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Abstract
Intrinsic motivation is a simple but powerful
method to encourage exploration, which is one
of the fundamental challenges of reinforcement
learning. However, we demonstrate that widely
used intrinsic motivation methods are highly de-
pendent on the ratio between the extrinsic and
intrinsic rewards through extensive experiments
on sparse reward MiniGrid tasks. To overcome
the problem, we propose an intrinsic reward co-
efficient adaptation scheme that is equipped with
intrinsic motivation awareness and adjusts the in-
trinsic reward coefficient online to maximize the
extrinsic return. We demonstrate that our method,
named Adaptive Intrinsic Motivation with Deci-
sion Awareness (AIMDA), operates stably in vari-
ous challenging MiniGrid environments without
algorithm-task-specific hyperparameter tuning.

1. Introduction
Considering that a reinforcement learning (RL) agent is
trained using the data generated by itself, the importance of
exploration in RL cannot be overemphasized. Exploration
in RL has been studied extensively in various ways, by in-
jecting noise (Lillicrap et al., 2016; Fortunato et al., 2018),
by rewarding diversity (Eysenbach et al., 2019) and informa-
tion gain (Houthooft et al., 2016), by empowerment (Gregor
et al., 2017), by maximizing entropy of actions (Haarnoja
et al., 2018), and by providing subgoals and curriculum
(Florensa et al., 2018; Nair et al., 2018).

In addition to the exploration methods described, intrin-
sic motivation (IM) methods are the most widely stud-
ied, simple but powerful and prominent methods to en-
courage exploration (Bellemare et al., 2016; Pathak et al.,
2017; Burda et al., 2019b; Raileanu & Rocktäschel, 2020;
Seo et al., 2021). They train agents with the total reward
rtot = rext + βrint, that is the weighted sum of the extrin-
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sic reward rext (the true reward from the environment) and
the intrinsic reward rint (the auxiliary reward from IM).
Therefore, these methods are particularly effective for hard-
exploration tasks where the extrinsic reward is sparse.

One common weakness of conventional IM methods is that
they are very sensitive to the choice of intrinsic reward
coefficient (IRC) β. If the IRC is set too large, the agent will
not pursue the extrinsic reward and converge to an undesired
policy that maximizes the intrinsic return. If the IRC is too
small, the agent will not be encouraged enough to explore
the environment, which may lead to a suboptimal policy.
The scale of the intrinsic reward varies greatly depending
on the tasks, IM methods, and learning progress. Therefore,
the performance, measured in terms of the extrinsic return,
depends heavily on the choice of the hyperparameter β more
than the type of IM method generating the intrinsic reward.
In addition, the optimal IRC can be changed throughout
the course of training, i.e., a large IRC is preferred in the
beginning of training and a small IRC is preferred later
(Seo et al., 2021). Refer to Figure 1, where the optimal β
varies across tasks and algorithms. An optimal IRC for one
task and algorithm may fail completely on another task and
algorithm. This phenomenon of IRC dictating the policy
is undesirable since the intrinsic reward should only be an
auxiliary reward to guide exploration. A decision-aware RL
agent should stably maximize the extrinsic return without
being dictated by the scale of the auxiliary return.

As a makeshift for this problem, recent works evaluate
independent runs for a sufficiently large range of IRCs,
e.g., β ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0}, then re-
port the best extrinsic return for each task (Raileanu &
Rocktäschel, 2020; Seo et al., 2021; Zhang et al., 2021;
Parisi et al., 2021). However, this evaluation process is
highly resource-inefficient and it is unrealistic to afford
many trials with different coefficients in the real application
stage. The optimal value of β may be outside the search
space or between two values due to the finite precision (Fig-
ure 3). Also, this evaluation makes it difficult to determine
the comparative advantage and robustness of the different
IM methods across different tasks.

