Under review as a conference paper at ICLR 2026

DENSEMIXER: IMPROVING MOE POST-TRAINING VIA
PRECISE ROUTER GRADIENT

Anonymous authors
Paper under double-blind review

ABSTRACT

The widely adopted Top-K router in Mixture-of-Experts (MoE) models is mathe-
matically non-differentiable, making them harder to train than dense counterparts.
We propose DenseMixer, a simple and effective MoE post-training technique that
provides a more precise router gradient estimation by trading in some extra compute.
It is universally applicable to TopK routed MoE, operates in a plug-and-play man-
ner, preserves inference-time efficiency, and remains fully compatible with popular
training libraries as well as parameter-efficient methods such as LoRA. Extensive
experiments demonstrate that DenseMixer consistently outperforms conventional
approaches across MoE scales (7B—30B), architectures (with and without shared
experts), pre-training regimes (from scratch and up-cycling), and post-training data
types (instruction tuning and long chain-of-thought). Furthermore, our analysis
on efficiency shows that the additional computation introduced by DenseMixer
remains modest, providing substantial improvements at an acceptable cost.

1 INTRODUCTION

Mixture-of-Experts (MoE) has emerged as a powerful paradigm for scaling neural networks while
maintaining computational efficiency (Comanici et al., 2025; |Liu et al., [2024a; Yang et al.| 2025). At
the same time, MoE has been observed to be harder to train than dense models.

The challenge stems from the cornerstone of MoE — the sparse routing mechanism, which is typically
implemented via a TopK router that is mathematically non-differentiable (Shazeer et al., 2017}
Liu et al.| 2023)). This issue blocks straightforward back-propagation and significantly complicates
gradient computation, particularly for the router parameters that determine expert selection. The
non-differentiability problem forces existing training methods to rely on imprecise gradient approxi-
mations, where the problematic TopK operation is treated as having zero gradient during automatic
differentiation, or to freeze router parameters entirely during fine-tuning (Unsloth Al, 2025)).

To address the non-differentiability problem, as shown in Figure [} we introduce DenseMixer for
MOoE post-training, where we trade additional compute (on inactive experts during the forward
pass) for more precise router gradient estimation. Specifically, DenseMixer employs straight-through
estimators (Bengio et al.|[2013)) to approximate the gradient for the TopK operation, requiring outputs
from all experts during training while maintaining sparse computation during inference.

Unlike previous solutions that depends on gradient approximations under restrictive routing assump-
tions (Wang et al., 2024b)) or only works for small activated expert counts (e.g., K=1 or 2) (Liu et al.|
2023), DenseMixer is universally applicable to modern MoE models that employ fine-grained TopK
routing and activate multiple experts (e.g., K=8). Our method can be applied in a plug-and-play post-
training manner, preserves inference behavior, and remains fully compatible with existing training
frameworks and parameter-efficient techniques such as LoRA (Hu et al.; |2022).

To verify the effectiveness of DenseMixer, we conduct experiments on four representative MoE
models spanning scales from 7B to 30B, architectures with or without shared experts, pre-training
regimes from scratch or up-cycling, and post-training data types such as instruction or long chain-of-
thought data. Across these settings, DenseMixer consistently outperforms conventional MoE training,
Expert-Specialized Fine-Tuning (ESFT) (Wang et al}20244a), and frozen-router approaches (Unsloth
ALL|2025) on a variety of downstream tasks, under both full fine-tuning and LoRA adaptations.

Under review as a conference paper at ICLR 2026

Conventional DenseMixer

Output of MoE layer Output of MoE layer

FEN1. FFN2 [FEN3. FFEN4 FFN1 FFN2 FFN3 FFN4

Router Router

Input of MoE layer Input of MoE layer

Figure 1: Comparison of router-gradient computation in MoE training. Solid arrows denote forward
propagation, and dashed arrows denote backpropagation. Conventional training uses outputs from
selected experts only, while DenseMixer additionally collects outputs from all experts for more
accurate router gradient estimation.

We further evaluate the computational overhead introduced by DenseMixer. Although it adds
approximately 46% additional FLOPs (measured on Qwen3-30B-A3B MoE), the actual time overhead
is significantly lower—particularly for smaller models or moderate datasets, where the extra cost is
almost negligible. This is because DenseMixer increases FLOPs only in the forward pass during
post-training, while other factors such as communication often dominate runtime. In post-training
scenarios, where dataset scales are much smaller than in pre-training and performance gains are
prioritized over efficiency, this overhead remains well within acceptable bounds.

To summarize, our contributions are three-fold:

* We propose DenseMixer, a novel MoE post-training technique that provides a more precise router
gradient estimation thus better performance through the straight-through estimator.

* We provide comprehensive empirical validation across multiple MoE scales, architectures, and
training scenarios, demonstrating consistent improvements over conventional methods.

* We offer a plug-and-play implementation that requires minimal code changes and is compatible
with existing training frameworks, enabling easy adoption for practitioners.

2 PRELIMINARIES

In this section, we provide background on MoE and its training challenges arising from the non-
differentiability issue (§ 2.1)), and revisit how conventional method attempts to address it, highlighting
the limitations (§[2.2)) that motivate our DenseMixer approach.

