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Abstract

This paper explores the size-invariance of evalu-
ation metrics in Salient Object Detection (SOD),
especially when multiple targets of diverse sizes
co-exist in the same image. We observe that cur-
rent metrics are size-sensitive, where larger ob-
jects are focused, and smaller ones tend to be
ignored. We argue that the evaluation should be
size-invariant because bias based on size is unjus-
tified without additional semantic information. In
pursuit of this, we propose a generic approach that
evaluates each salient object separately and then
combines the results, effectively alleviating the
imbalance. We further develop an optimization
framework tailored to this goal, achieving consid-
erable improvements in detecting objects of dif-
ferent sizes. Theoretically, we provide evidence
supporting the validity of our new metrics and
present the generalization analysis of SOD. Ex-
tensive experiments demonstrate the effectiveness
of our method. The code is available at https:
//github.com/Ferry-Li/SI-SOD.

1Institute of Information Engineering, Chinese Academy of
Sciences, Beijing, China 2School of Cyber Security, University
of Chinese Academy of Sciences, Beijing, China 3Key Labora-
tory of Intelligent Information Processing, Institute of Comput-
ing Technology, Chinese Academy of Sciences, Beijing, China
4School of Computer Science and Technology, University of Chi-
nese Academy of Sciences, Beijing, China 5Institute of Informa-
tion Science, Beijing Jiaotong University, Beijing, China 6School
of Control Science and Engineering, Shandong University, Ji-
nan, China 7Key Laboratory of Machine Intelligence and System
Control, Ministry of Education, Jinan, China 8School of Cyber
Science and Tech., Shenzhen Campus, Sun Yat-sen University
9Key Laboratory of Big Data Mining and Knowledge Manage-
ment, Chinese Academy of Sciences, Beijing, China. Corre-
spondence to: Qianqian Xu <xuqianqian@ict.ac.cn>, Qingming
Huang <qmhuang@ucas.ac.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1 3 5 7 9
Size(%)

F
re

qu
en

cy
(a) Average size of objects

1 2 3 4 5 6
Number

F
re

qu
en

cy

(b) Average number of objects

Figure 1. Statistics on dataset MSOD. Fig. 1(a) illustrates the
widely existing small salient objects, with Size(%) as the propor-
tion of the size of an object over the whole image.Fig. 1(b) reveals
that practical SOD scenarios usually involve multiple salient ob-
jects.

1. Introduction
Salient object detection (SOD), also known as salient object
segmentation, aims at highlighting visually salient regions
in images (Wang et al., 2022). To achieve this, a SOD
model typically processes an RGB image to generate a bi-
nary mask, marking each pixel as either salient (1) or not
(0). Recently, SOD has witnessed great progress in various
applications (Mahadevan & Vasconcelos, 2009; Ren et al.,
2014; Tang et al., 2017; Li et al., 2019; Zhang et al., 2020a;
Jiang et al., 2023; Gui et al., 2024).

The progress of SOD primarily depends on two factors. One
is the development of sophisticated models (say deep neural
networks), which effectively disentangle diverse feature pat-
terns for accurate SOD detection. Notable methods include
(Wu et al., 2022; Luo et al., 2017; Wang et al., 2023; Ma
et al., 2021; Zhang et al., 2021a). The other is the evaluation
and selection of the best models for practical applications.
Generally, a well-performed SOD model should simultane-
ously embrace a high True Positive Rate (TPR) and a low
False Positive Rate (FPR) (Borji et al., 2019). To this end,
various metrics (typically MAE and F-score) have been
widely considered for evaluation and optimization (Chen
et al., 2021; Sun et al., 2022).

In this paper, we argue that current evaluation metrics are
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(a) Image (b) Label (c) EDN (d) EDN+Ours

Figure 2. (c) is the result of backbone EDN (Wu et al., 2022), and
(d) is the prediction optimized by our approach. (c) detects fewer
salient objects, yet enjoys lower MAE than (d). However, SI-MAE
can correctly distinguish two detections.

size-sensitive, which is not a proper choice for SOD tasks
when the sizes of objects in a given image are highly im-
balanced. As demonstrated in Fig. 1, SOD tasks typically
involve multiple salient objects with diverse sizes. In this
sense, prediction errors would be dominated by those larger
objects, leading models to overlook small salient objects.
Taking MAE as an example, Fig. 2(c) could merely detect
the larger salient object but miss the smaller one on the right,
while Fig. 2(d) could successfully capture all salient objects.
However, Fig. 2(d) induces a worse MAE than Fig. 2(c),
which is counter-intuitive to our visual perceptions. Large
objects dominate size-sensitive metrics, consequently lead-
ing to practical performance degradation because there are
many cases where small objects are critical for downstream
tasks. For example, in a street view, traffic lights are usually
of small size, but they play a significant role in autonomous
driving tasks.

To address the issues above, we are interested in the follow-
ing problem:

Can we develop an effective size-invariant criterion
for imbalanced multi-object SOD?

The answer is affirmative in this paper. To begin with, we
present a novel unified framework to understand why pop-
ular SOD metrics are size-sensitive. Specifically, given an
image, we show that common criterion can be reformulated
as a weighted (denoted by Pxi

) sum of multiple independent
parts, with each weighted term Pxi being highly related to
the size of the corresponding part. This creates an inductive
bias toward objects of different sizes.

Motivated by this, we thus propose a simple yet effective
paradigm for size-invariant SOD evaluation. The key idea
is to modify the size-related term Pxi

into a size-invariant
constant, ensuring equal treatment for each salient object
regardless of size. Meanwhile, we introduce a generic Size-
Invariant SOD (SI-SOD) optimization loss to pursue our
size-invariant goal practically.

To show the effectiveness of our proposed paradigm, we then
investigate the generalization performance of the SI-SOD
algorithm. To the best of our knowledge, such a problem

remains barely explored in the SOD community. As a
result, we find that for composite losses (defined in Sec. 3.1),
the size-invariant loss function leads to a sharper bound than
its size-sensitive counterparts.

Finally, extensive experiments over a range of benchmark
datasets speak to the efficacy of our proposed method.

2. Related Work
In recent years, SOD achieved considerable progress with
elaborate frameworks and well-designed losses. We give a
brief overview of SOD methods here and a detailed descrip-
tion of evaluation metrics in App. A.

Architecture-focused methods usually adopt convolutional
networks as basic modules since their great success. For
example, UCF (Zhang et al., 2017b) introduced a reformu-
lated dropout after specific convolutional layers to learn
deep uncertain convolutional features. DCL (Li & Yu, 2016)
adopted a multi-stream framework, with the pixel-level fully
convolutional stream to improve pixel-level accuracy. A
common way to extract multi-level features is to design a
bottom-up/top-down architecture, which resembles the U-
Net (Ronneberger et al., 2015). PiCANet (Liu et al., 2018a)
proposed a pixel-wise contextual attention network to se-
lectively attend to informative context locations for each
pixel and embed global and local networks into a U-Net
architecture. RDCPN (Wu et al., 2021) introduced a novel
multi-level ROIAlign-based decoder to adaptively aggre-
gate multi-level features for better mask predictions. Sim-
ilar structures are also utilized in recent works, including
EDN (Wu et al., 2022), ICON (Zhuge et al., 2022), Bi-
Directional (Zhang et al., 2018), CANet (Ren et al., 2021),
etc. (Piao et al., 2019) designed a refinement block to fully
extract and fuse multi-scale features, successfully achieving
excellent performance on most datasets. Based on this, (Ji
et al., 2022) further exploited a cascaded hierarchical feature
fusion strategy to promote efficient information interaction
of multi-level contextual features and efficiently improve
contextual represent ability.

Multi-source-based methods have recently become pop-
ular. Specifically, both PoolNet (Liu et al., 2019) and
MENet (Wang et al., 2023) conducted joint supervision
of salient objects and object boundaries at each side-output.
(Ji et al., 2023) used thermal infrared images as extra input
to deal with rainy, overexposure, or low-light occasions,
and achieved effective results. Depth information is also
widely used in SOD, which is usually named as RGB-D
SOD. For instance, (Ji et al., 2020; Zhang et al., 2023; Li
et al., 2023a;b) introduced depth map to SOD and signifi-
cantly improved the detection performance. Furthermore,
(Zhang et al., 2019; 2020b) utilized light field data as an
auxiliary for SOD and achieved state-of-the-art performance
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at that time. Some extensive works such as (Zhang et al.,
2021b; Ji et al., 2023; Li et al., 2023a) successfully deal with
video SOD tasks exploiting the inter-frame information.

There are also previous works analyzing the evaluation in
SOD. (Bylinskii et al., 2019) provided a comprehensive
analysis of eight different evaluation metrics and their prop-
erties. (Borji et al., 2013a) performed a comparison of
dozens of methods on many datasets to explore the consis-
tency between the model ranking and practical performance.
However, little attention has been paid to occasions where
multiple salient objects co-exist, which is quiet common in
the real world.

3. A Novel Size-invariant Evaluation Protocol
In this section, we begin by discussing why the commonly
used metrics, such as Mean Absolute Error (MAE) and
F-score, are not suitable for evaluating on imbalanced multi-
object occasions. We then introduce methods to improve
these metrics, aiming for a size-invariant SOD evaluation.

3.1. Revisiting Current SOD Evaluation Metrics

We start our analysis from standard functions, which could
be divided into two groups: separable and composite func-
tions, expressed as follows:

Definition 3.1 (Separable Function). Given a predictor f , a
function g applied to f is separable if the following equation
formally holds:

g(f(X), Y ) =

n∑
i=1

wXi · g(f(Xi), Yi), (1)

with
n⋃

i=1

Xi = X,

n⋂
i=1

Xi = ∅, (2)

where X is the input and Y is the ground truth;
(X1, X2, · · · , Xn) are n non-intersect parts of X; and wXi

is an Xi-related weight for the term g(f(Xi), Yi).

According to the definition above, we realize that the point-
wise evaluation metrics in the SOD community are separable
(say Mean Absolute Error (MAE) (Perazzi et al., 2012) and
Mean Square Error (MSE)).

Definition 3.2 (Composite Function). Composite Functions
are a series of compositions of separable functions Eq. (1),
denoted by

G(f(X), Y ) = (g1 ◦ g2 ◦ · · · ◦ gT ) (f(X), Y ) ,

where T is the number of compositions.

According to the definition above, complicated evaluation
metrics such as F-score (Achanta et al., 2009), IOU (Gir-
shick et al., 2014) and AUC (Borji et al., 2013b) are com-
posite. In what follows, we will discuss each of them re-
spectively. For simplicity, we abbreviate g(f(X), Y ) and
G(f(X), Y ) as g(f) and G(f) for a clear presentation.

Current separable metrics are NOT size-invariant. In
SOD, the model f : RS → RS takes an image X with label
Y as input, aiming to make a binary classification for each
pixel, where S is the size of the image and Y = {0, 1}S is
the pixel-level ground-truth. In light of this, the image could
be naturally divided into Nc parts based on the location of
salient objects.