To overcome the problem, we propose Adaptive Intrinsic
Motivation with Decision Awareness (AIMDA), where we
equip the agent with awareness of the intrinsic motivation
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Figure 1. The extrinsic return of multiple IM methods (Count-based, ICM, RND, and RIDE) on three MiniGrid tasks (KeyCorridorS3R3,
MultiRoom-N6, and ObstructedMaze-2Dlh) with different IRCs: β ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0} . The
optimal IRC varies greatly depending on the task and algorithm. We report the mean and standard deviation over three random seeds.
Refer to Appendix A.1 for implementation details of the experiments.

and allow the agent to adapt the scale of the intrinsic mo-
tivation itself to maximize the extrinsic return. We utilize
the distributed RL framework (Mnih et al., 2016; Espeholt
et al., 2018) to train multiple actors with different IRCs in
parallel. We graft the decision-awareness onto the agent by
appending the IRC to the state embedding. Then we use
the concatenation as the input of value and policy networks.
This intrinsic motivation awareness allows us to periodically
replace the worst-performing coefficient with the mean of
the two best performing coefficients, where the indicator of
the performance is the extrinsic return.

In this work, we reveal the IRC dependency of IM meth-
ods with extensive experiments on various MiniGrid hard-
exploration tasks (Chevalier-Boisvert et al., 2018), using
widely-used IM methods (Bellemare et al., 2016; Pathak

et al., 2017; Burda et al., 2019b; Raileanu & Rocktäschel,
2020; Seo et al., 2021) across a vast range of IRCs. Then we
demonstrate the robustness and effectiveness of AIMDA that
adaptively adjusts IRCs with decision awareness without ad-
ditional training data, network, and algorithm-task-specific
hyperparameter selection.

2. Background and Related Work
2.1. Intrinsic Motivation

Count-based exploration is one of the most well-known
IM methods. They provide agents with high exploration
bonus for states with lower visitation counts (Bellemare
et al., 2016; Ostrovski et al., 2017; Martin et al., 2017;
Tang et al., 2017; Parisi et al., 2021). For environments
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with high-dimensional states, where counting exact number
of state visitation is infeasible, they use density models
such as Context-Tree Switching (Bellemare et al., 2016) or
PixelCNN (Ostrovski et al., 2017).

Another major family of IM methods is curiosity-driven IM,
where the curiosity is normally defined as the error of the
agent’s prediction about the environment dynamics (Stadie
et al., 2015). Intrinsic Curiosity Module (ICM) learns to
predict the next state’s latent embedding (Pathak et al., 2017;
Burda et al., 2019a). RIDE uses episodic counts and the
difference of two consecutive states’ latent representation
to create an exploration bonus (Raileanu & Rocktäschel,
2020).

Besides the aforementioned IM methods, many successful
IM methods have been proposed recently. Random Network
Distillation (RND) uses prediction error between features
of a randomly-initialized network and a learned network
(Burda et al., 2019b). RE3 uses the k-nearest neighbor dis-
tance of a state in the feature space, where the feature space
is obtained by passing the replay buffer through a randomly
initialized encoder (Seo et al., 2021). Several studies have
recently shown the success of using combinations of pre-
viously proposed IM methods. NovelD uses the difference
of novelty measures of two consecutive states (Zhang et al.,
2021). C-BET uses a combination of agent-centric and
environment-centric visitation counts (Parisi et al., 2021).

2.2. Automated Reinforcement Learning

Although RL has shown great success in many domains, it
is widely being accepted that most results rely on heavily
tuned hyperparameters and the structure of the networks
(Henderson et al., 2018; Engstrom et al., 2020; Andrychow-
icz et al., 2021). Following the success of Automated Ma-
chine Learning (AutoML) (Hutter et al., 2019), the field of
Automated Reinforcement Learning (AutoRL) to automate
design choices of RL has been receiving attention recently
(Parker-Holder et al., 2022). AutoRL methods not only
apply AutoML to RL naively, but they also handle the RL-
specific problems, such as the non-stationarity of RL and
diversity of environments. Many recent works on AutoRL
have produced successful results by actively using the dis-
tributed RL framework (Mnih et al., 2016; Espeholt et al.,
2018; Kapturowski et al., 2018; Badia et al., 2020; Mnih
et al., 2020).

