine fault types with variations under each fault type, e.g., different
forms of damages. Accordingly, a; represents fault type, m; represents unknown modes of fault
types, and as represents operating conditions, which could be correlated with machine faults.

Evaluation Protocols. On roy and CMNIST datasets, correla- @ ~ P Ol
tions are introduced by sampling (Roth et al.,[2023). Asillustrated 1 |g8e|o © 11 |ege
in Figure [6] we train on correlated data and evaluate on 3 test ([ o |88 " i ([ o [88%
sets, namely test 1 under the same correlations, test 2 without o [o0¢] ° [%%
0 1 m E 0 1 my

correlations, and test 3 with anticorrelations. The train-test cor-
relation shift increases from test 1 to 3. For comparison with

train correlated test 1 correlated

baselines and variants on CMNIST, we train under both attribute iz 8L [ee®] ! (;2 o |%e®
correlations and hidden correlations, and report the results on test = :.' e .O. =Lk

3. The complete results on all test sets are in Appendix [J| For 0 :‘: 0 o® 1 0 [oegl © o
additional analysis, we train under corp, = I(m;y;az|a1) > 0to 0 1 m. 0 1 m
focus on hidden correlations. On other datasets, we investigate ‘est?2 uncorrelateditest 3 anticorrelated
DRL under natural correlations, where the number of modes and Figure 6: Train-test setup.

mode labels are unknown. Leave-one-group-out validation is performed, where users and operating
conditions in the test group are unseen during training, formulating out-of-distribution (OOD) tasks.

On each dataset, we focus on disentangling one attribute with multi-modality as mentioned before.
Accuracy (Acc.) and macro F1 score (Mac. F1) are used as performance metrics for attribute
prediction. These metrics can reflect the disentanglement of representations under correlation shifts
and OOD tasks (Funke et al.| 2022; Dittadi et al.,[2021)), while common disentanglement metrics are
not suitable under correlations (Locatello et al., 2020). Each experiment is repeated using 5 varying
random seeds, with the mean and standard deviation reported. See details in Appendix [F}

Baselines and Implementations. We compare SD-HC with typical DRL methods (MMD (Lin et al.|
2020), DTS (Li et al., [2022)), IDE-VC (Yuan et al [2021)), and MI (Cheng et al., 2022)), and the
state-of-the-art DRL methods under correlations (A-CMI (Funke et al., [2022) and HFS (Oublal
et al.,[2024)). For reference, we also include the base method trained on supervised prediction losses
only, which is denoted as BASE, and a variant of our method that uses ground truth mode labels

a=1->m =3 m, =4 my=> “even” a; =0 “odd” a, =1
' ' Il ¥ N ¥ \
T “Yrm=0 “7m=1 “3” m=2 “9”m,=3
U‘\I\ | h ' } {
4 [ L \e,
B J8 o N e, o “red”
a=1-1 gotss | > 1t | 4y =0
. I
a;=0-0} - L B e
s ‘n it ' 4
* 2 Ublue”
0 1 2 3 4 5 I a=1=-
t t t
a=0->m=0 m =1 my =2
(a) Toy data (b) CMNIST

Figure 5: Data construction of toy dataset and CMNIST with noise level o.
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Table 1: Comparison with baselines (mean+std). “*” indicates that SD-HC is statistically superior to
the baselines by pairwise t-test at a 95% significance level. The results of the best methods are bold.
The results of the runner-up methods are underlined, over which the improvement is calculated.
CMNIST UCI-HAR RealWorld HHAR MFD
Acc. Mac. Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1
BASE 0.768 +0.008* 0.768 +0.008*|0.712 £0.028* 0.697 20.036*|0.646 =0.014* 0.654 +0.014*|0.808 £0.016% 0.809 £0.020%|0.727 z0.016* 0.763 +0.009*
MMD 0.582 £0.069% 0.528 +0.117%[0.703 £0.037* 0.662 £0.035* |0.660 +0.019* 0.652 £0.023*0.809 20.012* 0.805 £0.017*[0.782 20.019% 0.791 x0.016*
DTS 0.615 20.022% 0.615 +0.022%(0.728 +0.033* 0.701 20.026%|0.644 +0.023* 0.649 20.015% |0.798 +0.024* 0.797 £0.017%|0.670 z0.022* 0.674 +0.015%
IDE-VC  ]0.539 0.022% 0.533 £0.027%(0.736 £0.031% 0.732 +0.034*|0.652 +0.013* 0.650 £0.017%|0.807 +0.020% 0.806 x0.014*|0.741 z0.018* 0.763 x0.011%*
MI 0.611 20.039% 0.600 0.044%*|0.749 =0.021* 0.745 +0.027%|0.660 +0.018* 0.655 +0.016*|0.809 +0.017* 0.807 +0.021%*|0.763 =0.012* 0.776 +0.016*
A-CMI 0.611 20.039% 0.600 0.044*|0.714 =0.034* 0.700 £0.030* |0.654 +0.015% 0.655 +0.012*|0.802 0.018* 0.803 +0.023*|0.788 +0.014* 0.798 +0.007*
HFS 0.635 +0.008* 0.631 £0.008*|0.671 £0.035% 0.651 +0.040%|0.489 x0.018* 0.398 +0.015%|0.782 +0.012% 0.783 20.015%|0.754 20.017* 0.710 +0.013*

SD-HC 0.829 0011 0.829 x0.008 |0.830 003  0.833 20036 |0.698 0.019 0.699 z0.014 |0.845 0023 0.842 0.015 |0.825 20020 0.825 x0.015
Improvement |16.1 % 16.1 % 17.0 % 17.4 % 14.0 % 14.4 % 13.6 % 13.5 % 13.7 % 132 %

Method

Table 2: Comparison with variants (mean+std). The notations are the same as Tablem

CMNIST UCI-HAR RealWorld HHAR MFD
Acc. Mac. Fl1 Acc. Mac. F1  |Acc. Mac. Fl1 Acc. Mac. Fl1 Acc. Mac. F1
SD-HC-A {0.771 =0.009+* 0.770 £0.009* |0.822 +0.023 0.823 +0.027|0.639 +0.016* 0.634 0.014*|0.819 x0.016* 0.813 20.021 [0.815 20016 0.814 20.011
SD-HC-MG|0.797 z0.012* 0.797 0.012%|0.822 +0.020 0.828 +0.029|0.684 +0.015* 0.688 +0.020 [0.806 +0.017* 0.802 +0.023%|0.803 20.015* 0.804 +0.018*
SD-HC-ID {0.802 +0.015* 0.802 +0.15* |0.776 =0.018 0.768 +0.023|0.683 x0.012* 0.678 x0.011%|0.772 x0.019% 0.755 x0.015%|0.806 z0.017% 0.809 x0.012
SD-HC-SD [0.783 x0.010% 0.783 +0.010*|0.774 0015 0.768 +0.018|0.662 +0.013* 0.666 +0.018%|0.810 +0.024* 0.812 +0.018%|0.792 z0.018* 0.792 +0.013*
SD-HC-M |0.832 £0.009*% 0.832 +0.009% |0.796 £0.029 0.792 £0.032|0.672 0.018* 0.676 +0.020%|0.839 x0.023 0.835 +0.017 |0.817 z0.015 0.817 +0.020

SD-HC |0.829 0011 0.829 z0.008 [0.830 2003 0.833 0.036|0.698 0019 0.699 z0.014 |0.845 +0.023 0.842 x0.015 |0.825 z0.020 0.825 0015

Method

when available, which is denoted as SD-HC-T. All methods are implemented using PyTorch (Paszke
et all 2019). Please see Appendix [H][F [D] [G] for details of baselines, implementations, network
architectures, and hyper-parameter tuning, respectively. Our codes are available at anonymous Github.