Therefore, given a certain separable SOD metric g, let
g(fi) := g(f(Xi), Yi), we can rewrite it as Eq. (1) does:

g(f) =

Nc∑
i=1

PXi
· g(fi), (3)

where PXi is the size-sensitive weight for the i-th part of
X , which brings about inductive bias in evaluation.

Taking MAE as an example, the following equation holds:

MAE(f) =
Nc∑
i=1

∥f(Xi)− Yi∥1,1
S

=

Nc∑
i=1

Si

S
· ∥f(Xi)− Yi∥1,1

Si

=

Nc∑
i=1

Si

S
·MAE(fi)

=

Nc∑
i=1

PXi
·MAE(fi).

(4)

Here we have PXi
= Si/S, where Si represents the size of

the i-th part. It is explicitly that the current MAE metric
for SOD is size-sensitive, where larger objects would be
paid more attention. Similar results can be drawn for other
point-wise metrics in the SOD community.

Current composite metrics are NOT size-invariant. Sim-
ilarly, we formally rewrite the composite metric G(f) as
follows:

G(f) =

∑Nc

i=1 PXi(a1g1(fi) + · · ·+ aT gT (fi))∑Nc

i=1 PXi(b1g1(fi) + · · ·+ bT gT (fi))
, (5)

where again gt(fi) := gt(f(Xi), Yi), t ∈ [T ] is a certain
separable metric value over the i-th part Xi; ai and bi repre-
sent coefficients for different composite functions, and here
PXi is also a size-sensitive weight for each separable part
of X .

3



Size-invariance Matters: Rethinking Metrics and Losses for Imbalanced Multi-object Salient Object Detection

Specifically, in terms of the widely used F-score (Achanta
et al., 2009), we have:

F(f) =
2
∑Nc

i=1 TP(fi)∑Nc

i=1[2TP(fi) + FP(fi) + FN(fi)]

=
2
∑Nc

i=1
Si

S · TP(fi)
Si∑Nc

i=1[
Si

S · (2TP(fi)
Si

+ FP(fi)
Si

+ FN(fi)
Si

)]

=
2
∑Nc

i=1 PXi · TPR(fi)∑Nc

i=1 PXi · (2TPR(fi) + FPR(fi) + FNR(fi))
,

(6)

where TP(fi), FP(fi), FN(fi) represent the number of
True Positives, False Positives and False Negatives within
Xi, and TPR(fi),FPR(fi),FNR(fi) represent the corre-
sponding True Positive Rate, False Positive Rate, and False
Negative Rate, which are all separable functions mentioned
above. In this case, we still have PXi

= Si/S, which is
sensitive to the size of salient objects. Similar conclusion
also applies to metrics like AUC, with analysis in App. C.

Why size-invariance MATTERS? We have realized that
the existing widely adopted metrics would inevitably intro-
duce biased weights for objects of different sizes. With this
imbalance, smaller objects are suppressed by larger ones,
and therefore are easily ignored in both evaluation and pre-
diction. Unfortunately, as shown in Fig. 1, practical SOD
tasks usually involve multiple objects of various sizes, in-
cluding small yet critical ones. For example, Fig. 2(c) totally
overlooks a small object, but enjoys a similar MAE com-
pared to Fig. 2(d), which contradicts our visual perceptions.
To rectify this, we introduce the principles of size-invariant
evaluation in the next section.

3.2. Principles of Size-Invariant Evaluation

Based on the discussions above, the fundamental limita-
tion of the current evaluation lies in the size-sensitive PXi .
Therefore, a principal way to achieve size-invariant evalua-
tion is to eliminate the effect of the weighting term PXi

. In
this paper, we propose a simple yet effective size-invariant
protocol:

gSI(f) =
1

Nc

Nc∑
i=1

1 · g(fi), (7)

GSI(f) =
1

Nc

Nc∑
i=1

1 · (a1g1(fi) + · · ·+ aT gT (fi))

(b1g1(fi) + · · ·+ bT gT (fi))
, (8)

where PXi
is replaced by a constant 1. The size-sensitive

weight is directly eliminated, and we naturally arrive at
size-invariance.

In what follows, we will adopt widely used metrics, i.e.,
MAE, F-score and AUC, to instantiate our size-invariant
principles. Note that our proposed strategy could also be
applied to other metrics as mentioned in Sec. 4.

3.2.1. SIZE-INVARIANT MAE

According to Eq. (7), SI-MAE is expressed as follows:

SI-MAE(f) =
1

Nc

Nc∑
i=1

1 ·MAE(fi). (9)

Here our primary focus is on dividing the image into Nc

parts. Motivated by the success of object detection (Ren
et al., 2015) (Redmon et al., 2016), we segment salient
objects into a series of foreground frames by their minimum
bounding boxes, and pixels that do not form part of any
bounding box are treated as the background.

Ideally, assume that there are K salient objects in an image
and let Ck = {(aj , bj)}Mk

j=1, k ∈ [K] be the coordinate set
for the object k, then the minimum bounding box for object
k could be determined clockwise by the following vertex
coordinates:

Xfore
k ={(amin

k , bmax
k ), (amax

k , bmax
k ),

(amax
k , bmin

k ), (amin
k , bmin

k )},
(10)

where amin
k , amax

k , bmin
k , bmax

k are the minimum and maxi-
mum coordinates in Ck, respectively.

Correspondingly, the background frame is defined as fol-
lows:

Xback
K+1 = X \ F, (11)

where

F =

K⋃
k=1

Xfore
k (12)

is the collection of all minimum bounding boxes for salient
objects.

However, since there is no instance-level label to distin-
guish different objects in most practical datasets, we instead
regard each connected component composed of salient ob-
jects in the saliency map as an independent proxy Ck. Some
examples of partitions are presented in Fig. 3, where an
image will be divided into Nc = K + 1 parts, including K
foreground frames and a background frame. Please refer to
implementation details in Sec. 5.1 for more details of the
connected component.

The bounding boxes are similar to those widely applied in
the area of object detection (Xiao & Marlet, 2020) (Ding
et al., 2022). However, object detection makes bounding
box regression to match the predicted boxes as close to the
ground-truth boxes as possible, while our approach gener-
ates the bounding boxes from the ground-truth binary masks
and exploits them as auxiliary tools to calculate the loss and
metric results around each salient object.
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(a) Single-object scenario (b) Multi-object scenario

Figure 3. Examples of partitions. In Fig. 3(a), there is a foreground
frame ➀ and a background frame ➁. In Fig. 3(b), there are five
foreground frames from ➀ to ➄, and a background frame ➅.

In this way, the goal of SI-MAE becomes

SI-MAE(f) =

1

K + α

[
K∑

k=1

MAE(ffore
k ) + αMAE(f back

K+1)

]
,

(13)

where a parameter α, determined by the ratio of the size
of the background and the sum of all foreground frames,

namely α =
Sback
K+1∑K

k=1 Sfore
k

, is further introduced to balance

the model attention adaptively. By doing so, the predictor
could not only pay equal consideration to salient objects
of various sizes, but also impose an appropriate penalty
for misclassifications in the background. This plays an
important role in reducing the false positives as illustrated
in Sec. 5.3.3.

In the following, we make a brief discussion between MAE
and our proposed SI-MAE, with proof in App. D.1.

Proposition 3.3 (Informal). Given two different predictors
fA and fB , the following two possible cases suggest that
SI-MAE is more effective than MAE during evaluation.

Case 1: Assume that there is a single salient object (i.e.,
K = 1), with two different results from predictors fA and
fB . In this case, there is no imbalance from different sizes
of objects, and therefore SI-MAE is equivalent to MAE.

Case 2: Suppose there are two salient objects (K = 2)
where fA and fB detect the same amount of salient pixels
in an image X . Meanwhile, assume that fA only predicts
C2 perfectly while fB could somewhat recognize C1 and
C2 partially. In this case, fB should still be better than fA

since fA totally fails on C1. Unfortunately, if Sfore
1 <

Sfore
2 , MAE(fA) = MAE(fB) holds but we have

SI-MAE(fA) > SI-MAE(fB).

Remark. Fig. 2 provides a toy example for Case 2. Dis-
cussions above support that MAE is sensitive to the size of
objects concerning multiple object cases, yet SI-MAE can

serve our expectations better. We also extend our analysis
to the case with K ≥ 3, which consistently suggests the
efficacy of SI-MAE. The detailed discussion is attached to
App. D.1.

3.2.2. SIZE-INVARIANT COMPOSITE METRICS

Here we instantiate our size-invariant principle with com-
mon composite metrics, including F-score and AUC.

As to the composite metric F-score, we define SI-F as fol-
lows:

SI-F(f) =
1

K

K∑
i=1

F(ffore
k ), (14)

where Xfore
1 , · · · , Xfore

K denote foreground frames. Simi-
lar to SI-MAE, we give a proposition in App. B to support
that in multiple object cases, SI-F can serve our expectations
better.

As to another common composite metric AUC, we similarly
define SI-AUC as follows:

SI-AUC(f) =
1

K

K∑
i=1

AUC(ffore
k ), (15)

where Xfore
1 , · · · , Xfore

K denote foreground frames. The
analysis of SI-AUC is deferred to App. C due to space limi-
tations.

4. How to Practically Pursue Size-Invariance?
In previous sections, we outlined how to achieve size-
invariant evaluation for SOD. Now this section explores
how to directly optimize these size-invariant metrics to pro-
mote practical SOD performance.

4.1. A Generic Size-Invariant Optimization Goal

Motivated by the principles of the size-invariant evaluation,
our optimization goal is expressed as follows:

LSI(f) =

K∑
k=1

ℓ(ffore
k ) + αℓ(f back

K+1), (16)

where ℓ(·) could be any popular loss in the SOD com-
munity (such as BCE or IOU). For simplicity, we let
ℓ(f) := ℓ(f(X), Y ) and ℓ(fi) := ℓ(f(Xi), Yi). Similar

to Eq. (13), if ℓ(·) is separable, we set α =
Sback
K+1∑K

k=1 Sfore
k

; for

composite losses like DiceLoss (Milletari et al., 2016) and
IOU Loss (Yu et al., 2016), we set α = 0 because the TPR
is always 0 in the background. Specifically in App. F.4, we
describe detailed implementations of Size-Invariant Opti-
mization for different backbones discussed in Sec. 5.

As discussed in Sec. 3.2, Eq. (16) ensures that the model
treats all objects equally regardless of size, thus improving
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the detection of smaller objects. We give the following
proposition to illustrate the mechanism of SI-SOD, with
proof in App. E.1.

Proposition 4.1 (Mechanism of SI-SOD). Given a separa-
ble loss function ℓ(·) and its corresponding size-invariant
loss LSI(·), then for a certain scenario:

1. when Si <
S

K+α , we have wLSI
(xi) > wℓ(xi),

2. when Si < Sj , we have wLSI
(xi) > wLSI

(xj).

where wLSI
(xi) is the weight of pixel-level loss in Xi with

LSI, and wℓ(xi) is the weight of pixel-level loss in Xi with
the original loss ℓ.

