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ABSTRACT

Disentangled representation learning (DRL) methods are often leveraged to im-
prove the generalization of representations. Recent DRL methods have tried to han-
dle attribute correlations by enforcing conditional independence based on attributes.
However, the complex multi-modal data distributions and hidden correlations under
attributes remain unexplored. Existing methods are theoretically shown to cause the
loss of mode information under such hidden correlations. To solve this problem, we
propose Supervised Disentanglement under Hidden Correlations (SD-HC), which
discovers data modes under certain attributes and minimizes mode-based condi-
tional mutual information to achieve disentanglement. Theoretically, we prove
that SD-HC is sufficient for disentanglement under hidden correlations, preserving
mode information and attribute information. Empirically, extensive experiments on
one toy dataset and five real-world datasets demonstrate improved generalization
against the state-of-the-art baselines. Codes are available at anonymous Github
https://anonymous.4open.science/r/SD-HC.

1 INTRODUCTION
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Figure 1: Correlated human activity data. The distribu-
tions of (a) “walking” / “standing”, and (b) “stroll”
/ “skip walk” under “walking” differ between users,
exhibiting correlations.

Disentangled representation learning (DRL)
aims to encode one single data attribute in
each representation subspace, which holds
great promise in enhancing generalization to
unseen scenarios (Matthes et al., 2023; Qian
et al., 2021), enabling controllable genera-
tive modeling (Yuan et al., 2021), and im-
proving fairness (Locatello et al., 2019a). In
the supervised setting, each representation
subspace is learned under the label super-
vision of its corresponding attribute, while
being disentangled from other attributes.

Supervised DRL methods typically assume
independence between attributes. In ad-
dition to supervised prediction, mutual in-
formation (MI) minimization (Kwon et al.,
2020; Yuan et al., 2021; Su et al., 2022) is
commonly adopted to enforce independence between the representations of different attributes and
achieve disentanglement. The independence assumption is often violated in real-world data, where
correlations are prevalent. Taking human activities as an example, different users have different
behavior patterns, and each user tends to engage in some activities more frequently than others,
exhibiting correlations between activity and user identity (ID) attributes, as shown in Figure 1a. For
correlated attributes, enforcing representation independence causes at least one subspace to lose
attribute-related information (Funke et al., 2022).

To disentangle correlated attributes, attribute-based conditional mutual information minimization (A-
CMI) (Funke et al., 2022) enforces conditional representation independence that preserves attribute-
related information. However, when a certain attribute takes a value, underlying variations related
to this attribute may lead to complex multi-modal data distributions rather than simple uni-modal

1

https://anonymous.4open.science/r/SD-HC


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

data distributions. The mode under this value of this attribute may be correlated with other attributes.
Continuing with the human activity example, when activity attribute takes the value “walking”,
variations in pace, stride, and posture may lead to different walking modes, the casual “stroll”
and energetic “skip walk”; different users have more subtle differences in their behavior patterns,
exhibiting correlations between walking mode and user ID attribute, as shown in Figure 1b. In this
case, A-CMI may cause the loss of mode information (as proved in Proposition 1), which is important
for attribute prediction with multi-modality (Nie et al., 2020; Sugiyama, 2021; Li et al., 2017). For
example, in human activity recognition, losing the information about walking modes might lead to
the confusion between “skip walk” and another activity “climbing down”, while encoding mode
information can better distinguish these similar activities.

To address the above problem, we propose Supervised Disentanglement under Hidden Correlations
(SD-HC). Instead of focusing on attribute correlations as existing works, we delve into the complex
data distributions and hidden correlations under certain attributes. Our contributions are:

• We introduce a novel supervised DRL paradigm named SD-HC, which discovers data modes
under certain attributes and disentangles these attributes with mode-based CMI minimization.
Under hidden correlations, SD-HC can preserve mode information that current methods
tend to lose.

• We theoretically prove that mode-based CMI minimization is the necessary and sufficient
condition for supervised disentanglement under both hidden correlations and attribute
correlations. This result can be extended to show that CMI minimization can achieve
disentanglement under correlations in general, establishing the first sufficient condition for
disentanglement under correlations.

• We extensively evaluate SD-HC on five real-world datasets, which demonstrates that SD-HC
outperforms the state-of-the-art DRL methods for attribute prediction on out-of-distribution
data and data under train-test correlation shifts. We conduct comprehensive investigations on
toy data and real-world data regarding the behavior of different methods, the impact of train
correlation strength, noise level, train-test correlation shifts, and the learned representations,
which demonstrate the superiority of SD-HC under various circumstances.

2 RELATED WORK

Disentanged Representation Learning DRL methods can be roughly divided into unsupervised,
weakly-supervised, and supervised DRL. Unsupervised DRL learns independent representation dimen-
sions that each correspond to an unknown attribute by self-supervised tasks, e.g., self-reconstruction
in variational auto-encoders (VAEs) (Higgins et al., 2016; Kim & Mnih, 2018; Chen et al., 2018)
or contrastive learning (Zimmermann et al., 2021; Matthes et al., 2023). Yet, the feasibility of
purely unsupervised disentanglement has been questioned (Locatello et al., 2019b), which prompts
DRL with weak supervision (Shu et al., 2020), e.g., similarity (Chen & Batmanghelich, 2020) or
grouping information (Bouchacourt et al., 2018). In contrast, supervised DRL learns individual multi-
dimensional representation subspaces that each encode an attribute under label supervision (Qian
et al., 2021; Yuan et al., 2021). Generally, DRL methods assume attribute independence and enforce
representation independence between different attributes as a means of disentanglement. In particular,
supervised DRL usually minimizes the MI between attribute representations (Kwon et al., 2020;
Yuan et al., 2021; Su et al., 2022), minimizes the Maximum Mean Discrepancy (MMD) between
representation distributions (Li et al., 2018; Lin et al., 2020), or makes one attribute unpredictable
from the representations of another by adversarial training (Qian et al., 2021; Li et al., 2022; Lee
et al., 2021). Our work falls under supervised DRL.

Disentanglement Under Attribute Correlations Recent works have revealed that independence
assumption-based DRL fails on correlated attributes, where independence constraints cause en-
tanglement for unsupervised DRL (i.e., one dimension encodes two or more correlated attributes)
(Träuble et al., 2021) or hurt the predictive ability of representations for supervised DRL (Funke
et al., 2022). To disentangle correlated attributes for unsupervised DRL, Träuble et al. (Träuble et al.,
2021) and Dittadi et al. (Dittadi et al., 2021) add weak supervision or a few labels to correct the
model. Differently, Wang et al. (Wang & Jordan, 2021) and Roth et al. (Roth et al., 2023) relax
independence constraints with Hausdorff distance to encourage only factorized supports instead of
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factorized distributions. These methods can somewhat alleviate entanglement but do not guarantee
disentanglement theoretically (Funke et al., 2022; Wang & Jordan, 2021).

More recent works have introduced conditional independence constraints to disentangle correlated
attributes. For supervised DRL, Funke et al. (Funke et al., 2022) introduces attribute-based CMI
minimization (A-CMI). For each attribute, A-CMI minimizes the MI conditioned on this attribute
between its representation and the joint representations of all other attributes. A-CMI is proved to be
the necessary condition for disentanglement under attribute correlations, whereas unconditional MI is
proved to fail. For unsupervised DRL in reinforcement learning, Dunion et al. (Dunion et al., 2023)
follow A-CMI, but condition on history information to make up for the unknown current values.

To the best of our knowledge, existing works have only established necessary conditions for disentan-
gling correlated attributes (Wang & Jordan, 2021; Funke et al., 2022), and the sufficiency of CMI has
only been validated on linear regression examples rather than proved theoretically. We are the first
to give sufficient conditions for disentanglement under correlations, theoretically proving that CMI
minimization can achieve disentanglement. Our results hold under various cases, including multiple
attributes under attribute correlations and hidden correlations.

3 DISENTANGLEMENT UNDER HIDDEN CORRELATIONS

3.1 PROBLEM FORMULATION

Data Generation Process. We assume that data are generated from the causal process in Definition 1
and Figure 2, which mainly relies on the independent mechanism assumption (Schölkopf et al., 2012)
that attributes are casually independent, i.e., each attribute arises on its own, allowing changes or
interventions on one attribute without affecting others. Still, confounding may exist.

……

Figure 2: Causal graph
of data generation with
multi-modality and hid-
den correlations under a
certain ak.

Definition 1. (Disentangled Causal Process). Consider a causal gener-
ative model p(x|a) for data x with K attributes a = (a1, a2, ..., aK).
A certain attribute ak is associated with a categorical mode variable
mk. Attributes a could be influenced by L confounders ca = (ca1 , ..., c

a
L).

Conditioned on ak, mode variable mk and other attributes a−k could
be influenced by Q confounders cm = (cm1 , ..., cmQ ). This causal model
is called disentangled if and only if it can be described by a structural
causal model (SCM) (Pearl, 2009) of the form:

ca ← nca, cm ← ncm

ak ← ha
k(S

a
k ,n

a
k), S

a
k ⊂ {ca1 , ..., caL}, k ∈ {1, ...,K}

aj ← ha
j (S

a
j , S

m
j ,na

j ), S
a
j ⊂ {ca1 , ..., caL}, Sm

j ⊂ {cm1 , ..., cmQ}, j ̸= k

mk ← hm(ak, c
m,nm)

x← g(a−k,mk,n
x)

(1)
with functions g, ha

i , hm, jointly independent noise variables nca, ncm, na
i , nm, nx, and confounder

subsets Sa
i , Sm

j , for i = 1, ...,K, j = 1, ..., k − 1, k + 1, ...,K. −k denotes the set of attribute
indices {j}j ̸=k. Note that ∀i ̸= i′, ai ̸→ ai′ .