2.1 MOE TRAINING CHALLENGES

In Transformer-based MoE models, the standard feed-forward network (FFN) layer is replaced by
a Mixture-of-Experts (MoE) layer, consisting of a set of N parallel FFNs referred to as experts:
{Eo(2), E1(x),..., En_1(x)}. Alightweight router network — typically a linear layer parameterized
by 6 — followed by a softmax produces routing probabilities and dynamically selects a subset of
experts to activate for each input = (Jacobs et al.|[1991}; Jordan & Jacobs, |1994; Shazeer et al., 2017).

MOoE Forward Propagation. The forward pass consists of the following stages.
(1) The routing weight for each expert E; is computed with the softmax function as

7; = softmax(z - 07);. (1)

Under review as a conference paper at ICLR 2026

(2) The output of the MoE layer is computed as the weighted sum of expert outputs, with TopK
selection activating only the highest-scoring experts:

N-1

y= Z 7; - TopK(m); - Expert;(z), 2
i=0
where:
1, if 7; is among the top K largest values of 7,
TopK(7); = . 3

opK () {O, otherwise.)

(3) The final loss is computed using a differentiable loss function:
L = L(y). “

The forward computation proceeds much like a standard network and scales efficiently because
each token activates only a small subset of experts. However, the discrete TopK routing makes the
selection step non-differentiable and introduces training challenges to the following backward pass.

MoE Backward Propagation. The gradient computation for all components except the router
follows the same procedure as dense models and can be handled by standard backpropagation. The
main challenge lies in computing the router’s gradient, as it involves non-differentiable operations.
To backpropagate from the expert output y to the router parameters 6, we apply the chain rule:

oL 8y P) O(m; - TopK(7);) Om;
VL= 50 E:Eja . Expert, (z) - ((),<aej)
7=0 =0 :

Non-Differentiable Routing Problem. This problem occurs when calculating the router gradient.
1. In eq. (3), the last term is straightforward to compute:

Omj _ 9 softmax(z - 07);
0 0

(©)

2. The middle term in eq. (5] expands to:
O(m; - TopK(m);) OTopK(7);
St el SAVA VA et sl SV

=7 TopK (n); - §;; 7
()'/T j 87('] +_0p (,_/) J ()
—_— term?2

terml
where:

_ L=

Clearly, the TopK mask is non-differentiable — specifically, the term E)Tt’giw is not defined.
J

Therefore, the router’s gradient is not straightforward to compute, blocking standard gradient-based
optimization for router parameters (Shazeer et al.l 2017} Lepikhin et al.| 2021} [Fedus et al., 2022]).

2.2 How CONVENTIONAL METHOD WORKS

Conventional MoE training method sidesteps the non-differentiable routing issue by treating TopK ()
OTopK(m);

as constant during backpropagation, thus neglecting the non-differentiable term or, , namely it
adopts the following approximation:
0TopK(7);
ITopK(m): ©)
871']
Thus, the non-differentiable term becomes:
0 Uy T K(m i
9(m; TopK(m)s) TopK (7); - 855 (10)

on;

Under review as a conference paper at ICLR 2026

And finally, the router gradient is computed as:

NoIN-1 50 O
VO[: ~ vConventional = a " EXpGI‘ti (I) : TOpK(Tr)l ’ 5ij v (11)
: oy 00
7=0 =0
N—-1
= a—ﬁ - Expert,;(z) - TopK(r); - aﬂj (12)
2 oy J T

Although widely used, the conventional surrogate retains only one of the two terms in the router-
gradient decomposition as shown in Eq. 2, discarding the selection-sensitivity term 7; - m%piw.
J

While often empirically effective, it is inherently biased — leaving clear room for more faithful and
effective estimators for such gradient computation.

3 DENSEMIXER: TRADE COMPUTE FOR GRADIENT PRECISION

In this section, we present DenseMixer, our solution to address the non-differentiability problem
in MoE training. We first introduce how our DenseMixer approach works with the straightforward
estimator (§ and then provide an analysis of its methodology design(§ [3.2).

3.1 DENSEMIXER WALKTHROUGH

To bridge discrete variables and backpropagation make the gradient approximation more accurate,
DenseMixer adopts the straight-through estimator (STE) (Bengio et al.,[2013).

OTopK(r);
= J (13)
This means:
0(m; TopK(m);
‘(;%” ~ (m; + TopK(n);) - 65, (14)
H]'
Finally:
== ac or;
VoL ~ VpenseMixer = Z Z 87 Xpert () (7TZ + TOpK()) 61j ’ % (15)
j=0 i=0
N-1
oL o,
= 2 8—y EXpertj(x) - (mj + TopK(7);) - 879] (16)

Intuitively, STE pretends that the TopK selection is an identity function with respect to the router
logits during backpropagation. In practice, we implement this by: 1. Forward — computing with the
original hard TopK as before; 2. Backward — overriding the gradient of the TopK node to be the
identity.

