HINDSIGHT PREFERENCE LEARNING FOR OFFLINE PREFERENCE-BASED REINFORCEMENT LEARNING

Anonymous authors

004

010 011

012

013

014

015

016

017

018

019

021

025

026 027 028

029

Paper under double-blind review

ABSTRACT

Offline preference-based reinforcement learning (RL), which focuses on optimizing policies using human preferences between pairs of trajectory segments selected from an offline dataset, has emerged as a practical avenue for RL applications. Existing works rely on extracting *step-wise* reward signals from *trajectory-wise* preference annotations, assuming that preferences correlate with the cumulative Markovian rewards. However, such methods fail to capture the holistic perspective of data annotation: Humans often assess the desirability of a sequence of actions by considering the overall outcome rather than the immediate rewards. To address this challenge, we propose to model human preferences using rewards conditioned on future outcomes of the trajectory segments, i.e. the *hindsight information*. For downstream RL optimization, the reward of each step is calculated by marginalizing over possible future outcomes, the distribution of which is approximated by a variational auto-encoder trained using the offline dataset. Our proposed method, Hindsight Preference Learning (HPL), can facilitate credit assignment by taking full advantage of vast trajectory data available in massive unlabeled datasets. Comprehensive empirical studies demonstrate the benefits of HPL in delivering robust and advantageous rewards across various domains.

1 INTRODUCTION

Although reinforcement learning (RL) has demonstrated remarkable success in various sequential decision-making tasks (Vinyals et al., 2019; Ye et al., 2020), its application in real-world scenarios remains challenging for practitioners, primarily due to two key reasons. First, modern RL methods typically require millions of online interactions with the environment (Haarnoja et al., 2018), which is prohibitively expensive and potentially dangerous in embodied applications (Levine et al., 2020). Second, reward engineering is necessary to align the induced behavior of the policy with human interests (Gupta et al., 2022; Knox et al., 2023). However, tweaking the reward requires substantial effort and extensive task knowledge of real-world scenarios. Reward hacking frequently occurs when the reward is improperly configured, leading to unintended consequences (Skalse et al., 2022).

There are several research directions aiming for addressing above challenges (Knox & Stone, 2009; 040 Ng & Russell, 2000; Sadigh et al., 2017), among which offline Preference-based RL (offline PbRL) 041 has gained increasing attention recently (Hejna & Sadigh, 2023; An et al., 2023; Kang et al., 2023). In 042 offline PbRL, an offline dataset is collected by deploying a behavior policy, after which human labelers 043 are required to provide relative preferences between two trajectory segments selected from the offline 044 dataset. Offline PbRL significantly reduces the burden on human effort given that labeling preferences between trajectories is considerably easier compared to crafting step-wise reward signals. It has proven effective in large-scale applications including fine-tuning large language models (Touvron 046 et al., 2023; Rafailov et al., 2023; Hu et al., 2023a). 047

Offline PbRL typically follows a two-phase paradigm: 1) learning a reward function that aligns with human preferences using a small labeled preference dataset; 2) applying the reward function to label a massive unlabeled dataset and performing policy optimization (Christiano et al., 2017).
For the first phase, existing methods employ Bradley-Terry model (Bradley & Terry, 1952) to learn *step-wise* reward signals from *trajectory-wise* preferences based on the *Markovian reward assumption*: the preference correlates with the cumulative rewards of each trajectory (Christiano et al., 2017). However, as previous works (Kim et al., 2023) have unveiled, such an assumption is technically

Figure 1: Illustration of the reward learning procedure in HPL. Unlike previous methods, HPL first generates embeddings z_t to encode the future part of the segments and optimize a reward function r_{ψ} which is conditioned on the s_t , a_t and the future z_t using the Bradley-Terry model.

flawed and limited since humans evaluate the trajectory segments from a global perspective, making
the obtained reward bear an implicit dependence on the future part of the segment. Consider the case
of purchasing lottery tickets as an example. Although the expected return is negative, the payoff can
be substantial if one wins. However, when assigning credits, we should allocate higher rewards to
purchasing tickets only when we are certain of winning, rather than unconditionally encouraging
such behavior.

In light of this, we propose Hindsight Preference Learning (HPL) to account for such dependence 076 on future information. The key idea of HPL is to develop a hindsight preference model, which 077 models human preferences using a reward function conditioning on the state s, action a and the future trajectory starting from (s, a), i.e. the *hindsight information*. In particular, given a H-length trajectory 079 $\sigma_{1:H} = (s_1, a_2, s_2, a_2, \dots, s_H, a_H)$, the reward of s_t, a_t for $1 \le t \le H$ is given by $r(s_t, a_t | \sigma_{t:t+k})$. 080 When labeling the unlabeled dataset, a scalar reward signal is computed for each state-action pair 081 by marginalizing over all possible hindsight information, $r(s, a) = \int_{\sigma} p(\sigma | s, a) r(s, a | \sigma) d\sigma$. To deal 082 with the high-dimensional nature of hindsight information, we pre-train a variational auto-encoder to 083 efficiently represent the hindsight information, making the above marginalization feasible in practice. 084 The reward learning procedure of HPL is illustrated in Figure 1. 085

HPL has two key benefits over prior works. First, by leveraging hindsight information in preference modeling, it captures the implicit holistic perspective of human preference labeling, addressing the key limitation of the Markovian reward assumption adopted in previous works. Second, the two-phase paradigm of offline PbRL might become less effective if there is a substantial distribution mismatch between preference and unlabeled dataset. HPL can take advantage of the unlabeled dataset by learning a prior over future outcomes. This allows for incorporating the information of trajectory distribution carried by the unlabeled dataset, thus delivering robust and advantageous rewards when labeling the unlabeled dataset. We provide extensive evaluations to verify these benefits.

093 094

095

065

066

067

068 069

2 PRELIMINARIES

096 2.1 MARKOV DECISION PROCESS

In standard RL, an agent interacts with an environment characterized by a Markov Decision Process (MDP) $\langle S, A, r, T, \gamma \rangle$ according to its policy $\pi(a|s)$. Here, S and A represent the state space and action space respectively, while r(s, a) denotes the reward function, T(s'|s, a) is the transition function, and γ is the discounting factor. The value function defines the expected cumulative reward by following the policy $\pi(a|s)$,

103 104

105 106

$$V^{\pi}(s) = \mathbb{E}_{a_t \sim \pi(\cdot|s_t), s_{t+1} \sim T(\cdot|s_t, a_t)} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) | s_0 = s \right].$$

$$\tag{1}$$

107 The primary objective of RL algorithms is to find an optimal policy that maximizes $\mathbb{E}_{s_0 \sim \mu_0}[V^{\pi}(s_0)]$, where μ_0 is the initial state distribution.

108 2.2 OFFLINE PREFERENCE-BASED REINFORCEMENT LEARNING 109

110 In this work, we consider the problem of learning an optimal decision-making policy from a previously collected dataset with *preference feedback*. In its generalist framework, the ground-truth reward is not 111 given in the data. Instead, the learner is provided with a *preference dataset* and a massive unlabeled 112 *dataset*, and follows a two-phase paradigm: 1) reward learning, learn a reward model r with the 113 preference data; and 2) reward labeling, apply r to label the unlabeled dataset in order to perform 114 policy optimization with a large amount of data. 115

116 Let $\sigma = (s_1, a_1, s_2, a_2, \dots, s_{|\sigma|}, a_{|\sigma|})$ denote a consecutive segment of states and actions from a trajectory. The preference dataset $\mathcal{D}_{p} = \{(\sigma_{i}^{0}, \sigma_{i}^{1}, y_{i})\}_{i=1}^{|\mathcal{D}_{p}|}$ consists of segments pairs with preference label given by the human annotators. The preference label is given by: $y_{i} = 0$ if $\sigma^{0} \succ \sigma^{1}$ and $y_{i} = 1$ 117 118 119 if $\sigma^1 \succ \sigma^0$, where we use $\sigma \succ \sigma'$ to denote σ is more preferred than σ' . The unlabeled dataset \mathcal{D}_u 120 contains reward-free trajectories $\{\sigma_i\}_{i=1}^{|\mathcal{D}_u|}$ collected by some behavior policy π_β . In practice, we usually have $|\mathcal{D}_u| \gg |\mathcal{D}_p|$ as collecting human annotations is more time-consuming and expensive 121 122 compared to collecting unlabeled trajectories. 123