Correlations. We denote mutual information (MI) and entropy function as I(· ; ·) and H(·), respec-
tively. The MI between attributes measures their correlations, e.g., I(ai; ai′), i ̸= i′, while the MI
between a representation and an attribute measures the amount of information the representation
contains about the attribute, e.g., I(zi; ai′). We denote attribute correlations as I(ai; ai′) and hidden
correlations as I(mk; a−k|ak), which are induced by confounders ca and cm, respectively.

Multi-Modality and Hidden Correlations. Under some value α of ak, the data distribution is
assumed to be multi-modal due to underlying variations related to this attribute, i.e., p(x|ak = α)
is a mixture model, e.g., Gaussian mixture model, and a mode corresponds to a component of the
mixture. The modes under different attribute values are labeled altogether to formulate the categorical
variable m1, e.g., for ak with 2 values (|Ak| = 2) and 3 modes under each value, the 6 modes in total
will be labeled from 0 to 5 to formulate m1. The modes under ak = α may be correlated with other
attributes a−k, i.e., I(mk; a−k|ak = α) > 0. Hidden correlations are defined as the expectation over
different attribute values, i.e., I(mk; a−k|ak) =

∑
α∈Ak

pak
(ak = α)I(mk; a−k|ak = α).
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Intuitive Example. Figure 1 illustrates hidden correlations in the realistic application of human
activity recognition: Under different values of activity attribute a1, two walking modes and one
standing mode are labeled altogether to formulate variable m1, i.e., m1 = 0, 1, 2 indicates “stroll”,
“skip walk”, and “stand”, respectively; The modes “stroll” and “skip walk” under “walking” activity
might be correlated with user ID attribute a2, i.e., I(m1; a2|a1 = 0) > 0, where a1 = 0 indicates
“walking” activity and m1|a1 = 0 indicates walking modes m1 = 0, 1. For activity recognition, the
goal is to learn disentangled activity representations that fully capture the activity and its modes,
while remaining unaffected by personalized user patterns.

3.2 THE DEFINITIONS OF DISENTANGLED REPRESENTATIONS

The goal of supervised DRL is to learn disentangled representations zi for each attribute ai by
a mapping f(x) = z = (z1, z2, ...,zK), zi ∈ RD, i = 1, ...,K. Disentangled zi should (1)
contain all information about ai (Informativeness), which includes mode information for attributes
with multi-modality, and (2) reflect the causal independence between attributes, such that external
interventions by changing another attribute aj(i ̸= j) alone should not affect zi (Independence),
which is formalized in Definition 2 following (Wang & Jordan, 2021; Suter et al., 2019).

Definition 2. (Disentangled Representation). Representation z is disentangled, if for i = 1, ...,K:

p(zi|do(a−i)) = p(zi) (2)

where−i indicates the set of attribute indices {j}j ̸=i, a−i indicates the joint variable of {aj}j ̸=i, and
do(·) operation sets the values of some attributes by external intervention and leaves other attributes
unchanged. Such external intervention is isolated from the causal effects within the causal process.

3.3 THEORETICAL GUARANTEES FOR DISENTANGLING WITH MODE-BASED CMI
MINIMIZATION

We focus on the disentanglement of a certain attribute with multi-modality, and show that under the
independent mechanism assumption, mode-based CMI minimization is the necessary and sufficient
condition for supervised disentanglement under hidden correlations and attribute correlations, while
A-CMI fails under hidden correlations. For simplicity, we take K = 2 as an example, with a1
exhibiting multi-modality. Then, the results are generalized to multiple attributes and simple cases.

The Necessary Condition for Disentanglement. Based on the data generation process of Definition
1, we build the causal graphs of the true latent representations (denoted as zl

k), which are only causally
dependent on the corresponding attribute or mode, and are inherently disentangled.

(a) A-CMI (b) SD-HC (ours)

Figure 3: Causal graphs of the true latent
representations. Red arrows indicate the
backdoor paths between zl

1 and zl
2. The

dashed circle and arrows indicate that at-
tribute correlations may or may not exist.

Since the ideally disentangled zk should capture the true
latent zl

k and retain its properties, we find conditional in-
dependence between the true latent representations as the
necessary condition for disentanglement. As stated by
the causal graph theorems in Appendix C, two variables
X,Y are conditionally independent given a variable that
blocks all backdoor paths between them, i.e., the paths that
flow backward from X or Y . In Figure 3a, we consider
only attribute correlations as A-CMI, where a1 blocks the
only backdoor path between zl

1 and zl
2. In comparison,

we consider hidden correlations and potential attribute
correlations in Figure 3b, where m1 blocks all backdoor
paths whether attribute correlations exist or not, yet a1
fails to block the path containing cm. This means that un-
der hidden correlations and potential attribute correlations,
disentangled representations should retain the conditional
independence of the true latent representations as:

I(zl
1; z

l
2|m1) = 0 ⇒ I(z1; z2|m1) = 0 (3)

A-CMI Fails Under Hidden Correlations. As shown in Figure 3b, disentangled representations z1
and z2 are not conditionally independent given a1 under hidden correlations. We further show that

4
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enforcing such conditional independence could hurt the predictive ability of representations, which is
formalized in Proposition 1 and proved in Appendix B.2.

Proposition 1. For representations z1, z2 of m1, a2, respectively, if I(m1; a2|a1) > 0, then enforcing
I(z1; z2|a1) = 0 leads to at least one of I(z1;m1) < H(m1) and I(z2; a2) < H(a2).

where I(z1;m1) < H(m1) indicates that z1 fails to contain mode information for predicting a1,
and I(z2; a2) < H(a2) indicates that z2 fails to contain attribute-related information for predicting
a2. Either way, attribute-based CMI minimization I(z1; z2|a1) = 0 hurts the predictive ability of
representations under hidden correlations. This is an extension of Proposition 3.1 in (Funke et al.,
2022), which proves that unconditional MI minimization fails under attribute correlations.

The Sufficient Condition for Disentanglement. Since inappropriate independence constraints
could hurt the predictive ability of representations, the key to disentanglement is to find suitable
independence constraints. We show that mode-based CMI minimization (Equation 3) is sufficient for
supervised disentanglement under the independent mechanism assumption with various correlations.

For the two criteria of disentanglement: (1) Informativeness requires I(z1; a1) = H(a1) and
I(z1;m1) = H(m1), which can be achieved by cross-entropy minimization (Boudiaf et al., 2020).
Since mode-based CMI minimization has been proven necessary for disentanglement, it preserves
the predictive ability of representations. (2) Independence is a bit tricky, as the impact of external
interventions cannot be directly evaluated (Wang & Jordan, 2021). We prove that mode-based CMI
minimization ensures representations are conditionally independent of other attributes (Proposition 2,
Appendix B.3), and then prove that under the independent mechanism assumption, this conditional
independence yields disentanglement in the sense of Definition 2 (Proposition 3, Appendix B.4).

Proposition 2. For representations z1, z2 of m1, a2, respectively, if I(z1;m1) = H(m1),
I(z2; a2) = H(a2), and I(z1; z2|m1) = 0, then I(z1; a2) = I(m1; a2) and I(z1; a2|m1) = 0.

where I(m1; a2) is denoted as the total hidden correlations between m1 and a2. As proved in
Appendix B.1, total hidden correlations are the sum of attribute correlations and hidden correlations,
i.e., I(m1; a2) = I(a1; a2) + I(m1; a2|a1). Thereby, I(z1; a2) = I(m1; a2) shows that z1 contains
information about a2 only if it is induced by correlations regarding its attribute or mode. Furthermore,
I(z1; a2|m1) = 0 shows that z1 contains no additional information about a2 knowing its mode.

Proposition 3. Under the data generation assumption of Definition 1 (K = 2, k = 1) with
independent mechanisms, if I(z1; a2|m1) = 0 for representation z1, then p(z1|do(a2)) = p(z1).

This is proved by do-calculous (Pearl, 2009), linking to Definition 2 and completing our proof.

Generalization to Multiple Attributes and Simple Cases. Our theoretical results naturally gen-
eralize to (1) K > 2, where the extension mainly involves replacing single variables a2, z2 with
joint variables a−k, z−k, as discussed in Appendix B.5; (2) simple uni-modal data with attribute
correlations, where the number of modes under each attribute value reduces to 1, and mode-based
CMI degrades to attribute-based CMI; and (3) simple uncorrelated data, where confounding can be
neglected, and mode-based CMI performs similarly to attribute-based CMI, as shown in Figure 8cd.

Theoretical Contributions. We prove the sufficiency of CMI for disentanglement, while the work
of A-CMI only validates CMI on linear regression examples without formal proof. This is the first
attempt to establish sufficient conditions for disentanglement under correlations, unlike necessary
conditions before (Wang & Jordan, 2021; Funke et al., 2022). Our results generalize to multiple
attributes, various correlation types, and simple uni-modal and uncorrelated data, showing that one
independence constraint is sufficient for the supervised disentanglement of one representation zk.
Formally, under the independent mechanism assumption in Definition 1, given the label supervision
of all attributes and modes, when the supervised losses on all attributes and modes are optimized, and
the CMI of zk (I(zk; z−k|mk) for multi-modal or I(zk; z−k|ak) for uni-modal cases) is minimized,
the learned zk is disentangled in the sense of Definition 2, as elaborated in Appendix B.5.

4 METHOD

Framework. We show the framework of SD-HC for disentangling a certain attribute ak with hidden
correlations in Figure 4, which consists of encoder F for learning representations F (x) = z =
(z1, z2, ...,zK), zi ∈ RD, i = 1, ...,K, predictors {Ci}Ki=1 for predicting each attribute, predictor
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Figure 4: Framework of SD-HC for disentangling a certain ak, k ∈ {1, ...,K} with multi-modality.

Cm
k for predicting mode mk, and discriminator Dk for minimizing mode-based CMI. SD-HC is

architecture-agnostic and can be used in various applications.

