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ABSTRACT

Vision-language pre-trained models (VLPs) have been deployed in numerous real-
world applications; however, these models are vulnerable to adversarial attacks.
Existing adversarial detection methods have shown their efficacy in single-modality
settings (either vision or language), while their performance on VLPs, as mul-
timodal models, remains uncertain. In this work, we propose a novel aspect of
adversarial detection called GAD-VLP, which detects adversarial examples by
exploiting vision and joint vision-language embeddings within VLP architectures.
We leverage the geometry of the embedding space and demonstrate the unique
characteristics of adversarial regions within these models. We explore the embed-
ding space of the vision modality or the combined vision-language modalities,
depending on the type of VLP, to identify adversarial examples. Some of the
geometric methods do not require explicit knowledge of the adversary’s targets in
downstream tasks (e.g., zero-shot classification or image-text retrieval), offering
a model-agnostic detection framework applicable across VLPs. Despite its sim-
plicity, we demonstrate that these methods deliver a nearly perfect detection rate
on state-of-the-art adversarial attacks against VLPs, including both separate and
combined attacks on the vision and joint modalities.

1 INTRODUCTION

Vision-language pre-trained models (VLPs) enable the interpretation of both visual and textual
data by learning joint representations of multimodal inputs. This makes them highly effective for
tasks requiring a deep understanding of both images and text. VLPs have achieved state-of-the-art
results in many multimodal tasks (Yin et al., 2023a; Xu et al., 2023; Gandhi et al., 2023), including
image-text retrieval (Chen et al., 2020a), visual question answering (Lu et al., 2019), and zero-shot
classification (Radford et al., 2021). Despite their success, VLPs remain vulnerable to adversarial
examples (Zhang et al., 2022a; Schlarmann & Hein, 2023), posing a challenge to their robustness in
real-world safety-critical applications. The safety of vision-language models is vital in critical tasks
like report generation and visual question answering, especially in healthcare, where errors can lead
to misdiagnosis or inappropriate treatment. Inaccuracies in image-text retrieval may also have serious
consequences in high-stakes domains, making the robustness of these models essential.

Recent works have explored adversarial training as a means to improve the zero-shot robustness of
VLPs (Mao et al., 2022; Wang et al., 2024; Schlarmann et al., 2024). However, adversarial training is
known to be time-consuming (Madry et al., 2017; Wang et al., 2020) and often requires a trade-off
between performance and robustness (Zhang et al., 2019; Tsipras et al., 2019). Detecting adversarial
examples offers a more flexible alternative since it allows the model to reject queries by refusing to
provide output when they are identified as adversarial.

Many methods have previously been proposed for detecting adversarial examples in unimodal models
(Feinman et al., 2017; Lee et al., 2018; Ma et al., 2018; Sotgiu et al., 2020; Kherchouche et al., 2020;
Aldahdooh et al., 2023). However, it remains unclear whether these methods generalize to VLPs that
involve two interacting modalities. Previous work primarily focused on detecting adversarial images
in classification models, which are trained using cross-entropy loss to minimize the discrepancy
between predictions and labels. However, in VLPs, the training process centers around minimizing
the distance between text and image embeddings. There is a lack of comprehensive investigation into
detecting adversarial examples in multimodal pre-trained models, such as VLPs.
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(b) Extraction of k-NN, Mahalanobis, and KDE.

Figure 1: Pipeline of geometric scores extraction for GAD-VLP.

In this paper, we propose an adversarial example detection method, GAD-VLP, which leverages
geometric approaches, including local intrinsic dimensionality (LID), k-nearest neighbors distance
(k-NN), Mahalanobis distance, and kernel density estimation (KDE), to identify adversarial images
in VLPs. These metrics allow us to characterize the properties of adversarial subspaces, which is
crucial for detecting adversarial examples. By evaluating the geometric properties around points, we
can reveal the structural differences between adversarial and clean data regions in image classification
models (Ma et al., 2018). All approaches involve extracting distances and metrics from the unimodal
or multimodal encoders within VLPs, which are then used to detect adversarial examples. The
overview of GAD-VLP is illustrated in Figure 1. Figure 1a presents the diagram for adversarial
image detection using LID, while Figure 1b illustrates adversarial detection using the other three
studied methods, k-NN, Mahalanobis distance, and KDE. The key difference is that LID operates in
a layer-wise manner, evaluating the outputs of both multimodal layers and other intermediate layers,
while the other three methods operate on the output of the image encoder.

The novelty of our research lies in exploring geometric approaches for adversarial detection in VLPs,
advancing the field by providing a robust method for different types of VLPs—aligned and fused.
Aligned VLPs (Zhang et al., 2022a) maintain separate embeddings for image and text modalities but
ensure that they are aligned for effective interaction. In contrast, fused VLPs (Zhang et al., 2022a)
integrate both image and text modalities into a single multimodal embedding. Our work reveals the
unique characteristics of adversarial regions in VLPs, making them more distinguishable compared to
traditional image classification models. Notably, GAD-VLP operates within the representation space,
independent of specific applications, and remains effective across diverse adversarial objectives in
downstream tasks, such as zero-shot classification and image-text retrieval. The main contributions
of this paper can be summarized as follows:

• Adversarial Detection in VLPs: By leveraging the concept of both supervised and unsu-
pervised geometric approaches, GAD-VLP effectively distinguishes between clean and
adversarial images.

• Architecture-Independent Applicability: GAD-VLP is universally applicable across various
types of VLPs. Through extensive experiments on benchmark datasets, we evaluate the
methods’ performance across different VLP designs, including both aligned and fused
architectures. Our results demonstrate that the proposed approach is effective for adversarial
detection in a wide range of VLPs, showcasing its versatility and robustness.

• Robust Detection Across Diverse Attacks: We evaluate GAD-VLP across a variety of attacks,
demonstrating its effectiveness with competitive AUC scores. Our results indicate that the
proposed approach maintains robust performance across different attack types, highlighting
its versatility and reliability in adversarial detection.

2 RELATED WORKS

Vision-Language Pre-Trained Models. Vision-language representation learning displays superior
performance across a wide range of tasks compared to visual representation learning models. For
instance, CLIP uses a contrastive objective (i.e., InfoNCE loss (Oord et al., 2018)) that aims to
align an image with its corresponding textual description in the feature space. VLPs aim to improve
multimodal task performance by pretraining extensive image-to-text pairs (Li et al., 2022). Several
recent methods utilize pre-trained object detectors with region features as a foundation for obtaining
vision-language representations (Chen et al., 2020b).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

There are two primary types of VLPs depending on their architectures: fused VLPs and aligned VLPs
(Zhang et al., 2022a). Fused VLPs, such as ALBEF and TCL (Yang et al., 2022), utilize distinct uni-
modal encoders to handle token embeddings and visual characteristics separately. They subsequently
employ a multimodal encoder to produce integrated multimodal embeddings by combining image
and text embeddings. Conversely, aligned VLPs such as CLIP are composed solely of unimodal
encoders that have separate embeddings for image and text modalities. This research specifically
examines widely used architectures including both fused and aligned VLPs.