Handling Normalized TopK. Some recently released MoE models (Yang et al.l [2025) adopt
normalized_topk_prob implementation, which normalizes the expert weights as follows:

N-1

m; - TopK();
Ynormalized = N1 - .
ZZ::‘) Y ko Tk - TopK(m)s

- Expert, () (17)

Such normalization makes the gradient computation even more complicated as both the numerator
and denominator have the non-differentiable TopK term. We address this by letting gradients
flow through the normalization denominator only for Top-K experts, while treating it as a constant
(detached) for non-Top-K experts, providing a practical solution for modern MoE architectures.

Under review as a conference paper at ICLR 2026

3.2 DENSEMIXER ANALYSIS

The core idea of DenseMixer can be summarized as trading in extra compute for more precise
estimation for the router gradient. Different from conventional method that backpropagates only
through the active experts, DenseMixer enables the MoE model to perform backpropagation through
all experts to achieve a better approximation of the router gradient.

Computation Overhead. A natural drawback of using DenseMixer’s gradient approximation
(VpenseMixer) 18 that it requires the outputs of all experts (i.e., Expert,(z) forall j € [0, N —1]) fora
given input x, while conventional method’s gradient approximation (V conventional) ONly requires those
of the TopK selected experts. This means that DenseMixer requires the MoE layer to be densely
activated during forward pass, which introduces more compute than the normal case.

Nevertheless, in the context of MoE post-training, computational cost is typically less critical than in
large-scale pre-training. DenseMixer therefore provides a practical trade-off: it incurs only a single
additional forward pass on those inactive experts — distinct from simply setting K equal to the total
number of experts — and achieves improved router gradients at a manageable cost. This makes the
additional overhead acceptable in practice, considering the performance gain it brings.

Compatibility with Existing MoEs. Previous methods for addressing router non-differentiability,
such as SparseMixer (Liu et al., [2023) and ReMoE (Wang et al., [2024b)), rely on models being
pretrained with specialized routing mechanisms. This limits their applicability to post-training or
fine-tuning, since most modern open-source MoEs are pre-trained with the standard TopK router.
Moreover, sampling-based approaches like SparseMixer, which replace TopK with stochastic sam-
pling, are only effective when K is very small (e.g., 1-2). They fail to scale to modern MoEs that
typically employ fine-grained experts with much larger activation sizes (e.g., K = 8, 16, or more).

In contrast, DenseMixer is directly compatible with TopK routed MoEs, supports arbitrary numbers
of activated experts, and delivers consistent post-training improvements without requiring any changes
to the pre-training procedure. This plug-and-play property enables us to further provide an easy-to-use
implementation package that can be seamlessly applied to existing MoE models.

4 EXPERIMENTS

In this section, we verify the effectiveness of DenseMixer across multiple MoE models and training
scenarios. We first introduce the experimental setup (§ [4.1), then present comparative results (§ [4.2),
and conclude with efficiency analysis (§ [.3).

4.1 EXPERIMENTAL SETUP

We evaluate DenseMixer across various settings and compare it with representative baselines.
Models. To validate the generality of DenseMixer, we select four base models pretrained with
diverse configurations, including OLMoE-1B-7B (Muennighoff et al.,[2025a), Qwen1 .5-MOE-A2.7

DeepSeek-V2-Lite (DeepSeek-Al, [2024), and Qwen3-30B-A3B-Base (Yang et al., [2025). The
detailed configurations of these models are summarized in[Table 1]

Table 1: Information of base MoE models used in our experiments.

Model Name Active Total Active/Total Shared Context Normalize Training
Param. Param. Expert Num. Expert Num. Length TopK Prob Strategy
OLMOoE-1B-7B 1B 7B 8764 0 4k False from scratch
Qwenl.5-MoE-A2.7B 2.7B 14B 8764 4 8k False up-cycling
DeepSeek-V2-Lite 2.4B 16B 6/64 2 32k False from scratch
Qwen3-30B-A3B-Base 3B 30B 8/128 0 32k True from scratch

Datasets. We adopt two data configurations: a general task configuration for lightweight backbones
and a long CoT configuration for the stronger backbone model.

'"https://huggingface.co/Qwen/Qwenl.5-MoE-A2.7B

https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B

Under review as a conference paper at ICLR 2026

* General tasks. For OLMoE-1B-7B, Qwenl.5-MoE-A2.7B, and DeepSeek-V2-Lite, we fol-
low the training and test sets from (Wang et al., 2024a). The training set covers GSM8K
(math) (Cobbe et al.l [2021), CodeAlpaca (Chaudhary, 2023), intent classification, law, sum-
marization, and translation (Wang et al.| 2024a). The test set covers GSM8K (math) (Cobbe et al.|
2021), MBPP(Austin et al., [2021)), and HumanEval (coding) (Chen et al.} 2021), as well as intent
classification, law, summarization, and translation (Wang et al., 2024a).

* Long CoT. For Qwen3-30B-A3B-Base, due to its improved pretraining techniques, post-training on
the tasks above yields limited gains. Therefore, we focus on solving more challenging competition-
level math and coding questions by generating long chain-of-thoughts (CoT). Specifically, for math
reasoning, we train the model with a filtered subset of the Stanford S1 dataset (Muennighoff et al.|
2025b)) (about 1,000 examples with reasoning trajectories distilled from DeepSeek-R1 (DeepSeek-
AlL[20235)), and evaluate the model on GPQA (Rein et al.| 2024), AIME (Mathematical Association
of America, 2025), MATH-500 (Hendrycks et al., |2021), OlympiadBench (He et al., 2024).
For coding, we train the model with a filtered subset of the Llama-Nemotron Post-Training
Dataset (Nathawani et al., 2025) (about 35,000 coding examples), and evaluate the model on
HumanEval(Chen et al.,[2021)), HumanEval+ (Team| 2023-2025)), MBPP (Austin et al., 2021)), and
LiveCodeBench (Jain et al., [2024).