To learn a reward function r, a common approach is to assume a probabilistic preference model P 124 and maximize the likelihood of the preference dataset, 125

$$\mathcal{L}(\psi) = -\sum_{(\sigma^0, \sigma^1, y) \in \mathcal{D}_{\mathbf{p}}} (1 - y) \log P(\sigma^0 \succ \sigma^1; \psi) + y \log P(\sigma^1 \succ \sigma^0; \psi),$$
(2)

where $P(\sigma \succ \sigma'; \psi)$ is the preference model parameterized by the parameters ψ . For the probabilistic preference model, most existing methods adopt the Markovian reward assumption (Christiano et al., 2017; Shin et al., 2023; Hu et al., 2023b):

$$\rho_{\rm MR}(\sigma;\psi) = \sum_{(s,a)\in\sigma} r_{\psi}(s,a) \,. \tag{3}$$

That is, the *preference strength* of a segment σ correlates with its cumulative rewards. Applying 134 the Bradley-Terry model (Bradley & Terry, 1952) leads to the following Markovian Reward (MR) 135 preference model, 136

$$P_{\rm MR}(\sigma^0 \succ \sigma^1; \psi) = \frac{\exp(\rho_{\rm MR}(\sigma^0; \psi))}{\exp(\rho_{\rm MR}(\sigma^0; \psi)) + \exp(\rho_{\rm MR}(\sigma^1; \psi))}.$$
(4)

139 Plugging Equation 4 into Equation 2 yields a practical learning objective for learning the reward 140 function. Finally, we can label \mathcal{D}_{u} with the learned reward model for any $(s, a) \in \sigma, \sigma \in \mathcal{D}_{u}$. The 141 resulting labeled dataset can be used for policy optimization with any offline RL algorithms, such as 142 IQL (Kostrikov et al., 2022) and AWAC (Nair et al., 2020). 143

3 HINDSIGHT PREFERENCE LEARNING

In this section we introduce a new preference model designed to address the limitations of the MR 146 preference model by utilizing hindsight information. We begin with an illustrative example that serves as the primary motivation for our approach, followed by a detailed explanation of the formalization 148 and implementation of the proposed method.

149 150 151

126 127 128

129

130

131

132 133

137

138

144

145

147

3.1 MOTIVATING EXAMPLE: THE INFLUENCE OF THE FUTURE

152 To elucidate the influence of the future in preference modeling, we take the gambling MDP from Yang 153 et al. (2023) as an example (Figure 2). An agent begins at s_1 with two actions: a_1 and a_2 . Choosing 154 the high-risk action a_1 , the agent transitions to a rewarding state s_{good} with probability of 10%, but 155 is more likely (90%) to a penalizing state s_{bad} . Alternatively, the safer and actually optimal action a_2 156 consistently leads to a neutral state s_{avg} , yielding a reward of 0. Suppose we are to extract the reward 157 function using the provided dataset, where preferences are labeled based on the ground-truth reward:

158

159

 $\mathcal{D} = \begin{cases} ((s_1 \to a_1 \to s_{\text{good}} \to a_3), & (s_1 \to a_2 \to s_{\text{avg}} \to a_3), & y = 0) \\ ((s_1 \to a_1 \to s_{\text{good}} \to a_3), & (s_1 \to a_2 \to s_{\text{avg}} \to a_3), & y = 0) \\ ((s_1 \to a_1 \to s_{\text{good}} \to a_3), & (s_1 \to a_1 \to s_{\text{bad}} \to a_3), & y = 0) \\ ((s_1 \to a_1 \to s_{\text{bad}} \to a_3), & (s_1 \to a_2 \to s_{\text{avg}} \to a_3), & y = 1) \end{cases} .$

162 Applying the MR preference model (Equation 4) to this dataset would likely yield a reward function 163 where $r_{\psi}(s_1, a_1) > r_{\psi}(s_1, a_2)$, because a larger proportion of trajectories involving a_1 lead to 164 the rewarding state s_{good} (our experiments also validate this in Figure 3). However, this violates 165 rationality as selecting a_2 offers a higher return in expectation. This failure can be attributed to the 166 inappropriate credit assignment inherent in the MR preference model (Equation 4): a preference for $(s_1 \rightarrow a_1 \rightarrow s_{\text{good}} \rightarrow a_3)$ will assign credits to both $r_{\psi}(s_1, a_1)$ and $r_{\psi}(s_{\text{good}}, a_3)$ equally, leading 167 to over-estimated rewards for a_1 . To address this issue, a natural approach is to condition the reward 168 of (s_1, a_1) on the future outcome of the segment (i.e. s_{good} or s_{bad}), so that a_1 is encouraged only when it leads to a favorable outcome s_{good} . The conditional reward function $r_{\psi}(s, a | \sigma_{\text{future}})$ thus 170 answers the critical question: If my future is determined to be σ_{future} , how advantageous it is for me 171 to choose action a at s? 172

When applying $r_{\psi}(s, a | \sigma_{\text{future}})$ to label data, 173 we can marginalize over all possible future 174 segments according to some prior distribu-175 tion $p_{\text{prior}}(\cdot|s,a)$ to get the value $r_{\psi}(s,a) =$ 176 $\mathbb{E}_{\sigma \sim p_{\text{prior}}(\cdot|s,a)}[r_{\psi}(s,a|\sigma)]$. Note that the prior distribution can be estimated using the unlabeled 177 178 offline dataset, which is unbiased concerning the 179 environment transition and the behavior policy. Take the gambling MDP again as an example, 181 the marginalization would decrease the reward 182 of action a_1 since most of the time (90%) the 183 agent will arrive at the bad state. Besides, when there exists a mismatch between the data distri-184 bution of the preference dataset \mathcal{D}_{p} and that of 185 the unlabeled dataset \mathcal{D}_{u} (which is a common 186

Figure 2: A gambling MDP that illustrates the potential failure modes of the MR preference model.

occurrence because of the improvement of the policy or the non-uniform sampling for preference pairs), it is found that the reward from existing methods may not align with the RL agent's interests (Hu et al., 2023b; Liu et al., 2023). The conditional reward model provides an effective solution to this issue by enabling the marginalization of the reward function r_{ψ} using a data distribution that is more closely aligned with the on-policy data, thereby improving the alignment between learned behaviors and desired outcomes.

3.2 HINDSIGHT PREFERENCE MODEL

193

194

199 200 201

202

203

208

209

210 211

212

215

We now present *Hindsight Preference Model (HPM)*, a novel preference model that incorporates future information in preference modeling. As opposed to Equation 3, HPM assumes that the preference strength of a trajectory segment $\sigma = (s_0, a_0, s_1, a_1, \dots, s_H)$ is determined by

$$\rho_{\rm HPM}(\sigma;\psi) = \sum_{(s_t,a_t)\in\sigma} r_{\psi}(s_t,a_t|\sigma_{t:t+k})\,,\tag{5}$$

where $\sigma_{i:j}$ denotes the subsequence of σ between steps *i* and *j*.¹ That is, in HPM the reward function r_{ψ} not only takes the current state s_t and action a_t as input, but also depends on the *k*-step future outcome $\sigma_{t:t+k}$. Then given a segment pair (σ^0, σ^1) , HPM models their preference by

$$P_{\rm HPM}(\sigma^0 \succ \sigma^1; \psi) = \frac{\exp(\rho_{\rm HPM}(\sigma^0; \psi))}{\exp(\rho_{\rm HPM}(\sigma^0; \psi)) + \exp(\rho_{\rm HPM}(\sigma^1; \psi))} \,. \tag{6}$$

In practice, directly implementing this conditional reward $r_{\psi}(s_t, a_t | \sigma_{t:t+k})$ is challenging due to the high-dimensional nature of the k-step segment $\sigma_{t:t+k}$. We address this issue by compressing the segment into a compact embedding rather than operating directly in the raw space of trajectory.