Adversarial Robustness. Adversarial attacks aim to deceive deep learning models into misclassifying
an input (Szegedy et al., 2013). Previous works are centered around image classification. Recent
studies show that vision-language models are also vulnerable to adversarial attacks. For example, Xu
et al. (2018) investigated attacks on visual question-answering models by altering the image modality.
In contrast, Agrawal et al. (2018); Shah et al. (2019) focused on disrupting vision-language models
through text modality perturbations. Zhang et al. (2022a) explored adversarial attacks on VLPs,
offering key insights into the development of multimodal attacks and improving model robustness.
Building on this, Lu et al. (2023); He et al. (2023); Han et al. (2023) worked on enhancing the
transferability of multimodal adversarial examples by leveraging cross-modal interactions, data
augmentation, and optimal transport theory. Additionally, Yin et al. (2023b); Zhou et al. (2023) aimed
to improve upon the techniques introduced by Zhang et al. (2022a). However, many attack methods
are not well-suited for transformer-based VLPs and primarily target vision-language classification
tasks, limiting their generalization to non-classification tasks. Therefore, we adopted the adversarial
attacks presented in Zhang et al. (2022a) as our baseline.

With the rise of large-scale VLPs, their robustness towards adversarial attacks has become a major
concern. For instance, Yang et al. (2021) explored the robustness of various multimodal models and
proposed a defense strategy primarily designed to defend against attacks on a single modality, with
unclear performance against multimodal attacks. It relies on redundancy between modalities, making
it less effective when modalities provide complementary information. Fine-tuning is another popular
approach to adapting pre-trained models for specific downstream tasks (Devlin, 2018). However,
fine-tuning vision-language models often results in overfitting. Mao et al. (2022) addressed this issue
by investigating adversarial example generation and proposing an adversarial fine-tuning algorithm
guided by textual supervision. Additionally, Li et al. (2024) enhanced model robustness by utilizing a
text encoder to generate fixed anchors (normalized feature embeddings) for each category and then
using these anchors for adversarial training. While fine-tuning shows promising results, it suffers
from issues such as inefficiency and overfitting. In light of these limitations, detecting adversarial
examples presents an efficient alternative approach to defending VLPs against adversarial attacks.

Geometric Adversarial Detection in Unimodal Models. Several studies have employed geometric
approaches to detect adversarial examples in unimodal classification models. Grosse et al. (2017)
introduced the Maximum Mean Discrepancy (MMD), a kernel-based two-sample statistical test that
distinguishes adversarial examples from a model’s training data. This model-agnostic approach serves
as a robust technique for detecting adversarial inputs. As an alternative to KDE, Ma et al. (2018)
employed LID to evaluate the distance distribution of an input relative to its neighbors, capturing the
local complexity of the sample’s surrounding space. Additionally, Lee et al. (2018) proposed using
Mahalanobis distance, leveraging Gaussian Discriminant Analysis (GDA) to detect out-of-distribution
and adversarial samples through a generative classifier, offering a more refined confidence score than
the traditional softmax classifier. Cohen et al. (2020) further explored k-NN for adversarial detection.
While these methods have shown promise in unimodal settings, their efficiency in VLPs remains
largely unexplored.

3 PRELIMINARIES

In this section, we describe the principles of adversarial attacks on VLPs and introduce the geometric
approaches that are used as the basis for GAD-VLP.

3.1 ADVERSARIAL ATTACKS ON VLPS

All attacks in aligned VLPs are based on unimodal embeddings, as we only have access to unimodal
encoders. However, in fused VLPs, two types of embeddings can be targeted: unimodal embeddings

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(Uni) and multimodal embeddings (Multi). These can be further classified into full embeddings,
denoted as UniFull or MultiFull, and the class embedding ([CLS]), denoted as UniCLS or MultiCLS. In
this work, we focus on UniCLS image attacks for CLIP, and both UniCLS and MultiCLS attacks for
ALBEF and TCL. The [CLS] embedding plays a critical role in pre-trained models, as it is used for
various downstream tasks. Therefore, investigating the impact of attacks on the [CLS] embedding
in VLPs is important. However, the [CLS] concept does not apply directly to CLIP models, as they
can use either a ViT or CNN for image encoding. For CLIP with ViT, we treat the [CLS] embedding
explicitly, while for the CNN variant, we consider the final embedding analogous to the [CLS]
embedding for consistency in the remainder of the paper. For simplicity, we will refer to unimodal
attacks as Sepuni and multimodal attacks as Sepmulti, omitting further use of the [CLS] notation.

Here, we introduce two baseline adversarial attacks—Sep-Attack and Co-Attack—based on the frame-
work by Zhang et al. (2022a). Sep-Attack perturbs the image and text modalities separately, maximiz-
ing the adversarial perturbation using Kullback–Leibler (KL) divergence loss for the embedding-wise
representation. For text perturbations, the method constrains the perturbation to a specific number of
tokens based on the BERT attack. In contrast, Co-Attack jointly targets both modalities, shifting the
targeted embedding away from the original. This attack applies to both fused and aligned VLPs, with
separate perturbations calculated for unimodal and multimodal embeddings. Further technical details
and mathematical formulations of Sep-Attack and Co-Attack can be found in Appendix A.1.

3.2 GEOMETRIC APPROACHES

Local Intrinsic Dimension (LID) LID is a concept of dimensionality modeling (Karger & Ruhl,
2002; Houle et al., 2012) that quantifies the intrinsic dimensionality in the proximity of a specific
point of interest in the dataset. LID evaluates the rate at which the number of encountered data objects
grows as the distance from the point increases (Houle, 2013). It is a statistical model that expands
upon the generalized expansion dimension model and presupposes the presence of an unknown
smooth distribution of distances from a reference point (Houle, 2017). LID focuses on estimating the
intrinsic dimensionality within a localized region surrounding a data point.

In practice, this quantity needs to be estimated with the query point x and a set of reference points
that can be used to select its nearest neighbors (Levina & Bickel, 2004; Amsaleg et al., 2015). For a
given reference sample x drawn from the data distribution P , the maximum likelihood estimator of
LID is defined as follows:

ˆLIDd(x) = (−1

k

k∑
i=1

log
ri(x)

rmax(x)
)−1. (1)

In this context, ri(x) represents the distance between x and its i-th closest neighbor within a sample
of k points taken from P , and rmax(x) refers to the greatest distance between neighbors. In this work,
we refer ‘LID’ as the quantity of ˆLIDd(.).