5.2 COMPARISON WITH BASELINE DRL METHODS

The comparison with baseline DRL methods is shown in Table[I] from which we observe:

(1) SD-HC consistently shows superiority over the compared baselines, outperforming the best
baseline by an average of 4.86% and 4.92% in accuracy and macro F1 score, respectively. This
indicates that SD-HC can better disentangle representations by improving the generalization ability
while preserving the predictive ability. For introduced correlations, the large performance gain
on CMNIST indicates that SD-HC is advantageous under attribute correlations and strong hidden
correlations. For natural correlations, the large performance gain on UCI-HAR indicates the advantage
of SD-HC on real-world data with complex multi-modality and hidden correlations.

(2) Despite considering correlations, A-CMI and HFS still fail to improve over BASE in some
cases. A-CMI deals with attribute correlations, but fails under hidden correlations in losing mode
information. HFS deals with correlations in general, yet its assumption of factorized support might
not hold and hurt the predictive ability of representations. For example, in WHAR, HFS assumes that
the probability of some user performing some activity could be low, but each user still performs each
activity and each activity mode; this is often violated, as users might not perform certain activities
due to personalized behavior patterns.

(3) MMD, DTS, IDE-VC, and MI fail to improve over BASE in some cases, because they do not
consider correlations and might hurt the predictive ability of representations. Their performance
degradation from BASE is especially severe on CMNIST under large train-test correlation shifts.

5.3 COMPARISON WITH VARIANTS

We compare with the following variants: SD-HC-A additionally minimizes attribute-based CMI for
the attributes without multi-modality; SD-HC-MG uses Marigold (Mortensen et al.,[2023) instead
of k-means for clustering in high dimensional spaces; SD-HC-ID and SD-HC-SD use individual
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Figure 8: Impact of noise level and train hidden correlation on toy and CMNIST datasets.

discriminators and one shared discriminator for different modes, respectively; SD-HC-M minimizes
mode prediction loss on some inter-mediate representations of encoder. See Appendix [D]for details.

The results are shown in Table 2] which shows that: (1) SD-HC-A generally does not improve SD-
HC, probably because one independence constraint is sufficient for disentanglement, and additional
adversarial training objectives might increase training difficulty. (2) SD-HC-MG generally does
not improve SD-HC, indicating that k-means is effective for our 128-dimensional representations.
Marigold could be considered as an alternative for representations of higher dimensions. (3) SD-
HC-ID and SD-HC-SD consistently underperform SD-HC, indicating that proper parameter sharing
between different modes in the discriminator is beneficial for mode-based CMI minimization. (4) SD-
HC-M consistently underperforms SD-HC, indicating that enforcing mode and attribute prediction
on the same representation space benefits the encoding of mode information.

5.4 METHOD INVESTIGATIONS

a1=0 a=1

Toy Decision Boundary. On toy data, the de-
cision boundaries of the trained predictor of ay
and the prediction accuracy on the three test sets
are shown in Figure[7] from which we observe:

BASE (Acc. 0.773) A-CMI (Acc. 0.692) SD-HC-T (Acc. 0.937)

(1) The upper right boundaries of BASE sur-
round the clusters at a; = 1, and BASE perfor-
mance decreases as the correlation shift enlarges
from test 1 to 3, which indicates that without
independence constraints, BASE over-encodes
as and lacks generalization ability.

(2) The decision boundaries of A-CMI span
across the clusters at a = 0, 1 without exclud-

ing either value, but fail to separate interleaving

012345
X1

012345
X1

012345
X1

clusters at different values of m4, and the per-
formance is low but robust across 3 test sets, Figure 7: Decision boundary on toy data.
indicating that A-CMI does not over-encode as, but loses important mode information.

(3) The decision boundaries of SD-HC-T almost conform to vertical lines x; = b that distinguish
interleaving clusters, and SD-HC-T shows robustness and superiority across different correlation shifts
on 3 test sets. This indicates that SD-HC-T can learn mode information about a (Informativeness),
and exclude irrelevant information about ay (Independence), achieving disentanglement.

The Impact of Noise Level and Train Hidden Correlation. The prediction accuracy of a; under
varying noise levels and train hidden correlations is shown in Figure[8] which shows that:

(1) SD-HC generally shows superiority under varying noises and correlations due to its ability to
achieve disentanglement. In addition, the comparable performance of SD-HC and SD-HC-T indicates
the effectiveness of mode label estimation by k-means on synthetic and real data.
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Figure 9: Visualization of activity representation distributions on RealWorld. (a), (b), and (c) show
the results of four similar activities in BASE, A-CMI, and SD-HC. Compared to SD-HC, activities
“walking” and “climbing down” are confused in A-CMI for losing information about walking modes.

(2) In Figure [8p test 1, BASE performs the best at large noise levels, because BASE makes up for the
noise-induced information loss by over-encoding as. In Figure 8 test 1, BASE performs the best at
large train correlations, because when the correlation between my and as is larger, over-encoding ao
leads BASE to learn more mode information and better predict a;. As the correlation shift enlarges
from test 1 to 3, these advantages are lost due to the lack of generalization ability.

(3) In Figure @:d, A-CMI performs comparably to SD-HC without hidden correlations (cor;, = 0);
yet A-CMI performance decreases as hidden correlation increases, because A-CMI does not allow
representations to encode shared information induced by hidden correlations, and loses more mode
information as hidden correlation increases. The behavior of A-CMI reflects the behavior of common
DRL methods that overlook hidden correlations, demonstrating a broader significance.