3.3 FUTURE SEGMENT EMBEDDING

We propose to compress future segments $\sigma_{t:t+k}$ into a compact embedding vector z_t by training a conditional *Variational Auto-Encoder* (VAE) (Kingma & Welling, 2013). The architecture of our

¹We use $\sigma_{t:t+k}$ to simplify the notations. For t+k > H, the subsequence will be clipped to $\sigma_{t:\min(t+k,H)}$.

234

235

246

247

248 249 250

266

216 Algorithm 1 Hindsight Preference Learning (HPL) 217 **Input**: Preference dataset $\mathcal{D}_{p} = \{(\sigma_{i}^{0}, \sigma_{i}^{1}, y_{i})\}_{i=1}^{|\mathcal{D}_{p}|}$, unlabeled dataset $\mathcal{D}_{u} = \{\sigma_{i}\}_{i=1}^{|\mathcal{D}_{u}|}$ 218 1: // VAE Training 219 2: Initialize the segment encoder q_{θ} , decoder p_{θ} , and prior f_{θ} with parameters θ 220 3: for $n = 1, 2, ..., N_{\text{VAE}}$ do 221 Sample minibatch of segments $\sigma \sim \mathcal{D}_u$ 4: 222 Update θ by maximizing Equation 7 5: 6: end for 224 7: // Reward Learning 225 8: Initialize the reward function r_{ψ} with parameters ψ 226 9: for $n = 1, 2, ..., N_{\text{HPM}}$ do 227 Sample minibatch of preference pairs $(\sigma^0, \sigma^1, y) \sim \mathcal{D}_p$ 10: 228 Update ψ by minimizing Equation 2 with P_{HPM} defined in Equation 8 11: 12: end for 229 13: // RL Training 230 14: Label the reward for \mathcal{D}_{μ} using Equation 9 and optimize the policy with any offline RL algorithm 231

model consists of three components: the encoder q_{θ} , the decoder p_{θ} , and a learnable prior f_{θ} , which can be jointly optimized with the *Evidence Lower Bound (ELBO)*:

$$\log p(\sigma_{t:t+k}|s_t, a_t)$$

$$= \log \int q_{\theta}(z_t|s_t, a_t, \sigma_{t:t+k}) \frac{f_{\theta}(z_t|s_t, a_t)p_{\theta}(\sigma_{t:t+k}|s_t, a_t, z_t)}{q_{\theta}(z_t|s_t, a_t, \sigma_{t:t+k})} dz_t$$

$$\geq \mathbb{E}_{q_{\theta}(z_t|s_t, a_t, \sigma_{t:t+k})} \left[\log \frac{f_{\theta}(z_t|s_t, a_t)p_{\theta}(\sigma_{t:t+k}|s_t, a_t, z_t)}{q_{\theta}(z_t|s_t, a_t, \sigma_{t:t+k})} \right]$$

$$= \mathbb{E}_{q_{\theta}(z_t|s_t, a_t, \sigma_{t:t+k})} \left[\log p_{\theta}(\sigma_{t:t+k}|s_t, a_t, z_t) \right] - \mathrm{KL} \left[q_{\theta}(z_t|s_t, a_t, \sigma_{t:t+k}) \| f_{\theta}(z_t|s_t, a_t) \right]$$

$$\stackrel{\text{def}}{=} -\mathcal{L}_{\mathrm{ELBO}}(s_t, a_t, \sigma_{t:t+k}; \theta),$$

$$(7)$$

where the third line follows from Jensen's Inequality. Following the pre-training phase, the VAE can be utilized for both reward learning and reward labeling. During reward learning, the embedding z_t can be employed as a substitute for $\sigma_{t:t+k}$ in the preference model:

$$\rho_{\text{HPM}}(\sigma;\psi) = \sum_{(s_t,a_t)\in\sigma} r_{\psi}(s_t,a_t|\sigma_{t:t+k}) \approx \sum_{(s_t,a_t)\in\sigma} r_{\psi}(s_t,a_t|z_t).$$
(8)

Here, the embedding is obtained using the encoder $z_t \sim q_\theta(\cdot|s_t, a_t, \sigma_{t:t+k})$. Plugging this into the Bradley-Terry model gives an approximation of HPM (Equation 6). We then once again utilize the preference dataset along with the cross-entropy loss, as defined in Equation 2, to optimize r_{ψ} . During the reward labeling phase, we compute the reward using the prior distribution f_{θ} :

$$r_{\psi}(s_t, a_t) = \mathbb{E}_{z_t \sim f_{\theta}(\cdot|s_t, a_t)} \left[r_{\psi}(s_t, a_t, z_t) \right] \approx \frac{1}{N} \sum_{l=1}^N r_{\psi}(s_t, a_t, z_t^{(l)}) , \qquad (9)$$

where $z_t^{(1)}, z_t^{(2)}, \ldots, z_t^{(N)}$ are i.i.d. samples from f_{θ} . With a large N, we can obtain approximations of the expected reward for downstream reinforcement learning.

We train these models using the unlabelled dataset \mathcal{D}_{u} . This offers two benefits. Firstly, \mathcal{D}_{u} typically encompasses a substantial volume of data, which enhances model performance. Secondly, the scalar reward is obtained by marginalizing over the prior distribution f_{θ} during the reward labeling phase. Precisely aligning f_{θ} with \mathcal{D}_{u} can significantly enhance the stability of this marginalization process, particularly in instances of distributional shifts between \mathcal{D}_{u} and \mathcal{D}_{p} .

Practical Implementation. We employ the GPT architecture (Brown et al., 2020) for the encoder q_{θ} due to its expressivity in sequence modeling. Given an input segment $\sigma = (s_0, a_0, s_1, a_1, \dots, s_H, a_H)$, we concatenate s_t and a_t together as a single token. In each attention layer, we apply the anti-causal attention mask which restricts each token's attention to itself and Table 1: Normalized averaged score for locomotion tasks (top) and manipulation tasks (bottom). In the table, "hop" is abbreviated for the Hopper task, "walk" for Walker2D, "ham" for Hammer, "m" for medium, "r" for replay, "e" for expert, "h" for human, "c" for cloned. The reference scores for MR and PT are from Kim et al. (2023), while those for IPL are from Hejna & Sadigh (2023). For the rest numbers, we use our own implementations and report the average and the standard deviation of the performances across 10 evaluation episodes and 5 seeds. We bolded values that are within 95% of the top-performing method among our implemented versions.

Dataset	Oracle	SFT	ref.	MR reimpl.	ref.	PT reimpl.	ref.	IPL reimpl.	HPL (Ours)
hop-m-r hop-m-e walk-m-r walk-m-e	$97.4 \\ 107.4 \\ 82.2 \\ 111.7$	$22.2 \\ 5.2 \\ 9.0 \\ 0.4$	$11.6 \\ 57.8 \\ 72.1 \\ 108.3$	$\begin{array}{c} 64.3_{\pm 18.2} \\ 86.3_{\pm 21.6} \\ \textbf{69.5}_{\pm 1.7} \\ 90.8_{\pm 9.0} \end{array}$	$\begin{array}{c} 84.5 \\ 69.1 \\ 71.3 \\ 110.1 \end{array}$	$\begin{array}{c} 77.4_{\pm 8.0} \\ 78.7_{\pm 27.8} \\ 64.0_{\pm 15.2} \\ 102.2_{\pm 17.5} \end{array}$	$73.6 \\ 74.5 \\ 59.9 \\ 108.5$	$\begin{array}{c} 56.1_{\pm 20.3} \\ 67.8_{\pm 18.0} \\ 42.3_{\pm 17.4} \\ \textbf{106.1}_{\pm \textbf{4.6}} \end{array}$	$\begin{array}{c} \textbf{83.0}_{\pm 14.4} \\ \textbf{104.0}_{\pm 7.7} \\ 64.1_{\pm 8.9} \\ \textbf{108.9}_{\pm}\textbf{0.5} \end{array}$
Dataset	Oracle	SFT		MR		РТ		IPL	HPL (Ours)
pen-h pen-c ham-h	$78.5 \\ 83.4 \\ 1.8$	$36.4 \\ 31.1 \\ 0.3$	$\begin{array}{c} 14.1_{\pm 9.0} \\ 13.8_{\pm 4.8} \\ 0.2_{\pm 0.0} \end{array}$		$\begin{array}{c} 11.2_{\pm 4.5} \\ 11.9_{\pm 13.3} \\ 0.2_{\pm 0.3} \end{array}$		${\begin{array}{c} 11.5_{\pm 11.6}\\ 12.3_{\pm 6.6}\\ 0.0_{\pm 0.0}\end{array}}$		$70.9_{\pm 23.2}\\33.1_{\pm 19.6}\\4.3_{\pm 4.7}$
ham-c drawer-open button-press plate-slide sweep-into	1.5 - - -	2.6 0.42 0.26 0.26 0.24	$\begin{array}{c} 0.0 \pm 0.1 \\ \textbf{0.92} \pm \textbf{0.10} \\ 0.61 \pm 0.04 \\ 0.38 \pm 0.08 \\ 0.31 \pm 0.10 \end{array}$		$\begin{array}{c} 2.0_{\pm 4.6} \\ 0.39_{\pm 0.24} \\ 0.38_{\pm 0.24} \\ 0.29_{\pm 0.27} \\ 0.22_{\pm 0.13} \end{array}$		$\begin{array}{c} 0.1_{\pm 0.1} \\ 0.54_{\pm 0.26} \\ 0.58_{\pm 0.11} \\ 0.34_{\pm 0.29} \\ 0.14_{\pm 0.15} \end{array}$		$\begin{array}{c} 0.3 \pm 0.0 \\ \textbf{0.95} \pm 0.07 \\ \textbf{0.70} \pm 0.14 \\ \textbf{0.43} \pm 0.13 \\ \textbf{0.37} \pm 0.11 \end{array}$