Mahalanobis Distance The Mahalanobis distance (McLachlan, 1999) measures the distance
between data points in a way that accounts for the covariance structure of the data, making it a useful
tool for evaluating the similarity between different data points. Unlike the Euclidean distance, the
Mahalanobis distance incorporates feature correlations and is scale-invariant. For a p-dimensional
data point x = (x1, x2, ..., xp)

T with mean vector µ = (µ1, µ2, ..., µp) and covariance matrix Σ, the
Mahalanobis distance between x and the distribution characterized by µ and Σ is given by:

DM (x) =
√

(x− µ)TΣ−1(x− µ). (2)

This formulation captures the deviation of x from the mean, highlighting how its position differs
from the distribution of the data. A larger Mahalanobis distance indicates that x is more likely to be
an outlier or come from a different distribution.

Kernel Density Estimation Kernel density estimation (KDE) is a non-parametric technique used
to estimate the probability density function of a dataset without assuming a parametric form for
the underlying distribution. This method estimates the density of a point population in an arbitrary
N -dimensional space using a finite sample (Botev et al., 2010). For a random multivariate sample
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(a) (b) (c) (d)

Figure 2: Comparison of the k-NN and LID distributions between the CLIPCNN image encoder and
the ResNet50 using ImageNet data.

xi = (xi1, xi2, ..., xin)
T drawn from a distribution with density f , the kernel density estimate is

defined as:

f̂(y;H) =
1

n

n∑
i=1

KH(y, xi), (3)

where KH(·, ·) denotes the kernel function and H is the bandwidth matrix, which is both symmetric
and positive definite. The kernel function KH is often chosen to be Gaussian with bandwidth σ,
given by Kσ(x,Xi) ∼ exp

(
−∥x−Xi∥2

σ2

)
. The bandwidth matrix H adjusts the kernel’s shape and

smoothing across dimensions, allowing for effective density estimation in multivariate contexts.

4 DETECTING ADVERSARIAL SAMPLES USING GEOMETRIC APPROACHES IN
VLPS

In this section, we motivate the use of geometric methods. We illustrate their effectiveness through
an example and compare geometric distances between VLPs and traditional classifiers. Finally, we
detail the proposed framework, GAD-VLP.

4.1 SENSITIVITY AS A MOTIVATION FOR GENERALIZATION OF GEOMETRIC METHODS TO
VLPS

In multimodal models, adversarial images are generated by maximizing the KL divergence loss
between clean and perturbed embeddings (Zhang et al., 2022a). This attack method aims to produce
perturbations that shift the perturbed samples away from the distribution of the original clean data,
causing the input to deviate from its natural distribution, as shown in Figure 3. As a result, the
perturbed input exhibits distinct characteristics that no longer align with the clean distribution.

Figure 3: t-SNE visualization of
CLIPCNN image features. Gray
represents randomly selected
data from CIFAR10, blue repre-
sents a clean data point, and or-
ange represents the adversarial
counterpart of the blue sample.

VLPs integrate both visual and textual information, allowing them
to capture complex relationships between modalities and represent
a wider range of features in the data. When adversarial attacks
are applied, the introduced perturbations exploit this complexity,
resulting in adversarial points that diverge significantly from clean
samples. We hypothesize that these adversarial examples occupy
a higher-dimensional space in VLPs than in traditional models,
reflecting their enhanced representation of multimodal interactions
that may not be fully captured by traditional architectures.

To support this hypothesis, we analyze the k-NN and LID dis-
tributions of image embeddings in CLIPCNN with ResNet50 as
the image encoder, comparing them to those in the traditional
ResNet50 model. In this context, the architecture of the CLIPCNN
image encoder aligns with that of the traditional model. It can be
observed in Figure 2 that both k-NN distance and LID are able
to separate samples from clean and adversarial data. Our findings
reveal that LID values are higher in the CLIPCNN model compared
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to the traditional ResNet50 model, suggesting that adversarial points exist in a more complex, higher-
dimensional space compared to the ResNet50 model trained with a supervised objective under the
same attack. Furthermore, while the range of k-NN distances is similar across both models, we notice
that the distinction between clean and adversarial k-NN values is more pronounced in the CLIPCNN
model, which improves adversarial detection. This greater separation allows adversarial points to be
more clearly distinguished from clean embeddings, facilitating their identification.

In addition to this empirical analysis, Amsaleg et al. (2020) demonstrated that higher dimensionality
exhibits greater sensitivity to adversarial perturbations. Using Theorem 2 of (Amsaleg et al., 2020),
for a fixed choice of the ratio kt

kx
, where kt is a target expected rank, while kx is the expected rank

within the distribution of x, it can be shown that the proportion of perturbation required to achieve
the target rank decreases as the LID increases. Specifically, for large LID values, the amount of
perturbation required scales as (Amsaleg et al., 2020):

δ >
1

LID(x)
ln(

kt
kx

) + ϵ+ o(
1

LID(x)
). (4)

Equation 4 indicates that as LID increases, the perturbation needed to change the rank in the
neighborhood of a point decreases. Since the CLIPCNN model has larger LID values compared to
standard classifiers, the same amount of perturbation results in more significant changes in the ranks
within the neighborhood of points in the latent space. This heightened sensitivity to perturbations
facilitates the detection of adversarial points in the CLIPCNN model compared to a traditional classifier.
Thus, the larger LID values in CLIPCNN facilitate more effective adversarial detection.

4.2 GAD-VLP

GAD-VLP comprises three primary steps: generation, extraction, and detection. Following prior
work, we assume that the defender has access to a subset of the data and that the initial dataset Dc is
free of adversarial examples. All initial samples {(xj

i , x
j
t )}Nj=1, where xi denotes the image input

and xt denotes the text input, are clean. We denote the clean samples as {(xj
i , x

j
t )}Nj=1 ∈ Dc, and

the adversarial subset as {(x′j
i , x

j
t )}Nj=1 ∈ Da. In the case where both modalities are perturbed,

the adversarial set is represented as {(x′j
i , x

′j
t )}Nj=1 ∈ Da. The defender aims to accurately detect

adversarial samples, particularly those where the image is perturbed. Adversarial image detection is
framed as a binary classification problem, distinguishing between adversarial and clean samples.

In the first step of the process, generation, adversarial examples are created from clean samples
using adversarial attacks. We generated adversarial attacks based on the entire dataset, resulting in a
balanced distribution of adversarial and clean samples for both testing and evaluation, specifically
comprising equal proportions of each type. For a detailed description of the adversarial examples
generation process, refer to Appendix A.1

In the extraction step, we begin by extracting clean unimodal embeddings, zi = Ei(xi), and
multimodal embeddings, zm = Em(xi, xt), where Ei refers to the image encoder and Em to the
multimodal encoder. Next, we extract adversarial embeddings, represented as z′i = Ei(x

′
i) and

z′m = Em(x′
i, x

′
t). Then, the geometric scores for both clean and adversarial images are computed

using the extracted embeddings.