The training and evaluation datasets statistics of the general tasks are shown below and those of the
Long CoT tasks are provided in Appendix §[C]

Table 2: Training and test sample sizes for different datasets.

GSM MBPP HumanEval Intent Law Summarization. Translation.

#Training Samples 7473 22000 22000 7280 927 19587 11639
#Test Samples 1319 500 164 500 100 100 100

Baselines Training Methods. We compare DenseMixer against several representative MoE training
methods that have been widely adopted.

» Conventional: Standard MoE training method which treat the non-differentiable Top-K operation
is treated as having zero gradient in automatic differentiation.

» ESFT: Expert-Specialized Fine-Tuning proposed by DeepSeekAl, which updates only a pre-
selected subset of experts for a given task. We include both ESFT-gate (selection based on average
gating scores) and ESFT-token (selection based on token-selection ratios).

* Frozen Router: Freeze the router and only update other components in MoE, as suggested by
practitioners for stability.

We also compare these methods in parameter-efficient fine-tuning (PEFT) settings, where we apply
LoRA to all modules except the router.

Evaluation Setup. For each method, we conduct a grid search on training hyperparameters (learn-
ing rate and batch size) and report the best performance. We evaluate models across multiple
downstream tasks relevant to each model’s domain, measuring task-specific metrics such as accuracy
for classification tasks and pass rates for coding tasks. Specifically, for the long CoT task, we report
the evaluation metrics under three sets of decoding hyperparameters (temperature and top_p) due to
the instability of long CoT evaluation. The hyperparameters are provided in § [B

4.2 MAIN RESULTS

Extensive experimental results demonstrate that DenseMixer consistently outperforms conventional
MOoE training across MoE models of varying scales, architectures, and pre-training recipes, as well
as across diverse training and evaluation datasets. This performance advantage holds for both full
fine-tuning and parameter-efficient fine-tuning methods (e.g., LoRA). This is shown by Table [3|under
General Tasks configuration, and Table] and Table [5|under Long CoT configuration.

Such performance improvement remains robust under different hyper-parameter settings for LLM
generation, for example, under different popular temperature and Top-p combinations. This is
demonstrated extensively by Table 4] and Table[3]

Under review as a conference paper at ICLR 2026

Table 3: Post-training results on general tasks with three MoE backbones. We highlight the
best score for each task in dark green and the second in light green for each setting. DenseMixer
consistently achieves the best average and most per-task scores across all models, under both full-
parameter finetuning and LoRA finetuning settings.

Backbone

(Total Param.) Method GSM MBPP HE Intent Law Sum. Trans. Avg
Base Model 15.85 19.80 1097 020 570 740 11.09 10.14
Frozen Router 4488 17.80 7.23 72.80 2250 36.05 2829 32.79
Conventional 4594 2340 18.92 74.60 2235 3599 26.89 3544

OLMOoE DenseMixer 49.00 25.12 20.73 77.40 23.02 40.64 3255 38.35

(7B) Frozen Router +LoRA 45.03 2420 17.07 55.80 21.30 37.70 28.19 32.76
Conventional +LoRA 44.58 2420 1585 60.20 21.60 37.30 26.22 32.85
DenseMixer+LoRA | 4538 26.20 1648 @ 66.60 24.70 40.80 29.43 35.66
ESFT-gate 43.06 20.80 14.02 21.20 22.39 19.50 17.37 22.62
ESFT-token 43.82 19.60 12.80 20.80 22.60 17.80 16.67 22.01
Base Model 38.69 | 38.84 3231 16.83 18.20 2829 16.53 27.10
Frozen Router 5337 3520 37.10 82.20 33.01 3829 32.75 44.56
Conventional 53.42 34.60 3643 81.80 29.25 37.80 33.02 43.76
DenseMixer 55.16 3540 39.68 83.40 33.83 40.56 33.90 45.99

Qwenl.5-MoE

(14B) Frozen Router +LoRA 46.77 3140 36.58 71.00 30.30 30.19 28.08 39.19

Conventional +LoRA 43.89 34.00 38.41 64.80 28.80 37.99 26.14 39.15
DenseMixer+LoRA | 47.24 3540 3841 71.80 31.80 40.20 29.25 42.01

ESFT-gate 50.72 34.00 3659 7640 27.10 3589 2849 4131
ESFT-token 5276 35.80 37.20 76.00 28.20 33.39 28.86 41.74
Base Model 19.00 43.00 2744 3.00 1490 16.50 16.20 12.65
Frozen Router 3295 46.60 31.11 6930 28.10 43.70 24.80 41.48
Conventional 48.50 46.00 31.71 81.80 29.70 43.00 24.30 44.70
DeepSeek-V2-Lite DenseMixer 51.50 47.00 3232 8240 32.10 4580 2536 46.42
(16B) Frozen Router +LoRA 48.06 4520 3476 68.40 24.10 46.20 32.60 42.83

Conventional +LoRA 50.60 46.50 35.66 70.20 2290 39.90 28.80 40.45
DenseMixer+LoRA [52.16 46.80 36.59 71.00 2430 47.80 33.80 44.23

ESFT-gate 2949 4390 28.05 2520 16.80 1520 17.20 15.51
ESFT-token 28.66 43.80 2622 26.00 18.00 16.00 17.21 19.30

Here, “HE” is short for HumanEval, “Sum.” is for Summary, and “Trans.” represents Translation.