subsequent tokens, ensuring that the output token z_t encapsulates the forward-looking information starting from time step t. The decoder network p_{θ} reconstructs $\sigma_{t:t+k}$ using the embedding z_t and (s_t, a_t) . In our implementation, p_{θ} takes inputs of s_t, a_t, z_t and a time interval $\Delta t \in \{0, 1, ..., k\}$, and predicts $(s_{t+\Delta t}, a_{t+\Delta t})$. This parameterization facilitates the parallel decoding of the entire trajectory by processing all specified intervals in a single forward pass. Finally, the prior f_{θ} is parameterized as an MLP network which receives (s_t, a_t) and outputs a distribution over the embedding space.

3.4 OVERALL FRAMEWORK OF HPL

Putting everything together, we outline *Hindsight Preference Learning (HPL)* in Algorithm 1. HPL can be divided into three stages: 1) pre-training a VAE to embed future segments, using data from the unlabeled dataset \mathcal{D}_u (line 1-6); 2) training the conditional reward function r_{ψ} with the preference dataset \mathcal{D}_p (line 7-12); and finally 3) label the unlabeled dataset with Equation 9, followed by applying any offline RL algorithm for policy optimization (line 13-14).

4 RELATED WORK

310 311

308

284

287

289

295

296

297

298

299

300 301

302

Preference-based Reinforcement Learning. Human preferences are easier to obtain compared to 312 well-calibrated step-wise rewards or expert demonstrations in some domains, making them a rich yet 313 easy source of signals for policy optimization. Christiano et al. (2017) utilize the Bradley-Terry model 314 to extract reward function from human preferences and lay the foundation for using deep RL to solve 315 complex tasks. Based on this, several methods (Lee et al., 2021; Ibarz et al., 2018; Liang et al., 2022b) 316 further improve the query efficiency by incorporating techniques like pre-training and relabeling. 317 OPRL (Shin et al., 2023) further proposes principled rules for query selection and provides baseline 318 results using existing offline datasets. On the other hand, some works bypass the need for a reward 319 model. IPL (Hejna & Sadigh, 2023) achieves this by expressing the reward with value functions via 320 the inverse Bellman operator, while OPPO (Kang et al., 2023) uses Hindsight Information Matching 321 (HIM) to conduct preference learning in compact latent space. FTB (Zhang et al., 2023) employs powerful generative models to diffuse bad trajectories to preferred ones. DPPO (An et al., 2023) and 322 CPL (Hejna et al., 2023), although with different starting points, both directly optimize the policy by 323 relating it to the preferences.

324 Human Preference Modeling. To extract utilities from human preferences for policy optimization, 325 we need preference models to establish the connection between preferences and utilities. A common 326 approach is to use the Bradley-Terry model (Christiano et al., 2017) and hypothesizes that preference 327 is emitted according to the sum of Markovian rewards, while Preference Transformer (Kim et al., 328 2023) and Hindsight PRIOR (Verma & Metcalf, 2024) extend this by using the weighted sum of non-Markovian rewards. Besides, another line of research proposes that human preference is decided 329 by the sum of optimal advantages in the segment (Knox et al., 2022; 2024) rather than the rewards. 330 In this paper, we focus on the influence of the future and consider the sum of future-conditioned 331 rewards. 332

333 Leveraging Hindsight Information. Hindsight information can provide extra supervision during 334 training. For example, HER (Andrychowicz et al., 2017) and its follow-up works (Eysenbach et al., 2020; Li et al., 2020; Zhang & Stadie, 2022) relabel the transitions to allow sample-efficient learning 335 in sparse-reward or goal-reaching tasks. Prior works have also explored learning representations by 336 predicting the future (Furuta et al., 2022; Xie et al., 2023; Yang et al., 2023), and such representations 337 facilitate downstream tasks such as policy optimization (Furuta et al., 2022; Xie et al., 2023), 338 preference modeling (Kang et al., 2023) and exploration (Jarrett et al., 2023). Perhaps the most 339 related works are HCA (Harutyunyan et al., 2019) and CCA (Mesnard et al., 2021), which all propose 340 to make the value functions dependent on the future and derive corresponding policy gradients with a 341 lower variance. The focus of HCA and CCA lies in temporal credit assignment, while HPL elucidates 342 the impact of future information within the context of PbRL and explores ways to elicit better rewards 343 from preference comparisons. 344

5 EXPERIMENTS

345

346

347 We evaluate HPL as well as other methods 348 with various benchmarks. Specifically, we se-349 lected two tasks (Hopper and Walker2D) from 350 Gym-MuJoCo locomotion (Brockman et al., 351 2016), two tasks (Hammer and Pen) from the 352 Adroit manipulation platform (Kumar, 2016), 353 and four tasks (Drawer-Open, Button-Press, Plate-Slide and Sweep-Into) from Meta-World 354 Benchmark (Yu et al., 2020). For Gym-MuJoCo 355 tasks and Adroit tasks, we select datasets from 356 the D4RL Benchmark (Fu et al., 2020) and mask 357 the reward labels as the unlabeled dataset \mathcal{D}_{u} , 358 while the annotated preference dataset \mathcal{D}_{p} is 359 provided by Kim et al. (2023). For Meta-World 360 tasks, we used the datasets released by Hejna & 361 Sadigh (2023) as \mathcal{D}_{u} and \mathcal{D}_{p} . It is worthwhile

Figure 3: The rewards values given by the MR method and HPL. Each dot represents one trial and its coordinates are the estimated rewards.

to note that for Gym-MuJoCo and Adroit tasks, the preference label is generated by real human
 annotators, while for Meta-World tasks it is synthesized based on trajectory return. More details
 about the datasets and how the preference annotations are generated can be found in Appendix A.

365 For baseline methods, we consider popular algorithms such as 1) **Oracle**, which uses the oracle 366 step-wise reward for policy optimization; 2) Supervised Fine-Tuning (SFT), which imitates the 367 preferred segments; 3) MR, which uses the Bradley-Terry Model to extract Markovian rewards from 368 the preferences; 4) Preference Transformer (PT) (Kim et al., 2023), which uses a transformer and 369 bidirectional layer to model the reward; and 5) Inverse Preference Learning (IPL) (Hejna & Sadigh, 2023), which removes the need of reward modeling using inverse Bellman operator. Besides, we also 370 compare HPL with two other direct alignment methods, CPL and OPPO in Appendix E.1. More 371 details about the implementations can be found in Appendix B. For evaluation metrics, we report the 372 normalized score for MuJoCo and Adroit tasks and the success rate for Meta-World tasks. 373

374

376

375 5.1 BENCHMARK RESULTS

Our first experiment investigates the capability of HPL in standard offline PbRL settings using both \mathcal{D}_{u} and \mathcal{D}_{b} . For policy optimization, we used IQL for all methods except for SFT. We found certain

design choices such as reward normalization can have a significant effect on the performance, so we
 included the reference score (denoted as ref.) from the original paper for some algorithms and the
 score of our implementation (denoted as reimpl.) for fair comparisons.