For Mahalanobis distance and KDE, we utilize zi from the clean training data, extracting the mean
vector (µ) and covariance matrix (Σ), and KDE functions (f̂(zi;H)), where H is the bandwidth
matrix. The Mahalanobis distance and KDE scores are then computed for both clean and adversarial
test data, with respect to (µ,Σ) for Mahalanobis distance and f̂(zi;H) for KDE. For k-NN, the
k-NN distances of embeddings are calculated by using the clean embeddings as the reference.

For LID, we adopt a layer-wise extraction approach following Ma et al. (2018). In fused VLPs, we
also include the LID of the multimodal encoder zm as an additional feature alongside the layers of
the image encoder, which improves detection performance against multimodal attacks. The complete
procedure for computing these values for adversarial image detection is outlined in Algorithm 1 in
Appendix A.2. S(N,l) and S

′

(N,l) represents the extracted clean and adversarial scores, where l = 1

for k-NN, Mahalanobis, and KDE, and l denotes the number of layers for LID. These scores serve as
the prepared features for the detection phase.
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To enhance computational efficiency, we employ minibatch sampling for the extraction of LID and
k-NN scores, particularly for large datasets. While processing the entire dataset is possible, it is often
prohibitively expensive. Previous studies (Ma et al., 2018) demonstrate that minibatch sampling can
be used to approximate the local neighborhood characteristics.

In the final stage, adversarial image detection is formulated as a binary classification problem,
distinguishing between adversarial and clean samples. To make this distinction, we define a function
g(·), which determines whether an image is perturbed. Adversarial features S

′
are labeled as one,

while clean features S are labeled as zero. The dataset is then divided into training and testing subsets.
For k-NN, Mahalanobis, and KDE, threshold-based detection is applied according to Equation 5
where t represents the threshold, while for LID, the extracted features are used to train a binary
classification model. The details on training the binary classification using LID values are provided
in Appendix A.2.

f(xi, xt) =

{
1 if si > t,

0 if si ≤ t,
(5)

Notably, the specific task for which the VLPs’ head was originally trained—classification or re-
trieval—is not central to our approach. We leverage only the embeddings from the image encoder
and, when applicable, the multimodal encoder’s embeddings, allowing our approaches to be flexibly
applied across various downstream tasks. Both Mahalanobis distance and KDE methods are widely
used for adversarial detection due to their capacity to model clean data distributions and identify
outliers. However, they may require labeled data or strong distributional assumptions, limiting
their flexibility. In contrast, k-NN and LID offer label-free advantages, making them suitable for
unsupervised tasks common in VLPs. This flexibility is particularly valuable in datasets that lack
explicit labels but include captions, allowing k-NN and LID to detect adversarial examples and assess
perturbations effectively, even without labeled data.

5 EXPERIMENTS

In this section, we demonstrate the effectiveness of GAD-VLP in distinguishing adversarial images
within VLPs. We evaluate four types of geometric methods, including LID, k-NN distance, Maha-
lanobis distance, and KDE for zero-shot classification, and LID and k-NN for image-retrieval tasks.
We utilize the MCM (Ming et al., 2022) method as a baseline that is used in the concept of VLPs to
compare the geometric approaches.

5.1 DATASETS AND MODEL

Datasets. We evaluate zero-shot classification with ImageNet (Deng et al., 2009), CIFAR10,
CIFAR100 (Krizhevsky et al., 2009), STL-10 (Coates et al., 2011), and Food-101 (Bossard et al.,
2014). For classification datasets, we use the text prompts (Radford et al., 2021) for the model with
the pattern of “a photo of a c”, where c is the name of the class. We evaluate image-text retrieval on
commonly used datasets, including Flickr30K (Young et al., 2014) and MS-COCO (Lin et al., 2014).

Model. We assess two well-known types of VLPs: aligned and fused VLPs. For the aligned VLPs,
we evaluate CLIP (Radford et al., 2021), with two image encoders: CLIPViT (using ViT-B/16) and
CLIPCNN (using ResNet50). For the fused VLPs, we examine ALBEF (Li et al., 2021) and TCL (Yang
et al., 2022). ALBEF and TCL contain an image encoder, a text encoder, and a multimodal encoder.
These models use a 12-layer ViT-B/16 (Dosovitskiy et al., 2020) as the image encoder and initialize it
with weights pre-trained on ImageNet-1k from (Deng et al., 2009). An input image I is transformed
into a series of embeddings: {vcls, v1, . . . , vN}, where vcls corresponds to the embedding of the
[CLS] token. Both the text and multimodal encoders utilize a 6-layer transformer (Vaswani, 2017).
The text encoder is initialized with the first 6 layers of the BERTbase (Devlin, 2018) model, while
the multimodal encoder is initialized with the final 6 layers of BERTbase. The text encoder processes
input text T into a sequence of embeddings {wcls, w1, . . . , wN}, which are subsequently passed to
the multimodal encoder. Image features are combined with the text embeddings via cross-attention at
every layer of the multimodal encoder.

Metric and Adversarial Attack. For assessment, we employ the following metrics: (1) the false
positive rate (FPR), and (2) the area under the receiver operating characteristic curve (AUC). We
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Table 1: A comparison of the discrimination power (AUC score) among MCM and GAD-VLP
framework using LID, k-NN, Mahalanobis (denoted as Mah.) and KDE in an aligned VLP, CLIPCNN,
and a fused VLP, ALBEF.

Model Method Attack CIFAR10 CIFAR100 ImageNet1k STL10 Food101

AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95

CLIPCNN

MCM Sepuni 65.47 82.88 41.13 94.15 86.10 60.35 95.82 17.92 91.70 40.18
Co-Attack 67.10 79.54 43.99 93.21 80.83 68.38 94.10 25.64 82.14 64.38

LID Sepuni 100 0.00 100 0.00 99.31 1.87 100 0.00 99.98 0.06
Co-Attack 100 0.00 100 0.00 99.50 1.62 100 0.00 99.95 0.08

k-NN Sepuni 100 0.00 100 0.00 99.65 1.62 100 0.00 100 0.00
Co-Attack 100 0.00 100 0.00 99.67 0.89 100 0.00 100 0.00

Mah. Sepuni 100 0.00 100 0.00 96.62 9.32 99.88 0.33 99.79 1.16
Co-Attack 100 0.00 100 0.00 97.28 7.97 99.80 0.59 99.38 2.32

KDE Sepuni 100 0.00 100 0.00 98.72 7.24 99.87 0.26 100 0.00
Co-Attack 100 0.00 100 0.00 99.33 2.81 99.85 0.33 100 0.00