Blackbox online tuning methods adaptively select hyperpa-
rameters online. Some of them try to adapt the hyperparam-
eter weights and schedules for temporal-difference methods
(Sutton & Singh, 1994; Kearns & Singh, 2000; White &
White, 2016; Paul et al., 2019). Some methods use bandits,
where each arm is assigned to a set of hyperparameters such
as the degree of stochasticity (Schaul et al., 2019), degree
of exploration (Ball et al., 2020), and degree of optimism

(Moskovitz et al., 2021). Pislar et al. (2022) uses a bandit
to trigger a switch between exploration and exploitation
modes. All these methods train the non-stationary bandit to
maximize the extrinsic return.

Population-based methods train multiple agents in parallel
to explore and exploit the hyperparameter space periodi-
cally. Most of them explore the hyperparameter space with
random perturbation and exploit stronger parameters with
higher performance (Jaderberg et al., 2017; Parker-Holder
et al., 2020; Liu et al., 2019; Franke et al., 2021; Zhang et al.,
2016). The strength of population-based methods is that
they can learn the optimal schedule online with the same
wall clock time as that of a vanilla baseline. However, they
require a significant amount of memory and computation
resources, because they train multiple independent networks
in parallel.

The closest work to ours is Agent57 (Mnih et al., 2020) that
also trains multiple agents with a population of different
IRCs. It trains a bandit to adaptively select the optimal IRC
and discount factor. However, its weakness, as well as any
other methods that use bandits (Schaul et al., 2019; Ball
et al., 2020; Moskovitz et al., 2021), is that the scope of
the search space is limited to the set of pre-defined arms.
Agent57 uses 32 arms, each of which is assigned to the
intrinsic reward coefficient of sigmoid function from 0 to 0.3.
Therefore, it cannot adapt to situations requiring β > 0.3.
It also has limited expressibility for β near 0.15 since most
arms are populated near 0 and 0.3. Also due to ϵ-UCB
exploration, Agent57 has to explore the same pre-defined
set of IRCs until the end of training.

3. Method
The ultimate goal of our method, Adaptive Intrinsic Moti-
vation with Decision Awareness (AIMDA), is to optimally
adapt the IRC online by training multiple actors in par-
allel with a population of various non-discretized IRCs.
AIMDA is based on a multi-actor and single-learner frame-
work (Mnih et al., 2016), where each actor i collects trajec-
tories from its own environment with a distinct IRC, β(i).
AIMDA allows all actors’ IRCs to eventually converge to
the IRC that attains the highest extrinsic return, without any
additional network or training. We initialize the popula-
tion of IRCs with various schemes (Section 3.3) then adapt
the population to maximize the extrinsic return (Section
3.2), where the adaptation is enabled by the IRC awareness
(Section 3.1).

3.1. Intrinsic Reward Coefficient Awareness

IRC awareness is a necessary prerequisite to enable online
adaptation of the IRC because the behavior of the optimal
policy depends on the total return (i.e., sum of the intrinsic
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Algorithm 1 AIMDA

Initialize IM type, number of actors N , IRC popu-
lation β = {β(1), . . . , β(N)}, total training steps ttot,
global timestep tglobal = 0, adaptation period tadp, re-
play buffer B = 0, cumulative extrinsic return buffer
Bext = zeros(N)
while tglobal < ttot do

//DECISION-AWARE EXPLORATION
for actor i = 1 to N in parallel do
t← 0
β(i) ← β [i]
while t < tupdate do

Collect a transition including IRC β(i)

τ
(i)
t =

(
o
(i)
t , a

(i)
t , o

(i)
t+1, β

(i), r
(i),ext
t + β(i)r

(i),int
t

)
B ← B ∪ {τ (i)t }
Bext [i]← Bext [i] + r

(i),ext
t

t← t+ 1
end while

end for
tglobal ← tglobal +Ntupdate
Update policy and value networks with transitions in B
Reset B ← 0
//ADAPTING IRCS VIA MIX-BEST-TWO
if tglobal%tadp == 0 then
imin = argminBext
imax1 = argmaxBext , imax2 = arg2ndmaxBext
β [imin]← (β [imax1] + β [imax2]) /2
Reset Bext ← zeros(N)

end if
end while

and extrinsic returns) weighted by the IRC. We inject this
awareness by appending β(i) to the state embedding, where
the concatenation is the input of value and policy networks
as in Figure 2. Given trajectories from multiple actors with
different IRCs and the corresponding total rewards, a single
learner can learn the optimal policy for various values of
IRCs.