The results are listed in Table 1. We also implement variants that use AWAC for policy optimization, and the results are deferred to Appendix E.2. Overall, HPL consistently outperforms other baselines both in locomotion tasks and manipulation tasks, especially in complex domains like the pen task. The promising performance validates the effectiveness of HPL for learning from human preferences.

386 387

388

5.2 TASKS WITH PREFERENCE DISTRIBUTION SHIFT

As we illustrated in Section 3.1, the distribution mismatch between the preference dataset \mathcal{D}_{p} and 389 the unlabeled dataset \mathcal{D}_{u} may affect credit assignments. We take the gambling MDP (Figure 2) as a 390 sanity check to see whether HPL can deliver better results. We used the dataset \mathcal{D} in Section 3.1 as 391 the preference dataset \mathcal{D}_{p} , and additionally collected \mathcal{D}_{u} by randomly choosing between a_{1} and a_{2} . 392 Afterwards, we compare the rewards of (s_1, a_1) and (s_1, a_2) given by both MR and HPL. We run 393 both algorithms for 500 random seeds and plot the results in Figure 3. In the figure, each point stands 394 for one trial and its coordinate stands for $r_{\psi}(s_1, a_1)$ and $r_{\psi}(s_1, a_2)$ respectively. We note that every trial of both methods has achieved 100% accuracy for predicting the preference labels, so we focus 396 on the quality of rewards. As discussed in Section 3.1, successful credit assignment should try to 397 assign lower values to $r(s_1, a_1)$, i.e. the point should lie in the above triangular area. While HPL steadily assigns higher rewards to (s_1, a_2) , MR over-estimates the rewards for (s_1, a_1) in almost half 398 of the cases. 399

400 We explain the success of HPL by taking a closer look at how HPL adjusts and achieves credit 401 assignment. By incorporating the future state (s_{good} or s_{bad}), we see in Figure 4a that HPL effectively 402 identifies two different outcomes at (s_1, a_1) and assign different values for $r(s_1, a_1 | s_{good})$ and $r(s_1, a_1|s_{\text{bad}})$. Figure 4b plots the transition probabilities $\hat{p}(s_{\text{good}}|s_1, a_1)$ and $\hat{p}(s_{\text{good}}|s_1, a_1)$ estimated 403 by the prior network f_{θ} . By sampling z according to the probabilities, we observe in Figure 4c that 404 at (s_1, a_1) , the negative outcome is emphasized since the agent transits to s_{bad} for most of the time. 405 Ultimately, HPL achieves the correct credit assignment, i.e. $r(s_1, a_1) < r(s_1, a_2)$. Although it is 406 still possible that MR can find the optimal policy through RL optimization, we emphasize that HPL 407 delivers more robust and advantageous rewards that will facilitate subsequent policy optimization. 408

Figure 4: Internal reward adjustment process of HPL. HPL adjusts the posterior reward (a) using the transition probabilities by the prior network (b) and yields better credit assignment (c).

419 420 421

422

423

424

425

426

409

410

411

412

413

414

415

416

417

418

Larger Scale Experiments with Preference Distribution Shift. To further validate HPL's capability of learning better rewards in the face of the preference distribution shift on a larger scale, we constructed a series of tasks by combining \mathcal{D}_u and \mathcal{D}_p collected by different behavior policies. For example, "hopper: med-e \rightarrow med" means we used \mathcal{D}_p with *medium-expert* quality and \mathcal{D}_u with *medium* quality. The performance curves are presented in Figure 5. In such mismatched scenarios, HPL performs better than all baseline algorithms in most of the tasks. Besides, HPL demonstrates faster convergence speeds and more stable performances, which validates that the reward from HPL is more robust and shaped for downstream RL optimization.

431

5.3 ANALYSIS OF HPL

In this section, we examine each part of HPL to gain a deeper understanding of each design choice.

Figure 5: The performance curves of HPL and baseline methods in tasks with mismatched datasets. We report the average (solid line) and the standard deviation (shaded area) of each algorithm across 5 random seeds and 10 evaluation episodes for each seed.

Future Segment Embedding and the VAE Structure. HPL relies on the VAE structure to generate compact embeddings for future segment representation and sampling. Consequently, our first analysis investigates the quality of these embeddings. Figure 6 displays the images of a trajectory segment from the offline dataset (top left) and its reconstruction by the VAE (bottom left). Note that both the encoding and reconstruction processes are based on states and actions, rather than pixel observations. The VAE reconstruction is highly accurate, indicating that the embedding z_t effectively compresses the relevant information. In the right figure, we select one (s_t, a_t) from the offline dataset, sample embeddings z_t from the prior f_{θ} , and decode the trajectories $\sigma_{t:t+k}$. We compute the embedding log-probability $\log p(z_t|s_t, a_t) = \log f_{\theta}(z_t|s_t, a_t)$) and also the trajectory log-probability $\log p(\sigma_{t:t+k}|s_t, a_t) = \sum_{i=1}^{k} \log \pi_{\beta}(a_{t+i}|s_{t+i})$ with additionally trained behavior cloning policy π_{β} . The positive correlation observed in Figure 6 between these two log probabilities validates the efficacy of sampling from f_{θ} .

Figure 6: Left: The rendered image of one raw trajectory selected from the offline dataset (top row) and the reconstruction by the VAE (bottom row). Right: The relationship between the log-probabilities of segments and their embeddings.

Ablation on the Future Length k. The parameter k controls the length of future segments encoded
into the embedding z. As illustrated in Figure 7a (results of all four tasks in Figure 11), extending
k generally enhances performance, highlighting the benefits of future conditioning. However, as k
exceeds a certain threshold, we witness fluctuations and decreases in the performances, probably due
to the challenges of representing longer future segments accurately.

Scaling with Dataset Sizes. We conduct experiments to evaluate the scalability of MR and HPL with varying dataset sizes. In Figure 7b (results of all four tasks in Figure 13), we adjust the size of D_u from 10% to 100% of its total capacity and observe that HPL consistently outperforms MR across all proportions of unlabeled data. Figure 7c (results of all four tasks in Figure 12) illustrates the scaling trends of HPL and MR with different numbers of preference queries. While both methods exhibit an upward trend in success rates, HPL is comparatively better under various data scales.

496

497 498

499

500

501

502

504

505

506

507 508 509

524

525

Figure 7: Quantitative analysis of HPL. We report the mean (solid line) and the standard deviation (error bar) across 10 seeds for all experiments.

Figure 8: Learning curve of HPL and MR variants with ensemble reward networks. We report the average and the standard deviation of the performances across 10 evaluation episodes and 5 seeds.

Ablation on the Ensemble Effect. One may argue that the success of HPL comes from the 510 marginalization step (Equation 9), which implicitly ensembles reward models to yield improved 511 rewards for subsequent RL optimization. Indeed, the reward model ensemble does bring benefit to the 512 credit assignment by characterizing the aleatoric uncertainty and thus facilitating active knowledge 513 acquisition (Liang et al., 2022a) or promoting pessimism (Coste et al., 2024). To ablate this effect, we 514 apply the ensemble trick to the MR method, by using an ensemble of 5 and 20 reward models while 515 keeping other configurations unchanged. These reward models are trained with the same dataset, 516 differing only in their initialization. When labeling the dataset, we take the average of the outputs of 517 the ensembles as the reward. Note that this can be considered as an implementation of OPRL (Shin 518 et al., 2023), which also employs the ensemble technique.

As witnessed in Figure 8, MR still falls behind HPL despite the ensemble technique. This justifies that, naively ensembling reward models which are trained via different initialization does not benefit the credit assignment. On the other hand, HPL ensembles reward values conditioned on different future outcomes based on their prior probabilities, producing more reliable and advantageous rewards.