ALBEF

MCM
Sepuni 91.20 29.02 82.80 49.19 92.15 25.38 96.83 16.02 90.26 37.03
Sepmulti 47.43 98.23 33.55 99.56 63.03 97.59 65.32 86.60 41.98 99.46
Co-Attack 93.34 24.64 82.67 47.27 92.14 24.94 96.45 19.70 81.29 74.70

LID
Sepuni 100 0.00 99.97 0.05 91.85 29.41 99.64 1.62 99.87 0.67
Sepmulti 99.96 0.20 99.85 0.44 78.77 67.68 96.63 15.65 92.31 33.27
Co-Attack 100 0.00 99.98 0.05 93.85 20.07 99.85 0.69 99.92 0.42

k-NN
Sepuni 100 0.00 100 0.00 98.60 7.23 99.97 0.19 99.98 0.04
Sepmulti 99.27 3.05 99.21 3.25 51.92 93.61 75.95 75.75 86.46 50.96
Co-Attack 100 0.00 100 0.00 98.64 7.33 99.96 0.19 99.98 0.04

Mah. Sepuni 100 0.00 100 0.00 99.94 0.20 100 0.00 100 0.00
Sepmulti 100 0.00 100 0.00 81.41 64.82 99.25 3.19 99.16 3.92
Co-Attack 100 0.00 100 0.00 99.93 0.25 100 0.00 100 0.000

KDE Sepuni 99.38 0.71 100 0.00 96.78 16.93 99.70 1.06 99.95 0.16
Sepmulti 99.24 0.86 99.85 0.81 66.83 81.75 88.63 66.19 87.61 49.27
Co-Attack 99.38 0.76 100 0.00 96.67 18.09 99.72 1.00 99.94 0.16

follow Sep-Attack and Co-Attack methods (Zhang et al., 2022a) due to their applicability to different
models and tasks. For the adversarial attack on the image modality, Sep-Attack (denoted as Sepuni
for unimodal attack and Sepmulti for multimodal attack, which can be done only in fused VLPs, and
Co-Attack both use PGD. The maximum perturbation ϵi is set to 8/255. The step size is set to 1.25,
the number of iterations is set to 10, and the maximum perturbation for text ϵt is set to 1 token.

Benchmark for Comparison. Given the limited research in adversarial detection within VLPs, we
opted to include the MCM method (Ming et al., 2022) as a baseline that is used in VLPs. This method
utilizes the softmax scores of the similarities between image and text embeddings in the CLIP model
to detect out-of-distribution data, making it the most suitable state-of-the-art method for comparison
within VLPs. We aimed to assess its effectiveness in VLPs for adversarial image detection and to
compare it with GAD-VLP to demonstrate its advantage. However, the MCM method is designed for
datasets with specific labels and does not apply to image-text retrieval, limiting our comparison to
classification datasets. MCM returns lower values for adversarial images compared to clean images.
These extracted MCM scores are then used to apply a threshold for distinguishing between adversarial
and clean images.

Settings. Depending on the distance and metric, the following hyperparameters need to be specified:
(1) the number of neighbors for estimating LID, (2) the number of neighbors for k-NN, (3) batch
size, and (4) KDE kernel size. For the CLIP model, both the ViT-B/16 and ResNet50 image encoder
architectures, we employ a batch size of 128, a k value of 100 for LID, 10 nearest neighbors for
k-NN, and KDE kernel of 0.1. For the ALBEF and TCL models, we set the batch size to 64, the k
value to 40 for LID, 10 nearest neighbors for k-NN, and KDE kernel of 0.1 for all attack scenarios.
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Table 2: GAD-VLP discrimination power (AUC score) for Image-Retrieval Task with Flickr30k and
COCO dataset in aligned VLPs (CLIPCNN and CLIPViT), and fused VLPs (ALBEF and TCL).

(a) Results for CLIPCNN and ALBEF Models

Model Method Attack
Dataset

Flickr30k COCO

AUC FPR AUC FPR

CLIPCNN

LID Sepuni 99.67 1.16 99.78 0.87
Co-Attack 99.59 1.47 99.68 1.23

k-NN Sepuni 99.99 0.00 99.97 0.03
Co-Attack 99.95 0.02 99.83 0.29

ALBEF

LID
Sepuni 94.26 24.94 96.80 14.37
Sepmulti 77.39 70.03 79.79 66.10
Co-Attack 94.27 25.01 96.63 14.54

k-NN
Sepuni 99.00 3.00 99.45 3.31
Sepmulti 64.68 87.01 70.70 75.65
Co-Attack 98.98 3.82 99.41 3.27

(b) Results for CLIPViT and TCL Models

Model Method Attack
Dataset

Flickr30k COCO

AUC FPR AUC FPR

CLIPViT

LID Sepuni 99.92 0.23 99.89 0.31
Co-Attack 99.01 4.75 98.83 5.24

k-NN Sepuni 100 0.00 100 0.00
Co-Attack 99.73 0.44 99.68 0.92

TCL

LID
Sepuni 96.02 19.01 98.38 7.51
Sepmulti 85.82 54.35 85.97 54.74
Co-Attack 96.11 19.05 98.22 8.65

k-NN
Sepuni 96.58 18.19 97.73 9.78
Sepmulti 42.19 93.52 65.09 83.60
Co-Attack 96.52 18.46 97.76 9.61

We utilized the fine-tuned image-retrieval model on the Flickr-30k dataset for both the ALBEF and
TCL models across all datasets.

5.2 RESULTS

Performance of GAD-VLP in Zero-Shot Classification. As can be seen in Table 1, geometric
approaches consistently outperform the MCM method across all datasets in CLIPCNN, achieving
lower FPR and higher AUC. This highlights the effectiveness of GAD-VLP in detecting adversarial
samples. Notably, k-NN surpasses other metrics (particularly Mahalanobis and KDE) in CLIPCNN,
with LID showing comparable performance to k-NN in this context.

While recent advancements in VLPs have largely centered on CLIP, we extended our evaluation to
include the ALBEF model. ALBEF, which features a fused multimodal encoder alongside separate
encoders for image and text, presents a different dynamic: Mahalanobis distance outperforms other
metrics (especially KDE), demonstrating its strength in detecting adversarial examples in the ALBEF
model. Additionally, in the context of multimodal attacks (SepMulti), LID shows similar performance,
underscoring the importance of multimodal embeddings in detecting such attacks.

For CLIPCNN, k-NN proves particularly effective due to the detailed representation of visual inputs
provided by the image embeddings from the encoder, allowing k-NN to effectively capture local
differences between clean and adversarial samples. Since adversarial perturbations in CLIP typically
result in subtle shifts within the embedding space, k-NN’s neighbor-based distance calculations are
well-suited to identifying outliers. Similarly, LID, by capturing the local dimensionality of the space,
further emphasizes its strength in detecting adversarial samples in CLIPCNN.