Because each actor is not bound to a fixed IRC, it is possible
to freely change the assigned IRC online. While changing
the IRCs freely, the computational burden for training does
not increase much, because we do not allocate additional
learners for each actor unlike Mnih et al. (2020). A single
learner with the IRC input can distinguish trajectories with
the input IRC.

3.2. Adaptation Scheme

We propose an online adaptation scheme of IRC to maxi-
mize the extrinsic return by utilizing the awareness intro-
duced in Section 3.1. There are countless ways to adapt
to the optimal values by reflecting the decision awareness

Conv1
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Actor 1

Actor 2

Actor 𝑁

Env 1

Observation

𝑜𝑡
(𝑖)

Env 2

Env N

…

(𝛽(N))

Intrinsic Reward 
Coefficient

𝛽(𝑖)

Policy Value

𝑥𝑡
(𝑖)

= (𝑠𝑡
(𝑖)
; 𝛽(𝑖))

Single learner trained with the total reward

𝑟𝑡
𝑖 ,tot

= 𝑟𝑡
𝑖 ,ext

+ 𝛽(𝑖)𝑟𝑡
𝑖 ,int

State Embedding

𝑠𝑡
(𝑖)

(𝛽(2))

(𝛽(1))

…

𝑖 = 1, … , 𝑁

ℎ𝑡
(𝑖)

ℎ𝑡+1
(𝑖)

Figure 2. The decision awareness activated by the IRC input con-
catenated to the state embedding. Conventional IM methods use
the same fixed IRCs for all actors throughout the course of training,
therefore there is no need to input IRC.

(i.e., to maximize the extrinsic return). In the current form
of this work, we demonstrate the mix-best-two scheme that
replaces the worst IRC in terms of the accumulated extrinsic
reward with the mean of the best two IRCs. Starting from
the sufficiently large initial population of the IRCs, the IRCs
can converge to a fixed point as in Figure 4a.

Note that the mix-best-two scheme allows the population of
IRCs to converge to the algorithm-task-specific optimal IRC,
being more exploitative than randomly selecting schemes
(Badia et al., 2020). Also, the proposed scheme can express
more diverse IRCs without requiring additional networks
to be trained such as a non-stationary bandit (Mnih et al.,
2020).

3.3. Initialization Scheme

An initialization scheme of the population of IRCs suitable
for the mix-best-two scheme should be wide enough to pos-
sibly contain the optimal IRC. However, the decrease in
precision caused by sizing the population too wide should
also be avoided. The minimum value of the population can
be set to 0 naturally (i.e., no intrinsic motivation), but the
maximum value remains to be adjusted by the hyperparam-
eter βmax.

There is one more hyperparameter, which determines the
distribution of the population. In this work we use the linear,
exponential as well as the sigmoid initialization used for
Agent57 (Mnih et al., 2020). Each initialization is formu-
lated for actor i = 1, . . . , N as follows.

1. Linear: β(i) = βmax
i−1
N−1 , focusing evenly from 0 to

βmax.
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Figure 3. Examples of three types of Initialization schemes (linear,
exponential and sigmoid) for the initial IRC population with N =
16 actors and βmax = 0.5.

2. Exponential: β(i) = βmax2
i−N , focusing near 0.

3. Sigmoid: β(i) = βmax

(
1 + exp

(
N
2

N+1−2i
N−1

))−1

,
focusing near 0 and βmax.

We denote each initialization in short as (distribution, βmax),
e.g., (Lin, 0.5).

Adaptive βmax Depending on the task and the type of IM
method, the scale of the intrinsic return may be extremely
smaller than the scale of the extrinsic return, requiring βmax
to be large. If βmax is set too small, all IRCs will converge
to βmax but can not become larger than βmax as in Figure 4b.
If we have access to the upper bound (UB), or a sufficiently
satisfactory goal of the given task’s extrinsic return (e.g.,
the upper bound of all MiniGrid tasks’ extrinsic return is
1.0), we may adaptively select βmax large enough according
to the first period’s mean intrinsic return. We initialize the
IRCs of all actors to zero and fix them for the first period.
During the first period, we do not use the intrinsic rewards
for training, but only store them to measure the scale of the
mean intrinsic return. Then we calculate the appropriate
IRC βapp as follows.