The framework can be expanded to disentangle multiple attributes by adding one independence
constraint to disentangle each attribute. The form of independence constraints depends on the
correlation types, i.e., minimizing attribute-based CMI under attribute correlations or mode-based
CMI under hidden correlations. Supervised constraints I(zi; ai) = H(ai) are always required for
i = 1, ...,K with one additional constraint I(zi;mi) = H(mi) for each attribute ai with multi-
modality. For additional constraints, discriminators and mode predictors should be added accordingly.

Mode Label Estimation. We assume the attribute labels are known, while the number of modes
and the mode labels are unknown. To estimate mode labels for ak, we perform clustering on the
representations of a pre-trained encoder, which is trained with the supervised loss of ak. Specifically,
given the number of modes Nm, clustering is performed under each value of ak, then the discovered
modes under different values of ak are labeled altogether to formulate mk. We adopt k-means as
the clustering method, which works well across our experiments. The numbers of modes Nm under
different values of ak are set to be equal and tuned as a hyper-parameter. We also provide practical
guidance for different scenarios in Appendix I, including the alternative clustering methods and mode
number estimation methods for reducing the computational costs of hyper-parameter tuning.

Losses. The losses are strictly designed according to the sufficient conditions for disentanglement.
As commonly done in adversarial training (Chen et al., 2023), optimizations w.r.t. different losses are
performed alternatively. The detailed training process is given in Appendix E.

(1) For supervised learning, attribute and mode prediction losses Lac, Lmc are formulated as:

Lac = Ex[
∑K

k=1lce(Ck(Fk(x)), ak)] , Lmc = Ex[lce(C
m
k (Fk(x)),mk)] (4)

Lc = Lac + wm · Lmc (5)

where wm is the weight of mode prediction loss, and lce(·) denotes cross entropy function.

(2) Since I(zk; z−k|mk) = 0 if and only if p(zk, z−k|mk) = p(zk|mk)p(z−k|mk), we min-
imize CMI by matching the joint distribution p(zk, z−k|mk) with the marginal distribution
p(zk|mk)p(z−k|mk) with adversarial training (Belghazi et al., 2018). To sample from the two
distributions, we loop over the values of mode labels µ ∈ {0, ..., Nm ∗ |Ak| − 1}. For each value
µ, we select the representations in the mini-batch with label mk = µ. The samples from the joint
distribution are obtained by concatenating the selected representations, and those from the marginal
distribution are obtained by shuffling the selected z−k jointly then concatenating them with the
selected zk. Jensen-Shannon Divergence is used to measure the discrepancy between the two dis-
tributions for stability (Hjelm et al., 2019). Discrimination loss Ld is formulated as follows, where
lbce(·) denotes binary cross entropy function:

Ld = Emk
[E(zk,z−k)|mk

[lbce(D(zk, z−k,mk), 1)]+Ezk|mk,z−k|mk
[lbce(D(zk, z−k,mk), 0)]] (6)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate on one toy dataset and five real-world datasets in various applications, i.e.,
digit recognition, wearable human activity recognition (WHAR), and machine fault diagnosis. The
datasets are described as follows. See Appendix F for more details.
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(1) Toy dataset is constructed as two-dimensional data with two binary attributes a1, a2, as shown
in Figure 5a. a1 has three modes under each attribute value. Data are generated through linearly
mapping m1 and a2 to two-dimensional spaces and adding noises with noise level σ.

(2) Colored MNIST (CMNIST) is constructed from MNIST (LeCun et al., 1998), as shown in Figure
5b. Parity check identifies whether a digit is even or odd with multiple digits under each parity value.
Accordingly, a1 represents parity, m1 represents the digits, and a2 represents the color of digits,
which is often correlated with digits, e.g., a player’s jersey number may be associated with a specific
color in sports. Noises are introduced to both digits and colors, and digit noises are generated as
occlusions with occlusion ratio as the noise level σ (Chai et al., 2021).

(3) UCI-HAR (Anguita et al., 2013), RealWorld (Sztyler & Stuckenschmidt, 2016), HHAR (Stisen
et al., 2015) record wearable sensor data, from which WHAR identifies activities with variations
under each activity. Accordingly, a1 represents activity, m1 represents unknown activity modes, and
a2 represents user ID, which is often correlated with activity due to personal behavior patterns.

(4) MFD (Lessmeier et al., 2016) record sensor data from bearing machines, from which machine
fault diagnosis identifies machine fault types with variations under each fault type, e.g., different
forms of damages. Accordingly, a1 represents fault type, m1 represents unknown modes of fault
types, and a2 represents operating conditions, which could be correlated with machine faults.

train correlated test 1 correlated

test 2 uncorrelated test 3 anticorrelated

… …

… …

Figure 6: Train-test setup.

Evaluation Protocols. On toy and CMNIST datasets, correla-
tions are introduced by sampling (Roth et al., 2023). As illustrated
in Figure 6, we train on correlated data and evaluate on 3 test
sets, namely test 1 under the same correlations, test 2 without
correlations, and test 3 with anticorrelations. The train-test cor-
relation shift increases from test 1 to 3. For comparison with
baselines and variants on CMNIST, we train under both attribute
correlations and hidden correlations, and report the results on test
3. The complete results on all test sets are in Appendix J. For
additional analysis, we train under corh = I(m1; a2|a1) > 0 to
focus on hidden correlations. On other datasets, we investigate
DRL under natural correlations, where the number of modes and
mode labels are unknown. Leave-one-group-out validation is performed, where users and operating
conditions in the test group are unseen during training, formulating out-of-distribution (OOD) tasks.

On each dataset, we focus on disentangling one attribute with multi-modality as mentioned before.
Accuracy (Acc.) and macro F1 score (Mac. F1) are used as performance metrics for attribute
prediction. These metrics can reflect the disentanglement of representations under correlation shifts
and OOD tasks (Funke et al., 2022; Dittadi et al., 2021), while common disentanglement metrics are
not suitable under correlations (Locatello et al., 2020). Each experiment is repeated using 5 varying
random seeds, with the mean and standard deviation reported. See details in Appendix F.

Baselines and Implementations. We compare SD-HC with typical DRL methods (MMD (Lin et al.,
2020), DTS (Li et al., 2022), IDE-VC (Yuan et al., 2021), and MI (Cheng et al., 2022)), and the
state-of-the-art DRL methods under correlations (A-CMI (Funke et al., 2022) and HFS (Oublal
et al., 2024)). For reference, we also include the base method trained on supervised prediction losses
only, which is denoted as BASE, and a variant of our method that uses ground truth mode labels

(a) Toy data (b) CMNIST

Figure 5: Data construction of toy dataset and CMNIST with noise level σ.
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Table 1: Comparison with baselines (mean±std). “*” indicates that SD-HC is statistically superior to
the baselines by pairwise t-test at a 95% significance level. The results of the best methods are bold.
The results of the runner-up methods are underlined, over which the improvement is calculated.

Method
CMNIST UCI-HAR RealWorld HHAR MFD

Acc. Mac. Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1

BASE 0.768 ±0.008* 0.768 ±0.008* 0.712 ±0.028* 0.697 ±0.036* 0.646 ±0.014* 0.654 ±0.014* 0.808 ±0.016* 0.809 ±0.020* 0.727 ±0.016* 0.763 ±0.009*

MMD 0.582 ±0.069* 0.528 ±0.117* 0.703 ±0.037* 0.662 ±0.035* 0.660 ±0.019* 0.652 ±0.023* 0.809 ±0.012* 0.805 ±0.017* 0.782 ±0.019* 0.791 ±0.016*
DTS 0.615 ±0.022* 0.615 ±0.022* 0.728 ±0.033* 0.701 ±0.026* 0.644 ±0.023* 0.649 ±0.015* 0.798 ±0.024* 0.797 ±0.017* 0.670 ±0.022* 0.674 ±0.015*

IDE-VC 0.539 ±0.022* 0.533 ±0.027* 0.736 ±0.031* 0.732 ±0.034* 0.652 ±0.013* 0.650 ±0.017* 0.807 ±0.020* 0.806 ±0.014* 0.741 ±0.018* 0.763 ±0.011*
MI 0.611 ±0.039* 0.600 ±0.044* 0.749 ±0.021* 0.745 ±0.027* 0.660 ±0.018* 0.655 ±0.016* 0.809 ±0.017* 0.807 ±0.021* 0.763 ±0.012* 0.776 ±0.016*

A-CMI 0.611 ±0.039* 0.600 ±0.044* 0.714 ±0.034* 0.700 ±0.030* 0.654 ±0.015* 0.655 ±0.012* 0.802 ±0.018* 0.803 ±0.023* 0.788 ±0.014* 0.798 ±0.007*
HFS 0.635 ±0.008* 0.631 ±0.008* 0.671 ±0.035* 0.651 ±0.040* 0.489 ±0.018* 0.398 ±0.015* 0.782 ±0.012* 0.783 ±0.015* 0.754 ±0.017* 0.710 ±0.013*

SD-HC 0.829 ±0.011 0.829 ±0.008 0.830 ±0.03 0.833 ±0.036 0.698 ±0.019 0.699 ±0.014 0.845 ±0.023 0.842 ±0.015 0.825 ±0.020 0.825 ±0.015

Improvement ↑6.1 % ↑6.1 % ↑7.0 % ↑7.4 % ↑4.0 % ↑4.4 % ↑3.6 % ↑3.5 % ↑3.7 % ↑3.2 %

Table 2: Comparison with variants (mean±std). The notations are the same as Table 1.