In ALBEF, the Mahalanobis distance, applied to image embeddings, excels in identifying deviations
from the expected distribution. Although ALBEF integrates multimodal information, adversar-
ial perturbations within the image modality still produce measurable changes in the embedding
space. Mahalanobis, with its capacity to model the covariance structure of clean image embeddings,
effectively identifies these deviations without relying heavily on multimodal interactions. Further-
more, LID, when incorporating multimodal embedding outputs as a feature in the detection process
(SepMulti), demonstrates performance comparable to Mahalanobis distance. Additional results for
CLIPViT and TCL, provided in Appendix A.3, show consistent patterns with those in this subsection.

Performance of GAD-VLP in Image-Text Retrieval. We also aimed to demonstrate that the
detection of adversarial images in VLPs is not constrained to classification tasks with datasets having
specific labels. For this purpose, we evaluated the performance of the image-text retrieval task on
two datasets, to assess if the method applies to non-classification datasets, Flickr30k and COCO.
Due to the lack of labels in this task, we only examine the LID and k-NN distance since they do
not require labels. The results can be seen in Table 2. The performance of the CLIPCNN, CLIPViT,
ALBEF and, TCL models is comparable to their performance on classification datasets. For both the
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Table 3: Generalization of GAD-VLP to Sepuni
with different baseline attacks in CLIPViT for
STL10. The reported results are AUC.

Attack Method

LID k-NN Mahal. KDE

PGD 99.99 100 99.99 99.97
FGSM 91.93 98.99 99.59 99.12
R-FGSM 75.39 74.12 94.11 83.91
I-FGSM 99.99 100 99.99 99.96
MI-FGSM 99.97 100 99.99 99.96

CIFAR10

CIFAR100
STL-10

FOOD-101

ImageNet1k

80

90

100

A
U

R
O

C

w/o multimodal

with multimodal

Figure 4: The effect of the multimodal encoder
of the LID detection in multimodal-based attacks
on fused VLPs.

COCO and Flickr30k datasets, each image is annotated with five captions. To maintain consistency,
As Co-Attack requires a matching prompt to simultaneously attack both the image and the associated
text, we select the first caption as the target text for the Co-Attack method.

5.3 ABLATION STUDY

The Effect of Multimodal Embeddings on Adversarial Detection. We evaluate the impact of
including a multimodal layer on LID value computation. As shown in Figure 4, the exclusion of this
feature results in a reduction in AUC scores in most datasets. This indicates that for attacks based
on the multimodal encoder, the inclusion of this layer is crucial. The LID difference in this layer is
significantly more noticeable compared to other layers.

Generalization to Different Gradient-based Attacks. It is important to investigate whether the
detector can effectively detect samples from different attack strategies. To address this, we conduct
an evaluation to assess its ability to generalize to new attack baselines beyond the PGD-based attacks.
Specifically, for LID method, we train the detector using PGD-based attacks and then evaluate its
performance on samples generated from other attack strategies, including FGSM (Goodfellow et al.,
2014), R-FGSM (Tramèr et al., 2018), I-FGSM (Kurakin et al., 2018), and MI-FGSM (Dong et al.,
2018). Both the training and test datasets follow the same preparation method as in our previous
experiments, with PGD-based attacks applied to the training set, while evaluated attacks are used for
the test set. For the other methods (k-NN, Mahalanobis, and KDE), since they rely on thresholds,
we simply assess their performance against the new attack types. The results, presented in Table
3, demonstrate that the geometric-based method shows significant generalizability across various
gradient-based attack strategies.

6 CONCLUSION

In this paper, we address, for the first time, the problem of detecting adversarial attacks against
VLPs, which are increasingly applied across diverse domains. We demonstrate that our framework,
GAD-VLP, which utilizes simple geometric metrics applied to image or joint representations, can
effectively detect adversarial examples. Our detection approach generalizes across various tasks
and state-of-the-art VLPs—CLIPCNN, CLIPViT, ALBEF, and TCL. A key insight from our study
is the increased separation between clean and adversarial geometric scores in the latent space of
the CLIP model, in contrast to traditional classifiers. This distinction enhances the effectiveness of
geometric scores for adversarial detection. Our results demonstrate that the proposed framework
performs robustly across different VLP architectures, whether aligned or fused, and is effective
against state-of-the-art adversarial attacks. Moreover, the detection process is independent of the
downstream tasks. An open issue for future research is the examination of text-exclusive attacks, a
prominent concern within VLPs. Further exploration is necessary to identify robust methodologies
for leveraging the embeddings in the detection of adversarial attacks in the text domain.
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A APPENDIX

A.1 ATTACKS ON VLPS

In this part, we provide an extended explanation of the adversarial attacks discussed in Section
3.1. We provide additional technical details and mathematical formulations for the Sep-Attack and
Co-Attack methods, including how they perturb multimodal and unimodal embeddings in vision-
language models. These formulations expand upon the description of the attacks provided in the main
text, offering a deeper dive into their mechanisms and objectives.

Sep-attack Sep-Attack (Zhang et al., 2022a) was introduced to perturb image and text modalities
separately. As VLPs can be used for non-classification tasks without explicit labels, they propose
using Kullback–Leibler (KL) divergence loss instead of commonly used cross entropy. In this way,
the Sep-Attack aims to maximize the KL divergence loss (L) of the embedding-wise representation
to produce an adversarial perturbation:

δi = ϵi.sign(∇x
′
i
L(Ei(x

′

i), Ei(xi))). (6)

For perturbing the text modality, the text perturbation can be denoted as follows:

δt = argmax
xi
t

(
∥∥∥Et(x

′

t)− Et(xt

∥∥∥)− xt. (7)

Maximum perturbation ϵt is constrained in the way that how many tokens are perturbed in each
prompt based on BERT attack (Li et al., 2020). For the attack on multimodal embedding, the unimodal
encoder is replaced with the multimodal encoder, which is denoted as Em(·, ·). It is worth mentioning
that this attack is only applicable to fused VLPs like ALBEF, which have multimodal encoders. The
attack on the image is as follows:

δi = ϵi.sign(∇x
′
i
L(Em(Ei(x

′

i), Et(xt)), Em(Ei(xi), Et(xt)))). (8)

Co-Attack In Sep-attack, combining attacks on the text and image may be less effective than
attacking them individually. To overcome this challenge, Co-Attack (Zhang et al., 2022a) was
developed to jointly target the image modality and the text modality. It aims to shift the perturbed
multimodal embedding away from the original embedding or the perturbed image-modal embedding
away from the perturbed text-modal embedding. The versatility of Co-Attack allows it to be applied
to both fused VLPs and aligned VLPs, making it suitable for attacking both multimodal and unimodal
embeddings. The attack on unimodal embedding aims to find the perturbation δi that satisfies:

argmax
δi

L(Ei(x
′
i), Et(xt)) + α1L(Ei(x

′
i), Et(x

′
t)). (9)

The attack on multimodal embedding is as follows:

argmax
δi

L(Em(Ei(x
′
i), Et(x

′
t)), Em(Ei(xi), Et(x

′
t)))

+α2L(Em(Ei(x
′
i), Et(x

′
t)), Em(Ei(xi), Et(xt))). (10)

α1 and α2 are hyper-parameters that control the contributions of the second term.