βapp MEAN
τ∈1st period

[∑
τ

rint
t

]
= UB

[
T∑

t=1

rext
t

]
. (1)

After the first period, we initialize the IRC population with
βmax sufficiently larger than βapp. Then we use the popula-
tion to continue training with standard AIMDA. We denote
this initilazation as (distribution, K×) for βmax = Kβapp,
e.g., (Lin, 2×).
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Figure 4. Adaptation of IRC population of RE3-AIMDA on Key-
CorridorS3R3 and MultiRoom-N6 tasks, with an initialization
(Lin, 0.5). There are 128 periods in total, where each period for
this task corresponds to 78,125 frames (10M frames/128 periods).

4. Experiments
4.1. Experiment Setup

The current form of our work reports the performance of
RE3-AIMDA based on RE3 (Seo et al., 2021), which is a re-
cently proposed compute-efficient and well-reproduced IM
method. Note that AIMDA can be combined with any other
IM methods such as count-based exploration (Bellemare
et al., 2016), ICM (Pathak et al., 2017), RND (Burda et al.,
2019b), and RIDE (Raileanu & Rocktäschel, 2020). Our
implementation is based on the open source implementation
of RE3.1 From the reference implementation, we keep all
the training process and the hyperparameters, but only mod-

1https://github.com/younggyoseo/RE3

https://github.com/younggyoseo/RE3
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Figure 5. The extrinsic return of RE3 with fixed IRC and RE3-
AIMDA on KeyCorridorS3R3, mean of 8 random seeds. RE3-
AIMDA methods achieve competitive extrinsic return without the
knowledge of optimal IRC.

ify the following three parts: (1) The IRC is appended to the
original state embedding (1 dim. + 64 dim. = 65 dim.); (2)
We store each actor’s sum of extrinsic return for the recent
period and adjust the IRC with mix-best-two 128 times at
regular intervals during training; (3) We use the first nearest
neighbor distance instead of the log of the mean of the top
five nearest neighbor distances, which turned out to perform
better in general.

We evaluate RE3-AIMDA on MiniGrid environment
(Chevalier-Boisvert et al., 2018), a widely-used, sparsely
rewarded gridworld benchmark that requires challenging
exploration (Raileanu & Rocktäschel, 2020; Parisi et al.,
2021; Seo et al., 2021; Zhang et al., 2021). Among dozens
of MiniGrid tasks, we use the pool of 11 tasks adopted
from NovelD (Zhang et al., 2021). The authors of Nov-
elD categorize MiniGrid tasks into three levels of diffi-
culty: easy, medium, and hard (Appendix A.2). We train
the agent for 10M, 20M, and 40M frames, with respect
to the level of difficulty. All the tasks have only one re-
warding state, which is the terminal state, with reward
1.0− 0.9× (steps to reach the goal)/(task horizon).

We evaluate the baseline RE3 with various fixed IRCs as
well as our proposed method with various initializations
on 11 MiniGrid tasks. All experiments related to RE3 and
RE3-AIMDA are run for 8 random seeds. Because there is a
large amount of RE3-related experimental results, we report
the individual learning curve as in Figure 5 for all tasks for
all IRC configurations in Appendix B. We summarize the
results using two metrics, both mean of 8 random seeds: (1)
The final extrinsic return (FER) in Figure 6; (2) Normalized
area under the learning curve (NAUC) for the entire course
of training in Figure 8. For example, the final extrinsic

returns of Figure 5 are reported in the 4-th row of Figure
6. The optimal return in all MiniGrid tasks is bounded
between 0 and 1. The NAUC, area under the learning curve
normalized by the total training timesteps, is introduced to
distinguish faster convergence when both extrinsic returns
are the same. If the FER is zero for a task, we call the
method has failed to solve the task. Please refer to Appendix
A for more implementation details.