6 CONCLUSIONS AND DISCUSSIONS

This paper focuses on extracting rewards from human preferences for RL optimization. Unlike
 previous methods that assume the preference is determined by the sum of Markovian rewards, our
 method, HPL, instead employs a new preference model that correlates the preference strength with
 the sum of rewards which are conditioned on the future outcome of this trajectory. By marginalizing
 the conditional reward over the prior distribution of future outcomes induced by the vast unlabeled
 dataset, HPL produces more robust and suitable reward signals for downstream RL optimization.

532 Limitations. The primary limitation of the current version of HPL lies in its failure to exploit the full 533 potential of the learned VAE. As a generative model, VAE could possibly be employed to augment the 534 training data via sampling, estimate reward uncertainty (Liang et al., 2022a) using the learned prior 535 distribution, or identify diverse preferences (Xue et al., 2023) automatically from the data. Besides, 536 HPL implicitly assumes the reward and the distribution of future segments possess the MDP property, 537 i.e. they are determined by the immediate step (s_t, a_t) . Inspired by the design of world models such as Dreamer-v2 (Hafner et al., 2021) and PlaNet (Hafner et al., 2019), we can model the dependence 538 of history by using RNNs to encode the history into embeddings and feed the embeddings to the VAE structures. Future work will focus on extending the HPL framework to broader applications.

540 REFERENCES

542 543 544	Gaon An, Junhyeok Lee, Xingdong Zuo, Norio Kosaka, Kyung-Min Kim, and Hyun Oh Song. Direct preference-based policy optimization without reward modeling. In <i>Advances in Neural Information Processing Systems (NeurIPS)</i> , 2023.
545 546 547	Marcin Andrychowicz, Dwight Crow, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In Advances in Neural Information Processing Systems (NeurIPS), 2017.
548 549 550	Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method of paired comparisons. <i>Biometrika</i> , 39(3/4):324–345, 1952.
551 552	Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. 2016.
553 554 555 556	Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. <i>Advances in Neural Information Processing Systems (NeurIPS)</i> , 2020.
557 558 559	Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning from human preferences. In <i>Advances in Neural Information Processing Systems (NeurIPS)</i> , 2017.
560 561 562	Thomas Coste, Usman Anwar, Robert Kirk, and David Krueger. Reward model ensembles help mitigate overoptimization. In <i>International Conference on Learning Representations (ICLR)</i> , 2024.
563 564 565	Ben Eysenbach, Xinyang Geng, Sergey Levine, and Ruslan Salakhutdinov. Rewriting history with inverse RL: hindsight inference for policy improvement. In <i>Advances in Neural Information Processing Systems (NeurIPS)</i> , 2020.
566 567 568	Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep data-driven reinforcement learning. <i>arXiv preprint arXiv:2004.07219</i> , 2020.
569 570 571	Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu. Generalized decision transformer for offline hindsight information matching. In <i>International Conference on Learning Representations (ICLR)</i> , 2022.
572 573 574	Abhishek Gupta, Aldo Pacchiano, Yuexiang Zhai, Sham M. Kakade, and Sergey Levine. Unpacking reward shaping: Understanding the benefits of reward engineering on sample complexity. In <i>Advances in Neural Information Processing Systems (NeurIPS)</i> , 2022.
576 577 578	Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In <i>International Conference on Machine Learning (ICML)</i> , 2018.
579 580 581	Danijar Hafner, Timothy P. Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James Davidson. Learning latent dynamics for planning from pixels. In <i>International Conference on Machine Learning (ICML)</i> , 2019.
582 583 584	Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete world models. In <i>International Conference on Learning Representations (ICLR)</i> , 2021.
585 586 587 588	Anna Harutyunyan, Will Dabney, Thomas Mesnard, Mohammad Gheshlaghi Azar, Bilal Piot, Nicolas Heess, Hado van Hasselt, Gregory Wayne, Satinder Singh, Doina Precup, and Rémi Munos. Hindsight credit assignment. In Advances in Neural Information Processing Systems (NeurIPS), 2019.
589 590 591	Joey Hejna and Dorsa Sadigh. Inverse preference learning: Preference-based RL without a reward function. In Advances in Neural Information Processing Systems (NeurIPS), 2023.
592 593	Joey Hejna, Rafael Rafailov, Harshit Sikchi, Chelsea Finn, Scott Niekum, W Bradley Knox, and Dorsa Sadigh. Contrastive preference learning: Learning from human feedback without reinforcement learning. In <i>International Conference on Learning Representations (ICLR)</i> , 2023.

- Jian Hu, Li Tao, June Yang, and Chandler Zhou. Aligning language models with offline reinforcement learning from human feedback. *arXiv preprint arXiv:2308.12050*, 2023a.
- Xiao Hu, Jianxiong Li, Xianyuan Zhan, Qing-Shan Jia, and Ya-Qin Zhang. Query-policy mis alignment in preference-based reinforcement learning. In *International Conference on Learning Representations (ICLR)*, 2023b.
- Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
 learning from human preferences and demonstrations in atari. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2018.
- Daniel Jarrett, Corentin Tallec, Florent Altché, Thomas Mesnard, Rémi Munos, and Michal Valko.
 Curiosity in hindsight: Intrinsic exploration in stochastic environments. In *International Conference* on Machine Learning (ICML), 2023.
- Yachen Kang, Diyuan Shi, Jinxin Liu, Li He, and Donglin Wang. Beyond reward: Offline preference guided policy optimization. In *International Conference on Machine Learning (ICML)*, 2023.
- Changyeon Kim, Jongjin Park, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. Preference transformer: Modeling human preferences using transformers for RL. In *International Conference on Learning Representations (ICLR)*, 2023.
- Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
- W. Bradley Knox and Peter Stone. Interactively shaping agents via human reinforcement: the TAMER
 framework. In *Proceedings of the International Conference on Knowledge Capture*, 2009.
- W Bradley Knox, Stephane Hatgis-Kessell, Serena Booth, Scott Niekum, Peter Stone, and Alessandro Allievi. Models of human preference for learning reward functions. *arXiv preprint* arXiv:2206.02231, 2022.
- W. Bradley Knox, Alessandro Allievi, Holger Banzhaf, Felix Schmitt, and Peter Stone. Reward
 (mis)design for autonomous driving. *Artificial Intelligence*, 316:103829, 2023.
- W Bradley Knox, Stephane Hatgis-Kessell, Sigurdur Orn Adalgeirsson, Serena Booth, Anca Dragan,
 Peter Stone, and Scott Niekum. Learning optimal advantage from preferences and mistaking it for
 reward. In AAAI Conference on Artificial Intelligence (AAAI), 2024.
- Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
 Q-learning. In *International Conference on Learning Representations (ICLR)*, 2022.
- Vikash Kumar. *Manipulators and Manipulation in high dimensional spaces*. PhD thesis, University of Washington, Seattle, 2016.
- Kimin Lee, Laura M. Smith, and Pieter Abbeel. PEBBLE: feedback-efficient interactive reinforcement
 learning via relabeling experience and unsupervised pre-training. In *International Conference on Machine Learning (ICML)*, 2021.
- Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
 review, and perspectives on open problems. *arXiv preprint arXiv:2005.01643*, 2020.
- Alexander C. Li, Lerrel Pinto, and Pieter Abbeel. Generalized hindsight for reinforcement learning. In Advances in Neural Information Processing Systems (NeurIPS), 2020.
- Anqi Li, Dipendra Misra, Andrey Kolobov, and Ching-An Cheng. Survival instinct in offline
 reinforcement learning. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.
- Kinran Liang, Katherine Shu, Kimin Lee, and Pieter Abbeel. Reward uncertainty for exploration in preference-based reinforcement learning. In *International Conference on Learning Representations* (*ICLR*), 2022a.
- Kinran Liang, Katherine Shu, Kimin Lee, and Pieter Abbeel. Reward uncertainty for exploration in
 preference-based reinforcement learning. In *International Conference on Learning Representations* (*ICLR*), 2022b.