Interestingly, as shown in Table [3] we find that Frozen Router can occasionally outperform Con-
ventional Training, where the router is trained end-to-end with imprecise gradients. However, it
consistently underperforms DenseMixer, which benefits from more accurate gradient signals for the
router. Therefore, we confirm that the routing training is important in MoE optimization.

Table 4: Results on post-training Qwen3-30B-A3B-Base across different decoding configurations
(Math Benchmarks). DenseMixer consistently surpasses conventional training methods.

GPQA AIME2024 AIME2025 Olympiad MATHS00

Method Temp & Top-p | (0@8) (veg@32) (avg@32) (avg@1) (ave@l)
Base Model 0.6 & 0.95 38.88 20.63 771 3481 72.80
0.7 & 0.8 39.89 20.53 8.33 33.92 75.40
1.0& 0.7 36.36 18.75 8.75 3170 68.00
Conventional 0.6 & 0.95 54.80 61.56 45.63 57.33 93.40
0.7&0.38 5423 61.67 44.27 55.41 92.20
1.0& 0.7 56.55 63.65 46.15 59.11 93.00
DenseMixer 0.6 & 0.95 58.52 63.85 45.83 58.51 93.60
0.7 & 0.8 55.80 63.13 4531 57.18 93.00
1.0 & 0.7 58.14 6271 47.50 57.77 93.80

Under review as a conference paper at ICLR 2026

Table 5: Results on post-training Qwen3-30B-A3B-Base across different decoding configurations
(Code Benchmarks and Average). DenseMixer consistently outperforms conventional training.

HumanEval HumanEval+ (MBPP LiveCodeBench
Method Temp & Top-p | =,/ @4) (vg@4) (avg@1) (avg@4) Avg
Base Model 0.6 & 0.95 65.24 60.06 53.60 16.85 48.94
0.7 &0.8 62.80 61.12 55.60 16.48 49.00
1.0 & 0.7 62.65 59.14 49.80 13.26 46.21
Conventional 0.6 & 0.95 92.23 86.89 80.80 32.26 67.21
0.7 & 0.8 91.01 85.37 76.80 29.39 65.59
1.0 & 0.7 90.85 86.59 79.00 3342 67.59
DenseMixer 0.6 & 0.95 93.59 89.02 82.00 34.31 68.80
0.7 & 0.8 91.92 86.89 80.80 31.89 67.32
1.0 & 0.7 93.29 88.87 84.39 34.40 68.99

4.3 EFFICIENCY ANALYSIS

Computational Overhead. Though DenseMixer requires extra computuation on inactive experts,
the time consumption does not grow linearly with the number of experts. It only requires an extra
forward pass and does not require gradient computation and backward parameter update on inactive
experts. For Qwen3-30B-A3B, DenseMixer incurs approximately 1.46x the FLOPs compared to

Table 6: FLOPs and memory usage analysis for Qwen3-30B-A3B.

Method Fwd TFLOPs/layer Bwd TFLOPs/layer Total TFLOPs/layer Peak mem (GB)
Conventional 16.85 33.70 50.54 157.93
DenseMixer 40.04 33.70 73.74 164.96
Ratio (DM/Conv) 2.38x 1.00x 1.46x 1.04x

Note. Fwd = Forward, Bwd = Backward.

conventional training. The detailed FLOPs analysis in table[6]shows that DenseMixer mainly requires
more FLOPs in the forward pass. Overall, the extra computation is acceptable during post-training
stage, and the peak memory usage does not increase substantially.

Training Time Comparison. We provide actual training time comparisons across different scales
of model datasets.

Table 7: Training time comparison indicating acceptable overhead in post-training scenarios.

Model Dataset Conventional DenseMixer Overhead
Qwenl.5-MoE (14B) Intent (7K) 22 min 24 min 9%
Law (1K) 8.5 min 9.5 min 12%
Summary (19K) 1.2h 14h 17%
Translation (11K) 39 min 45 min 15%
Qwen3-MoE (30B) S1 (1K) 2.8h 3.6h 29%
Nemotron-Code (35K) 21h 28 h 33%

As shown in [7} the training time overhead of DenseMixer is <20% on Qwen1.5-MoE, and ~ 30%
on Qwen3-MoE. Though increased with the size of model and training data, it is still acceptable in
most post-training scenarios.

Overall, the results demonstrate that DenseMixer consistently outperforms conventional MoE training
methods across different model scales, architectures, and training scenarios, while maintaining
reasonable computational overhead suitable for post-training applications.