4.2. RE3 with AIMDA on 11 MiniGrid Tasks

The first column of Figure 6 reports the FER of vanila
A2C (i.e., RE3 with β = 0). The next 9 columns
report the FER of RE3 baseline with fixed IRCs β ∈
{0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0}. They
show a pattern by task similar to that shown in Figure 1,
where MultiRoom tasks require larger IRCs than KeyCor-
ridor and ObstructedMaze tasks. For MultiRoom tasks,
β = 5.0 is optimal, but it fails KeyCorridor and Obstructed
Maze tasks. For KeyCorridor and Obstructed Maze tasks,
β = 0.01 or 0.05 is optimal, but they fail MultiRoom tasks.

We report the FERs of RE3-AIMDA with predefined βmax
at 11-th to 17-th column of Figure 6. Each column reports
FERs for different initialization of IRC population (distri-
bution and βmax). Exponential and sigmoid initialization
methods fail three of KeyCorridor tasks due to the relative
sparsity of IRCs around 0.05. On the other hand, we find that
the linear initialization works more stably for more tasks.
Especially βmax = 0.1 and 0.15 fail only on MultiRoom-
N12-S10 task. They also attain the highest FERs for Ob-
structedMaze tasks, although the absolute value is much
lower than 1.0, due to the limitations of the baseline RE3
method. We find that setting βmax large, improves the FERs
of MultiRoom tasks while setting it smaller improves the
FERs of KeyCorridor and ObstructedMaze tasks.

RE3-AIMDA has to spend a significant amount of steps ex-
ploring to determine the best IRCs. Therefore RE3-AIMDA
methods converge to the optimal IRCs more slowly than
the RE3 baselines with optimal fixed IRCs as in Figure 5.
Contrary to our expectation, the IRCs do not necessarily
converge to 0 even at the end of the learning process. As in
Figure 4, AIMDA prefers to maintain the IRC value similar
to the optimal IRC for RE3 with fixed IRC.

The last two columns of Figure 6 report the ablations results
of RE3-AIMDA without the intrinsic reward coefficient
awareness or without the mix-best-two scheme. As the
both ablations fail to achieve high returns, it can be seen
that both methods should be used together to achieve high
performance.
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Mean Final Extrinsic Return

Figure 6. The mean final extrinsic returns of RE3 with fixed IRCs (column 2-10), RE3 with AIMDA (column 11-20), and ablations
(column 21-22) on 11 MiniGrid tasks, mean of 8 random seeds. The largest value for each task is colored in red. Refer to the normalized
area under curve in Appendix C to check the learning speed. We report the interquartile mean (IQM) score (Agarwal et al., 2021) in
Appendix D.

4.3. Initializing βmax with the first period’s
measurements

From the experiments in Section 4.2, we find that βmax is
a key hyperparameter of RE3-AIMDA. If the initial IRC
population is too diverse with a limited number of actors,
the amount of learning near the optimal IRC becomes insuf-
ficient. To overcome this problem, we evaluate the initial-
ization scheme of βmax introduced in the last part of Section
3.3.

We report the measurements using the trajectories of an
agent trained with zero IRC during the first period in Ta-
ble 1. We find that the MultiRoom tasks have the lowest
mean intrinsic return and the ObstructedMaze tasks have
the largest mean intrinsic return. Therefore, it is natural
to set βmax larger for the MultiRoom tasks and smaller for
ObstructedMaze tasks as in Figure 6. Note that the mean in-
trinsic return (IR) is nearly proportional to the task horizon,
because RE3 normalizes its intrinsic reward with a running
estimate of the standard deviation, making the scale of the
intrinsic reward similar across tasks.

By setting βmax large enough, good IRCs are stably included
in the initial population. We find that RE3-AIMDA with
βmax ≥ βapp achieves non-zero returns for all tasks as in
three columns (column 18-20) of Figure 6. All fixed-IRC

RE3 and other RE3-AIMDA methods with predefined βmax
fail at least one task. Note that the difference between not
getting a return at all and achieving even a small return is
significant in the field of RL. In particular, in a sparse reward
task such as MiniGrid, if even a small extrinsic reward is
discovered, a steady improvement can be achieved based on
this discovery.