Remark. Compared to standard losses such as BCE, SI-
SOD adaptively adjusts the weight of pixel-level loss to
ensure equal treatment on different objects.

Item 1 illustrates that smaller objects, which fall below a cer-
tain size threshold, will produce more loss. Item 2 describes
that SI-SOD increases the weight for pixels in smaller salient
objects, finally alleviating size-sensitivity.

4.2. Generalization Bound

In this section, we theoretically demonstrate that SI-SOD
can generalize to common SOD tasks, despite several chal-
lenges.

First, SOD is considered as structured prediction (Ciliberto
et al., 2020; Li et al., 2021), where couplings between output
substructures make it difficult to directly apply Rademacher
Complexity-based techniques in theoretical analysis. The
standard result to bound the empirical Rademacher com-
plexity (Michel Ledoux, 1991) holds when the prediction
functions are real-valued. To overcome this, we adopt the
vector contraction inequality (Maurer, 2016) to extend it
from real-valued analysis to vector-valued ones, and con-
sequently reach a sharper result with Lipschitz properties
(Foster & Rakhlin, 2019).

Another challenge lies in the diversity of losses, which hin-
ders exploring the generalization properties within a coordi-
nated framework. Therefore, by studying from the view of
separable and composite functions respectively, we obtain
Lipschitz properties (Dembczyński et al., 2017) for both
categories and ultimately achieve a unified conclusion.

We present our conclusions here, and the proof is deferred
to App. E.2.

Theorem 4.2 (Generalization Bound for SI-SOD). As-
sume F ⊆ {f : X → RK}, where K = H × W is
the pixel count in an image, g(i) is the risk over i-th sam-

ple, and is L-Lipschitz with respect to the l∞ norm, (i.e.
∥g(x)− g(x̃)∥∞ ≤ L · ∥x− y∥∞). When there are N i.i.d.
samples, there exists a constant C > 0 for any ϵ > 0, the
following generalization bound holds with probability at
least 1− δ:

sup
f∈F

(E[g(f)]− Ê[g(f)])

≤ C · L
√
K

N
·max

i
RN (F|i) · log

3
2+ϵ

(
N

maxi RN (F|i)

)

+ 3

√
log 2

δ

2N
,

(17)
where again g(f(X,Y )) := g(f), E[g(f)] and
Ê[g(f)] represent the expected risk and empirical risk.
RN (F ;x1:N ) = maxx1:N∈X R(F ;x1:N ) denotes the
worst-case Rademacher complexity, and we let RN (F|i)
denote its restriction to output coordinate i. Specifically,

Case 1: For separable loss functions ℓ(·), if it is µ-
Lipschitz, we have L = µ.

Case 2: For composite loss functions, when ℓ(·) is
DiceLoss (Milletari et al., 2016), we have L = 4

ρ ,

where ρ = min
S1,i
l

Si
l

, which represents the mini-
mum proportion of the salient object in the l-th
frame within the i-th sample.

Remark. We reach a bound of O(
√
K logN
N ), which indi-

cates reliable generalization with a large training set.

Specifically, for case 2, the original composite loss ℓ(·), still
taking DiceLoss as an example, will result in a ρ′ = S1,i

Si ,
which represents the proportion of salient pixels in an image.
It is obvious that ρ > ρ′ because SI-SOD enlarges the
proportion by reducing the denominator from the whole
image to a bounding box, and finally leads to a smaller L
and a sharper bound.

5. Experiments
In this section, we describe some details of the experiments
and present our results. Due to space limitations, please
refer to App. F for an extended version.

5.1. Experimental Setups

Datasets. Eight datasets, DUTS (Wang et al., 2017), EC-
SSD (Yan et al., 2013), DUT-OMRON (Yang et al., 2013),
HKU-IS (Li & Yu, 2015), MSOD (Deng et al., 2023),
PASCAL-S (Yan et al., 2013), SOD (Movahedi & Elder,
2010) and XPIE (Xia et al., 2017), are included in the exper-
iment. Following common practice, we train our network on
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Table 1. Quantitative comparisons on MSOD and DUTS-TE. The better results are shown with bold, and darker color indicates superior
results. Metrics with ↑ mean higher value represents better performance, while ↓ mean lower value represents better performance.

Dataset Methods MAE ↓ SI-MAE ↓ AUC ↑ SI-AUC ↑ Fβ
m ↑ SI-Fβ

m ↑ Fβ
max ↑ SI-Fβ

max ↑ Em ↑

MSOD

PoolNet 0.0752 0.1196 0.9375 0.9563 0.6645 0.6397 0.7755 0.8402 0.7529
+ Ours 0.0635 0.0924 0.9553 0.9721 0.7314 0.7467 0.8200 0.8867 0.8286

LDF 0.0508 0.0946 0.8719 0.9246 0.7589 0.6691 0.8144 0.7575 0.8241
+ Ours 0.0506 0.0893 0.9530 0.9441 0.7796 0.7573 0.8415 0.8879 0.8726

ICON 0.0545 0.0945 0.8973 0.8909 0.7687 0.7029 0.8178 0.7789 0.8487
+ Ours 0.0535 0.0830 0.9537 0.9514 0.7691 0.7738 0.8373 0.8665 0.8742

GateNet 0.0442 0.0808 0.9331 0.9244 0.8005 0.7581 0.8510 0.8434 0.8776
+ Ours 0.0444 0.0734 0.9456 0.9436 0.8157 0.8083 0.8570 0.8724 0.8972

EDN 0.0467 0.0788 0.9196 0.9188 0.7925 0.7635 0.8410 0.8321 0.8712
+ Ours 0.0453 0.0724 0.9401 0.9387 0.8057 0.7990 0.8555 0.8619 0.8936

DUTS-TE

PoolNet 0.0656 0.0609 0.9607 0.9716 0.7200 0.7569 0.8245 0.8715 0.8103
+ Ours 0.0621 0.0562 0.9706 0.9824 0.7479 0.8172 0.8438 0.9029 0.8478

LDF 0.0419 0.0410 0.9337 0.9680 0.8203 0.8201 0.8735 0.8802 0.8821
+ Ours 0.0440 0.0422 0.9690 0.9756 0.8076 0.8388 0.8736 0.9117 0.8895

ICON 0.0461 0.0454 0.9469 0.9424 0.8131 0.8270 0.8648 0.8815 0.8858
+ Ours 0.0454 0.0435 0.9640 0.9706 0.8031 0.8395 0.8629 0.8958 0.8921

GateNet 0.0383 0.0380 0.9629 0.9619 0.8292 0.8519 0.8835 0.9041 0.9053
+ Ours 0.0399 0.0375 0.9663 0.9692 0.8185 0.8687 0.8743 0.9116 0.9038

EDN 0.0389 0.0388 0.9600 0.9611 0.8288 0.8565 0.8752 0.9017 0.9033
+ Ours 0.0392 0.0381 0.9658 0.9687 0.8260 0.8672 0.8765 0.9119 0.9072

the DUTS training set (DUTS-TR) and test it on the DUTS
test set (DUTS-TE) and the other seven datasets. Detailed
introductions on these datasets are deferred to App. F.1.

Competitors. To demonstrate the effectiveness of size-
invariant loss, we integrate it into five state-of-the-art back-
bones: EDN (Wu et al., 2022), ICON (Zhuge et al., 2022),
GateNet (Zhao et al., 2020), LDF (Wei et al., 2020), PoolNet
(Liu et al., 2019). EDN, ICON, and LDF utilize DiceLoss
or IOULoss to handle the potential imbalanced distribution,
and ICON specifically focuses on the macro-integrity, which
are summarized at App. F.2 with details. Specifically, we
modify the original loss functions into their corresponding
size-invariant versions following Eq. (16), and re-train the
network with the same setting. Correspondingly, we also
compare the time cost of our method with original optimiza-
tion frameworks, which is deferred at App. G.6.

Evaluation Metrics. Apart from our proposed met-
rics SI-MAE, SI-F and SI-AUC, we also include com-
mon metrics such as Mean Absolute Error(MAE), max F-
measure(Fβ

max), mean F-measure(Fβ
m) and AUC.

Another widely used metric is Em introduced by (Fan et al.,
2018), which is a newly proposed metric considering both
global and local information. Definitions and calculations
of all metrics are deferred to App. A.

Implementation Details. We carried out the experiments
on a single GeForce RTX 3090. To ensure fairness, both the

original and modified backbones are trained under identical
settings. All images are resized into 384× 384 for training
and testing, and the ResNet50 (He et al., 2016) pre-trained
on ImageNet (Deng et al., 2009) is loaded. Specific settings
and optimization details for each backbone are deferred at
App. F.3 and App. F.4.

We preprocess the dataset with the package skimage, which
identifies connected components with the ground-truth mask.
Then we obtain the minimum bounding box following
Eq. (10). Note that all procedures can also be done dur-
ing training without any preprocessing.

5.2. Overall Performance

As mentioned above, we re-train the backbones with our
size-invariant loss for a fair comparison. Tab. 1 shows the re-
sults on MSOD and DUTS-TE. The result is shown in a pair
of backbones before and after applying our size-invariant
loss, with the superior result highlighted in bold.

Since samples in MSOD contain multiple salient objects,
it naturally arises that small objects can be overlooked due
to the imbalance. Therefore, all backbones with our loss
achieve considerable improvements on nearly all metrics,
even including the original MAE. Averagely, our method
outperforms other frameworks by around 0.012, 0.038,
0.070, 0.065, 0.038 on SI-MAE, SI-AUC, SI-Fβ

m, SI-Fβ
max

and Em, respectively.
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(a) MSOD (b) DUTS

Figure 4. SI-MAE performance on objects with different sizes on
two representative datasets, with EDN and PoolNet as backbones.

Tab. 1 also shows the performance on DUTS-TE. Our
method achieves better results on almost all size-invariant
metrics and Em, and stays competitive in terms of origi-
nal MAE and F-score. This justifies that the size-invariant
loss achieves similar performance on single-object scenar-
ios, suggesting the superior generalization ability of our
loss. Averagely, our method outperforms other frameworks
by around 0.001, 0.012, 0.024, 0.020, 0.011 on SI-MAE,
SI-AUC, SI-Fm, SI-Fβ

max, Em on DUTS-TE. Results on
other datasets are deferred to Tab. 3.

Fig. 6 shows the qualitative comparison on different back-
bones. While the original backbones may fail to detect all
the salient objects in some hard samples, our method can
significantly improve the detection on multi-object occa-
sions. For example, in the 1st image, EDN only finds the
largest sailboat on the right but fails to detect two smaller
targets on the left, while ours additionally detects two small
sailboats. In the 4th image, EDN detects fewer false positive
pixels and ICON detects one more salient object with our
loss. In the 3rd, 5th, and 6th images, all backbones detect
more salient objects at the right part after using our loss.
More qualitative comparisons are deferred to App. G.2.