Under review as a conference paper at ICLR 2026

5 RELATED WORK

Current approaches to MoE training handle the non-differentiability problem through several
paradigms, each with inherent limitations.

SparseMixer (Liu et al.| |2023)) and GrinMoE (Liu et al.|[2024b) use numerical ODE methods with the
mid-point method to provide scalable gradient approximations for expert routing while maintaining
sparse computation. However, both methods require sampling over the routing distribution, which
works well when few experts are activated (1-2) but becomes computationally challenging and
difficult to implement efficiently for modern MoEs (e.g., Qwen3-MoE (Yang et al., |2025)) that
typically activate many more experts (8, 16, or higher). DenseMixer does not have such restriction
and proves to work well on 8 active experts in the training of modern MoEs.

DS-MOoE (Pan et al., 2024) employs dense computation across all experts during training combined
with sparse inference, requiring dense activation during both forward and backward passes, which is
much slower,while our DenseMixer only requires dense activation during the forward pass. Because
the dominant training time cost lies in the backward pass, and DenseMixer does not require dense
activations in this phase, it is significantly more efficient than DS-MoE. DefaultMoE (Panda et al.,
2025)) shares a similar philosophy by maintaining sparse training while providing dense gradients
through substituting inactive expert outputs with exponential moving averages of previously computed
expert values in the same batch. However, such approximations are less precise than DenseMixer’s
direct computation approach, and notably, the performance improvements DefaultMoE achieves after
pre-training on large token volumes are comparable to or smaller than what DenseMixer achieves
through post-training on significantly fewer tokens. Additionally, DefaultMoE focuses on pre-training
scenarios where computational efficiency is relatively critical, while we target the more practical
post-training setting where the extra computational cost is more acceptable in exchange for improved
gradient precision and consistently better performance.

6 CONCLUSION

We confirm that the non-differentiability of Top-K routing is a key obstacle to effective MoE training.
By trading an extra forward pass on inactive experts, DenseMixer enables more precise routing
gradients, consistently improving post-training quality as measured by downstream performance,
beyond conventional MoE approaches under various settings.

Our comprehensive evaluation across four MoE models (7B, 14B, 16B, 30B) and diverse architectures
demonstrates DenseMixer’s effectiveness and generalizability. The method delivers consistent gains
across pre-training regimes (from scratch vs. up-cycling), downstream tasks (math, coding, language
understanding), and both full fine-tuning and parameter-efficient settings. Moreover, the added
compute is modest and limited to the post-training stage, making the cost acceptable. With its
plug-and-play design and compatibility with existing frameworks, DenseMixer is simple to adopt
and broadly applicable for advancing MoE post-training.

ETHICS STATEMENT

All datasets used in this work (GSM8K (Cobbe et al., [2021),MBPP (Austin et al., [2021),Hun-
manEval (Chen et al.| 2021), Intent classification, Law, Summary, and Translation (Wang et al.|
2024a), Stanford S1 (Muennighoff et al.|,|2025b), Llama-Nemotron-Post-Training-Dataset (Nathawani
et al., [2025)) are publicly available academic benchmarks that do not contain personally identifiable
or sensitive information. Our study focuses on post-training mixture-of-experts (MoE) models and
does not involve the collection of new human-subject data. As with other LLM fine-tuning methods,
models trained with DenseMixer may still produce incorrect, biased, or misleading content, and
code-related outputs may contain insecure or faulty patterns. Our method does not eliminate these
risks, and deployments in high-stakes settings should include appropriate safeguards (e.g., content
filtering, human oversight, and domain-specific evaluations). The potential societal benefits of this
work include improved performance of MoE models, which may help humans in various domains.
This research was conducted in accordance with the ICLR Code of Ethics, and the authors take full
responsibility for the analyses and conclusions presented in this paper.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. We applied DenseMixer on rep-
resentative MoE models spanning 7B—30B parameters (Yang et al., 2025; |DeepSeek-AlL [2024; Muen-
nighoff et al., 2025a)) and across diverse settings (with/without shared experts, different pre-training
regimes, and multiple downstream tasks, including GSM8K (Cobbe et al.|[2021), MBPP (Austin et al.|
2021))),HumanEval (Chen et al.,[2021), Intent classification, Law, Summary, and Translation (Wang
et al., 2024a), MATH-500 (Hendrycks et al., [2021),AIME 2024 and AIME 2025 (Mathematical
Association of America, 2025), consistently improving over conventional MoE training, Expert-
Specialized Fine-Tuning (Wang et al., [2024a)), and frozen-router approaches(Unsloth Al [2025))
under both full fine-tuning and parameter-efficient adaptationHu et al.| (2022). Because the long
chain-of-thought reasoning model is sensitive to decoding hyperparameters, we report results under
multiple combinations of temperature and topp to demonstrate the robustness and reproducibility
of our method. We detail the method specification, and we provide the practical recipe used in our
experiments. An efficiency analysis reports the additional compute introduced during post-training,
with a forward-only overhead and a measured FLOP ratio that remains acceptable for post-training
use. Together, these descriptions enable reproduce using standard training libraries. With the provided
code and instructions, our results can be reproduced using 8xH200 GPUs or equivalent hardware.