5. Discussion and Future Work
Our experiment results showed the effectiveness of grafting
decision awareness onto IM. However, what has been shown
in this paper so far is only the beginning, and expect to see
much more progress. Only a few combinations of decision
awareness injection, initialization, and adaptation scheme
is presented in this work. We expect great ideas from many
researchers. Several directions for the future development
and work-in-progress are presented as follows.

Emphasis on β-dependence of IM methods Currently
we have reported the result on all 11 MiniGrid-tasks for
only RE3 in Fig 6. For other IM methods, we have run
experiments on a subset, MultiRoom-N6, KeyCorridorS3R3
and ObstructedMaze-2Dlh in Fig 1 yet, we are running
experiments on the remaining tasks for these IM methods to
emphasize the IRC dependence more significantly.
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Table 1. Column 3-4: Measurements during the first period trained without intrinsic motivation (i.e., zero IRC). Column 5-7: Measure-
ments during the last period trained with the best fixed IRC β∗ that returns the best extrinsic return (Figure 6). IR and ER denote the RE3
intrinsic return and extrinsic return respectively. For the first period, the agent is only trained with ER. The first period corresponds to
78,125 steps, 156,250 steps, and 312,500 steps for easy, medium, and hard tasks, respectively. The upper bound of maximum extrinsic
return is 1.0 for all MiniGrid tasks therefore we set βapp = 1.0/Mean IR.

Trained with zero IRC
First period

Trained with the best IRC
Last Period

Task
Horizon

Mean
IR

Appropriate
IRC

Best
IRC

Mean
Episode Length

Mean
ER

Task H Mean IR βapp β∗ T ∗ 1− 0.9× T ∗/H

MultiRoom-N6 120 15.727 0.064 5.00 101.04±24.87 0.242
MultiRoom-N7-S8 140 18.666 0.054 5.00 122.31±27.09 0.214

MultiRoom-N12-S10 240 32.449 0.031 5.00 207.56±44.27 0.222
KeyCorridorS3R3 270 36.311 0.028 0.05 38.60±20.54 0.871
KeyCorridorS4R3 480 52.642 0.019 0.05 283.39±88.12 0.469
KeyCorridorS5R3 750 102.549 0.010 0.05 430.32±190.45 0.484
KeyCorridorS6R3 1080 127.481 0.008 0.05 370.49±310.19 0.691

ObstructedMaze-2Dlh 576 84.237 0.012 0.05 433.83±121.79 0.322
ObstructedMaze-2Dlhb 576 83.959 0.012 0.01 575.15±3.31 0.101

ObstructedMaze-1Q 720 58.963 0.017 0.05 716.11±15.07 0.105
ObstructedMaze-2Q 1584 222.238 0.004 0.05 1563.58±69.9 0.112

AIMDA on more IM methods Although our work points
out the problems of various IM methods, at present, only
experiments in which AIMDA is applied to RE3 have been
carried out. We are working on applying AIMDA to other
IM methods such as count-based exploration (Bellemare
et al., 2016), ICM (Pathak et al., 2017), RND (Burda et al.,
2019b), and RIDE (Raileanu & Rocktäschel, 2020). We ex-
pect AIMDA to be generally applicable to other IM methods
for overall performance improvement.

Mixture of multiple IM methods NovelD (Zhang et al.,
2021) and C-BET (Parisi et al., 2021) propose to use the
difference of RND rewards and the sum of count-based
rewards, respectively. As Rainbow (Hessel et al., 2018)
achieves good performance by combining multiple success-
ful RL techniques, we may also consider a way to integrate
multiple IM methods using AIMDA. If AIMDA can show
overall improvements for general IM methods, we can use
the weighted sum of multiple types of IM rewards, where the
optimal weight is adaptively selected by the decision-aware
agent.

Initial population of intrinsic reward coefficients In
this work, we demonstrate linear, exponential, and sigmoid
initializations with a predefined βmax or with an adaptive
βmax based on the first period’s intrinsic return. The adaptive
selection of βmax has limitations in that the first period mea-
surements may be noisy and the scale of the intrinsic return
may vary throughout the learning process. The heuristic we
proposed is just one of many possible initialization methods,
and we expect to find a generally applicable initialization

method better than our current form.