648 649 650	Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and Jialu Liu. Statistical rejection sampling improves preference optimization. In <i>International Conference on Learning Representations (ICLR)</i> , 2023.
651 652 653 654 655	Thomas Mesnard, Theophane Weber, Fabio Viola, Shantanu Thakoor, Alaa Saade, Anna Harutyunyan, Will Dabney, Thomas S. Stepleton, Nicolas Heess, Arthur Guez, Eric Moulines, Marcus Hutter, Lars Buesing, and Rémi Munos. Counterfactual credit assignment in model-free reinforcement learning. In <i>International Conference on Machine Learning (ICML)</i> , 2021.
656 657	Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. AWAC: Accelerating online reinforcement learning with offline datasets. <i>arXiv preprint arXiv:2006.09359</i> , 2020.
658 659 660	Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In <i>International Conference on Machine Learning (ICML)</i> , 2000.
661 662 663	Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. In <i>Advances in Neural Information Processing Systems (NeurIPS)</i> , 2023.
664 665	Dorsa Sadigh, Anca D. Dragan, Shankar Sastry, and Sanjit A. Seshia. Active preference-based learning of reward functions. In <i>Robotics: Science and Systems (RSS)</i> , 2017.
667 668	Daniel Shin, Anca D. Dragan, and Daniel S. Brown. Benchmarks and algorithms for offline preference- based reward learning. <i>Transactions on Machine Learning Research</i> , 2023.
669 670	Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and characterizing reward gaming. In Advances in Neural Information Processing Systems (NeurIPS), 2022.
671 672 673 674	Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. <i>arXiv preprint arXiv:2307.09288</i> , 2023.
675 676	Mudit Verma and Katherine Metcalf. Hindsight priors for reward learning from human preferences. <i>arXiv preprint arXiv:2404.08828</i> , 2024.
677 678 679 680 681 682 683 683 684 685	Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy, Tom Le Paine, Çaglar Gülçehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver. Grandmaster level in starcraft II using multi-agent reinforcement learning. <i>Nature</i> , 575(7782): 350–354, 2019.
686 687 688	Zhihui Xie, Zichuan Lin, Deheng Ye, Qiang Fu, Yang Wei, and Shuai Li. Future-conditioned unsupervised pretraining for decision transformer. In <i>International Conference on Machine Learning (ICML)</i> , 2023.
690 691	Wanqi Xue, Bo An, Shuicheng Yan, and Zhongwen Xu. Reinforcement learning from diverse human preferences. <i>arXiv preprint arXiv:2301.11774</i> , 2023.
692 693 694	Sherry Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Dichotomy of control: Sepa- rating what you can control from what you cannot. In <i>International Conference on Learning</i> <i>Representations (ICLR)</i> , 2023.
695 696 697 698 699	Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu, Shaojie Yang, Xipeng Wu, Qingwei Guo, Qiaobo Chen, Yinyuting Yin, Hao Zhang, Tengfei Shi, Liang Wang, Qiang Fu, Wei Yang, and Lanxiao Huang. Mastering complex control in MOBA games with deep reinforcement learning. In <i>AAAI Conference on Artificial Intelligence (AAAI)</i> , 2020.
700 701	Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning. In <i>Conference on robot learning (CoRL)</i> , 2020.

702 703 704	Lunjun Zhang and Bradly C. Stadie. Understanding hindsight goal relabeling requires rethinking divergence minimization. In <i>NeurIPS Deep Reinforcement Learning Workshop</i> , 2022.
705 706	Zhilong Zhang, Yihao Sun, Junyin Ye, Tian-Shuo Liu, Jiaji Zhang, and Yang Yu. Flow to better: Of- fline preference-based reinforcement learning via preferred trajectory generation. In <i>International</i>
707	Conference on Learning Representations (ICLR), 2023.
708	
709	
710	
711	
712	
713	
714	
715	
716	
717	
718	
719	
720	
721	
722	
723	
724	
725	
726	
727	
728	
729	
730	
731	
732	
733	
734	
735	
737	
738	
739	
740	
741	
742	
743	
744	
745	
746	
747	
748	
749	
750	
751	
752	
753	
754	
755	

A TASKS AND DATASETS

A.1 TASKS

756

758

759

770

771 772

Figure 9: From left to right, the figures show the Hopper task from Gym-MuJoCo, the Hammer task from the Adroit platform, and the button-press and plate-slide tasks from Meta-World.

We evaluated the HPL algorithm on different environments, including Gym-MuJoCo (Brockman et al., 2016), Adroit (Kumar, 2016), and Meta-World (Yu et al., 2020). Figure 9 provides illustrations for the environments used in our evaluation. These tasks range from basic locomotion to complex manipulation. Among them, Gym-MuJoCo and Meta-World are released with an MIT license, while Adroit is released with the Apache-2.0 license.

Gym-MuJoCo. We selected the Hopper and Walker2D tasks from the Gym-MuJoCo environment.
The goal of the Hopper task is to control a single-legged robot to hop forward, with primary rewards based on forward speed, energy consumption, and a survival bonus for maintaining stability. The
Walker2D task involves controlling a bipedal robot to walk forward, while the rewards are designed based on the forward speed, control penalties, and a survival bonus. The key challenge in both tasks is to maximize the forward distance while maintaining the robot's stability.

Adroit. We chose the Hammer and Pen tasks from the Adroit environment. These tasks require controlling a 24-DoF simulated Shadow Hand robot to perform precise manipulations. The Hammer task involves using the robot to hammer a nail, with rewards given for successful strikes and penalties for misses or ineffective actions. The Pen task requires the robot to rotate a pen, rewarding successful rotations and penalizing failures or instability. Adroit tasks emphasize high precision and the complexity of robotic hand manipulations.

790 Meta-World. We selected multiple manipulation tasks from the Meta-World environment, including 791 drawer-open, button-press, plate-slide, and sweep-into. These tasks require a Sawyer robotic arm to 792 perform multi-step operations. For example, the drawer-open task involves grasping and pulling open 793 a drawer, the button-press task requires accurately pressing a designated button, the plate-slide task 794 involves pushing a plate to a specified location, and the sweep-into task requires sweeping objects into a target area. The reward structure in these tasks is designed as a combination of sub-tasks, 795 providing partial rewards for each sub-task completed and a total reward for successfully completing 796 the entire task. Meta-World tasks highlight the shared structure between tasks and the sequential 797 nature of complex operations. 798

799 800

801

A.2 UNLABELED OFFLINE DATASETS

For the unlabeled offline dataset \mathcal{D}_{u} , we used the datasets provided in D4RL (Fu et al., 2020) for Gym-MuJoCo and Adroit tasks and the datasets from Hejna & Sadigh (2023) for Meta-World tasks.

604 Gym-MuJoCo Datasets. The datasets for Hopper and Walker2D tasks were obtained through online
 605 training and include *medium*, *medium-replay*, and *medium-expert* datasets. The *medium* dataset was
 606 generated by training a policy using Soft Actor-Critic (Haarnoja et al., 2018), stopping early when
 607 the policy reached a medium performance level, and collecting 1 million samples from this partially
 608 training until the policy reaches medium performance. The *medium-expert* dataset was created by
 609 training until the policy reaches medium performance. The *medium-expert* dataset was created by
 610 mixing equal amounts of expert demonstration data and medium-level policy data. All of these

datasets can be obtained following the APIs provided by D4RL, and the datasets are licensed with
 the CC BY 4.0 license.

Adroit Datasets. We used data for the Hammer and Pen tasks. These datasets include human, expert, 813 and cloned datasets. The human dataset consists of a small number of demonstrations collected from 814 human experts, with each task containing 25 trajectories. The expert dataset comprises a large amount 815 of expert data collected from fine-tuned RL policies. The *cloned* dataset is generated by training 816 an imitation policy on the demonstration data, running this policy, and mixing the generated data 817 with the original demonstrations in a 50-50 ratio. This data generation method simulates a real-world 818 scenario where a small amount of human demonstration data is augmented through imitation learning. 819 All of these datasets can be obtained following the APIs provided by D4RL, and the datasets are 820 licensed with the CC BY 4.0 license.

Meta-World Datasets. We used the preference-annotated dataset from Hejna & Sadigh (2023) and converted it into an unlabeled offline dataset by discarding the reference label. These datasets can be obtained following the original source of Hejna & Sadigh (2023). The authors did not specify the license of the datasets. However, the codes are released with the MIT license so we speculate the datasets inherit the MIT license as well since they are released together.