WHAR Visualizations. On the training setof | mode0 mode 1
RealWorld, the data of estimated modes are visu- i,;
alized in Figure[T0] which shows that the signals % 0
of the three walking modes differ in mean val- -1
ues and volatility, possibly due to varying paces, >
strides, and postures. § 0
9]
The activity representation distributions are vi- 1
sualized by t-SNE in Figure[9] which shows that: = 0
(1) BASE representations are separated within &
each activity, probably due to over-encoding 715 75 1500 75 1500 75 150
user ID and learning personalized user patterns. time step time step time step

Figure 10: 3-channel accelerometer signals of three
modes and different activities are mixed, indi- “alking modes (20 random samples per mode with
cating that different activities are confused due Xyz chan.nf?ls).. The x-axis 1r}dlcat(?s time steps, and
to the loss of mode information. (3) SD-HC the y-axis indicates normalized signals.
representations show compactness within each activity, separation between different activities, and
partition of different walking modes, indicating independence from user ID and informativeness of
activity by encoding mode information.

(2) A-CMI representations of different walking

Additional Analysis. Clustering performance, computational complexity, and parameter sensitivity
are analyzed in Appendix [l which show that SD-HC is (1) capable of capturing the underlying modes
with k-means clustering, (2) computationally efficient w.r.t. the number of parameters, and (3) not
particularly sensitive to changes of NV,,, when it is slightly above the ground truth value, which is
probably because SD-HC can preserve mode information to some extent, as long as the samples
within one estimated cluster mostly belong to the same ground-truth mode.

6 CONCLUSIONS

In this paper, we propose a novel supervised disentanglement method, SD-HC, that deals with hidden
correlations under certain attributes. We introduce mode-based CMI minimization to achieve disen-
tanglement for these certain attributes with multi-modality and hidden correlations, and theoretically
prove its sufficiency. Our results can be extended to show the general sufficiency of CMI minimiza-
tion for disentanglement, demonstrating broad significance. Experiments on the toy dataset and five
real-world datasets demonstrate the superiority of SD-HC along with comprehensive investigations.

10
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7 ETHICS STATEMENTS

Our paper mainly focuses on scientific research of supervised disentangled representation learning
and there is no potential ethical risk.

8 REPRODUCIBILITY STATEMENTS

We have provided the details regarding computational platforms, dataset descriptions, network
architectures, hyper-parameter settings, and the training process of our method in Section in the
main paper and Appendix [D} [El [F| and[G] Our codes are released at anonymous Github (https:
//anonymous . 4open.science/r/SD—-HC) as stated in the abstract. The download links of
the public datasets are provided in the project homepage and pre-processing functions are included in
the codes. The hyper-parameter settings are given in Appendix [G|
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A  DATA GENERATION PROCESS UNDER ATTRIBUTE CORRELATIONS

Following (Suter et al.,[2019)), the data generation process under attribute correlations is formulated
in Definition 3. The causal graph of Definition 3 is depicted in Figure[TT]

Definition 3. (Disentangled Causal Process). Consider a causal gener-
ative model p(x|a) for data x with K attributes a = (a1, as, ...,ax) as

the generative factors, where a could be influenced by L confounders
c = (c1,...,cr). This causal model is called disentangled if and only if
it can be described by a structural causal model (SCM) (Pearl,2009) of @ @ @
the form:

c+—n,
CLZ'(—hi(Sf,ni),SfC{Cl,...,CL},iZI,...,K @)

z < g(a,n,) Figure 11: Causal graph

of data generation pro-
with functions g, h;, jointly independent noise variables n., n,, n;, and cess with attribute corre-
confounder subsets S5 fori = 1, ..., K. Note that Vi # j, a; /4 a;. lations.

B PROOFS

We give the complete proof of the decomposition and propositions in the main paper using knowledge
of mutual information and entropy.

Note that we use formal definitions of mutual information, where separators semicolon ““;”” and
comma “,” should be distinguished from each other. Semicolon *;” separates groups of variables
whose mutual information with respect to each other is being measured, while comma “,” denotes the
joint distribution of the listed variables.

B.1 PROOF OF TOTAL HIDDEN CORRELATION

Total Hidden Correlation I(m1; as) = I(aq;a2) + I(my;aslay)

Proof. Firstly, we prove I(mq;as) = I(mq,a1;az2). Since each mode falls under one particular
attribute value, the value of attribute is fully determined given the modes, i.e., H(a1|m1) = 0.
Therefore, H(a1|m1) = H(a1|mq,a2) + I(a1;azlmy) = 0, and followingly I(aq; az|my) = 0, as
both terms are non-negative. Hence H (as|m1) = H(ag|my,a1) + I(a1;az|my) = H(az|my,a1).
Therefore, we have:

I(my,a1;a2) = H(az) — H(az|mq,a1)
= H(ag) — H(az|mq)
= I(my;az)

Secondly, we prove I(mq,a1;a2) = I(ay;as) + I(mq;az|ay) by chain rule of mutual information:

)
I(my,a1;a2) = H(az) — H(az|my, ax)
= H(az) — H(az|a1) + H(azla1) — H(az|m1,a1)
= I(a1;az2) + I(mq;as]ay)

Finally, we reach I(my;a2) = I(mq,a1;a2) = I(ay;a2) + I(my;aslar)

B.2 PROOF OF PROPOSITION 1

Proposition 1. For representations z1, z2 of mq, as, respectively, if I(mq; az|a1) > 0, then enforcing
I(z1; z2]a1) = 0 leads to at least one of 1(z1;m1) < H(my) and I(z2;a2) < H(asz).

Proof. We prove by contradiction. Assuming I(z1;m1) = H(m,) and I(as; 2z2) = H(az) both
stand, we have H(m;|z1) = 0 and H (az|z2) = 0.

Firstly, we prove that this leads to I(m1;ag; 21; 22]a1) > 0 with (1)(2)(3).
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(1) Since H(m|z1) = 0 and H(ma|z1) — H(m1la1,z1) = I(my;a1]z1) > 0 by definition
of conditional mutual information, we have 0 < H(mjla1,z1) < H(mi|z1) = 0, we have
H(m1|a1,z1) = 0. By deﬁnition, H(m1|a1, 21) = H(m1|a1, as, 21) + [(ml, a2|a1,z1) = O,
which gives I(m1; az|a1, z1) = 0, as both terms are non-negative. Therefore:

I(mq;ag; z1]ar) = I(my;azlar) — I(m1; azlay, 1)
= I(mq;as]a;) >0

(2) Similar to (1), since H(az|z2) = 0 and 0 < H(as|a1,22) < H(az|zz) = 0, we have
H(ag|ay,z2) = 0. By definition, H(ag|a1,22) = H(az|mi,a1,22) + I(ml;a2|a;,z2) = 0,
which gives I(m;;aslay, z2) = 0, as both terms are non-negative. Therefore:

I(my;ag; z2lar) = I(my;azlar) — I(my;azlar, 22)

= I(mq;azla;) >0
(3) Given H(m1|z1) = 0, we have H(m1|z1) = H(ma|z1,22) + I(m1; 22|z1) = 0 and thus
H(mq|z1,2z2) = 0, as both terms are non-negative. Similar to (1) that yields I(m1;aq; z1]|a1) =
I(mq;aslay) from H(mq|z1) = 0, we can get I(mq;ag; 21]a1, z2) = I(mq;aslay, z2) from
H(mq|z1,22) = 0 by additionally conditioning on z5. Combined with I(m;as; z2|la;) > 0
in (2), we have:

I(my;ag; z1; z2]ar) = I(may;ag; zilar) — I(my; az; z1]ar, 22)

I
I(ma;azlar) — I(ma;azlar, z2)
I

(my;az;z2lay) >0

Secondly, we prove I(myq;as; z1; z2]a1) < 0 with (4)(5)(6).