Adaptation scheme There are many plausible ways to
adaptively adjust the IRC for the best extrinsic reward. We
are trying multiple adaptation schemes in addition to the
proposed method of mixing the best two to replace the worst
one. For example, we may replace the worst coefficient
with the best coefficient without mixing. We may model a
random mutation to perturb the IRC as well as the crossover.
We may shift the entire intrinsic reward population at the
same time based on the performance. One thing to note is
that the extrinsic returns are highly non-stationary, therefore
we should avoid changing the coefficient too abruptly.
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A. Implementation Details
A.1. Count-based, ICM, RND, and RIDE

We use the reference implementation of RIDE2 (Raileanu & Rocktäschel, 2020), which also provides the implementations
of other IM methods: count-based (Bellemare et al., 2016), ICM (Pathak et al., 2017), and RND (Burda et al., 2019b). They
use IMPALA (Espeholt et al., 2018) with recurrence as their baseline RL algorithm. Following Raileanu & Rocktäschel
(2020), we set the entropy coefficient for action to 0.0001 for ICM, RND, and Count on all environments. For RIDE,
we use entropy coefficient of 0.0005 for KeyCorridorS3R3 and use 0.001 for MultiRoom-N6. We train 16 actors in
parallel with 40 shared-memory buffers. We currently report experimental results on two tasks: KeyCorridor-S3R3 and
MultiRoom-N6, but we are running further experiments on the remaining 9 tasks. We run experiments over 9 values of IRCs,
β ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0}. We train all configurations for 40M frames and 3 random
seeds. We report the results with a moving average of window size 4M steps.

A.2. RE3 and RE3-AIMDA

The main experiments in Section 4 are based on the implementations of RE3.3 The baseline RL algorithm is A2C (Mnih
et al., 2016) without recurrence. We run experiments on 11 MiniGrid tasks with a different number of total steps respective
to their level of difficulty (Zhang et al., 2021). We report the results with a moving average of window size equal to 0.1
times the total training steps.

1. Easy (10M steps): MultiRoom-N6, MultiRoom-N7-S8, MultiRoom-N12-S10, and KeyCorridorS3R3

2. Medium (20M steps): KeyCorridorS4R3, KeyCorridorS5R3, KeyCorridorS6R3, and MiniGrid-ObstructedMaze-2Dlh

3. Hard (40M steps): MiniGrid-ObstructedMaze-2Dlhb, ObstructedMaze-1Q, and ObstructedMaze-2Q

All experimental results on RE3 and RE3-AIMDA are reported as the mean of 8 random seeds. We evaluate the agent every
2048 steps. The normalized area under curve (NAUC) is calculated as the sum of the extrinsic returns of all evaluations
divided by the total number of evaluations.

RE3 We run a search over 10 values of IRCs β ∈ {0.0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0}. The agent is
trained with only the extrinsic reward when β = 0.0.

RE3-AIMDA The raw observation in (7× 7× 3) is passed through 3 constitutional layers and encoded in 64 dimensions.
Then we append the raw value of the IRC to form the concatenation in 65 dimensions. Regardless of the total number
of learning steps, we perform the mix-best-two at regular periods. However, we do not perform mix-best-two when all
actors fail to gain a non-zero return. When there is a tie between the best IRCs or between the worst IRCs, we sample one
uniformly at random among the candidates.

2https://github.com/facebookresearch/impact-driven-exploration
3https://github.com/younggyoseo/RE3

https://github.com/facebookresearch/impact-driven-exploration
https://github.com/younggyoseo/RE3
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B. Learning Curves of RE3 on 11 MiniGrid Tasks
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Figure 7. Learning curves of RE3 and RE3-AIMDA on 11MiniGrid tasks. These results are used to report the FER and NAUC summary
in Figure 6 and Figure 8, respectively. Refer to Appendix A.2 for implementation details to obtain the experimental results.
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C. Normalized Area Under Curve of RE3 and RE3-AIMDA.
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Figure 8. Mean normalized area under curve of RE3 and RE3-AIMDA on 11 MiniGrid Tasks. Mean of 8 random seeds. The largest value
for each task is colored in red.
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Figure 9. Interquartile mean (IQM) scores of RE3-AIMDA across 8 random seeds.