Method
CMNIST UCI-HAR RealWorld HHAR MFD

Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1

SD-HC-A 0.771 ±0.009* 0.770 ±0.009* 0.822 ±0.023 0.823 ±0.027 0.639 ±0.016* 0.634 ±0.014* 0.819 ±0.016* 0.813 ±0.021 0.815 ±0.016 0.814 ±0.011

SD-HC-MG 0.797 ±0.012* 0.797 ±0.012* 0.822 ±0.020 0.828 ±0.029 0.684 ±0.015* 0.688 ±0.020 0.806 ±0.017* 0.802 ±0.023* 0.803 ±0.015* 0.804 ±0.018*
SD-HC-ID 0.802 ±0.015* 0.802 ±0.15* 0.776 ±0.018 0.768 ±0.023 0.683 ±0.012* 0.678 ±0.011* 0.772 ±0.019* 0.755 ±0.015* 0.806 ±0.017* 0.809 ±0.012

SD-HC-SD 0.783 ±0.010* 0.783 ±0.010* 0.774 ±0.015 0.768 ±0.018 0.662 ±0.013* 0.666 ±0.018* 0.810 ±0.024* 0.812 ±0.018* 0.792 ±0.018* 0.792 ±0.013*
SD-HC-M 0.832 ±0.009* 0.832 ±0.009* 0.796 ±0.029 0.792 ±0.032 0.672 ±0.018* 0.676 ±0.020* 0.839 ±0.023 0.835 ±0.017 0.817 ±0.015 0.817 ±0.020

SD-HC 0.829 ±0.011 0.829 ±0.008 0.830 ±0.03 0.833 ±0.036 0.698 ±0.019 0.699 ±0.014 0.845 ±0.023 0.842 ±0.015 0.825 ±0.020 0.825 ±0.015

when available, which is denoted as SD-HC-T. All methods are implemented using PyTorch (Paszke
et al., 2019). Please see Appendix H, F, D, G for details of baselines, implementations, network
architectures, and hyper-parameter tuning, respectively. Our codes are available at anonymous Github.

5.2 COMPARISON WITH BASELINE DRL METHODS

The comparison with baseline DRL methods is shown in Table 1, from which we observe:

(1) SD-HC consistently shows superiority over the compared baselines, outperforming the best
baseline by an average of 4.86% and 4.92% in accuracy and macro F1 score, respectively. This
indicates that SD-HC can better disentangle representations by improving the generalization ability
while preserving the predictive ability. For introduced correlations, the large performance gain
on CMNIST indicates that SD-HC is advantageous under attribute correlations and strong hidden
correlations. For natural correlations, the large performance gain on UCI-HAR indicates the advantage
of SD-HC on real-world data with complex multi-modality and hidden correlations.

(2) Despite considering correlations, A-CMI and HFS still fail to improve over BASE in some
cases. A-CMI deals with attribute correlations, but fails under hidden correlations in losing mode
information. HFS deals with correlations in general, yet its assumption of factorized support might
not hold and hurt the predictive ability of representations. For example, in WHAR, HFS assumes that
the probability of some user performing some activity could be low, but each user still performs each
activity and each activity mode; this is often violated, as users might not perform certain activities
due to personalized behavior patterns.

(3) MMD, DTS, IDE-VC, and MI fail to improve over BASE in some cases, because they do not
consider correlations and might hurt the predictive ability of representations. Their performance
degradation from BASE is especially severe on CMNIST under large train-test correlation shifts.

5.3 COMPARISON WITH VARIANTS

We compare with the following variants: SD-HC-A additionally minimizes attribute-based CMI for
the attributes without multi-modality; SD-HC-MG uses Marigold (Mortensen et al., 2023) instead
of k-means for clustering in high dimensional spaces; SD-HC-ID and SD-HC-SD use individual
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Figure 8: Impact of noise level and train hidden correlation on toy and CMNIST datasets.

discriminators and one shared discriminator for different modes, respectively; SD-HC-M minimizes
mode prediction loss on some inter-mediate representations of encoder. See Appendix D for details.

The results are shown in Table 2, which shows that: (1) SD-HC-A generally does not improve SD-
HC, probably because one independence constraint is sufficient for disentanglement, and additional
adversarial training objectives might increase training difficulty. (2) SD-HC-MG generally does
not improve SD-HC, indicating that k-means is effective for our 128-dimensional representations.
Marigold could be considered as an alternative for representations of higher dimensions. (3) SD-
HC-ID and SD-HC-SD consistently underperform SD-HC, indicating that proper parameter sharing
between different modes in the discriminator is beneficial for mode-based CMI minimization. (4) SD-
HC-M consistently underperforms SD-HC, indicating that enforcing mode and attribute prediction
on the same representation space benefits the encoding of mode information.

5.4 METHOD INVESTIGATIONS
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Figure 7: Decision boundary on toy data.

Toy Decision Boundary. On toy data, the de-
cision boundaries of the trained predictor of a1
and the prediction accuracy on the three test sets
are shown in Figure 7, from which we observe:

(1) The upper right boundaries of BASE sur-
round the clusters at a2 = 1, and BASE perfor-
mance decreases as the correlation shift enlarges
from test 1 to 3, which indicates that without
independence constraints, BASE over-encodes
a2 and lacks generalization ability.

(2) The decision boundaries of A-CMI span
across the clusters at a2 = 0, 1 without exclud-
ing either value, but fail to separate interleaving
clusters at different values of m1, and the per-
formance is low but robust across 3 test sets,
indicating that A-CMI does not over-encode a2, but loses important mode information.

(3) The decision boundaries of SD-HC-T almost conform to vertical lines x1 = b that distinguish
interleaving clusters, and SD-HC-T shows robustness and superiority across different correlation shifts
on 3 test sets. This indicates that SD-HC-T can learn mode information about a1 (Informativeness),
and exclude irrelevant information about a2 (Independence), achieving disentanglement.

The Impact of Noise Level and Train Hidden Correlation. The prediction accuracy of a1 under
varying noise levels and train hidden correlations is shown in Figure 8, which shows that:

(1) SD-HC generally shows superiority under varying noises and correlations due to its ability to
achieve disentanglement. In addition, the comparable performance of SD-HC and SD-HC-T indicates
the effectiveness of mode label estimation by k-means on synthetic and real data.
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(a) BASE (b) A-CMI

walking mode 0
walking mode 1
walking mode 2
climbingdown
running
climbingup

(c) SD-HC

Figure 9: Visualization of activity representation distributions on RealWorld. (a), (b), and (c) show
the results of four similar activities in BASE, A-CMI, and SD-HC. Compared to SD-HC, activities
“walking” and “climbing down” are confused in A-CMI for losing information about walking modes.

(2) In Figure 8a test 1, BASE performs the best at large noise levels, because BASE makes up for the
noise-induced information loss by over-encoding a2. In Figure 8c test 1, BASE performs the best at
large train correlations, because when the correlation between m1 and a2 is larger, over-encoding a2
leads BASE to learn more mode information and better predict a1. As the correlation shift enlarges
from test 1 to 3, these advantages are lost due to the lack of generalization ability.

(3) In Figure 8cd, A-CMI performs comparably to SD-HC without hidden correlations (corh = 0);
yet A-CMI performance decreases as hidden correlation increases, because A-CMI does not allow
representations to encode shared information induced by hidden correlations, and loses more mode
information as hidden correlation increases. The behavior of A-CMI reflects the behavior of common
DRL methods that overlook hidden correlations, demonstrating a broader significance.
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Figure 10: 3-channel accelerometer signals of three
walking modes (20 random samples per mode with
xyz channels). The x-axis indicates time steps, and
the y-axis indicates normalized signals.

WHAR Visualizations. On the training set of
RealWorld, the data of estimated modes are visu-
alized in Figure 10, which shows that the signals
of the three walking modes differ in mean val-
ues and volatility, possibly due to varying paces,
strides, and postures.

The activity representation distributions are vi-
sualized by t-SNE in Figure 9, which shows that:
(1) BASE representations are separated within
each activity, probably due to over-encoding
user ID and learning personalized user patterns.
(2) A-CMI representations of different walking
modes and different activities are mixed, indi-
cating that different activities are confused due
to the loss of mode information. (3) SD-HC
representations show compactness within each activity, separation between different activities, and
partition of different walking modes, indicating independence from user ID and informativeness of
activity by encoding mode information.

Additional Analysis. Clustering performance, computational complexity, and parameter sensitivity
are analyzed in Appendix I, which show that SD-HC is (1) capable of capturing the underlying modes
with k-means clustering, (2) computationally efficient w.r.t. the number of parameters, and (3) not
particularly sensitive to changes of Nm when it is slightly above the ground truth value, which is
probably because SD-HC can preserve mode information to some extent, as long as the samples
within one estimated cluster mostly belong to the same ground-truth mode.

6 CONCLUSIONS

In this paper, we propose a novel supervised disentanglement method, SD-HC, that deals with hidden
correlations under certain attributes. We introduce mode-based CMI minimization to achieve disen-
tanglement for these certain attributes with multi-modality and hidden correlations, and theoretically
prove its sufficiency. Our results can be extended to show the general sufficiency of CMI minimiza-
tion for disentanglement, demonstrating broad significance. Experiments on the toy dataset and five
real-world datasets demonstrate the superiority of SD-HC along with comprehensive investigations.
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7 ETHICS STATEMENTS

Our paper mainly focuses on scientific research of supervised disentangled representation learning
and there is no potential ethical risk.

8 REPRODUCIBILITY STATEMENTS

We have provided the details regarding computational platforms, dataset descriptions, network
architectures, hyper-parameter settings, and the training process of our method in Section 5.1 in the
main paper and Appendix D, E, F, and G. Our codes are released at anonymous Github (https:
//anonymous.4open.science/r/SD-HC) as stated in the abstract. The download links of
the public datasets are provided in the project homepage and pre-processing functions are included in
the codes. The hyper-parameter settings are given in Appendix G.
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A DATA GENERATION PROCESS UNDER ATTRIBUTE CORRELATIONS

Following (Suter et al., 2019), the data generation process under attribute correlations is formulated
in Definition 3. The causal graph of Definition 3 is depicted in Figure 11.

…

Figure 11: Causal graph
of data generation pro-
cess with attribute corre-
lations.