(4) Given H(mila1,z1) = 0 in (1), we have H(mila1,z1) = H(mila1,21,22) +
I(my; z2]la1,z1) = 0 and followingly, I(mq;2z2]a;,z1) = 0, as both terms are non-negative.
Therefore:

I(my; 215 22|a1) = I(ma; z2]a1) — I(ma; z2]ar, 21)

=1
= I(my; z2la1) > 0
(5) Since I(z1; z2|a1) = 0, we have:

I(my; 215 22]ar) = I(21; 22]|a1) — (215 22/ma, a1)
= —I(z1;22|m1,a1) S 0

(6) Combine I(mi;z1;22la1) > 0 in (4) and I(my;21;220a1) < 0 in (5), we have
I(mq; 215 2z9|la1) = 0. Given H(mqla1,z1) = 0in (1) and H(m1|a1,21) = H(mila1, 21, 22) +
I(my; z2]a1, z1), we have H(mj|aq, 21, z2) = 0 as both terms are non-negative. Similar to (4) that
yields I(mq; z1; 22]la1) = I(mq; z2|a1) from H(my a1, z1) = 0, we can get I (mq; z1; 22|a1, a2) =
I(myq; z2|aq, as) from H(mq|a1, 21, z2) = 0 by additionally conditioning on zo. Therefore:
I(my;ag; 215 22lar) = I(ma; 215 22]a1) — 1(my; 215 22]a1, az)
= —I(ml; Zg‘ah ag) S 0

This is contradictory with I(mg;as;z1;22|a1) > 0. Therefore, if I(mq;azla;) > 0 and
I(z1; z2|a1) = 0, then at least one of I(mq; 21) < H(my) and I(as; 2z9) < H(ag) must hold.

B.3 PROOF OF PROPOSITION 2

Proposition 2. For representations z1,z2 of ma,as, respectively, if I(z1;m1) = H(mq),
I(z9;a2) = H(az), and I(z1; z2|m1) = 0, then I(z1;a2) = I(my;az2) and I(z1;a2/mq) = 0.
Proof. First, we prove I(mq;a2) > I(z1; z2) with (1)(2).

(1) Since H (az|z2) = 0, we have H (az|z2) = H(az|z1,22) + I(21;a2|2z2) = 0, and followingly
I(z1; az|z2) = 0, as both terms are non-negative. Therefore, by definition of interaction information,
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we have I(z1;29;a2) = I(z1;a2) — I(21; a2|z2) = I(z1;az). Since I(z1; 2z2|my) = 0, we have
I(z1; 225 a2|mq) = I(21; z2|m1) — I(21; 22|m1, a2) = —I(21; 22|m1, az). Therefore:
I(z1; 22;ma5 a2) = 1(21; 225 a2) — 1(21; 225 azlmy)
= I(z1;a2) + I(2z1; z2|m1, az)
> I(z1;a2)

(2)i. Since H(as|z2) = 0, we have H (as|z2) = H(az|m, z2)+1(mq;az]z2) = 0, and followingly
I(my;az|z2) = 0, as both terms are non-negative.

ii. Since H(mg|z1) = 0, we have H(m1|z1) = H(ma|z1, z2) + I(m1; 22]2z1) = 0, and followingly
H(mj|z1, z2) = 0, as both terms are non-negative. Therefore, H(m1|z1, z2) = H(m1|z1, 22, a2) +
I(my;az2|z1, z2) = 0, and followingly I(m1;as|z1, 22) = 0, as both terms are non-negative.

iii. Given I(mq;as|zs) = 01ini. and I(mq;as|z1,22) = 0 inii. as shown above, we have
I(ml; ag; Z1|Zg) = I(ml; CL2|Z2) — I(ml; Cl2|21, 22) =0.

iv. Since H(mq|z;) = 0, by definition of conditional mutual information, we have H(mq|z;) =
H(mi|z1,a2) + I(my;az2|z1) = 0, and followingly I(mq;as|z1) = 0, as both terms are non-
negative. Thus I(my;ag; z1) = I(my;a2) — I(my;as]z1) = I(my; az).

Given I(mq;az2;z1) = I(my;az) iniv. and I(mg;as; 21|22) = 0 in iii., we have:

I(z1; z9;mu; a2) = I(ma;ag; z1) — I(ma; as; z1|z2)
= I(ml;ag)

Given (1)(2), we have I(my;as) = I(2z1; z2;my;a2) > I(21;a2)
(3) We prove I(z1;a2) > I(mq;as) as follows.

i. Since H(mq|z1) = 0, we have H(my|z1) = H(m1|z1, a2) + I(mq;az|z1) = 0, and followingly
I(ma;az|z1) = 0, as both terms are non-negative. Thus, by chain rule of mutual information, we
have:

I(my, z15a2) = I(z1;a2) + I(my; az|z1)
= 1(21;02)
ii. We also have:
I(my, z15a2) = I(my;az) + I(21; az|my)
> I(my;az)

Given I(m1,z1;a2) = I(z1;a2) ini. and , I(mq, z1;a2) > I(my;az) in ii., we have I(z1;a2) >
I(ml; CLQ).

(4) Finally, given I(my;az2) > I(21;a2) with (1)(2) and I(2z1;a2) > I(m1;az) in (3), the equality
must hold that I(z;;as) = I(mq; az).

Moving forward, given I(my,z1;a2) = I(z1;a2) = I(my;a2) + I(z1;a2/m) in (3) and
I(z1;a2) = I(mq; az) at which we just arrived, we have I(z1; az|my) =0

B.4 PROOF OF PROPOSITION 3

Proposition 3. Under the data generation assumption of Definition 1 (K = 2, k = 1) with
independent mechanisms, if 1(z1;az|my) = 0 for representation z1, then p(z1|do(as)) = p(z1).