5.3. Fine-grained Analysis

5.3.1. PERFORMANCE WITH RESPECT TO SIZES

We conduct size-relevant analysis on five datasets. As it is
the size of salient objects that our method focuses on, we
divide all salient objects into ten groups according to their
proportion to the entire image, ranging from [0%, 10%],
[10%,20%], and finally up to [90%, 100%]. We evaluate the
performance within each group, and here we only take fore-
ground frames into account to concentrate on the detection
performance of salient objects with different sizes.

From Fig. 4, we observe that all backbones perform well
on larger objects but show remarkable improvements on
smaller objects when using our method. This aligns with
our objective to enhance the detection of smaller objects.
Specifically, for objects with size in [0%, 10%] of the image,

(a) MSOD (b) DUTS

Figure 5. SI-MAE performance with different object numbers on
two representative datasets, with EDN and PoolNet as backbones.

our method outperforms the previous backbone, say EDN,
by around 0.024 on SI-MAE on the MSOD dataset. As seen
in Fig. 1(a), small-size salient objects usually account for the
majority, therefore such improvement firmly speaks to our
progress. This is not reflected by size-sensitive metrics like
MAE, but can be directly revealed by our proposed SI-MAE.
Performance analysis with respect to the object size on other
backbones and datasets is deferred to App. G.3.

5.3.2. PERFORMANCE WITH RESPECT TO OBJECT
NUMBERS

We also conduct number-relevant analysis on five datasets to
evaluate the performance on single-object and multi-object
scenarios, as shown in Fig. 5. With the number of salient
objects increasing, the SOD tasks are getting imbalanced,
where some objects are more likely to be ignored. Therefore,
we divide all samples into several groups according to the
number of salient objects in the image.

Generally, our method shows substantial improvements in
multi-object scenarios and remains competitive in single-
object cases, which again justifies the generalization and
universality of our method. Specifically, for samples with
greater than or equal to two salient objects, EDN gains an
improvement by around 0.007 on SI-MAE on the MSOD
dataset after employing our size-invariant loss. Performance
analysis with respect to the object numbers on other back-
bones and datasets is deferred to App. G.4.

5.3.3. ABLATION STUDIES

To investigate how the parameter α works, we conduct abla-
tion studies on α to verify its effectiveness. Here we set α
among 0, 1, Sback

Sfore . α = 0 indicates that we do not consider
the background frame and pay all attention to foreground
frames, while α = 1 means that we consider the background
frame equally as other foreground frames, and α = Sback

Sfore is
exactly our method. Fig. 7 illustrates the ablations on dataset
MSOD and DUTS with the backbone EDN. α = 0 induces
an extreme result with a high score within foreground frames
and a low score in the background frame because it solely

8
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Figure 6. Qualitative comparison on different backbones.
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(b) DUTS

Figure 7. SI-MAE performance on two representative datasets with
different value of α. EDN, 0, 1, and back/fore represent the original
backbone EDN, α = 0, α = 1 and α = Sback

Sfore , respectively.

focuses on foreground detection. α = 1 alleviates the phe-
nomenon, and surpasses the original framework on some
metrics, but still predicts too many false positives, due to
the slight penalty on the error within the background frame.
Experiments on other datasets also speak to the efficacy of
the α. More detailed results are deferred to App. G.5.

6. Conclusion
In this paper, we explore the size-invariance in SOD tasks.
When multiple objects of various sizes co-exist, we observe
that current evaluation metrics are size-sensitive, where
larger objects are focused and smaller objects are likely
overlooked. To rectify this, we introduce a generic approach
to achieve size-invariance. Specifically, we propose SI-MAE

and SI-F, which evaluate each salient object separately be-
fore merging their results. We further design an optimization
framework directly toward this goal, which can adaptively
balance the weights to ensure equal treatment on different
objects. Theoretically, we provide evidence to support our
proposed metrics and present the generalization analysis for
our SI-SOD optimization loss. Comprehensive experiments
consistently demonstrate the efficacy of our method.
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A. Evaluation Metrics for SOD
Different from usual classification tasks where we calculate accuracy on the image level, SOD requires evaluation pixel
by pixel. Other pixel-level tasks like semantic segmentation adopt mIOU, which utilizes the mean IOU over all classes
as the metric. However, in SOD all salient objects are labeled with 1 without further class labels. Therefore, there is no
representative metric, and the following are commonly utilized:

MAE (Perazzi et al., 2012). It measures the average absolute error pixel-wise. The prediction is normalized to [0, 1] when
calculating the errors from the ground truth. It is defined as:

MAE =
1

W ×H

W∑
i=1

H∑
j=1

|fN (X)(i,j) − Y(i,j)|, (18)

where fN (X) and Y are the normalized prediction map and the saliency map, respectively.

F-score (Achanta et al., 2009). It is designed to deal with imbalanced distribution and comprehensively considers both
precision and recall. The original F-score is defined as follows:

F =
2× Precision×Recall

Precision+Recall
, (19)

where
Precision =

TP

TP+ FP
, Recall =

TP

TP+ FN
, (20)

where TP,TN,FP,FN are True Positive, True Negative, False Positive and False Negative. A set of thresholds is applied
to generate the binary result when calculating the metrics above.

According to empirical settings (Wu et al., 2022), (Liu et al., 2018b), (Zhang et al., 2017a), (Liu et al., 2019), we adopt Fβ

as previous works do (Margolin et al., 2014):

Fβ =
(1 + β2)× Precision×Recall

β2 × Precision+Recall
, (21)

and set β2 = 0.3 to emphasize the importance of precision, following (Wu et al., 2022), (Liu et al., 2018b), (Zhang et al.,
2017a), (Liu et al., 2019), etc.

AUC. (Borji et al., 2013b) As SOD is essentially a binary classification task, it is natural that AUC is suitable for this
problem. AUC considers both TPR and FPR, and is insensitive to data distribution (Yang et al., 2023). Geometrically, it can
be calculated as follows:

AUC =

∫ 1

x=0

TPR(FPR−1(x))dx. (22)

It is equivalent to the Wilcoxon test of ranks (Mason & Graham, 2002), and an unbiased estimator of AUC can be expressed
as:

AUC = EP+,P− [ℓ0,1(f(x
+)− f(x−))], (23)

where ℓ0,1(·) denotes the 0-1 loss.

Em. (Fan et al., 2018) It considers the match of global and local similarities simultaneously. It is specially designed for
binary map evaluation and has been widely used in recent years. Em is defined as follows:

Em =
1

w × h

w∑
x=1

h∑
y=1

ϕFM (x, y), (24)

where w and h are the height and width of the image, and

ϕFM = f(ξFM ), (25)

where f(·) is a convex function. Here we set f(x) = 1
2 (1 + x)2 as (Fan et al., 2018) suggested. ξ is computed as:

ξFM =
2ϕGT ◦ ϕGT

ϕGT ◦ ϕGT + ϕFM ◦ ϕFM
, (26)
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where ◦ represents Hadamard production, and ϕI = I − µI · A, with I as the input, µI as the global mean value, and A an
all-ones matrix.

Toward the objectives above, most SOD methods are trained with two types of loss functions: pixel-level loss and region-level
loss. The former focuses on pixel-level accuracy, and the latter aims at promoting regional performance.

Pixel-level loss includes binary cross-entropy (BCE), mean square error (MSE), etc. BCE is the most widely used loss
function in SOD because it is essentially a binary classification task for each pixel. It is also reasonable to regard it as
a regression task with MSE considering that there are few pixels labeled between 0 and 1. Specifically, GateNet (Zhao
et al., 2020) and RDSN (Jia & Bruce, 2019) employ MSE as the loss function, while most of the other methods utilize BCE.
Specifically, they are defined as follows:

BCE =
1

N

N∑
i=1

[−(pi log(gi) + (1− pi) log(1− gi))],

MSE =
1

N

N∑
i=1

(pi − gi)
2,

(27)

where pi and gi is the prediction and ground-truth for i-th pixel.

Region-level loss can vary throughout different methods. Some widely used loss functions include DiceLoss (Milletari
et al., 2016), and IOULoss (Yu et al., 2016). Both these losses consider the performance in a region, instead of focusing on
certain pixels, which can therefore improve the performance from a higher level. DiceLoss is defined as follows:

DiceLoss = 1−
2 ·

∑N
i pi · gi∑N

i p2i +
∑N

i g2i
, (28)

where the sums run over the N pixels, and pi, gi represent the prediction and ground truth, respectively.

IOULoss is computed as follows, which is slightly different from (Yu et al., 2016):

IOULoss = 1−
∑N

i (pi · gi)∑N
i (pi + di)−

∑N
i (pi · gi)

, (29)

where pi and gi represent the prediction and ground truth.

There are also other region-level losses, such as SSIM (Wang et al., 2004). Generally, they focus on regional detection
performance and are therefore robust against imbalanced distribution.

B. SI-F Metric
Similar to SI-MAE, SI-F is expressed as follows according to Eq. (7):

SI-F(f)

=
1

Nc

Nc∑
i=1

1 · 2 · TPR(fi)
2TPR(fi) + FPR(fi) + FNR(fi)

=
1

Nc

Nc∑
i=1

F(fi),

(30)

where PXi
is replaced by 1. The definition of object frames is the same as that in SI-MAE. It is worth noting that we do not

consider the background frame here and just leave it to SI-MAE because there are no salient pixels and the true positive rate
is always 0.

Based on the discussions above, we now define the new metric SI-F as follows:

SI-F(f) =
1

K

K∑
i=1

F(ffore
k ), (31)
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where Xfore
1 , · · · , Xfore

k denote foreground frames.

Also, we give the following proposition to demonstrate the effectiveness of SI-F when there are multiple salient objects,
with proof deferred to App. D.2:

Proposition B.1 (Informal). Given two different predictors fA and fB , the following case suggest that SI-F is more effective
than F during evaluation.

Suppose there are two salient objects (K = 2) where fA and fB detect the same amount of salient pixels for an image X .
Meanwhile, assume that fA only predicts C2 perfectly while fB could somewhat recognize C1 and C2 partially. In this
case, fB should still be better than fA since the latter totally fails on C1. Unfortunately, F(fA) = F(fB) holds but we have
SI-F(fA) < SI-F(fB).

Remark. Fig. 2 provides a toy example. Discussions above support that F-score is sensitive to the sizes of objects in
multi-object cases, yet SI-F can serve our expectations better.

C. SI-AUC Metric
Normally, AUC is defined as

AUC =

∫ 1

0

TPRf (FPR
−1

f (t))dt, (32)

where f is the predictor, t is the probability threshold, TPR,FPR are the true positive rate and false positive rate, respectively.
In the equation above, the integral makes it hard to analyze. Therefore, to further investigate the potential issue for AUC, we
adopt another form:

AUC(f) =
n+∑
i=1

n−∑
j=1

I(f(X+
i ) > f(X−

j ))

n+n− , (33)

where I(x) = 1 when x is True, X+
i , X−

i are sampled from salient and non-salient pixels.