REFERENCES

Anthropic. Claude code — claude. https://claude.com/product/claude-code, 2025.
Accessed: 2025-09-24.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis with
large language models. arXiv preprint arXiv:2108.07732,2021. URL |https://arxiv.org/
abs/2108.07732.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.
URLhttp://arxiv.org/abs/1308.3432.

Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation. https :
//github.com/sahi1280114/codealpaca) 2023. Accessed: 2025-09-25.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021. URL https://
arxiv.org/abs/2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

DeepSeek-Al. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model,
2024.

DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter

models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1-39,
2022.

10

https://claude.com/product/claude-code
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
http://arxiv.org/abs/1308.3432
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2501.12948

Under review as a conference paper at ICLR 2026

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurlIPS,
2021.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Lu Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations (ICLR), 2022. URL https://openreview.net/forum?id=
nzeVKeeFYfO.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79-87, 1991.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural
computation, 6(2):181-214, 1994.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. In Proceedings of the International Conference on Learning
Representations (ICLR), 2021. Poster.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Liyuan Liu, Jianfeng Gao, and Weizhu Chen. Sparsemixer: Mixture-of-experts via learned sparse
backpropagation. arXiv preprint arXiv:2310.00811, 2023. URL https://arxiv.org/abs/
2310.00811.

Liyuan Liu et al. Grinmoe: Gradient-informed mixture-of-experts. arXiv preprint arXiv:2409.12136,
2024b. URL https://arxiv.org/abs/2409.12136.

Mathematical Association of America. American invitational mathematics examination (aime).
https://maa.org/maa-invitational-competitions/} 2025. Official competition;
credit problems to MAA AMC.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
Shi, Pete Walsh, @yvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita Bhagia,
Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe Kiela, Ali
Farhadi, Noah A. Smith, Pang Wei Koh, Amanpreet Singh, and Hannaneh Hajishirzi. Olmoe: Open
mixture-of-experts language models. In International Conference on Learning Representations
(ICLR), 2025a. URL https://openreview.net/forum?id=xXTkbTBmgq.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025b.

Dhruv Nathawani, Igor Gitman, Somshubra Majumdar, Evelina Bakhturina, Ameya
Sunil Mahabaleshwarkar, , Jian Zhang, and Jane Polak Scowcroft. Nemotron-Post-
Training-Dataset-vl, 2025. URL https://huggingface.co/datasets/nvidia/
Nemotron-Post-Training-Dataset-vll

OpenAl Introducing gpt-5. https://openai.com/index/introducing-gpt-5/, 2025.
Accessed: 2025-09-24.

11

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2310.00811
https://arxiv.org/abs/2310.00811
https://arxiv.org/abs/2409.12136
https://maa.org/maa-invitational-competitions/
https://openreview.net/forum?id=xXTkbTBmqq
https://huggingface.co/datasets/nvidia/Nemotron-Post-Training-Dataset-v1
https://huggingface.co/datasets/nvidia/Nemotron-Post-Training-Dataset-v1
https://openai.com/index/introducing-gpt-5/

Under review as a conference paper at ICLR 2026

Bowen Pan, Yikang Shen, Haokun Liu, Mayank Mishra, Gaoyuan Zhang, Aude Oliva, Colin Raffel,
and Rameswar Panda. Dense training, sparse inference: Rethinking training of mixture-of-experts
language models. arXiv preprint arXiv:2404.05567, 2024.

Ashwinee Panda, Vatsal Baherwani, Zain Sarwar, Benjamin Therien, Supriyo Chakraborty, and Tom
Goldstein. Dense backpropagation improves training for sparse mixture-of-experts. arXiv preprint
arXiv:2504.12463, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Noam Shazeer, Amin Mirhoseini, Niki Maziarz, Andy Davis, Quoc V. Le, and Geoffrey Hinton.
Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In Proceedings
of the International Conference on Learning Representations (ICLR), 2017. URL https://
openreview.net/forum?id=rJBT6GZRb. Workshop Track.

EvalPlus Team. Evalplus: Rigorous evaluation framework for llm4code (humaneval+, mbpp+).
https://github.com/evalplus/evalplus, 2023-2025. Accessed: 2025-09-25.

Unsloth AL Qwen3: How to run & fine-tune, 2025. URL https://
docs.unsloth.ai/basics/gwen3-how—-to—-run—-and-fine—-tune#
qwen3-moe-models—fine—tuning. Section “Qwen3 MOE models fine-tuning”

states router layer fine-tuning is disabled by default.

Zihan Wang, Deli Chen, Damai Dai, Runxin Xu, Zhuoshu Li, and Yu Wu. Expert-specialized
fine-tuning for sparse architectural large language models. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2024a. URL https://
aclanthology.org/2024.emnlp-main.46/.

Ziteng Wang, Jun Zhu, and Jianfei Chen. Remoe: Fully differentiable mixture-of-experts with relu
routing. arXiv preprint arXiv:2412.14711, 2024b.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng
Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin
Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin
Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin,
Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng
Zhou, and Zihan Qiu. Qwen3 technical report. Technical report, arXiv, 2025. URL https
//arxiv.org/abs/2505.09388.