Proof. We prove this by applying Rule 3 of do-calculus based on the causal graph G in Figure
[12] which reflects the representation learning process. The rules of do-calculous are elaborated in
Appendix[C.2] where _LL indicates independence between variables, for arbitrary disjoint sets of nodes
X, Z,W, G denotes the graph obtained by deleting all arrows pointing to X -nodes from G, and
Z (W) denotes the subset of Z-nodes that are not ancestors of any 1 -node.
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Specifically, we unfold the left-hand side of p(z1|do(as2)) = p(z1) and reach the right-hand side as:

p(z1|do(az)) = ZP(Zl|d0(az)7ml)P(m1|d0(a2)) ()
=" plzi|ma)p(mi) (ii)
= p(=1) (iii)

where we arrive at (i) by chain rule of probability, and then ar- @ @
rive at (ii) by using Rule 3 of do-calculus twice: First, given
I(z1;a2/my) = 0, we have z; L as|m; in G, as the mutual informa- @
tion between variables equals zero if and only if they are independent; @ @
for GW = Gg; (obtained by removing the edges pointing to

as from confounders ¢, ¢™ in @), this conditional independence e

still holds for the following reasons 2009): For z; and as,

such edge removal (1) leaves the direct path as — * — 2 intact, a @
not introducing any new pathway, and (2) blocks the backdoor paths
as +—c"” —-m; —>x—>ziandas < c* > a1 > m — T — 2z,
thus further reducing potential dependencies between z; and ao; now
we satisfy the condition of Rule 3 and apply do-calculous as:

Figure 12: Causal graph of
representation learning.

p(z1]do(az), m1) = p(z1lm1) Rule3 by z; 1L az|m; in Ggz (representation learning)

Second, given the independent mechanism assumption in Definition 1 that attributes are casually
independent as in Figure[I2} we satisfy the condition of Rule 3 and apply do-calculous as:

p(mi|do(az)) = p(mq) Rule 3 by m; L as in G4z (independent mechanisms)
Finally, we arrive at (iii) by chain rule of probability.

Discussions. Our proof mainly relies on two conditions: (1) the causal independence between m;
and as, which comes from the independent mechanism assumption (Scholkopf et al 2012) of data,
and (2) conditional independence I(z1;az|my) = 0, which is enforced upon z; by representation
learning that minimizes mode-based CMI, as proved in Proposition 2. Thereby, we conclude that
for data generated by independent mechanisms, disentangled representations can be learned by
mode-based CMI minimization and supervised learning.

B.5 GENERALIZATION OF THEORETICAL RESULTS

Our theoretical results, including the necessary condition
and the sufficient condition for disentanglement, can be
generalized to multiple attributes. The extension mainly in-
volves replacing my, z; with my, 2, and replacing as, 25 @
with the joint a_g, z_g, as the properties of mutual in-
formation and causal graphs remain the same for joint

variables. @

Specifically, the necessary condition in Figure [§] is ex-
tended to K attributes in Figure[I3] where the necessary
condition for disentanglement under hidden correlations
and potential attribute correlations is I (z; z_x|my) = 0.

I(z};25)+0 I(z};2"%]ay)#0
i ; I(z,é;z,lk|ak):O I(zi;2!|m) =0
For the sufficient condition of disentanglement, we ex-
tend Proposition 2 to Corollary 2.1 for K > 2. The (a) A-CMI (b) SD-HC (ours)
constraint I (ay; z,) = H(ay) is added, yet this is implied Figure 13: Causal graphs of the true la-
in I(zy;my) = H(my), because each mode falls under tent representations under K > 2. Red
only one attribute value, and the value of the attribute is arrows indicate the backdoor paths be-
determined knowing the mode. In other words, the infor- tween Zl1 and Zé- The dashed circle and
mation contained in ay, is already contained in m;. In arrows indicate that attribute correlations
addition, the joint constraint I(z_z;a_;) = H(a_j)is May or may not exist.
broken down for each i # k, i.e., I(z;;a;) = H(a;),i # k.
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Corollary 2.1 For representations z; of a; (i = 1,...,K), if I(z;;a;) = H(a;) fori = 1,..., K,
I(zp;my) = H(my), and 1(z; z—g|mi) = 0 for a specific 1 < k < K, then I(zr;a_) =
I(my;a_y) and I(zg; a_g|my) = 0.

where —k indicates the set of attribute indices {j} ;..
In addition, we extend Proposition 3 to Corollary 3.1 for K > 2 as follows.

Corollary 3.1. Under the data generation assumption of Definition 1 with independent mechanisms,
if I(z; a—k|my) = 0 for representation zy, then p(z|do(a—x)) = p(zk).

C CAUSALITY

C.1 D-SEPARATION AND BACKDOOR PATHS

Overview of Causality We provide a summary of notions in causal graphs relevant to the analysis
in Section[3.3] namely d-separation, blocking paths, and conditional independence. More details can
be found in (Pearl, 2009).

Causal graphs are directed acyclic graphs, where nodes represent random variables and directed
edges represent the causal relationships between two variables. The notion of d-separation forms
the link between blocking paths in the causal graph and dependencies between random variables. A
path in causal graphs is a sequence of consecutive edges. Consider two nodes X and Y, X and Y
are called d-separated by a set of nodes Z if all undirected paths from X to Y are blocked by Z.
Meanwhile, a path between X and Y is considered to be blocked by a set of nodes Z if at least one
of the following holds:

(1) The path contains a chain X — M — Y with the mediator set M, and a node in M is in Z.
(2) The path contains a fork X <— U — Y with the confounder set U, and a node in U is in Z.

(3) The path contains a collider X — C < Y with the collider node C, and neither C or its
descendant is in Z.

Finally, if X and Y are d-separated by the set Z, X and Y are conditionally independent given Z. A
backdoor path between X and Y is the non-causal path between X and Y that contains at least one
edge pointing at X or Y/, i.e. the path that flows backward from X or Y. Backdoor paths introduce
dependence between variables, thus they need to be blocked by controlling a node on these paths as
in (1) and (2).

Causal Graph Analysis Under Hidden Correlations Figure Bb contains three paths between z;
and z5. (1) The path z; — x < 25 is blocked without conditioning on any variables, as long as
the collider « is uncontrolled. (2) The path z; <~ m; < ¢™ — as — 29 is blocked if any node
in the confounder set {m1, c™, as} is controlled. Since ¢™ is unobserved, controlling either m; or
as blocks this path. (3) The path z; < m; < a; < ¢® — ay — 2 is blocked if any node in the
confounder set {mq,a1,c% az} is controlled. Since c® is unobserved, controlling one of m1, ay,
and ay blocks this path. To simultaneously block all undirected paths between z; and z, we need
to control either m; or ag, as controlling a; does not block path (2). That is to say, z; and z, are
conditionally independent given either m; or as.

C.2 RULES OF do-CALCULUS

Let X, Y, Z, and W be arbitrary disjoint sets of nodes in a causal DAG G. do-calculus consists of
three inference rules that permit us to map interventional and observational distributions to each other
whenever certain conditions hold in the causal diagram G.