Following Eq.(5) in the main text, we let

g(fk) =

n+
k∑

i=1

n−
k∑

j=1

I(f(X+
k,i) > f(X−

k,j))

n+
k n

−
k

, (34)

where n+
k , n

−
k are the number of salient and non-salient pixels within the k-th part, X+

k,i, X
−
k,j are respectively sampled

from salient and non-salient pixels within the k-th part, and g(fk) is actually the AUC value within the k-th part. Then
following the definition of composite functions, we have:

AUC(f) =
K∑

k=1

g(fk)
n+
k n

−
k

n+n− =

K∑
k=1

g(fk)
S′
k

S′ , (35)

where K is the number of foreground frames, S′ = n+n− and S′
k = n+

k n
−
k , which is also a size-related term. However, it

also depends on the distribution of salient pixels, and is therefore more size-robust than MAE,F-score to some extent. To
thoroughly eliminate the influence of size, we can define SI-AUC, similar to SI-F:

SI-AUC(f) =
1

K

K∑
k=1

AUC(ffore
k ). (36)

D. Proof for Propositions of Size-Invariant Metrics
D.1. Proof and extension for Proposition 3.3

Restate of Proposition 3.3. Given two different predictors fA and fB , the following two possible cases suggest that SI-MAE
is more effective than MAE during evaluation.
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Case 1: Assume that there is a single salient object (i.e., K = 1), with two different results from predictors fA and fB . In
this case, there is no imbalance from different sizes of objects, and therefore SI-MAE is equivalent to MAE.

Case 2: Suppose there are two salient objects (K = 2) where fA and fB detect the same amount of salient pixels in
an image X . Meanwhile, assume that fA only predicts C2 perfectly while fB could somewhat recognize C1 and C2

partially. In this case, fB should still be better than fA since the latter totally fails on C1. Unfortunately, if Sfore
1 < Sfore

2 ,
MAE(fA) = MAE(fB) holds but we have SI-MAE(fA) > SI-MAE(fB).

Proof. For Case 1, as there is only one salient object, we can easily divide the image into Xfore
1 and Xback

2 , and the weight
α = Sback

2 /Sfore
1 = (S − Sfore

1 )/Sfore
1 . Therefore, we have the following:

MAE(f) =
∥f(Xfore

1 )− Y fore
1 ∥1,1 + ∥f(Xback

2 )− Y back
2 ∥1,1

S
,

SI-MAE(f) =
1

1 + α
·

[
∥f(Xfore

1 )− Y fore
1 ∥1,1

Sfore
1

+ α · ∥f(X
back
2 )− Y back

2 ∥1,1
Sback
2

]

=
1

1 +
S−Sfore

1

Sfore
1

·

[
∥f(Xfore

1 )− Y fore
1 ∥1,1

Sfore
1

+
Sback
2

Sfore
1

· ∥f(X
back
2 )− Y back

2 ∥1,1
Sback
2

]

=
Sfore
1

S
·

[
∥f(Xfore

1 )− Y fore
1 ∥1,1 + ∥f(Xback

2 )− Y back
2 ∥1,1

Sfore
1

]

=
∥f(Xfore

1 )− Y fore
1 ∥1,1 + ∥f(Xback

2 )− Y back
2 ∥1,1

S
= MAE(f).

(37)

For Case 2, we first suppose ρ ∈ [0, 1] of C2 is correctly detected by fB . For convenience, we consider errors just in
foreground frames. According to the proposition, fA and fB detect the same amount of salient pixels, and therefore it is
clear that MAE(fA) = MAE(fB). As there are two salient objects, we have α = Sback

3 /(Sfore
1 +Sfore

2 ), and thus SI-MAE
is calculated as follows:

SI-MAE(fA) =
1

2 + α
· |C1|
S1

,

SI-MAE(fB) =
1

2 + α
·
[
|C2|(1− ρ)

S2
+

|C1| − |C2|(1− ρ)

S1

]
,

(38)

then when Sfore
1 < Sfore

2 , we have:

SI-MAE(fB)− SI-MAE(fA) =
1

2 + α
·
[
|C2|(1− ρ)

S2
+

|C1| − |C2|(1− ρ)

S1
− |C1|

S1

]
=

1

2 + α
·
[
|C2|(1− ρ)

S2
− |C2|(1− ρ)

S1

]
=

|C2|(1− ρ)

2 + α
·
(

1

S2
− 1

S1

)
< 0.

(39)

This completes the proof.

Extension of Proposition 3.3. Still, suppose fA, fB detect the same amount of salient pixels in an image X . We denote K as
the number of salient objects in image X , with S1 ≤ S2 ≤ · · · ≤ SK . Meanwhile, assume fA only predicts Cm+1, · · · , CK

perfectly while fB could recognize C1, . . . , CK partially. In this case, fB should still be better than fA since the latter
totally fails on C1, · · · , Cm. Unfortunately when Sm+1 is sufficiently large, which means that larger objects dominate
smaller ones, MAE(fA) = MAE(fB) holds while SI-MAE(fA) > SI-MAE(fB).
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Proof. We first suppose [ρ1, ρ2, · · · , ρK ], ρi ∈ [0, 1] of C1, C2, · · · , CK are correctly detected by fB . For convenience, we
consider errors just in foreground frames. According to the proposition above, fA and fB detect the same amount of salient
pixels, and therefore MAE(fA) = MAE(fB). Furthermore, we have the equation below:

K∑
i=1

ρi|Ci| =
K∑

i=m+1

|Ci|. (40)

As there are K salient objects, we have α =
Sback
K+1∑K

i=1 Sfore
i

, and thus SI-MAE is calculated as follows:

SI-MAE(fA) =
1

K + α

m∑
i=1

|Ci|
Si

,

SI-MAE(fB) =
1

K + α

K∑
i=1

(1− ρi)|Ci|
Si

.

(41)

For clear representation, we denote t = (t1, · · · , tK) where ti = ρi|Ci| and S = (S1, · · · , SK).

Therefore, when Sm+1 > ⟨t,1⟩
⟨t, 1

S ⟩
, we have:

SI-MAE(fB)− SI-MAE(fA) =
1

K + α

[
K∑
i=1

(1− ρi)|Ci|
Si

−
m∑
i=1

|Ci|
Si

]

=
1

K + α

[
K∑

i=m+1

|Ci|
Si

−
K∑
i=1

ρi|Ci|
Si

]

≤ 1

K + α

[∑K
i=m+1 |Ci|
Sm+1

−
K∑
i=1

ρi|Ci|
Si

]

=
1

(K + α)

[∑K
i=1 ρi|Ci|
Sm+1

−
K∑
i=1

ρi|Ci|
Si

]

=
1

(K + α)

[
< t, 1 >

Sm+1
− < t,

1

S
>

]
< 0.

(42)

D.2. Proof for Proposition B.1

Restate of Proposition B.1. Given two different predictors fA and fB , the following case suggest that SI-F is more effective
than F-score during evaluation.

Suppose there are two salient objects (K = 2) where fA and fB detect the same amount of salient pixels for an image X .
Meanwhile, assume that fA only predicts C2 perfectly while fB could somewhat recognize C1 and C2 partially. In this
case, fB should still be better than fA since the latter totally fails on C1. Unfortunately, F(fA) = F(fB) holds but we have
SI-F(fA) < SI-F(fB).

Proof. We first suppose ρ ∈ [0, 1] of C2 is correctly detected by fB . For convenience, we consider errors just in foreground
frames. According to the proposition, fA and fB detect the same amount of salient pixels, and therefore it is clear that
MAE(fA) = MAE(fB). As there are two salient objects, we have α = Sback

3 /(Sfore
1 + Sfore

2 ), and thus SI-F is calculated
as follows:

SI-F(fA) =
1

2
· (1 + 0) =

1

2
,

SI-F(fB) =
1

2
·
[

2ρ

1 + ρ
+

2(1− ρ)|C2|
|C1|+ (1− ρ)|C2|

]
,

(43)
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Therefore, we have SI-F(fB) > SI-F(fA) because

SI-F(fB)− SI-F(fA) =
1

2
·
[

2ρ

1 + ρ
+

2(1− ρ)|C2|
|C1|+ (1− ρ)|C2|

]
− 1

2

=
1

2
·
[
1− ρ

1 + ρ
+

2(1− ρ)|C2|
|C1|+ (1− ρ)|C2|

]
=

1− ρ

2
·
[

1

1 + ρ
+

2|C2|
|C1|+ (1− ρ)|C2|

]
> 0.

(44)

This completes the proof.

E. Proof for Properties of SI-SOD Loss
E.1. Proof for Proposition 4.1

Restate of Proposition 4.1 Given a separable loss function ℓ(·) and its corresponding size-invariant loss LSI(·), then:

1. when Si <
S

K+α , we have wLSI
(xi) > wℓ(xi),

2. when Si < Sj , we have wLSI
(xi) > wLSI

(xj).

where wLSI
(xi) is the weight of pixel-level loss in Xi with LSI, and wℓ(xi) is the weight of pixel-level loss in Xi with the

original loss ℓ.

Proof. Common separable loss functions include Cross Entropy(CE), Mean Absolute Error(MAE), Mean Square
Error(MSE), etc.

For Item 1, we have the following as mentioned in Sec. 3.1:

ℓ(f) =
1

S

S∑
i=1

ℓ(f(xi), yi), (45)

where the weight of pixel-level loss wℓ(xi) = 1/S.

When using the size-invariant loss LSI, we have:

LSI(f) =
1

K + α

[
K∑
i=1

ℓ(fi) + αℓ(fK+1)

]

=
1

K + α

[
K∑
i=1

∑
j∈Xi

ℓ(f(xj), yj)

Si
+ α

∑
j∈XK+1

ℓ(f(xj), yj)

SK+1

]
,

(46)

where the weight of foreground pixel-level loss wLSI
(xi) =

1
(K+α)Si

. Therefore, when Si <
S

K+α , we have wLSI
(xi) >

wℓ(xi).

For Item 2, it is obvious that wLSI
(xi) is in proportion to 1/Si. Therefore, when Si < Sj , we have wLSI

(xi) > wLSI
(xj).

E.2. Proof for Theorem 4.2

E.2.1. PROOF FOR TECHNICAL LEMMAS

In this subsection, we present key lemmas that are important for the proof of Theorem 4.2.

Lemma E.1. The empirical Rademacher complexity of function g with respect to the predictor f is defined as:

R̂F (g) = Eσ[sup
f∈F

1

N

N∑
i=1

σig(f
(i))]. (47)
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where F ⊆ {f : X → RK} is a family of predictors, and N refers to the size of the dataset, and σis are independent
uniform random variables taking values in {−1,+1}. The random variables σi are called Rademacher variables.