A USE OF LLMS DISCLOSURE

We disclose the following uses of large language models in the preparation of this work. GPT-5 (Ope+
nAll 2025) was used exclusively for language refinement and improving the manuscript’s readability.
In addition, Claude Code (Anthropicl |2025) served as a coding assistant to generate and debug
experimental scripts. At no time did LLMs contribute to the core research ideas, methodology, or the
interpretation of results. All scientific contributions, analyses, and conclusions are the responsibility
of the authors. Outputs produced by LLMs were carefully reviewed and edited where necessary to
ensure accuracy and integrity.

B HYPERPARAMETERS

We use the following hyperparameters across different models. Experiments were run on 2xA100,
4xH200, or 8xH200 GPUs (depending on the setting). We set warmup_ratio = 0.1 and use
bf16 as the data type. Using these settings, our results can be reproduced on the same or equivalent
hardware. Learning rate, batch size and training epochs are shown as follows:

12

https://openreview.net/forum?id=rJBT6GZRb
https://openreview.net/forum?id=rJBT6GZRb
https://github.com/evalplus/evalplus
https://docs.unsloth.ai/basics/qwen3-how-to-run-and-fine-tune#qwen3-moe-models-fine-tuning
https://docs.unsloth.ai/basics/qwen3-how-to-run-and-fine-tune#qwen3-moe-models-fine-tuning
https://docs.unsloth.ai/basics/qwen3-how-to-run-and-fine-tune#qwen3-moe-models-fine-tuning
https://aclanthology.org/2024.emnlp-main.46/
https://aclanthology.org/2024.emnlp-main.46/
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388

Under review as a conference paper at ICLR 2026

B.1 DEEPSEEK-V2-LITE

B.1.1 FULL FINE-TUNING
e Learning rate: 1 x 107%t0 3 x 107°
* Epochs: 3-4 epochs
— Most NLP tasks: 3 epochs
— Mathematical and code tasks: 4 epochs

e Batch size: 128

B.1.2 LORA FINE-TUNING
* Learning rate: 2 x 1074 to 6 x 1074

— Most tasks: 2 x 104
— Translation tasks: 5 x 10~%
— Intent classification: 6 x 10~%

* Epochs: 3-4 epochs
— Most tasks: 3 epochs
— GSM and code tasks: 4 epochs

e Batch size: 64

B.2 QWENI1.5 MOE

B.2.1 FULL FINE-TUNING
e Learning rate: 1 x 107%to 5 x 107°

— Lower range: 1 x 1076 to 5 x 10~% (most common)
- Mid range: 1 x 1075 t0 2 x 107°
— High range: 3 x 1075 to 5 x 1075 (rare, GSM tasks)

* Epochs: 3-4 epochs
— Summary and translation tasks: 3 epochs
— Most other tasks: 4 epochs

e Batch size: 64

B.2.2 LORA FINE-TUNING
s Learning rate: 5 x 107 5t0o 5 x 1074
— Most tasks: 2 x 1074 t0 3 x 1074
* Epochs: 3-4 epochs

— Most tasks: 3 epochs
— Code and GSM tasks: 4 epochs

» Batch size: 64

B.3 QWEN3-30B

B.3.1 FULL FINE-TUNING
e Learning rate: 1 x 107°to 3 x 107°
* Epochs: 5 epochs

* Batch size: 4 per device with gradient accumulation of 2 (effective batch size: 8)

13

Under review as a conference paper at ICLR 2026

B.4 OLMOE

B.4.1 FULL FINE-TUNING

* Learning rate: 1 x 107%t0 2 x 107°

— Code tasks: 1 x 1076
— Most tasks: 2 x 107°

* Epochs: 4 epochs
* Batch size: 128

B.4.2 LoORA FINE-TUNING

* Learning rate: 1 x 107%to 4 x 1074

— Code, GSM, and summary tasks: 1 x 10—*
— Translation, intent, and law tasks: 4 x 10~%

* Epochs: 4 epochs
* Batch size: 256

C DATA STATISTICS FOR LONG COT TASKS

The training and test sample sizes of Long Cot Tasks are shown in table[§]

Table 8: Training and test sample sizes for different datasets.

AIME 2024 AIME 2025 MATH-500 Olympiad Bench GPQA_Diamond MBPP HumanEval HumanEvalPlus LiveCodeBench

#Training Samples 1000 1000 1000 1000 1000 35000 35000 35000 35000
#Test Samples 30 30 500 674 100 500 164 164 ~ 500

14

	Introduction
	Preliminaries
	MoE Training Challenges
	How Conventional Method Works

	DenseMixer: Trade Compute for Gradient Precision
	DenseMixer Walkthrough
	DenseMixer Analysis

	Experiments
	Experimental Setup
	Main Results
	Efficiency Analysis

	Related Work
	Conclusion
	Use of LLMs Disclosure
	Hyperparameters
	DeepSeek-V2-Lite
	Full Fine-tuning
	LoRA Fine-tuning

	Qwen1.5 MoE
	Full Fine-tuning
	LoRA Fine-tuning

	Qwen3-30B
	Full Fine-tuning

	OLMoE
	Full Fine-tuning
	LoRA Fine-tuning

	Data Statistics for Long CoT Tasks