We denote by G+ the graph obtained by deleting from G all arrows pointing to nodes in X. Likewise,
we denote by G x the graph obtained by deleting from G all arrows emerging from nodes in X.
To represent the deletion of both incoming and outgoing arrows, we use the notation G ,. The
following three rules are valid for every interventional distribution compatible with G (Pearl, 2016}
1995).
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Table 3: Network architectures. “Discriminator(a;,)” denotes discriminator with conditional input
a;n. “Conv(ct, kj, sl)” denotes 1D convolution layer with ¢ channels, kernel size j, and stride
l. “FC(i)” denotes fully connected layer with output dimension i. “BN(:)” denotes 1D batch
normalization layer with feature dimension <. “AvgPool(?)” denotes 1D adaptive pooling layer
with output dimension ¢. “LeakyReL.U(«)” denotes LeakyReLLU activations with scale .. Output
dimension d,,; is set according to each prediction task. N{ and N§ denote the number of values for
a1 and aq, respectively.

Component Method Dataset Architectures

Encoder subnetwork All Toy FC(16) — FC(16)

Encoder subnetwork All CMNIST FC(128), BN(128) — FC(128), BN(128)

Encoder subnetwork All WHAR Conv(c128, k8, s2), BN(128) — Conv(c256, k5, s2), BN(256)
— Conv(c128, k3, s1), BN(128), AvgPool(1)

Encoder subnetwork All MFD Conv(c64, k32, s6), BN(64) — Conv(c128, k8, s2), BN(128) —
Conv(c128, k8, s2), BN(128), AvgPool(1)

Predictor All All FC(dout), Softmax

Discriminator(m) SD-HC All Nt x [FC(512), LeakyReLu(0.2) — FC(1), Sigmoid] for each
value of ay

Discriminator(-) SD-HC-A All N5 x [FC(512), LeakyReLu(0.2) — FC(1), Sigmoid] for each
value of az

Discriminator(-) SD-HC-ID All N X Np, x [FC(512), LeakyReLu(0.2) — FC(1), Sigmoid] for
each mode under each value of a;

Discriminator(ai, mi1)  SD-HC-SD All FC(512), LeakyReLu(0.2) — FC(1), Sigmoid

Middle layer SD-HC-M All FC(128), BN(128)

* Rule 1: Insertion/deletion of observations
P(y|do(x), z,w) = P(y|do(z),w), ifY 1L Z|X,WinG
* Rule 2: Action/observation exchange
P(y|do(x),do(z), w) = P(yldo(z), z,w), ifY 1L Z|X,W in G,
* Rule 3: Insertion/deletion of actions
P(y|do(z),do(z),w) = P(y|do(x),w), ifY 1L Z|X, W in Gxzmm)
where 1l indicates independence, and for G

<zw) £ (W) denotes the set of Z-nodes that are not
ancestors of any W-node in G.

D NETWORK ARCHITECTURES

The detailed architectures of different components in SD-HC and its variants are summarized in
Table [3] For independent control of each attribute, encoder F' uses individual subnetworks for
each attribute with the same architectures. Predictors C;, C!™ share the same architectures as well.
Different architectures of discriminator Dy, in SD-HC, SD-HC-A, SD-HC-ID, and SD-HC-SD, and
the architecture of the middle layer in SD-HC-M are described separately. SD-HC-M calculates the
mode prediction loss on the output representations 2, of encoder F' with C}*, passes zj, to the middle
layer, and calculates the attribute prediction loss on the output representations of the middle layer
with C.

E TRAINING PROCESS
The training process of SD-HC under K = 2 (a; as the attribute with multi-modality) is summarized

in Algorithm 1, where optimizations w.r.t. different losses are performed alternatively. The algorithm
can be generalized to multiple attributes accordingly.

F DETAILS OF EXPERIMENTAL SETTINGS

F.1 DATASETS

Toy Dataset Our 2-dimensional toy data have two binary attributes, with the primary attribute
a1 having 3 modes under each attribute value, i.e., a; = 0,m; = 0,1,2and a; = 1,m; = 3,4, 5.
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Algorithm 1 The training process of SD-HC under K = 2

1: Input: Training set D with data  and attributes labels a = (a1, az), the number of modes N,,,
under each value of a1, the number of epochs E; and E5, and the number of steps Sy, St, and
Se
Initialize encoder F™* and predictor C}
for epoch = 1to E; do

for mini-batch (x,a1) in D do

Update F* and Cf by minimizing L, in Equation 4]

end for
end for
Under each value of a;, perform k-means clustering with the number of clusters V,,, on the
output representations z; of the trained encoder F'*, and get the estimated mode labels m;

9: Initialize encoder F, predictors C7, Cs2, C7"*, and discriminator D

10: for epoch = 1to Ey do

11:  for mini-batch (x,a) in D do

12: for step = 1to S, do

13: Update encoder F' and predictors C, Cy and C7* by minimizing £, in Equation 3]
14: end for

15: for step = 1to Sy do

16: Update discriminator D; by minimizing £, in Equation [¢]
17: end for

18: for step = 1to Sy do

19: Update encoder F' by maximizing £, in Equation []

20: end for

21:  end for

22: end for

23: Output: Encoder F' and predictor Cy

Table 4: Dataset descriptions.

Dataset UCI-HAR RealWorld HHAR MFD
ai activity activity activity incipient fault type
as user user user operating condition
# values of a; 6 8 6 3
# values of a. 30 15 9 4
# of groups 5 5 3 4
# channels 3 3 3 1
# samples 11711 36980 14772 10916
window length 128 150 128 5120
values of a; walking, walking climbing stairs  healthy, inner-
upstairs, walking up, climbing stairs bearing damage,
downstairs, sitting, down, jumping, outer-bearing dam-
standing, laying lying, standing, age
sitting, running,
walking

Data are generated from the attributes as € = my - [[0,0], [2,0], [4,0],[1,0],[3,0],[5,0]] + a2 -
[[0,0], [0, 1]] + 7, where vectors m; and as represent the one-hot encoded values of m4 and as,
respectively, and . ~ N(0, 02T represents 2-dimensional independently normally distributed noise
with noise level o. For @ = (x1,x2), the primary attribute a; and mode m; control dimension 1,
i.e., x1, and attribute ao controls dimension 2, i.e., z5. An illustration of the generated data under
different correlations and noise levels is given in Figure[T4]

CMINIST Dataset Colored MNIST (CMNIST) is constructed by coloring and occluding a subset
of MNIST (LeCun et al.| [1998). As shown in FigureSp, attribute a; is defined as the parity of digits,
i.e., a; = 0,1 indicates “even”, “odd”. Attribute a5 is defined as the color of digits, i.e., as = 0, 1
indicates “red”, “blue”. a; has 2 modes under each attribute value, i.e., digits 4, 2 under parity “even”
and digits 3, 9 under parity “odd”. Digit noises are generated as occlusion masks with occlusion ratio
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Table 5: Conditional probability p(as|m;) on toy data for cory, = 0.

plaz|ms)
0] 1] 23] 475
. | o [os5|os]o05]|05]05]0s5
: | 1 [o5|os5]05]05]05]0s5

Table 6: Conditional probability p(as|m1) on toy data for corp, = 0.02.

my
plazlma) T T s T 1 T s

| o |o6|03]06]05]06]04
2 | 1 o4 |07 ]o04]05]04]06

Table 7: Conditional probability p(as|m;) on toy data for corp, = 0.06.

p(az|m1) T
o] 1] 23] 4]s
| o |07 |02]06]04]07]04
“ | 1 |03 |08 ]o04]o06]03]06

Table 8: Conditional probability p(az|m4) on toy data for corj, = 0.13.