Definition 3. (Disentangled Causal Process). Consider a causal gener-
ative model p(x|a) for data x with K attributes a = (a1, a2, ..., aK) as
the generative factors, where a could be influenced by L confounders
c = (c1, ..., cL). This causal model is called disentangled if and only if
it can be described by a structural causal model (SCM) (Pearl, 2009) of
the form:

c← nc

ai ← hi(S
c
i ,ni), S

c
i ⊂ {c1, ..., cL}, i = 1, ...,K

x← g(a,nx)

(7)

with functions g, hi, jointly independent noise variables nc, nx, ni, and
confounder subsets Sc

i for i = 1, ...,K. Note that ∀i ̸= j, ai ̸→ aj .

B PROOFS

We give the complete proof of the decomposition and propositions in the main paper using knowledge
of mutual information and entropy.

Note that we use formal definitions of mutual information, where separators semicolon “;” and
comma “,” should be distinguished from each other. Semicolon “;” separates groups of variables
whose mutual information with respect to each other is being measured, while comma “,” denotes the
joint distribution of the listed variables.

B.1 PROOF OF TOTAL HIDDEN CORRELATION

Total Hidden Correlation I(m1; a2) = I(a1; a2) + I(m1; a2|a1)
Proof. Firstly, we prove I(m1; a2) = I(m1, a1; a2). Since each mode falls under one particular
attribute value, the value of attribute is fully determined given the modes, i.e., H(a1|m1) = 0.
Therefore, H(a1|m1) = H(a1|m1, a2) + I(a1; a2|m1) = 0, and followingly I(a1; a2|m1) = 0, as
both terms are non-negative. Hence H(a2|m1) = H(a2|m1, a1) + I(a1; a2|m1) = H(a2|m1, a1).
Therefore, we have:

I(m1, a1; a2) = H(a2)−H(a2|m1, a1)

= H(a2)−H(a2|m1)

= I(m1; a2)

Secondly, we prove I(m1, a1; a2) = I(a1; a2) + I(m1; a2|a1) by chain rule of mutual information:

I(m1, a1; a2) = H(a2)−H(a2|m1, a1)

= H(a2)−H(a2|a1) +H(a2|a1)−H(a2|m1, a1)

= I(a1; a2) + I(m1; a2|a1)

Finally, we reach I(m1; a2) = I(m1, a1; a2) = I(a1; a2) + I(m1; a2|a1)

B.2 PROOF OF PROPOSITION 1

Proposition 1. For representations z1, z2 of m1, a2, respectively, if I(m1; a2|a1) > 0, then enforcing
I(z1; z2|a1) = 0 leads to at least one of I(z1;m1) < H(m1) and I(z2; a2) < H(a2).

Proof. We prove by contradiction. Assuming I(z1;m1) = H(m1) and I(a2; z2) = H(a2) both
stand, we have H(m1|z1) = 0 and H(a2|z2) = 0.

Firstly, we prove that this leads to I(m1; a2; z1; z2|a1) > 0 with (1)(2)(3).
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(1) Since H(m1|z1) = 0 and H(m1|z1) − H(m1|a1, z1) = I(m1; a1|z1) ≥ 0 by definition
of conditional mutual information, we have 0 ≤ H(m1|a1, z1) ≤ H(m1|z1) = 0, we have
H(m1|a1, z1) = 0. By definition, H(m1|a1, z1) = H(m1|a1, a2, z1) + I(m1; a2|a1, z1) = 0,
which gives I(m1; a2|a1, z1) = 0, as both terms are non-negative. Therefore:

I(m1; a2; z1|a1) = I(m1; a2|a1)− I(m1; a2|a1, z1)
= I(m1; a2|a1) > 0

(2) Similar to (1), since H(a2|z2) = 0 and 0 ≤ H(a2|a1, z2) ≤ H(a2|z2) = 0, we have
H(a2|a1, z2) = 0. By definition, H(a2|a1, z2) = H(a2|m1, a1, z2) + I(m1; a2|a1, z2) = 0,
which gives I(m1; a2|a1, z2) = 0, as both terms are non-negative. Therefore:

I(m1; a2; z2|a1) = I(m1; a2|a1)− I(m1; a2|a1, z2)
= I(m1; a2|a1) > 0

(3) Given H(m1|z1) = 0, we have H(m1|z1) = H(m1|z1, z2) + I(m1; z2|z1) = 0 and thus
H(m1|z1, z2) = 0, as both terms are non-negative. Similar to (1) that yields I(m1; a2; z1|a1) =
I(m1; a2|a1) from H(m1|z1) = 0, we can get I(m1; a2; z1|a1, z2) = I(m1; a2|a1, z2) from
H(m1|z1, z2) = 0 by additionally conditioning on z2. Combined with I(m1; a2; z2|a1) > 0
in (2), we have:

I(m1; a2; z1; z2|a1) = I(m1; a2; z1|a1)− I(m1; a2; z1|a1, z2)
= I(m1; a2|a1)− I(m1; a2|a1, z2)
= I(m1; a2; z2|a1) > 0

Secondly, we prove I(m1; a2; z1; z2|a1) ≤ 0 with (4)(5)(6).

(4) Given H(m1|a1, z1) = 0 in (1), we have H(m1|a1, z1) = H(m1|a1, z1, z2) +
I(m1; z2|a1, z1) = 0 and followingly, I(m1; z2|a1, z1) = 0, as both terms are non-negative.
Therefore:

I(m1; z1; z2|a1) = I(m1; z2|a1)− I(m1; z2|a1, z1)
= I(m1; z2|a1) ≥ 0

(5) Since I(z1; z2|a1) = 0, we have:

I(m1; z1; z2|a1) = I(z1; z2|a1)− I(z1; z2|m1, a1)

= −I(z1; z2|m1, a1) ≤ 0

(6) Combine I(m1; z1; z2|a1) ≥ 0 in (4) and I(m1; z1; z2|a1) ≤ 0 in (5), we have
I(m1; z1; z2|a1) = 0. Given H(m1|a1, z1) = 0 in (1) and H(m1|a1, z1) = H(m1|a1, z1, z2) +
I(m1; z2|a1, z1), we have H(m1|a1, z1, z2) = 0 as both terms are non-negative. Similar to (4) that
yields I(m1; z1; z2|a1) = I(m1; z2|a1) from H(m1|a1, z1) = 0, we can get I(m1; z1; z2|a1, a2) =
I(m1; z2|a1, a2) from H(m1|a1, z1, z2) = 0 by additionally conditioning on z2. Therefore:

I(m1; a2; z1; z2|a1) = I(m1; z1; z2|a1)− I(m1; z1; z2|a1, a2)
= −I(m1; z2|a1, a2) ≤ 0

This is contradictory with I(m1; a2; z1; z2|a1) > 0. Therefore, if I(m1; a2|a1) > 0 and
I(z1; z2|a1) = 0, then at least one of I(m1; z1) < H(m1) and I(a2; z2) < H(a2) must hold.

B.3 PROOF OF PROPOSITION 2

Proposition 2. For representations z1, z2 of m1, a2, respectively, if I(z1;m1) = H(m1),
I(z2; a2) = H(a2), and I(z1; z2|m1) = 0, then I(z1; a2) = I(m1; a2) and I(z1; a2|m1) = 0.

Proof. First, we prove I(m1; a2) ≥ I(z1; z2) with (1)(2).

(1) Since H(a2|z2) = 0, we have H(a2|z2) = H(a2|z1, z2) + I(z1; a2|z2) = 0, and followingly
I(z1; a2|z2) = 0, as both terms are non-negative. Therefore, by definition of interaction information,
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we have I(z1; z2; a2) = I(z1; a2) − I(z1; a2|z2) = I(z1; a2). Since I(z1; z2|m1) = 0, we have
I(z1; z2; a2|m1) = I(z1; z2|m1)− I(z1; z2|m1, a2) = −I(z1; z2|m1, a2). Therefore:

I(z1; z2;m1; a2) = I(z1; z2; a2)− I(z1; z2; a2|m1)

= I(z1; a2) + I(z1; z2|m1, a2)

≥ I(z1; a2)

(2) i. Since H(a2|z2) = 0, we have H(a2|z2) = H(a2|m1, z2)+I(m1; a2|z2) = 0, and followingly
I(m1; a2|z2) = 0, as both terms are non-negative.

ii. Since H(m1|z1) = 0, we have H(m1|z1) = H(m1|z1, z2)+ I(m1; z2|z1) = 0, and followingly
H(m1|z1, z2) = 0, as both terms are non-negative. Therefore, H(m1|z1, z2) = H(m1|z1, z2, a2)+
I(m1; a2|z1, z2) = 0, and followingly I(m1; a2|z1, z2) = 0, as both terms are non-negative.

iii. Given I(m1; a2|z2) = 0 in i. and I(m1; a2|z1, z2) = 0 in ii. as shown above, we have
I(m1; a2; z1|z2) = I(m1; a2|z2)− I(m1; a2|z1, z2) = 0.

iv. Since H(m1|z1) = 0, by definition of conditional mutual information, we have H(m1|z1) =
H(m1|z1, a2) + I(m1; a2|z1) = 0, and followingly I(m1; a2|z1) = 0, as both terms are non-
negative. Thus I(m1; a2; z1) = I(m1; a2)− I(m1; a2|z1) = I(m1; a2).

Given I(m1; a2; z1) = I(m1; a2) in iv. and I(m1; a2; z1|z2) = 0 in iii., we have:

I(z1; z2;m1; a2) = I(m1; a2; z1)− I(m1; a2; z1|z2)
= I(m1; a2)

Given (1)(2), we have I(m1; a2) = I(z1; z2;m1; a2) ≥ I(z1; a2)

(3) We prove I(z1; a2) ≥ I(m1; a2) as follows.

i. Since H(m1|z1) = 0, we have H(m1|z1) = H(m1|z1, a2) + I(m1; a2|z1) = 0, and followingly
I(m1; a2|z1) = 0, as both terms are non-negative. Thus, by chain rule of mutual information, we
have:

I(m1, z1; a2) = I(z1; a2) + I(m1; a2|z1)
= I(z1; a2)

ii. We also have:

I(m1, z1; a2) = I(m1; a2) + I(z1; a2|m1)

≥ I(m1; a2)

Given I(m1, z1; a2) = I(z1; a2) in i. and , I(m1, z1; a2) ≥ I(m1; a2) in ii., we have I(z1; a2) ≥
I(m1; a2).