Lemma E.2. Let E[g] and Ê[g] represent the expected risk and empirical risk, and F ⊆ {f : X → RK}. Then with
probability at least 1− δ over the draw of an i.i.d. sample S of size m, the generalization bound holds:

sup
f∈F

(
E[g(f)]− Ê[g(f)]

)
≤ 2R̂F (g) + 3

√
log 2

δ

2m
. (48)

Lemma E.3. (Foster & Rakhlin, 2019) Assume F ⊆ {f : X → RK}, and (σ1, · · · , σn) is a sequence of i.i.d Rademacher
random variables. When ϕ1, · · · , ϕn are L-Lipschitz with respect to the ℓ∞ norm, there exists a constant C > 0 for any
δ > 0, such that if |ϕt(f(x))| ∨ ∥f(x)∥∞ ≤ β, the following holds:

R(ϕ ◦ F ;x1:n) ≤ C · L
√
K ·max

i
Rn(F|9) · log

3
2+δ

(
βn

maxi Rn(F|i)

)
. (49)

where

R(ϕ ◦ F ;x1:n) = Eϵ sup
f∈F

n∑
t=1

ϵtf(xt), (50)

where F is a class of functions f : X → R, and ϵ = (ϵ1, · · · , ϵn) is a sequence of i.i.d. Rademacher random variables.
Here we set β = 1 because it is obvious that ∥f(x)∥∞ ≤ 1 and ϕt(x) ≤ 1. Therefore,

R(ϕ ◦ F ;x1:n) ≤ C · L
√
K ·max

i
Rn(F|9) · log

3
2+δ

(
n

maxi Rn(F|i)

)
. (51)

Lemma E.4. When g(·) is Lipschitz continuous, the following holds:

∥g(x)− g(x̃)∥∞ ≤ sup ∥∇xg∥p · ∥x− x̃∥q, (52)

where 1
p + 1

q = 1.

Proof.

|g(x)− g(x̃)| =
∣∣∣∣∫ 1

0

⟨∇g(τx+ (1− τ)x̃), x− x̃⟩ dτ
∣∣∣∣

≤ sup
x∈X

[
∥∇g∥p

]
·
∥∥x− x̃

∥∥
q

(53)

Specifically, when p = 1 and q = ∞, we have

∥g(x)− g(x̃)∥∞ ≤ sup ∥∇xg∥1 · ∥x− x̃∥∞. (54)

Lemma E.5. Common composite functions are p-Lipschitz, as (Dembczyński et al., 2017) stated:

Definition E.6 (p-Lipschitzness). Φ(u, v, p) is said to be p-Lipschitz if:

|Φ(u, v, p)− Φ(u′, v′, p′)| ≤ Up|u− u′|+ Vp|v − v′|+ Pp|p− p′|, (55)

where Φ(u(h), v(h), p) is defined as:

u(h) = TP(h), v(h) = P(h = 1), and p = P(y = 1). (56)

Any metric being a function of the confusion matrix can be parameterized in this way. According to (Dembczyński et al.,
2017), Accuracy, AM, F-score, Jaccard, G-Mean, and AUC are all p-Lipschitz.
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E.2.2. PROOF FOR THE GENERALIZATION BOUND

Restate of Theorem 4.2 Assume F ⊆ {f : X → RK}, where K = H ×W is the number of pixels in an image, g(i) is the
risk over i-th sample, and is L-Lipschitz with respect to the l∞ norm, (i.e. ∥g(x)− g(x̃)∥∞ ≤ L · ∥x− y∥∞). When there
are N i.i.d. samples, there exists a constant C > 0 for any ϵ > 0, the following generalization bound holds with probability
at least 1− δ:

sup
f∈F

(E[g(f)]− Ê[g(f)])

≤ C · L
√
K

N
·max

i
RN (F|i) · log

3
2+ϵ

(
N

maxi RN (F|i)

)

+ 3

√
log 2

δ

2N
,

(57)

where again g(f(X,Y )) := g(f), E[g(f)] and Ê[g(f)] represent the expected risk and empirical risk, and RN (F|i) =
maxx1:N∈X R(F ;x1:N ) denotes the worst-case Rademacher complexity. Specifically,

Case 1: For separable loss functions ℓ(·), if it is µ-Lipschitz, we have L = µ.

Case 2: For composite loss functions, when ℓ(·) is DiceLoss (Milletari et al., 2016), we have L = 4
ρ , where ρ = min

S1,i
l

Si
l

,
which represents the minimum proportion of the salient object in the l-th frame within the i-th sample.

Proof. In this subsection, we give the proof combining lemmas above.

Firstly, the empirical risk over the dataset is:

Ê[g(f)] =
1

N

N∑
i=1

g(i)(f(X), Y ), (58)

where X,Y are the prediction and ground truth, and

g(i)(f(X), Y ) =
1

|N i
l |

∑
l∈[Ni

c]

ℓ(f (i)(XNl
), Y

(i)
Nl

), (59)

where Nl stands for l-th foreground frame, and therefore ℓ(·) is a matrix element function.

Combing Lem. E.1, Lem. E.2 and Lem. E.3, with probability at least 1− δ, we have:

sup
f∈F

(E[g(f)]− Ê[g(f)]) ≤ 2R̂F (g) + 3

√
log 2

δ

2N

= 2Eσ

[
sup
f∈F

1

N

N∑
i=1

σig(f
(i))

]
+ 3

√
log 2

δ

2N

≤ C · L
√
K

N
·max

i
Rn(F|i) · log

3
2+ϵ

(
n

maxi Rn(F|i)

)
+ 3

√
log 2

δ

2N
.

(60)

For Case 1 separable loss functions ℓ(·), we have the following equation according to definition Eq. (1):

g(i)(f) =
1

N
(i)
c

∑
l∈[Ni

c]

1

|N i
l |

∑
(j,k)∈Ni

l

ℓ(f
(i)
j,k, Y

(i)
j,k ). (61)
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Assume ℓ(·) is µ-Lipschitz, then for Lipschitz continuous of g(i), we have:

g(i)(f)− g(i)(f̃) =
1

N
(i)
c

∑
l∈[Ni

c]

1

|N i
l |

∑
(j,k)∈Ni

l

(
ℓ(f

(i)
j,k, Y

(i)
j,k )− ℓ(f̃

(i)
j,k, Y

(i)
j,k )

)
≤ 1

N
(i)
c

∑
l∈[Ni

c]

1

|N i
l |

∑
(j,k)∈Ni

l

max
(j,k)

∣∣∣(ℓ(f (i)
j,k, Y

(i)
j,k )− ℓ(f̃

(i)
j,k, Y

(i)
j,k )

)∣∣∣
≤ 1

N
(i)
c

∑
l∈[Ni

c]

1

|N i
l |

∑
(j,k)∈Ni

l

µmax
(j,k)

∣∣∣f (i)
j,k − f̃

(i)
j,k

∣∣∣
= µ∥f (i) − f̃ (i)∥∞,

(62)

where we use f
(i)
j,k to denote f (i)(X(j,k)∈Ni

l
) as abbreviation. We can always bound ℓ(f

(i)
j,k, Y

(i)
j,k )− ℓ(f̃

(i)
j,k, Y

(i)
j,k ) with the

maximum element max(j,k) |(ℓ(f
(i)
j,k, Y

(i)
j,k ) − ℓ(f̃

(i)
j,k, Y

(i)
j,k ))| because there are finite pixels in an image. Therefore, for

separable loss g(i), we let L = µ, and complete the proof.

For Case 2 composite loss, when ℓ(·) is DiceLoss (Milletari et al., 2016), we have the following equation:

g(i)(f) =
1

N i
c

Ni
c∑

l=1

1− 2
∑

(j,k)∈Ni
l
Y

(i)
j,k · f (i)

j,k∑
(j,k)∈Ni

l
Y

(i)
j,k +

∑
(j,k)∈Ni

l
f
(i)
j,k

 . (63)

Considering that formally DiceLoss = 1− F, combining Lem. E.4 and Lem. E.5, we turn to solve sup ∥∇xg∥1 · ∥ instead
of directly pursuing the Lipschitz constant with respect to ℓ∞ norm. Therefore, we can find the Lipschitz continuous of g(i):

∥∥∥∥∥ ∂g(i)∂f
(i)
j,k

∥∥∥∥∥
1

= 2 ·
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(i)
j,k · f (i)

j,k(∑
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(64)

where S1,i
l stands for the area of the object in i-th frame, and Si

l stands for the area of the i-th frame. Therefore, for a frame
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in the image,

∥∇g(i)∥1 =
1

N i
c

Ni
c∑

l=1

∑
(j,k)∈Ni

l

|∇g
(i)
j,k|

=
1

N i
c

Ni
c∑

l=1

∥∥∥∥∥ ∂g(i)∂f
(i)
j,k

∥∥∥∥∥
1

· Si
l

≤ 1

N i
c

Ni
c∑

l=1

4 · Si
l

S1,i
l

≤ 4

ρ
,

(65)

where 0 < ρ ≤ S1,i
l

Si
l

, which depicts the threshold, how much proportion the object occupies in the corresponding frame.

Therefore, taking DiceLoss as an example of composite loss, we let L = 4
ρ , and complete the proof.

F. Additional Experiment Settings
In this section, we make a supplementation to Sec. 5.

F.1. Datasets

Here we give more detailed introductions to the five datasets used in the experiments, as shown in Tab. 2.

Dataset Scale Characteristics

DUTS (Wang et al., 2017) 10,553 + 5,019 Training set (10,553), as well as test set (5,019), is provided.
ECSSD (Yan et al., 2013) 1,000 Semantically meaningful but structurally complex contents are included.

DUT-OMRON (Yang et al., 2013) 5,168 It is characterized by complex background and diverse contents.
HKU-IS (Li & Yu, 2015) 4,447 Far more multiple disconnected objects are included.

MSOD (Deng et al., 2023) 300 It consists of the most challenging multi-object scenarios with 1342 objects in total.
PASCAL-S (Yan et al., 2013) 850 Images are from PASCAL VOC 2010 validation set with multiple salient objects.

SOD (Movahedi & Elder, 2010) 300 Many images have more than one salient object that is similar to the background.
XPIE (Xia et al., 2017) 10,000 It covers many complex scenes with different numbers, sizes and positions of salient objects.

Table 2. Statistics on Datasets.

DUTS is a widely used large-scale dataset, consisting of the training set DUTS-TR including 10,553 images, and the test set
DUTS-TE including 5,019 images. All the images are sampled from the ImageNet DET training and test set (Deng et al.,
2009), and some test images are also collected from the SUN data set (Xiao et al., 2010). It is common practice that SOD
models are trained on DUTS-TR and tested on other datasets.

ECSSD, namely Extended Complex Scene Saliency Dataset, consists of 1,000 images with complex scenes, presenting
textures and structures. One of the characteristics is that this dataset includes many semantically meaningful but structurally
complex images. The images are acquired from the internet and 5 helpers are asked to produce the ground truth masks
individually.

DUT-OMRON is composed of 5,168 images with complex backgrounds and diverse content. Images in this dataset have
one or more salient objects and a relatively complex background.

HKU-IS has 4,447 images with relatively more multi-object scenarios. Particularly, around 50% images in this dataset have
multiple disconnected salient objects, far beyond the three datasets above.

MSOD contains the most challenging multi-object scenes across the common SOD datasets. It comprises 300 test images
with 1342 total objects. The dataset comprises a variety of object classes and a varied number of these objects across the
image.