A.2 ALGORITHM AND DETAILS

The details of the GAD-VLP are presented in Algorithm 1. Specifically, line 2 outlines the generation
step discussed in Section 4.2, while lines 4 to 13 are related to the extraction steps. Lines 16 to 18
detail the detection process. For training the LID detection model, we used the extracted S(N,l),
where N is the number of samples and l is the number of layers from which features are extracted.
We then divided the extracted scores into two parts: training and testing. The training data was used
as features to train a binary classification model.

For the CLIPCNN with the CIFAR-10 dataset, feature extraction for detection methods such as MCM,
KDE, Mahalanobis, and k-NN takes less than 2 minutes, while the LID-based method requires about
9 minutes on an NVIDIA H100 GPU. Detailed time costs are provided in Table 4. Our framework is
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Method LID k-NN Mahalanobis KDE MCM

Score 546.11 103.19 33.08 69.82 98.48

Table 4: Comparison of computational cost (seconds) for different methods of GAD-VLP framework
on CIFAR-10 with CLIPCNN.

significantly more efficient compared to re-training or fine-tuning CLIP for robustness. For example,
linear-probe CLIP (Radford et al., 2021) takes approximately 13 minutes, CoOp (Zhou et al., 2022)
requires 14 hours and 40 minutes, and CLIP-Adapter (Peng et al., 2021) takes about 50 minutes on a
n a single NVIDIA GeForce RTX 3090 GPU (Zhang et al., 2022b).

Algorithm 1 GAD-VLP
Input: A pre-trained model, consisted of a image encoder Ei(.), a text encoder Et(.), and in the
case of being fused Em(.), Clean data Dc = (xi, xt)

N
i=1, and L = [l1, l2, ..., lf ] selected layers for

embedding extraction

1: for j = 1 to length(Dc) do
2: X

′
= Attack(X)

3: for l ∈ L do
4: z

′

(j,l) = Ei
l(xi)

5: z
′

(j,l) = Ei
l(x

′
i)

6: slid(j,l) = LID(zclean(j,l))

7: slid
′
(j,l) = LID(zadv(j,l))

8: end for
9: sknn(j) = k-NN(z(j,lf )) , smah.(j) = Mah.(z(j,lf )) , skde(j) = KDE(z(j,lf ))

10: s
′
knn(j) = k-NN(z

′
(j,lf )) , s

′
mah.(j) = Mah.(z

′
(j,lf )) , s

′
kde(j) = KDE(z

′
(j,lf ))

11: if Attack is based on Multimodal Embedding then
12: slid(j,m+1) = LID(Em(xi, xt))

13: slid
′
(j,m+1) = LID(Em(x

′

i, x
′

t))
14: end if
15: end for
16: Yneg = [0]N , Ypos = [1]N , Y = [Yneg, Ypos]

17: X = [S, S
′
]

18: Detection Model for (X,Y )

A.3 EXTENDED EVALUATION

Table 5 presents the results of adversarial detection for zero-shot classification in the CLIPViT and
TCL models. The findings are consistent with those shown in Table 1.

A.4 SENSITIVITY TO LOCALITY

Adversarial detection methods based on local analysis, such as k-NN and LID, rely on the locality
hyperparameter k to define the neighborhood size, which can have a substantial impact on their
detection performance. To explore the sensitivity of these methods to the choice of k in detecting
adversarial examples within VLPs, we varied k across the values [10, 20, 30, 40, 50] for the
adversarial detection for Sepuni attack in CLIPViT. As shown in Figure 5, our results reveal that
k-NN demonstrates greater stability in adversarial detection compared to LID, maintaining consistent
performance across different values of k. This highlights the robustness of k-NN when applied in the
context of adversarial detection, whereas LID appears more sensitive to changes in k.
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Table 5: A comparison of the discrimination power (AUC score) among MCM and GAD-VLP
framework using LID, k-NN, Mahalanobis (denoted as Mah.) and KDE in an aligned VLP, CLIPViT,
and a fused VLPs, TCL.

Model Method Attack CIFAR10 CIFAR100 ImageNet1k STL10 Food101

AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95

CLIPViT

MCM Sepuni 76.47 88.24 72.09 67.83 86.06 54.55 94.84 26.79 94.51 25.32
Co-Attack 80.21 73.54 68.37 76.24 84.14 58.93 95.51 20.73 89.78 40.95

LID Sepuni 100 0.00 100 0.00 99.23 4.57 99.99 0.00 99.98 0.02
Co-Attack 100 0.00 100 0.00 97.09 15.30 99.74 0.64 99.54 1.49

k-NN Sepuni 100 0.00 100 0.00 99.98 0.00 100 0.00 100 0.00
Co-Attack 100 0.00 100 0.00 98.67 6.64 99.99 0.00 100 0.00

Mah. Sepuni 100 0.00 100 0.00 99.85 0.94 99.99 0.06 99.98 0.14
Co-Attack 100 0.00 100 0.00 99.18 3.07 99.97 0.06 99.82 0.82

KDE Sepuni 100 0.0 100 0.00 99.95 0.10 99.97 0.19 100 0.00
Co-Attack 100 0.00 100 0.00 98.79 6.35 99.82 0.39 100 0.0

TCL

MCM
Sepuni 76.91 55.63 62.15 73.78 90.49 32.02 94.82 18.45 76.76 71.88
Sepmulti 46.63 99.06 37.01 97.24 64.85 87.65 73.34 77.49 46.94 95.84
Co-Attack 80.82 45.65 69.05 68.32 92.74 26.71 97.13 13.65 79.07 64.75

LID
Sepuni 100 0.00 100 0.00 91.92 28.28 99.62 1.81 99.77 1.01
Sepmulti 99.91 0.25 99.88 0.54 85.64 53.66 97.71 12.97 93.15 30.67
Co-Attack 100 0.00 100 0.00 91.02 30.64 99.89 0.69 99.79 0.79

k-NN
Sepuni 100 0.00 100 0.00 93.99 25.77 99.97 00.06 99.98 00.06
Sepmulti 99.78 1.28 99.87 0.59 32.54 97.98 85.39 56.04 92.08 32.53
Co-Attack 100 0.00 100 0.00 93.83 26.61 99.98 00.06 99.98 0.06

Mah. Sepuni 100 0.00 100 0.00 99.65 1.56 99.99 0.06 100 0.00
Sepmulti 100 0.00 99.99 0.05 59.92 89.52 98.28 8.31 99.11 3.41
Co-Attack 100 0.00 100 0.00 99.64 1.56 99.99 0.06 100 0.00

KDE Sepuni 99.16 0.86 100 0.00 90.89 35.33 98.63 4.56 99.95 0.24
Sepmulti 98.97 1.46 99.80 1.11 59.70 85.08 80.72 60.62 92.30 33.70
Co-Attack 99.15 0.86 100 0.00 90.98 36.54 98.62 4.56 99.96 0.20

(a) CIFAR10 (b) STL10 (c) ImageNet1k

Figure 5: The detection AUC rates of local geometric approaches under varying locality k.