(4) Finally, given I(m1; a2) ≥ I(z1; a2) with (1)(2) and I(z1; a2) ≥ I(m1; a2) in (3), the equality
must hold that I(z1; a2) = I(m1; a2).

Moving forward, given I(m1, z1; a2) = I(z1; a2) = I(m1; a2) + I(z1; a2|m1) in (3) and
I(z1; a2) = I(m1; a2) at which we just arrived, we have I(z1; a2|m1) = 0.

B.4 PROOF OF PROPOSITION 3

Proposition 3. Under the data generation assumption of Definition 1 (K = 2, k = 1) with
independent mechanisms, if I(z1; a2|m1) = 0 for representation z1, then p(z1|do(a2)) = p(z1).

Proof. We prove this by applying Rule 3 of do-calculus based on the causal graph G in Figure
12, which reflects the representation learning process. The rules of do-calculous are elaborated in
Appendix C.2, where⊥⊥ indicates independence between variables, for arbitrary disjoint sets of nodes
X,Z,W , GX denotes the graph obtained by deleting all arrows pointing to X-nodes from G, and
Z(W ) denotes the subset of Z-nodes that are not ancestors of any W -node.
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Specifically, we unfold the left-hand side of p(z1|do(a2)) = p(z1) and reach the right-hand side as:

p(z1|do(a2)) =
∑
m1

p(z1|do(a2),m1)p(m1|do(a2)) (i)

=
∑
m1

p(z1|m1)p(m1) (ii)

= p(z1) (iii)

Figure 12: Causal graph of
representation learning.

where we arrive at (i) by chain rule of probability, and then ar-
rive at (ii) by using Rule 3 of do-calculus twice: First, given
I(z1; a2|m1) = 0, we have z1 ⊥⊥ a2|m1 in G, as the mutual informa-
tion between variables equals zero if and only if they are independent;
for G

a2(m1)
= Ga2

(obtained by removing the edges pointing to
a2 from confounders ca, cm in G), this conditional independence
still holds for the following reasons (Pearl, 2009): For z1 and a2,
such edge removal (1) leaves the direct path a2 → x → z1 intact,
not introducing any new pathway, and (2) blocks the backdoor paths
a2 ← cm → m1 → x→ z1 and a2 ← ca → a1 → m1 → x→ z1,
thus further reducing potential dependencies between z1 and a2; now
we satisfy the condition of Rule 3 and apply do-calculous as:

p(z1|do(a2),m1) = p(z1|m1) Rule 3 by z1 ⊥⊥ a2|m1 in Ga2 (representation learning)

Second, given the independent mechanism assumption in Definition 1 that attributes are casually
independent as in Figure 12, we satisfy the condition of Rule 3 and apply do-calculous as:

p(m1|do(a2)) = p(m1) Rule 3 by m1 ⊥⊥ a2 in Ga2
(independent mechanisms)

Finally, we arrive at (iii) by chain rule of probability.

Discussions. Our proof mainly relies on two conditions: (1) the causal independence between m1

and a2, which comes from the independent mechanism assumption (Schölkopf et al., 2012) of data,
and (2) conditional independence I(z1; a2|m1) = 0, which is enforced upon z1 by representation
learning that minimizes mode-based CMI, as proved in Proposition 2. Thereby, we conclude that
for data generated by independent mechanisms, disentangled representations can be learned by
mode-based CMI minimization and supervised learning.

B.5 GENERALIZATION OF THEORETICAL RESULTS

(a) A-CMI (b) SD-HC (ours)

Figure 13: Causal graphs of the true la-
tent representations under K > 2. Red
arrows indicate the backdoor paths be-
tween zl

1 and zl
2. The dashed circle and

arrows indicate that attribute correlations
may or may not exist.

Our theoretical results, including the necessary condition
and the sufficient condition for disentanglement, can be
generalized to multiple attributes. The extension mainly in-
volves replacing m1, z1 with mk, zk, and replacing a2, z2
with the joint a−k, z−k, as the properties of mutual in-
formation and causal graphs remain the same for joint
variables.

Specifically, the necessary condition in Figure 3 is ex-
tended to K attributes in Figure 13, where the necessary
condition for disentanglement under hidden correlations
and potential attribute correlations is I(zk; z−k|mk) = 0.

For the sufficient condition of disentanglement, we ex-
tend Proposition 2 to Corollary 2.1 for K > 2. The
constraint I(ak; zk) = H(ak) is added, yet this is implied
in I(zk;mk) = H(mk), because each mode falls under
only one attribute value, and the value of the attribute is
determined knowing the mode. In other words, the infor-
mation contained in ak is already contained in mk. In
addition, the joint constraint I(z−k; a−k) = H(a−k) is
broken down for each i ̸= k, i.e., I(zi; ai) = H(ai), i ̸= k.
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Corollary 2.1 For representations zi of ai (i = 1, ...,K), if I(zi; ai) = H(ai) for i = 1, ...,K,
I(zk;mk) = H(mk), and I(zk; z−k|mk) = 0 for a specific 1 < k < K, then I(zk; a−k) =
I(mk; a−k) and I(zk; a−k|mk) = 0.

where −k indicates the set of attribute indices {j}j ̸=k.

In addition, we extend Proposition 3 to Corollary 3.1 for K > 2 as follows.

Corollary 3.1. Under the data generation assumption of Definition 1 with independent mechanisms,
if I(zk; a−k|mk) = 0 for representation zk, then p(zk|do(a−k)) = p(zk).

C CAUSALITY

C.1 D-SEPARATION AND BACKDOOR PATHS

Overview of Causality We provide a summary of notions in causal graphs relevant to the analysis
in Section 3.3, namely d-separation, blocking paths, and conditional independence. More details can
be found in (Pearl, 2009).

Causal graphs are directed acyclic graphs, where nodes represent random variables and directed
edges represent the causal relationships between two variables. The notion of d-separation forms
the link between blocking paths in the causal graph and dependencies between random variables. A
path in causal graphs is a sequence of consecutive edges. Consider two nodes X and Y , X and Y
are called d-separated by a set of nodes Z if all undirected paths from X to Y are blocked by Z.
Meanwhile, a path between X and Y is considered to be blocked by a set of nodes Z if at least one
of the following holds:

(1) The path contains a chain X →M → Y with the mediator set M , and a node in M is in Z.

(2) The path contains a fork X ← U → Y with the confounder set U , and a node in U is in Z.

(3) The path contains a collider X → C ← Y with the collider node C, and neither C or its
descendant is in Z.

Finally, if X and Y are d-separated by the set Z, X and Y are conditionally independent given Z. A
backdoor path between X and Y is the non-causal path between X and Y that contains at least one
edge pointing at X or Y , i.e. the path that flows backward from X or Y . Backdoor paths introduce
dependence between variables, thus they need to be blocked by controlling a node on these paths as
in (1) and (2).

Causal Graph Analysis Under Hidden Correlations Figure 3b contains three paths between z1
and z2. (1) The path z1 → x ← z2 is blocked without conditioning on any variables, as long as
the collider x is uncontrolled. (2) The path z1 ← m1 ← cm → a2 → z2 is blocked if any node
in the confounder set {m1, c

m, a2} is controlled. Since cm is unobserved, controlling either m1 or
a2 blocks this path. (3) The path z1 ← m1 ← a1 ← ca → a2 → z2 is blocked if any node in the
confounder set {m1, a1, c

a, a2} is controlled. Since ca is unobserved, controlling one of m1, a1,
and a2 blocks this path. To simultaneously block all undirected paths between z1 and z2, we need
to control either m1 or a2, as controlling a1 does not block path (2). That is to say, z1 and z2 are
conditionally independent given either m1 or a2.

C.2 RULES OF do-CALCULUS

Let X , Y , Z, and W be arbitrary disjoint sets of nodes in a causal DAG G. do-calculus consists of
three inference rules that permit us to map interventional and observational distributions to each other
whenever certain conditions hold in the causal diagram G.

We denote by GX the graph obtained by deleting from G all arrows pointing to nodes in X . Likewise,
we denote by GX the graph obtained by deleting from G all arrows emerging from nodes in X .
To represent the deletion of both incoming and outgoing arrows, we use the notation GXZ . The
following three rules are valid for every interventional distribution compatible with G (Pearl, 2016;
1995).
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Table 3: Network architectures. “Discriminator(ain)” denotes discriminator with conditional input
ain. “Conv(ci, kj, sl)” denotes 1D convolution layer with i channels, kernel size j, and stride
l. “FC(i)” denotes fully connected layer with output dimension i. “BN(i)” denotes 1D batch
normalization layer with feature dimension i. “AvgPool(i)” denotes 1D adaptive pooling layer
with output dimension i. “LeakyReLU(α)” denotes LeakyReLU activations with scale α. Output
dimension dout is set according to each prediction task. N c

1 and N c
2 denote the number of values for

a1 and a2, respectively.
Component Method Dataset Architectures

Encoder subnetwork All Toy FC(16) → FC(16)
Encoder subnetwork All CMNIST FC(128), BN(128) → FC(128), BN(128)
Encoder subnetwork All WHAR Conv(c128, k8, s2), BN(128) → Conv(c256, k5, s2), BN(256)

→ Conv(c128, k3, s1), BN(128), AvgPool(1)
Encoder subnetwork All MFD Conv(c64, k32, s6), BN(64) → Conv(c128, k8, s2), BN(128) →

Conv(c128, k8, s2), BN(128), AvgPool(1)
Predictor All All FC(dout), Softmax
Discriminator(m1) SD-HC All Nc

1 × [FC(512), LeakyReLu(0.2) → FC(1), Sigmoid] for each
value of a1

Discriminator(-) SD-HC-A All Nc
2 × [FC(512), LeakyReLu(0.2) → FC(1), Sigmoid] for each

value of a2

Discriminator(-) SD-HC-ID All Nc
1 ×Nm× [FC(512), LeakyReLu(0.2) → FC(1), Sigmoid] for

each mode under each value of a1

Discriminator(a1, m1) SD-HC-SD All FC(512), LeakyReLu(0.2) → FC(1), Sigmoid
Middle layer SD-HC-M All FC(128), BN(128)

• Rule 1: Insertion/deletion of observations
P (y|do(x), z, w) = P (y|do(x), w), if Y ⊥⊥ Z|X,W in GX

• Rule 2: Action/observation exchange
P (y|do(x), do(z), w) = P (y|do(x), z, w), if Y ⊥⊥ Z|X,W in GXZ

• Rule 3: Insertion/deletion of actions
P (y|do(x), do(z), w) = P (y|do(x), w), if Y ⊥⊥ Z|X,W in G

XZ(W )

where ⊥⊥ indicates independence, and for G
XZ(W )

, Z(W ) denotes the set of Z-nodes that are not
ancestors of any W -node in GX .