(az|ma) s
as|m
plezimy) =T T2 [ 3] 4 5
a ‘ 0 0.8 0.1 0.6 0.3 0.8 0.4
2
‘ 1 0.2 0.9 0.4 0.7 0.2 0.6

Table 9: Conditional probability p(az|m1) on toy data for cor), = 0.28.

(az|m1) i
as|m
plazim) =TT 5 3] 4] 5
| 0o Joo|o|o6|02]09]o04
as
| 1 Jor|1]o4]o08]o1]os

Table 10: Conditional probability p(as|m1) on toy data for cor;, = 0.41.

ma

az|m
P( 2\ 1) 0 1 2 3 1 5
| o 1 ]ofos]or|1]o4
a2
| 1 Jof1]os5]|09]0]o0s

Table 11: Conditional probability p(az|m;) on CMNIST under attribute correlations and hidden

correlations.
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Table 12: Conditional probability p(as|m;) on CMNIST under only hidden correlations.
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Figure 14: Generated toy data under different correlations and noise levels.

as the noise level o (Chai et al., 2021), and coloring noises are generated as a scalar multiplier to the
RGB values of the digits.

Time Series Datasets We use acceleration signals from UCI-HAR, RealWorld, and HHAR datasets
and vibration signals from MFD dataset. After removing invalid values and normalizing the data
by channel to be within the range of [-1, 1], we pre-process the data by the sliding window strategy.
For WHAR datasets with multiple sensors, we use the 3-axis acceleration data from the waist for
UCI-HAR, the acceleration data from the chest for RealWorld, and the acceleration data from a
Samsung smartphone for HHAR following (Ragab et all 2023)). Table [ summarizes the statistics of
the preprocessed data used in our experiments.

F.2 EVALUATION PROTOCOL

Toy Since we focus on investigating the behavior of different methods under only hidden cor-
relations I(mq;ag|a;) > 0, data are set to be uniformly distributed under the values of my,
a1, and as, and attribute correlations do not exist, i.e., I(aj;as) = 0. The hidden corre-
lations are introduced by setting p(az|m;) to Table [3] [6] for hidden correlations
corp, = 0,0.02,0.06,0.13,0.28, 0.41, respectively.

CMNIST Since we focus on investigating the behavior of different methods under various corre-
lations, data are set to be uniformly distributed under the values of m; and a;. For the comparison
with baselines and variants, we introduce attribute correlations and hidden correlations by set-
ting p(az|m,) to Table For additional analysis, we introduce hidden correlations by setting
p(az|my) according to Table where we set corr, = 0.5,0.6,0.7,0.8,0.9 for hidden correlations
corp = 0,0.02,0.08,0.19, 0.37, respectively.

Time Series Leave-one-group-out validation is performed, where each group is selected as the test
group once, and the remaining groups serve as the training groups. Groups are obtained by dividing
the data by the value of attribute as, where the number of values of as is equal for different groups.
The training and validation sets are obtained by splitting the data of the training groups by 0.8:0.2.
All data of the test group form the test set. All methods are trained on the training set, tuned on the
validation set, and tested on the test set.

F.3 IMPLEMENTATION DETAILS

We experiment with Pytorch 1.10.0+cul13 and Python 3.8.13. Model optimization is performed using
Adam (Kingma & Ba,[2015). Experiments are conducted on Linux servers with Intel(R) Core(TM)
i9-12900K CPUs and NVIDIA RTX 3090 GPUs.
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Table 13: Hyper-parameter search spaces and NNI settings.

Item Search space / setting
W between [0.01, 10]
Sa [1,3,5,7,9]
Hyper-parameter Np, [2,3,4]
leyla,le [0.0001, 0.0003, 0.0005, 0.0007, 0.001]
. Max trial number per GPU 1
NNI configuration Optimization algorithm Tree-structured Parzen Estimator

G HYPER-PARAMETERS

The general hyper-parameters are set to the following values: The number of dimensions D for
representations z; is set to 128. The mini-batch size is set to 64 and 128 for toy and other datasets,
respectively. The number of epochs for pre-training, F';, and the number of epochs for supervised
DRL, E,, are set to 100 and 150, respectively. The numbers of update steps Sy and S, are set to 1.

Some other hyper-parameters are tuned with Neural Network Intelligence (NNI The search spaces
and NNI configurations are given in Table [I3] The tuned hyper-parameters are set to the following
values: The weight of mode prediction loss w,, is set to 0.5, 0.2, 0.7, 0.1, 0.01, and 0.01 on
toy, CMNIST, UCI-HAR, RealWorld, HHAR, and MFD for variants with mode prediction loss,
respectively. The number of update steps Sy is set to 2, 15,7, 7, 1, and 1 on toy, CMNIST, UCI-HAR,
RealWorld, HHAR, and MFD, respectively. The number of modes N,,, under each value of ay, is
set to 3, 2, 8, 3, 2, and 2 on toy, CMNIST, UCI-HAR, RealWorld, HHAR, and MFD, respectively.
The initial learning rates of Adam (I, l4,l.) are set to (0.001, 0.0007, 0.001), (0.001, 0.0003, 0.001),
(0.001, 0.0007, 0.0005), (0.001, 0.001, 0.001), (0.001, 0.0001, 0.001), and (0.001, 0.001, 0.0005) on
toy, CMNIST, UCI-HAR, RealWorld, HHAR, and MFD, respectively.

H BASELINES

We focus on comparing different independence constraints, and leave out the other components in the
original baseline implementations, e.g., different architectures. For fair comparisons, all methods
share the same encoder structure and train with alternative update steps, which is the same as SD-HC.
The baselines are summarized below:

e MMD (Lin et al., 2020) minimizes the Maximum Mean Discrepancy between different
distributions in the subspace of one attribute under different values of another attribute.

* DTS (Li et al., |2022)) adversarially trains attribute predictors to make one attribute unpre-
dictable from the representations of another.