A.5 EVALUATION OF ADAPTIVE ATTACKS

In this subsection, we evaluate the impact of test-time adaptive attacks on GAD-VLP. Adaptive
attacks specifically target the detection mechanism by incorporating it into the optimization process
for perturbation generation. Assessing their effectiveness is critical, particularly in white-box settings,
where the attacker has full access to the model and can modify the optimization function to craft
perturbations that directly undermine the detection method.

We have expanded our experimental setup to include adaptive attacks targeting the LID and k-NN
detection methods. Specifically, we generate attacks designed to optimize for bypassing the detection
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Table 6: GAD-VLP discrimination power (AUC score) comparison between adaptive and non-
adaptive attacks for Image-Retrieval Task with Flickr30k and COCO dataset in aligned VLPs
(CLIPCNN and CLIPViT), and fused VLPs (ALBEF and TCL) (Note: ’N-adaptive’ refers to the
Non-adaptive method.)

(a) Effect of k-NN adaptive Attacks

Model Attack Dataset

Flickr30k COCO

N-adaptive Adaptive N-adaptive Adaptive

CLIPCNN
Sepuni 99.99 99.99 99.97 99.99
Co-Attack 99.95 100 99.83 99.99

CLIPViT
Sepuni 100 100 100 99.99
Co-Attack 99.73 100 99.68 99.99

ALBEF
Sepuni 99.00 94.57 99.45 96.46
Sepmulti 64.68 87.83 70.70 92.48
Co-Attack 98.98 94.50 99.41 96.45

TCL
Sepuni 96.58 94.45 97.73 94.72
Sepmulti 42.19 53.59 65.09 68.15
Co-Attack 96.52 94.42 97.76 94.71

(b) Effect of LID adaptive Attacks

Model Attack
Dataset

Flickr30k COCO

N-adaptive Adaptive N-adaptive Adaptive

CLIPCNN
Sepuni 99.67 97.37 99.78 97.91
Co-Attack 99.59 97.43 99.68 98.32

CLIPViT
Sepuni 99.92 93.29 99.89 91.97
Co-Attack 99.01 93.90 98.83 92.46

ALBEF
Sepuni 94.26 73.85 96.80 80.65
Sepmulti 77.39 73.66 79.79 79.43
Co-Attack 94.27 73.85 96.63 79.88

TCL
Sepuni 96.02 76.90 98.38 83.53
Sepmulti 85.82 78.19 85.97 79.87
Co-Attack 96.11 78.28 98.22 83.29

Table 7: ASR (IR@1) for the Image-Retrieval Task with Flickr30k and COCO datasets in aligned
VLPs (CLIPCNN, CLIPViT) and fused VLPs (ALBEF, TCL).

Model Attack Flickr30k COCO

Non-adaptive LID-adaptive k-NN adaptive Non-adaptive LID-adaptive k-NN adaptive

CLIPCNN
Sepuni 98.61 90.59 96.31 98.87 91.49 94.75
Co-Attack 99.72 93.90 97.53 99.83 93.62 96.70

CLIPViT
Sepuni 97.33 87.27 94.30 98.14 87.96 93.15
Co-Attack 99.42 92.69 95.59 99.21 92.48 96.35

ALBEF
Sepuni 89.50 96.02 98.33 89.18 94.69 97.76
Sepmulti 62.57 58.15 93.55 44.14 71.79 95.36
Co-Attack 93.33 96.43 98.62 92.35 97.38 98.41

TCL
Sepuni 96.18 96.31 99.54 97.56 94.61 99.51
Sepmulti 59.58 48.93 68.54 48.76 52.83 57.83
Co-Attack 97.21 96.81 99.62 98.33 97.56 99.27

metrics (LID and k-NN) as follows:

Ladaptive(Z,Z
′
) = Lmain(Z,Z

′
) + α ∗ S(Z

′
) (11)

Where S(Z
′
) is the LID or k-NN function that computes the score for adversarial sample embeddings

Z
′

relative to the clean sample embeddings Z, and we set α = 0.5 in our experiments. The results
presented in Table 6 offer insights into the resilience of the GAD-VLP framework under adaptive
attacks. k-NN and LID are robust when detecting adaptive attacks for CLIP and reasonably effective
for ALBEF and TCL. The increase in detection rates against adaptive k-NN attacks, particularly in the
multimodal image domain, can be explained by the dynamics of attack generation. Adaptive attacks
targeting the k-NN-based defense incorporate constraints that optimize perturbations around the
k-NN structure. The incorporation of the multimodal encoder during attack generation modifies the
data distribution, increasing the distinguishability of perturbed samples. This could cause perturbed
samples to shift more significantly in the feature space, making them easier to detect.

A.6 EVALUATION OF ATTACK SUCCESS RATES

In this subsection, we evaluated the attack success rate (ASR) specifically for image-retrieval tasks
across four models and two widely used datasets. The results are shown in Tables 7 and 8.
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Table 8: ASR (IR@5) for the Image-Retrieval Task with Flickr30k and COCO datasets in aligned
VLPs (CLIPCNN, CLIPViT) and fused VLPs (ALBEF, TCL).

Model Attack Flickr30k COCO

Non-adaptive LID-adaptive k-NN adaptive Non-adaptive LID-adaptive k-NN adaptive

CLIPCNN
Sepuni 97.49 84.45 93.28 97.33 83.25 90.46
Co-Attack 99.30 89.15 94.87 99.06 88.83 93.93

CLIPViT
Sepuni 94.60 79.48 87.54 95.69 80.12 88.23
Co-Attack 98.79 84.85 91.45 98.92 86.39 91.61

ALBEF
Sepuni 85.25 95.37 96.80 84.05 94.6 96.11
Sepmulti 63.22 54.02 92.50 49.60 68.63 94.32
Co-Attack 88.01 95.47 96.65 87.21 97.00 96.23

TCL
Sepuni 92.69 95.96 98.95 95.29 94.66 98.39
Sepmulti 61.31 45.67 68.68 54.65 48.68 60.98
Co-Attack 93.46 95.92 98.91 99.49 97.06 98.44
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