D NETWORK ARCHITECTURES

The detailed architectures of different components in SD-HC and its variants are summarized in
Table 3. For independent control of each attribute, encoder F uses individual subnetworks for
each attribute with the same architectures. Predictors Ci, Cm

i share the same architectures as well.
Different architectures of discriminator Dk in SD-HC, SD-HC-A, SD-HC-ID, and SD-HC-SD, and
the architecture of the middle layer in SD-HC-M are described separately. SD-HC-M calculates the
mode prediction loss on the output representations zk of encoder F with Cm

k , passes zk to the middle
layer, and calculates the attribute prediction loss on the output representations of the middle layer
with Ck.

E TRAINING PROCESS

The training process of SD-HC under K = 2 (a1 as the attribute with multi-modality) is summarized
in Algorithm 1, where optimizations w.r.t. different losses are performed alternatively. The algorithm
can be generalized to multiple attributes accordingly.

F DETAILS OF EXPERIMENTAL SETTINGS

F.1 DATASETS

Toy Dataset Our 2-dimensional toy data have two binary attributes, with the primary attribute
a1 having 3 modes under each attribute value, i.e., a1 = 0,m1 = 0, 1, 2 and a1 = 1,m1 = 3, 4, 5.
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Algorithm 1 The training process of SD-HC under K = 2

1: Input: Training set D with data x and attributes labels a = (a1, a2), the number of modes Nm

under each value of a1, the number of epochs E1 and E2, and the number of steps Sd, Sf , and
Sc

2: Initialize encoder F ∗ and predictor C∗
1

3: for epoch = 1 to E1 do
4: for mini-batch (x, a1) in D do
5: Update F ∗ and C∗

1 by minimizing Lac in Equation 4
6: end for
7: end for
8: Under each value of a1, perform k-means clustering with the number of clusters Nm on the

output representations z1 of the trained encoder F ∗, and get the estimated mode labels m1

9: Initialize encoder F , predictors C1, C2, C
m
1 , and discriminator D1

10: for epoch = 1 to E2 do
11: for mini-batch (x,a) in D do
12: for step = 1 to Sc do
13: Update encoder F and predictors C1, C2 and Cm

1 by minimizing Lc in Equation 5
14: end for
15: for step = 1 to Sd do
16: Update discriminator D1 by minimizing Ld in Equation 6
17: end for
18: for step = 1 to Sf do
19: Update encoder F by maximizing Ld in Equation 6
20: end for
21: end for
22: end for
23: Output: Encoder F and predictor C1

Table 4: Dataset descriptions.
Dataset UCI-HAR RealWorld HHAR MFD

a1 activity activity activity incipient fault type
a2 user user user operating condition
# values of a1 6 8 6 3
# values of a2 30 15 9 4
# of groups 5 5 3 4
# channels 3 3 3 1
# samples 11711 36980 14772 10916
window length 128 150 128 5120
values of a1 walking, walking

upstairs, walking
downstairs, sitting,
standing, laying

climbing stairs
up, climbing stairs
down, jumping,
lying, standing,
sitting, running,
walking

healthy, inner-
bearing damage,
outer-bearing dam-
age

Data are generated from the attributes as x = m1 · [[0, 0], [2, 0], [4, 0], [1, 0], [3, 0], [5, 0]] + a2 ·
[[0, 0], [0, 1]] + n, where vectors m1 and a2 represent the one-hot encoded values of m1 and a2,
respectively, and n ∼ N (0, σ2I) represents 2-dimensional independently normally distributed noise
with noise level σ. For x = (x1, x2), the primary attribute a1 and mode m1 control dimension 1,
i.e., x1, and attribute a2 controls dimension 2, i.e., x2. An illustration of the generated data under
different correlations and noise levels is given in Figure 14.

CMINIST Dataset Colored MNIST (CMNIST) is constructed by coloring and occluding a subset
of MNIST (LeCun et al., 1998). As shown in Figure 5b, attribute a1 is defined as the parity of digits,
i.e., a1 = 0, 1 indicates “even”, “odd”. Attribute a2 is defined as the color of digits, i.e., a2 = 0, 1
indicates “red”, “blue”. a1 has 2 modes under each attribute value, i.e., digits 4, 2 under parity “even”
and digits 3, 9 under parity “odd”. Digit noises are generated as occlusion masks with occlusion ratio
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Table 5: Conditional probability p(a2|m1) on toy data for corh = 0.

p(a2|m1)
m1

0 1 2 3 4 5

a2
0 0.5 0.5 0.5 0.5 0.5 0.5

1 0.5 0.5 0.5 0.5 0.5 0.5

Table 6: Conditional probability p(a2|m1) on toy data for corh = 0.02.

p(a2|m1)
m1

0 1 2 3 4 5

a2
0 0.6 0.3 0.6 0.5 0.6 0.4

1 0.4 0.7 0.4 0.5 0.4 0.6

Table 7: Conditional probability p(a2|m1) on toy data for corh = 0.06.

p(a2|m1)
m1

0 1 2 3 4 5

a2
0 0.7 0.2 0.6 0.4 0.7 0.4

1 0.3 0.8 0.4 0.6 0.3 0.6

Table 8: Conditional probability p(a2|m1) on toy data for corh = 0.13.

p(a2|m1)
m1

0 1 2 3 4 5

a2
0 0.8 0.1 0.6 0.3 0.8 0.4

1 0.2 0.9 0.4 0.7 0.2 0.6

Table 9: Conditional probability p(a2|m1) on toy data for corh = 0.28.

p(a2|m1)
m1

0 1 2 3 4 5

a2
0 0.9 0 0.6 0.2 0.9 0.4

1 0.1 1 0.4 0.8 0.1 0.6

Table 10: Conditional probability p(a2|m1) on toy data for corh = 0.41.

p(a2|m1)
m1

0 1 2 3 4 5

a2
0 1 0 0.5 0.1 1 0.4

1 0 1 0.5 0.9 0 0.6

Table 11: Conditional probability p(a2|m1) on CMNIST under attribute correlations and hidden
correlations.

p(a2|m1)
m1

0 1 2 3

a2
0 0.8 0.05 0.2 0.95

1 0.2 0.95 0.8 0.05

Table 12: Conditional probability p(a2|m1) on CMNIST under only hidden correlations.

p(a2|m1)
m1

0 1 2 3

a2
0 corrp 1 − corrp corrp 1 − corrp

1 1 − corrp corrp 1 − corrp corrp
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Figure 14: Generated toy data under different correlations and noise levels.

as the noise level σ (Chai et al., 2021), and coloring noises are generated as a scalar multiplier to the
RGB values of the digits.

Time Series Datasets We use acceleration signals from UCI-HAR, RealWorld, and HHAR datasets
and vibration signals from MFD dataset. After removing invalid values and normalizing the data
by channel to be within the range of [-1, 1], we pre-process the data by the sliding window strategy.
For WHAR datasets with multiple sensors, we use the 3-axis acceleration data from the waist for
UCI-HAR, the acceleration data from the chest for RealWorld, and the acceleration data from a
Samsung smartphone for HHAR following (Ragab et al., 2023). Table 4 summarizes the statistics of
the preprocessed data used in our experiments.

F.2 EVALUATION PROTOCOL

Toy Since we focus on investigating the behavior of different methods under only hidden cor-
relations I(m1; a2|a1) > 0, data are set to be uniformly distributed under the values of m1,
a1, and a2, and attribute correlations do not exist, i.e., I(a1; a2) = 0. The hidden corre-
lations are introduced by setting p(a2|m1) to Table 5, 6, 7, 8, 9, 10 for hidden correlations
corh = 0, 0.02, 0.06, 0.13, 0.28, 0.41, respectively.

CMNIST Since we focus on investigating the behavior of different methods under various corre-
lations, data are set to be uniformly distributed under the values of m1 and a1. For the comparison
with baselines and variants, we introduce attribute correlations and hidden correlations by set-
ting p(a2|m1) to Table 11. For additional analysis, we introduce hidden correlations by setting
p(a2|m1) according to Table 12, where we set corrp = 0.5, 0.6, 0.7, 0.8, 0.9 for hidden correlations
corh = 0, 0.02, 0.08, 0.19, 0.37, respectively.

Time Series Leave-one-group-out validation is performed, where each group is selected as the test
group once, and the remaining groups serve as the training groups. Groups are obtained by dividing
the data by the value of attribute a2, where the number of values of a2 is equal for different groups.
The training and validation sets are obtained by splitting the data of the training groups by 0.8:0.2.
All data of the test group form the test set. All methods are trained on the training set, tuned on the
validation set, and tested on the test set.