PASCAL-S is a dataset for salient object detection consisting of a set of 850 images from PASCAL VOC 2010 validation
set with multiple salient objects on the scenes.
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SOD consists of 300 images, constructed from (Martin et al., 2002). Many images have more than one salient object that is
similar to the background or touches image boundaries.

XPIE contains 10,000 images with pixel-wise masks of salient objects. It covers many complex scenes with different
numbers, sizes and positions of salient objects.

F.2. Competitors

Here we give a more detailed summary of the backbones mentioned in the experiments.

PoolNet (Liu et al., 2019) is a widely used baseline. They design various pooling-based modules for the first time to assist in
improving the performance of SOD. Specifically, the model consists of two primary modules based on the feature pyramid
networks, namely a global guidance module (GGM), and a feature aggregation module (FAM). GGM is an individual
module, where high-level semantic information can be transmitted to all pyramid layers, and FAM aims at capturing local
context information at different scales and then combining them with different weights.

LDF (Wei et al., 2020) contains a level decoupling procedure and a feature interaction network. It decomposes the saliency
label into the body map and detail map to supervise the model. The feature interaction network is introduced to make full
use of the complementary information between branches. Both branches iteratively exchange information to produce more
precise saliency maps.

GateNet (Zhao et al., 2020) proposes a gated network to adaptively control the amount of information flowing into the
decoder. The multilevel gate units help to balance the contribution of each encoder and suppress the information in
non-salient regions. An ASPP module is exploited to capture richer context information. With a dual-branch architecture, it
forms a residual structure, which complements each other to generate better results.

ICON (Zhuge et al., 2022) proposes micro-integrity and macro-integrity, aiming to focus on whole-part relevance within a
single salient object and to identify all salient objects within the given image scene. It is composed of three parts: diverse
feature aggregation, integrity channel enhancement, and part-whole verification.

EDN (Wu et al., 2022) directly utilizes an extreme down-sampling technique to capture effective high-level features for SOD
and achieved competitive performance with high computational efficiency. The proposed Extremely Downsampled Block
is to learn a global view of the whole image. It only introduces a tiny computational overhead but achieves competitive
performance with a fast inference speed.

F.3. Implementation Details

The experiment platform is Ubuntu 18.04.5 LTS with Intel(R) Xeon(R) Gold 6246R CPU @ 3.40GHz. We implement our
method with Python 3.8.13 and torch 2.0.1. For specific backbones, we report the settings as follows:

• For EDN, following (Wu et al., 2022), Adam optimizer with parameters β1 = 0.9, and β2 = 0.99 is adopted, with
weight decay 10−4 and batch size 36. The initial learning rate is set to 5× 10−5 with a poly learning rate strategy and
the training lasts for 100 epochs in total.

• For ICON, we use the SGD optimizer, with the initial learning rate as 10−2, the weight decay as 10−4, and the
momentum as 0.9. The batch size is set to 36, and the training lasts 100 epochs.

• For GateNet (Zhao et al., 2020), we fully follow (Zhao et al., 2020) to utilize the SGD optimizer, with the initial
learning rate as 10−3, momentum as 0.9 and the weight decay as 5× 10−4. The batch size is set to 12, and the network
is iterated within 105 times.

• For LDF, as it is a two-stage framework, we integrate our method into the second stage, as most previous works do.
Specifically, we use the SGD optimizer with the initial learning rate as 5× 10−2, momentum as 0.9 and the weight
decay as 5× 10−4. The batch size is set to 32 and the training in the second stage lasts 40 epochs.

• For PoolNet, we fully follow (Liu et al., 2019) to utilize the Adam optimizer with the initial learning rate as 5× 10−5,
and the weight decay as 5× 10−4. The batch size to 1, and the network is iterated every 10 gradients are accumulated.
The training lasts 24 epochs.
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F.4. Optimization Details for Different Backbones

Following Eq. (16), here we give a detailed description of the implementation of optimization for different backbones.

• For EDN, the original loss function is
L = BCE(f) + DiceLoss(f), (66)

and we modify it into

L =

K∑
k=1

[BCE(ffore
k ) + DiceLoss(ffore

k )] + αBCE(f back
K+1). (67)

Specifically, DiceLoss is defined as:

DiceLoss(·) =
2 ·

∑N
i pi · gi∑N

i p2i +
∑N

i g2i
, (68)

where the sums run over the N pixels, and pi, gi represent the prediction and ground truth, respectively.

• For ICON, the original loss function is
L = BCE(f) + IOULoss(f), (69)

and we modify it into

L =

K∑
k=1

[BCE(ffore
k ) + IOULoss(ffore

k )] + αBCE(f back
K+1), (70)

where IOULoss is defined as

IOULoss(·) = 1−
∑N

i (pi · gi)∑N
i (pi + di)−

∑N
i (pi · gi)

, (71)

where pi and gi represent the prediction and ground truth.

• For GateNet, the original loss function is
L = ℓ(f), (72)

where ℓ(·) is anyone among the binary cross entropy, mean square error, and L1 loss. We modify it into

L =

K∑
k=1

ℓ(ffore
k ) + αℓ(f back

K+1). (73)

• For LDF, the original loss function is the same as that in ICON. Therefore, we adopt the same modification.

• For PoolNet, the original loss function is the same as that in GateNet. Therefore, we adopt the same modification.
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G. Additional Experiment Analysis
G.1. Quantitative comparisons

Here we display the quantitative results on other datasets.

Table 3. Quantitative comparisons on ECSSD, DUT-OMRON, and HKU-IS. The better results are shown with bold, and darker color
indicates superior results. Metrics with ↑ mean higher value represents better performance, while ↓ mean lower value represents better
performance.

Dataset Methods MAE ↓ SI-MAE ↓ AUC ↑ SI-AUC ↑ Fβ
m ↑ SI-Fβ

m ↑ Fβ
max ↑ SI-Fβ

max ↑ Em ↑

ECSSD

PoolNet 0.0632 0.0467 0.9785 0.9817 0.8453 0.8630 0.9205 0.9309 0.8813
+ Ours 0.0575 0.0421 0.9839 0.9893 0.8588 0.8907 0.9287 0.9477 0.8989

LDF 0.0450 0.0336 0.9618 0.9774 0.8949 0.8984 0.9366 0.9421 0.9153
+ Ours 0.0476 0.0353 0.9799 0.9769 0.8920 0.9072 0.9404 0.9522 0.9236

ICON 0.0395 0.0300 0.9677 0.9746 0.9036 0.9084 0.9407 0.9452 0.9279
+ Ours 0.0436 0.0328 0.9756 0.9774 0.8905 0.9096 0.9338 0.9481 0.9281

GateNet 0.0378 0.0288 0.9773 0.9773 0.9098 0.9199 0.9463 0.9520 0.9358
+ Ours 0.0362 0.0274 0.9784 0.9853 0.9075 0.9253 0.9423 0.9489 0.9387

EDN 0.0363 0.0271 0.9767 0.9754 0.9089 0.9147 0.9531 0.9560 0.9338
+ Ours 0.0358 0.0269 0.9762 0.9778 0.9084 0.9216 0.9456 0.9543 0.9375

DUT-OMRON

PoolNet 0.0727 0.0625 0.9403 0.9595 0.6757 0.7463 0.7919 0.8738 0.7807
+ Ours 0.0699 0.0585 0.9457 0.9687 0.6979 0.7847 0.8093 0.8927 0.8123

LDF 0.0540 0.0464 0.8834 0.9452 0.7154 0.7416 0.7918 0.8413 0.8080
+ Ours 0.0584 0.0499 0.9327 0.9535 0.7156 0.7813 0.7982 0.8944 0.8299

ICON 0.0601 0.0525 0.9160 0.9296 0.7450 0.7940 0.8092 0.8584 0.8456
+ Ours 0.0646 0.0554 0.9358 0.9423 0.7098 0.8108 0.7874 0.8798 0.8342

GateNet 0.0548 0.0475 0.9246 0.9246 0.7403 0.8031 0.8116 0.8704 0.8464
+ Ours 0.0580 0.0501 0.9329 0.9293 0.7363 0.8300 0.8049 0.8852 0.8510

EDN 0.0551 0.0484 0.9292 0.9407 0.7529 0.8224 0.8117 0.8798 s
+ Ours 0.0557 0.0483 0.9382 0.9507 0.7544 0.8381 0.8163 0.8912 0.8594

HKU-IS

PoolNet 0.0526 0.0537 0.9804 0.9842 0.8294 0.8316 0.9066 0.9199 0.8816
+ Ours 0.0464 0.0440 0.9847 0.9891 0.8501 0.8770 0.9188 0.9395 0.9081

LDF 0.0333 0.0355 0.9575 0.9544 0.8868 0.8759 0.9263 0.9217 0.9234
+ Ours 0.0346 0.0344 0.9810 0.9839 0.8815 0.8910 0.9306 0.9437 0.9320

ICON 0.0346 0.0374 0.9616 0.9641 0.8854 0.8722 0.9232 0.9151 0.9277
+ Ours 0.0357 0.0361 0.9815 0.9787 0.8788 0.8898 0.9260 0.9369 0.9315

GateNet 0.0326 0.0338 0.9762 0.9830 0.8961 0.8993 0.9346 0.9385 0.9394
+ Ours 0.0292 0.0293 0.9785 0.9779 0.8995 0.9122 0.9345 0.9441 0.9443

EDN 0.0279 0.0294 0.9750 0.9738 0.9004 0.9017 0.9417 0.9364 0.9429
+ Ours 0.0287 0.0289 0.9776 0.9780 0.8986 0.9072 0.9375 0.9443 0.9442
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Table 4. Quantitative comparisons on SOD, PASCAL-S, and XPIE. The better results are shown with bold, and darker color indicates
superior results. Metrics with ↑ mean higher value represents better performance, while ↓ mean lower value represents better performance.