* IDE-VC (Yuan et al.} 2021) minimizes the unconditional MI between the representations of
different attributes by adversarially training a predictor that predicts the representations of
one attribute from those of another.

e MI (Cheng et al., 2022) and A-CMI (Funke et al., 2022) minimize the unconditional
mutual information and the attribute-based conditional mutual information between the
representations of different attributes, respectively. These two methods minimize MI by
adversarially training an unconditional or conditional discriminator as the proposed method.
We train two discriminators for A-CMI to minimize conditional mutual information based
on both a; and as as in (Funke et al., [2022)).

¢ HFS minimizes the Hausdorff distance between two representation sets to factorize the
supports of different representation subspaces, where we use Euclidean distance as the
distance measure between different representations from the same subspace as in (Oublal
et al., [2024).

'https://github.com/microsoft/nni
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Figure 15: Clustering performance. (a) and (b) shows the ARI on toy and CMNIST under varying
noise levels. (c) and (d) shows the true and estimated cluster assignments under a; = 0 on the raw toy
data and the CMNIST representations of BASE by t-SNE(Maaten, L. V. D. and Hinton, G., [2008).
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Figure 16: Computational complexity comparison.

I ADDITIONAL MODEL INVESTIGATION

Clustering Evaluation. We use adjusted rand index (ARI) to measure clustering performance. ARI
ranges between 0 and 1, with O indicating a random cluster assignment, and 1 indicating a perfectly
matching cluster assignment with ground truth. The results are shown in Figure [T5hb, which shows
that: (1) As the noise level increases, ARI drops due to information loss; (2) CMNIST shows lower
ARI than toy, as real data are more challenging; (3) The high ARI under moderate noises indicates
effective clustering, as validated by the similarity to true cluster assignments in Figure [T5kd.

The clustering algorithm is a choice of design for our method. Although k-means has been effective
across our experiments, we offer practical guidance regarding the alternative clustering methods that
could be considered for real applications. For high-dimensional data, Marigold
2023) could be considered, which is an extension of k-means to high-dimensional cases. For more
complex data, deep clustering [2022) could be considered, which can make representation
learning and clustering mutually enhance each other by alternative training. Self-supervised learning
(Zhang et al.| 2019) could also be incorporated to improve the quality of representations for complex
data.

Computational Complexity Figure [T6] shows the total numbers of parameters and the training
durations of a single leave-one-group-out validation process (without repetition) on UCI-HAR of
SD-HC and the compared methods.

In Figure[T6h, we observe that A-CMI has the most parameters, which is because A-CMI has two
discriminators for minimizing conditional mutual information based on a; and a,. This indicates that
our method is computationally efficient w.r.t. number of parameters compared to A-CMI, which is
advantageous for deployment in resource-constrained environments.

In Figure[I6p, we observe that the training durations of A-CMI and SD-HC are the longest. This is
because within one mini-batch, the number of samples under one mode value is much smaller than
those under one attribute value, and we find that SD-HC needs more update steps to sufficiently learn
the discriminator. Therefore, in real applications, the better approach is to upload the data to the
server for training, and then locally download the trained network for inference.
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Figure 17: Hyper parameter sensitivity experiments of (a) IV,,, and (b) w,, .

Table 14: Results on MINIST dataset. “*” indicates that SD-HC is statistically superior to the
compared method according to the pairwise t-test at a 95% significance level. The results of the
best methods are bold. The result of the best baseline DRL methods are underlined, over which the
improvement achieved by SD-HC is calculated.

Method Test 1 (correlated) Test 2 (uncorrelated) Test 3 (anticorrelated)

Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1
BASE 0.901 +0.003 0.901 +0.003 0.831 +0.003 0.831 +0.003 0.768 +0.008 0.768 +0.008
MMD 0.640 +0.114 0.589 +0.160 0.614 +0.088 0.562 +0.133 0.582 +0.069 0.528 +0.117
DTS 0.699 +0.041 0.699 +0.041 0.651 +0.029 0.651 +0.029 0.615 +0.022 0.615 +0.022
IDE-VC 0.632 +0.031 0.629 +0.031 0.588 +0.025 0.585 +0.028 0.539 +0.022 0.533 +0.027
MI 0.664 +0.018 0.660 +0.018 0.628 +0.019 0.624 +0.019 0.596 +0.014 0.590 +0.018
A-CMI 0.722 +0.072 0.712 +0.081 0.668 +0.049 0.658 +0.058 0.611 +0.039 0.600 +0.044
HFS 0.811 +0.014 0.809 +0.014 0.725 +0.012 0.723 +0.012 0.635 +0.008 0.631 +0.008
SD-HC (ours) 0.886 +0.005 0.886 +0.008 0.859 +0.009 0.859 +0.010 0.829 +0.011 0.829 +0.008

Improvement 1.5 1.5 12.8 % 12.8 % 16.1 % 16.1 %

Parameter Sensitivity of V,,,. The sensitivity to the number of modes [V,,, under each attribute value
is shown in Figure [T7h, which shows that: (1) SD-HC performs the best at the ground truth N,,, = 2
on CMNIST, suggesting that prior knowledge about NV,,, would be beneficial. (2) SD-HC performs
badly at N,,, = 1, where mode-based CMI degrades to attribute-based CMI, causing the loss of mode
information. (3) In general, SD-HC is not particularly sensitive to changes of [V,,, within a certain
range. On CMNIST, SD-HC performs comparably under N,,, = 2, 3, 4, suggesting that SD-HC is
robust to the changes of N,;, when it is slightly larger than the ground truth (V,,, = 2). Probably
because as long as the samples within one estimated cluster belong to the same ground-truth mode,
SD-HC can preserve mode information to some extent.

In practice, hyper-parameter tuning may come with high computational costs for large-scale datasets.
Alternatively, we offer practical guidance to reduce the computational costs by estimating the number
of modes N,,, in a data-driven manner. This requires expert knowledge to choose the suitable method:
For well-separated clusters, Elbow Method (Marutho et al., 2018]) would be suitable for estimating
N,,, with k-means clustering; For complex and overlapping clusters, Bayesian Information Criterion
(Watanabe, |2013)) would be suitable for estimating IV,,, with Gaussian Mixture Models for clustering;
In addition, during our pre-training stage, the number of modes can be estimated by split and merge
operations with deep clustering methods (Ronen et al., 2022).

Parameter Sensitivity of w,,. The sensitivity to the weight parameter of mode prediction loss, w,,
is shown in Figure[T7p, which shows that: In general, SD-HC performs better at a small value of
wy,. Theoretically, adding mode prediction loss benefits disentanglement. However, enforcing mode
prediction with estimated mode labels will potentially introduce errors, as the estimated mode labels
do not match the ground-truth mode labels.

J FULL RESULTS ON CMNIST DATASET

The full comparison with baselines on CMNIST dataset is presented in Table[T4] from which we
observe that the advantage of SD-HC increases as correlation shift increases from test 1 to test 3.
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