F.3 IMPLEMENTATION DETAILS

We experiment with Pytorch 1.10.0+cu113 and Python 3.8.13. Model optimization is performed using
Adam (Kingma & Ba, 2015). Experiments are conducted on Linux servers with Intel(R) Core(TM)
i9-12900K CPUs and NVIDIA RTX 3090 GPUs.
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Table 13: Hyper-parameter search spaces and NNI settings.
Item Search space / setting

Hyper-parameter

wm between [0.01, 10]
Sd [1, 3, 5, 7, 9]
Nm [2,3,4]
lc, ld, le [0.0001, 0.0003, 0.0005, 0.0007, 0.001]

NNI configuration Max trial number per GPU 1
Optimization algorithm Tree-structured Parzen Estimator

G HYPER-PARAMETERS

The general hyper-parameters are set to the following values: The number of dimensions D for
representations zi is set to 128. The mini-batch size is set to 64 and 128 for toy and other datasets,
respectively. The number of epochs for pre-training, E1, and the number of epochs for supervised
DRL, E2, are set to 100 and 150, respectively. The numbers of update steps Sf and Sc are set to 1.

Some other hyper-parameters are tuned with Neural Network Intelligence (NNI)1. The search spaces
and NNI configurations are given in Table 13. The tuned hyper-parameters are set to the following
values: The weight of mode prediction loss wm is set to 0.5, 0.2, 0.7, 0.1, 0.01, and 0.01 on
toy, CMNIST, UCI-HAR, RealWorld, HHAR, and MFD for variants with mode prediction loss,
respectively. The number of update steps Sd is set to 2, 15, 7, 7, 1, and 1 on toy, CMNIST, UCI-HAR,
RealWorld, HHAR, and MFD, respectively. The number of modes Nm under each value of ak is
set to 3, 2, 8, 3, 2, and 2 on toy, CMNIST, UCI-HAR, RealWorld, HHAR, and MFD, respectively.
The initial learning rates of Adam (lc, ld, le) are set to (0.001, 0.0007, 0.001), (0.001, 0.0003, 0.001),
(0.001, 0.0007, 0.0005), (0.001, 0.001, 0.001), (0.001, 0.0001, 0.001), and (0.001, 0.001, 0.0005) on
toy, CMNIST, UCI-HAR, RealWorld, HHAR, and MFD, respectively.

H BASELINES

We focus on comparing different independence constraints, and leave out the other components in the
original baseline implementations, e.g., different architectures. For fair comparisons, all methods
share the same encoder structure and train with alternative update steps, which is the same as SD-HC.
The baselines are summarized below:

• MMD (Lin et al., 2020) minimizes the Maximum Mean Discrepancy between different
distributions in the subspace of one attribute under different values of another attribute.

• DTS (Li et al., 2022) adversarially trains attribute predictors to make one attribute unpre-
dictable from the representations of another.

• IDE-VC (Yuan et al., 2021) minimizes the unconditional MI between the representations of
different attributes by adversarially training a predictor that predicts the representations of
one attribute from those of another.

• MI (Cheng et al., 2022) and A-CMI (Funke et al., 2022) minimize the unconditional
mutual information and the attribute-based conditional mutual information between the
representations of different attributes, respectively. These two methods minimize MI by
adversarially training an unconditional or conditional discriminator as the proposed method.
We train two discriminators for A-CMI to minimize conditional mutual information based
on both a1 and a2 as in (Funke et al., 2022).

• HFS minimizes the Hausdorff distance between two representation sets to factorize the
supports of different representation subspaces, where we use Euclidean distance as the
distance measure between different representations from the same subspace as in (Oublal
et al., 2024).

1https://github.com/microsoft/nni
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Figure 15: Clustering performance. (a) and (b) shows the ARI on toy and CMNIST under varying
noise levels. (c) and (d) shows the true and estimated cluster assignments under a1 = 0 on the raw toy
data and the CMNIST representations of BASE by t-SNE(Maaten, L. V. D. and Hinton, G., 2008).
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Figure 16: Computational complexity comparison.

I ADDITIONAL MODEL INVESTIGATION

Clustering Evaluation. We use adjusted rand index (ARI) to measure clustering performance. ARI
ranges between 0 and 1, with 0 indicating a random cluster assignment, and 1 indicating a perfectly
matching cluster assignment with ground truth. The results are shown in Figure 15ab, which shows
that: (1) As the noise level increases, ARI drops due to information loss; (2) CMNIST shows lower
ARI than toy, as real data are more challenging; (3) The high ARI under moderate noises indicates
effective clustering, as validated by the similarity to true cluster assignments in Figure 15cd.

The clustering algorithm is a choice of design for our method. Although k-means has been effective
across our experiments, we offer practical guidance regarding the alternative clustering methods that
could be considered for real applications. For high-dimensional data, Marigold (Mortensen et al.,
2023) could be considered, which is an extension of k-means to high-dimensional cases. For more
complex data, deep clustering (Ronen et al., 2022) could be considered, which can make representation
learning and clustering mutually enhance each other by alternative training. Self-supervised learning
(Zhang et al., 2019) could also be incorporated to improve the quality of representations for complex
data.

Computational Complexity Figure 16 shows the total numbers of parameters and the training
durations of a single leave-one-group-out validation process (without repetition) on UCI-HAR of
SD-HC and the compared methods.

In Figure 16a, we observe that A-CMI has the most parameters, which is because A-CMI has two
discriminators for minimizing conditional mutual information based on a1 and a2. This indicates that
our method is computationally efficient w.r.t. number of parameters compared to A-CMI, which is
advantageous for deployment in resource-constrained environments.

In Figure 16b, we observe that the training durations of A-CMI and SD-HC are the longest. This is
because within one mini-batch, the number of samples under one mode value is much smaller than
those under one attribute value, and we find that SD-HC needs more update steps to sufficiently learn
the discriminator. Therefore, in real applications, the better approach is to upload the data to the
server for training, and then locally download the trained network for inference.
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Figure 17: Hyper parameter sensitivity experiments of (a) Nm and (b) wm .

Table 14: Results on MINIST dataset. “*” indicates that SD-HC is statistically superior to the
compared method according to the pairwise t-test at a 95% significance level. The results of the
best methods are bold. The result of the best baseline DRL methods are underlined, over which the
improvement achieved by SD-HC is calculated.

Method Test 1 (correlated) Test 2 (uncorrelated) Test 3 (anticorrelated)
Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1

BASE 0.901 ±0.003 0.901 ±0.003 0.831 ±0.003 0.831 ±0.003 0.768 ±0.008 0.768 ±0.008

MMD 0.640 ±0.114 0.589 ±0.160 0.614 ±0.088 0.562 ±0.133 0.582 ±0.069 0.528 ±0.117
DTS 0.699 ±0.041 0.699 ±0.041 0.651 ±0.029 0.651 ±0.029 0.615 ±0.022 0.615 ±0.022

IDE-VC 0.632 ±0.031 0.629 ±0.031 0.588 ±0.025 0.585 ±0.028 0.539 ±0.022 0.533 ±0.027
MI 0.664 ±0.018 0.660 ±0.018 0.628 ±0.019 0.624 ±0.019 0.596 ±0.014 0.590 ±0.018

A-CMI 0.722 ±0.072 0.712 ±0.081 0.668 ±0.049 0.658 ±0.058 0.611 ±0.039 0.600 ±0.044
HFS 0.811 ±0.014 0.809 ±0.014 0.725 ±0.012 0.723 ±0.012 0.635 ±0.008 0.631 ±0.008

SD-HC (ours) 0.886 ±0.005 0.886 ±0.008 0.859 ±0.009 0.859 ±0.010 0.829 ±0.011 0.829 ±0.008

Improvement ↓ 1.5 ↓ 1.5 ↑2.8 % ↑2.8 % ↑6.1 % ↑6.1 %

Parameter Sensitivity of Nm. The sensitivity to the number of modes Nm under each attribute value
is shown in Figure 17a, which shows that: (1) SD-HC performs the best at the ground truth Nm = 2
on CMNIST, suggesting that prior knowledge about Nm would be beneficial. (2) SD-HC performs
badly at Nm = 1, where mode-based CMI degrades to attribute-based CMI, causing the loss of mode
information. (3) In general, SD-HC is not particularly sensitive to changes of Nm within a certain
range. On CMNIST, SD-HC performs comparably under Nm = 2, 3, 4, suggesting that SD-HC is
robust to the changes of Nm when it is slightly larger than the ground truth (Nm = 2). Probably
because as long as the samples within one estimated cluster belong to the same ground-truth mode,
SD-HC can preserve mode information to some extent.

In practice, hyper-parameter tuning may come with high computational costs for large-scale datasets.
Alternatively, we offer practical guidance to reduce the computational costs by estimating the number
of modes Nm in a data-driven manner. This requires expert knowledge to choose the suitable method:
For well-separated clusters, Elbow Method (Marutho et al., 2018) would be suitable for estimating
Nm with k-means clustering; For complex and overlapping clusters, Bayesian Information Criterion
(Watanabe, 2013) would be suitable for estimating Nm with Gaussian Mixture Models for clustering;
In addition, during our pre-training stage, the number of modes can be estimated by split and merge
operations with deep clustering methods (Ronen et al., 2022).

Parameter Sensitivity of wm. The sensitivity to the weight parameter of mode prediction loss, wm,
is shown in Figure 17b, which shows that: In general, SD-HC performs better at a small value of
wm. Theoretically, adding mode prediction loss benefits disentanglement. However, enforcing mode
prediction with estimated mode labels will potentially introduce errors, as the estimated mode labels
do not match the ground-truth mode labels.

J FULL RESULTS ON CMNIST DATASET

The full comparison with baselines on CMNIST dataset is presented in Table 14, from which we
observe that the advantage of SD-HC increases as correlation shift increases from test 1 to test 3.
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