Dataset Methods MAE ↓ SI-MAE ↓ AUC ↑ SI-AUC ↑ Fβ
m ↑ SI-Fβ

m ↑ Fβ
max ↑ SI-Fβ

max ↑ Em ↑

SOD

PoolNet 0.1353 0.1219 0.9000 0.9039 0.6974 0.6685 0.8356 0.8370 0.7208
+Ours 0.1235 0.1097 0.9143 0.9251 0.7365 0.7245 0.8437 0.8657 0.7654

LDF 0.0940 0.0884 0.8934 0.8839 0.7991 0.7584 0.8706 0.8391 0.8091
+Ours 0.1093 0.1009 0.9058 0.9102 0.7755 0.7404 0.8593 0.8684 0.7858

ICON 0.1058 0.0995 0.8785 0.8661 0.7931 0.7461 0.8567 0.8182 0.7984
+Ours 0.0987 0.0920 0.9083 0.9088 0.7992 0.7759 0.8557 0.8513 0.8220

GateNet 0.0987 0.0949 0.8834 0.8727 0.7928 0.7514 0.8602 0.8274 0.7949
+Ours 0.0965 0.0910 0.8935 0.8880 0.8094 0.7792 0.8626 0.8483 0.8190

EDN 0.1093 0.1009 0.8823 0.8716 0.7795 0.7313 0.8723 0.8379 0.7873
+Ours 0.0982 0.0922 0.8892 0.8818 0.8110 0.7728 0.8677 0.8382 0.8207

PASCAL-S

PoolNet 0.0944 0.0716 0.9462 0.9612 0.7556 0.8495 0.7932 0.8915 0.8165
+Ours 0.0919 0.0690 0.9535 0.9722 0.7651 0.8520 0.8346 0.9103 0.8359

LDF 0.0662 0.0502 0.9437 0.9536 0.8117 0.8504 0.8759 0.9106 0.8742
+Ours 0.0705 0.0532 0.9492 0.9626 0.8075 0.8509 0.8710 0.9150 0.8716

ICON 0.0735 0.0565 0.9308 0.9391 0.8142 0.8406 0.8642 0.8908 0.8682
+Ours 0.0791 0.0599 0.9456 0.9603 0.7946 0.8521 0.8554 0.9028 0.8641

GateNet 0.0622 0.0473 0.9474 0.9554 0.8298 0.8707 0.8794 0.9121 0.8882
+Ours 0.0665 0.0504 0.9478 0.9582 0.8217 0.8750 0.8724 0.9138 0.8839

EDN 0.0649 0.0494 0.9419 0.9506 0.8207 0.8431 0.8841 0.9086 0.8750
+Ours 0.0644 0.0491 0.9456 0.9551 0.8260 0.8684 0.8757 0.9114 0.8859

XPIE

PoolNet 0.0622 0.0505 0.9667 0.9771 0.7904 0.8242 0.8710 0.9103 0.8494
+Ours 0.0599 0.0476 0.9733 0.9857 0.8042 0.8662 0.8786 0.9308 0.8738

LDF 0.0428 0.0347 0.9641 0.9700 0.8520 0.8844 0.9015 0.9324 0.9054
+Ours 0.0458 0.0372 0.9701 0.9785 0.8467 0.8824 0.8965 0.9360 0.9013

ICON 0.0459 0.0381 0.9468 0.9503 0.8514 0.8699 0.8903 0.9090 0.8994
+Ours 0.0498 0.0405 0.9662 0.9740 0.8359 0.8774 0.8847 0.9204 0.8988

GateNet 0.0414 0.0339 0.9615 0.9656 0.8614 0.8924 0.9024 0.9296 0.9107
+Ours 0.0429 0.0347 0.9649 0.9713 0.8563 0.9046 0.8969 0.9356 0.9125

EDN 0.0409 0.0337 0.9598 0.9642 0.8584 0.8793 0.9044 0.9256 0.9043
+Ours 0.0416 0.0337 0.9640 0.9707 0.8590 0.8986 0.8959 0.9317 0.9132
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G.2. Qualitative comparisons

Here we present some visualization examples on the effect of our size-invariant loss.

Figure 8. Qualitative comparison on different backbones.
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G.3. Performance with Respect to Sizes

Here we expand the size-relevant fine-grained analysis to other backbones and benchmarks.
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Figure 9. SI-MAE performance on objects with different sizes on five datasets, with EDN as the backbone.
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Figure 10. SI-MAE performance on objects with different sizes on five datasets, with GateNet as the backbone.
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Figure 11. SI-MAE performance on objects with different sizes on five datasets, with ICON as the backbone.

29



Size-invariance Matters: Rethinking Metrics and Losses for Imbalanced Multi-object Salient Object Detection

0.1

0.2

10 30 50 70 90
Ratio

S
I−

M
A

E

LDF

LDF+Ours

(a) MSOD

0.04

0.06

0.08

0.10

10 30 50 70 90
Ratio

S
I−

M
A

E

LDF

LDF+Ours

(b) DUTS

0.040

0.045

0.050

10 30 50 70 90
Ratio

S
I−

M
A

E

LDF

LDF+Ours

(c) ECSSD

0.050

0.075

0.100

0.125

0.150

10 30 50 70 90
Ratio

S
I−

M
A

E

LDF

LDF+Ours

(d) DUT-OMRON

0.04

0.05

0.06

0.07

0.08

10 30 50 70 90
Ratio

S
I−

M
A

E

LDF

LDF+Ours

(e) HKU-IS

Figure 12. SI-MAE performance on objects with different sizes on five datasets, with LDF as the backbone.
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Figure 13. SI-MAE performance on objects with different sizes on five datasets, with PoolNet as the backbone.

G.4. Performance with Respect to Object Numbers

Here we expand the number-relevant fine-grained analysis to other backbones and benchmarks.
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Figure 14. SI-MAE performance on objects with different object numbers on five datasets, with EDN as the backbone.
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Figure 15. SI-MAE performance on objects with different object numbers on five datasets, with GateNet as the backbone.
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Figure 16. SI-MAE performance on objects with different object numbers on five datasets, with ICON as the backbone.
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Figure 17. SI-MAE performance on objects with different object numbers on five datasets, with LDF as the backbone.
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Figure 18. SI-MAE performance on objects with different object numbers on five datasets, with PoolNet as the backbone.
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G.5. Ablation Studies

Here we display the detailed results of the ablation studies in Sec. 5.3.3.

Table 5. Ablation on the parameter α on MSOD(300 images). The best results are marked in bold.
Methods α MAE ↓ SI-MAE ↓ AUC ↑ Fβ

m ↑ SI-Fβ
m ↑ Fmax ↑ SI-Fmax ↑ Em ↑

EDN (A) ResNet50 0.0467 0.0788 0.9196 0.7925 0.7635 0.8410 0.8321 0.8712
+ Ours (B) 0 0.2340 0.2000 0.9217 0.4790 0.8547 0.7695 0.9136 0.6199
+ Ours (C) 1 0.0544 0.0812 0.9360 0.7893 0.7850 0.8502 0.8912 0.8825
+ Ours (D) Sfore

Sback 0.0453 0.0724 0.9401 0.8057 0.7990 0.8555 0.8619 0.8936

Table 6. Ablation on the parameter α on DUTS(5,019 images). The best results are marked in bold.
Methods α MAE ↓ SI-MAE ↓ AUC ↑ Fβ

m ↑ SI-Fβ
m ↑ Fmax ↑ SI-Fmax ↑ Em ↑

EDN (A) ResNet50 0.0389 0.0388 0.9600 0.8288 0.8565 0.8752 0.9017 0.9033
+ Ours (B) 0 0.2318 0.1975 0.9354 0.4621 0.8730 0.7705 0.9235 0.6069
+ Ours (C) 1 0.0489 0.0460 0.9634 0.8146 0.8585 0.8807 0.9182 0.8954
+ Ours (D) Sfore

Sback 0.0392 0.0381 0.9658 0.8260 0.8672 0.8765 0.9119 0.9072

Table 7. Ablation on the parameter α on ECSSD(1,000 images). The best results are marked in bold.
Methods α MAE ↓ SI-MAE ↓ AUC ↑ Fβ

m ↑ SI-Fβ
m ↑ Fmax ↑ SI-Fmax ↑ Em ↑

EDN (A) ResNet50 0.0363 0.0271 0.9767 0.9089 0.9147 0.9531 0.9560 0.9338
+ Ours (B) 0 0.1656 0.1282 0.9633 0.6557 0.9236 0.9043 0.9587 0.7431
+ Ours (C) 1 0.0454 0.0340 0.9740 0.8986 0.9164 0.9457 0.9556 0.9282
+ Ours (D) Sfore

Sback 0.0358 0.0269 0.9762 0.9084 0.9216 0.9456 0.9543 0.9375

Table 8. Ablation on the parameter α on DUT-OMRON(5,168 images). The best results are marked in bold.
Methods α MAE ↓ SI-MAE ↓ AUC ↑ Fβ

m ↑ SI-Fβ
m ↑ Fmax ↑ SI-Fmax ↑ Em ↑

EDN (A) ResNet50 0.0514 0.0484 0.9292 0.7529 0.8224 0.8117 0.8798 0.8514
+ Ours (B) 0 0.2693 0.2305 0.9098 0.4231 0.8708 0.7104 0.9231 0.564
+ Ours (C) 1 0.0642 0.0555 0.9284 0.7442 0.8239 0.8190 0.9048 0.8508
+ Ours (D) Sfore

Sback 0.0557 0.0483 0.9382 0.7544 0.8381 0.8163 0.8912 0.8594

Table 9. Ablation on the parameter α on HKU-IS(4,447 images). The best results are marked in bold.
Methods α MAE ↓ SI-MAE ↓ AUC ↑ Fβ

m ↑ SI-Fβ
m ↑ Fmax ↑ SI-Fmax ↑ Em ↑

EDN (A) ResNet50 0.0279 0.0294 0.9750 0.9004 0.9017 0.9417 0.9364 0.9429
+ Ours (B) 0 0.1822 0.1431 0.9613 0.6027 0.9132 0.8921 0.9541 0.7100
+ Ours (C) 1 0.0383 0.0364 0.9760 0.888 0.9007 0.9377 0.9478 0.9347
+ Ours (D) Sfore

Sback 0.0287 0.0289 0.9776 0.8986 0.9072 0.9375 0.9443 0.9442

G.6. Time Cost Comparison

Size-invariant optimization generally modifies the computation process of the original loss functions without bringing in too
much computational burden. According to Eq. (16):

LSl(f) =

K∑
k=1

ℓ(ffore
k ) + αℓ(f back

K+1). (74)
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If the time cost of the original loss functions is O(t), then the theoretical time cost for size-invariant optimization will almost
be O((K + 1)t̄), where O(t̄ is the average time cost of processing one frame. Particularly, as it is common practice to train
the SOD model on dataset DUTS-TR, we report the average K̄ over the dataset: K̄ ≈ 1.21. Also, we report the practical
training time of different backbones when applying our method.

Table 10. Practical training cost per epoch. The results are displayed as mean ± std., with ’seconds’ as the unit.

Backbone Original optimization SI optimization

EDN 340.0 ± 3.3s 543.8±0.7s
PoolNet 523.5±1.1s 690.2±1.5s
ICON 162.0±0.5s 340.1±0.1s

GateNet 561.2±0.8s 1270.2±35.3s
LDF 109.2±0.6s 244.5±1.4s

It is noteworthy that the time cost of calculating the connected components of the image is not included in the training
process. All the calculations can be completed during the data pre-process. The pre-process mainly consists of two stages:

(a) Calculating the connected components of the image.

(b) Generating the weight mask according to the bounding boxes for components.

Here we display the practical pre-process time on some representative datasets, which shows that the bounding boxes and
connected components can be obtained with acceptable efficiency.

Table 11. Practical pre-process time for each dataset.

Dataset Stage(a) Stage(b) Total

DUTS-TE(5,019) 474.0s 188.2s 658.2s
ECSSD(1,000) 91.8s 40.5s 132.3s
DUT-OMRON(5,168) 470.7s 220.1s 690.8s
HKU-IS(4,447) 508.8s 190.1s 698.9s
XPIE(10,000) 1432.2s 316.5s 1748.7s
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