826 827

828

A.3 PREFERENCE DATASETS

829 For the preference dataset D_p , we selected the human-annotated datasets from Kim et al. (2023) 830 for Gym-MuJoCo and Adroit tasks, and the synthetic datasets from Hejna & Sadigh (2023) for 831 Meta-World tasks. The datasets are released alongside with the codes (https://github. 832 com/csmile-1006/PreferenceTransformer and https://github.com/jhejna/ 833 inverse-preference-learning respectively). The authors did not specify the license of the datasets. However, the codes are both released with the MIT license so we speculate the datasets 834 inherit the MIT license as well since they are released together. In the following paragraphs, we detail 835 the construction of these preference datasets based on the details provided by their original creators. 836

837 For Gym-MuJoCo datasets, preferences were collected from actual human subjects. Specifically, 838 human annotators watched the rendered videos of segments and selected the segment they believed 839 was more helpful in achieving the agent's goal. Each segment lasted 3 seconds (100 frames). Human 840 annotators can prefer one of the segment pairs or remain neutral by assigning equal preference to both segments. The annotators are instructed to make decisions based on some criteria. For the 841 Hopper task, the robot is expected to move to the right as far as possible while minimizing energy 842 consumption. Segments, where the robot lands unstably, are rated lower, even if the distance traveled 843 is longer. If two segments are nearly tied on this metric, the one with the greater distance is chosen. 844 For the Walker2D task, the goal is to move the bipedal robot to the right as far as possible while 845 minimizing energy consumption. Segments where the robot is about to fall or walks abnormally (e.g., 846 using only one leg or slipping) are rated lower, even if the distance covered is longer. If two segments 847 are nearly tied on this metric, the one with the greater distance is chosen. For the *medium-replay* 848 offline dataset, there are 500 queries, while for the *medium-expert* offline dataset, there are 100 849 queries in total. The segment length for all datasets is H = 100.

850 The Meta-World datasets included script preferences that came from Hejna & Sadigh (2023). First, 851 the datasets included 100 trajectories of expert data for the target task, adding Gaussian noise with 852 a standard deviation of 1.0. Then, the datasets included 100 trajectories of sub-optimal data by 853 running the ground truth policy with noise on different randomizations of the target task, and another 854 100 trajectories of sub-optimal data by running the ground truth policy of different tasks within the 855 target domain with noise. Finally, the datasets included 100 trajectories generated using uniform 856 random actions. Each Meta-World task dataset contains 200k time steps. The preference datasets 857 were constructed by uniformly sampling segments and assigning preference labels based on the total rewards of the segments. 858

859 860

B Algorithm Implementations

861 862

In this section, we detail the implementations of both HPL and the baseline algorithms used in this paper.

864 B.1 PREFERENCE LEARNING METHODS

878

879

882 883

885

889

890

891

892

893

894

895 896

897

909

910 911 912

866 **Markovian Reward (MR).** The MR method optimizes a Markovian reward function $r_{\psi}(s, a)$ using 867 the Bradley-Terry model and the preference dataset \mathcal{D}_{p} . The hyper-parameters for MR are listed 868 in Table 2. It is worth noting that we add a final activation layer to the reward network to scale the reward to [0, 1]. We find that without such activation, the performance of RL severely deteriorates in some of the Gym MuJoCo tasks. We suspect that this is related to the *survival instinct* (Li et al., 2023) 870 in offline RL, i.e. in environments with terminal conditions, negative rewards tend to incline the agent 871 to terminate the trajectory by selecting those dangerous out-of-distribution actions. Based on this 872 observation, we decided to activate the rewards with Sigmoid for the Hopper and Walker2D tasks 873 while leaving them unchanged for other tasks without environmental terminations. Such activation is 874 shared across MR, PT, and HPL. However, one may argue that the activation implicitly imposes an 875 inductive bias on the obtained reward, which may not align with the ground truth. So we also add the 876 reference scores in Section 5.1 for Gym MoJoCo tasks for comprehensive comparisons. 877

Table 2: Hyper-parameters for MR.

hidden dimension for r_{ψ}	256				
# of hidden layers for r_{ψ}	2 for Gym MuJoCo tasks and 3 for others				
final activation	Sigmoid for Gym MuJoCo tasks and Identity for others				
optimizer	Adam				
learning rate	0.0003				
training steps for r_{ψ}	50k				

Preference Transformer (PT). PT employs a causal transformer followed by a bi-directional attention layer to estimate the rewards. Using the causal transformer, the states and actions can attend to historical tokens and thus the reward can utilize the historical information. The final bi-directional attention layer uses the attention scores as the weights of the rewards at each time step. The authors found PT can identify and place more emphasis on those critical states and actions. We also re-implemented the PT based on the original Jax implementation provided by the authors, and the hyper-parameters are listed in Table 3. Note that we do not use any validation to select the reward model.

Table 3: Hyper-parameters for PT.

ention embedding dimension	256				
# of attention layers	3				
# of attention heads	1				
dropout rate	0.1				
final activation	Sigmoid for Gym MuJoCo tasks and Identity for others				
optimizer	Adam				
learning rate	0.0003				
earning rate warm-up steps	10k				
training steps for r_{ψ}	100k				
	ention embedding dimension # of attention layers # of attention heads dropout rate final activation optimizer learning rate earning rate warm-up steps training steps for r_{ψ}				

Inverse Preference Learning (IPL). IPL removes the need for learning a reward model, by expressing the reward using the value functions Q(s, a) and V(s) of the RL agent:

$$r(s,a) = Q(s,a) - \gamma \mathbb{E}_{s' \sim T(s'|s,a)} \left[V(s') \right].$$
(10)

By substituting Equation 10 into Equation 4, the loss \mathcal{L}_{MR} provides guidance to increase the Q-values of preferred states and actions. We also re-implement IPL in this paper and keep the hyper-parameters of IPL the same as the ones used in the original paper.

916 Hindsight Preference Learning (HPL). The key components of HPL are the conditional reward 917 model r_{ψ} and the VAE. We list the hyper-parameters of these modules in Table 4. The hyperparameters are kept the same as listed in Table 4 unless otherwise noted.

	Table 4: Hyper-par	rameters for HPL.			
	attention embedding dim of encoder q_{θ}	256			
	# of attention layers	3			
	# of attention heads	1			
	dropout rate	0.1			
	hidden dim for decoder p_{θ}	256 for MuJoCo/Adroit, 512 for Meta-World			
VAE	# of hidden layers for decoder p_{θ}	256			
VAE	hidden dim for prior f_{θ}	256 for MuJoCo/Adroit, 512 for Meta-World			
	# of hidden layers for prior f_{θ}	2			
	dimension of embedding z	128			
	posterior/prior distribution	categorical distribution			
	learning rate	3e-4			
	training steps	250k			
	KL loss coefficient	0.1			
	encoded future segment length k	5			
	hidden dims of $r_{y/y}$	256			
	# of hidden layers for r_{ψ}	3			
	final activation	Sigmoid for MuJoCo, Identity for others			
r_ψ	optimizer	Adam			
	learning rate	3e-4			
	training steps	100k			
	marginalization samples N	20			
B.2 R For thos	L POLICY OPTIMIZATION	gm as we discussed in Section 2.2, we use Imp			
Q-Learr	ning (IQL) (Kostrikov et al., 2022) for policy	y optimization with the learned reward model.			
hyper-p	arameters for IQL are shared across vario	us reward learning methods for fair compariso			
We list	the hyper-parameters in Table 5.				
	Table 5. Hyper-pa	rameters for IOI			
	rable 5. Hyper-pa				

0.7 for MuJoCo, 0.75 for others
0.333
100
0.99
0.005
MLP(dim(S), 256, 256, 256, 2 * dim(A))
tanh-squashed diagonal Gaussian
$MLP(dim(\hat{S}) + dim(\hat{A}), 256, 256, 256, 1)$
MLP(dim(S), 256, 256, 256, 1)
Adam
0.0003
500k

B.3 SUPERVISED FINE-TUNING

Finally, we provide details about the implementations of the Supervised Fine-Tuning (SFT) method
used in the experiment section. For SFT, we use the preferred trajectory segments to perform behavior
cloning. The behavior cloning process maximizes the log probability of the policy selecting the
preferred segment. Thus, SFT methods fail to leverage the vast offline datasets, which is identified as
a key advantage of offline PbRL methods. The hyper-parameters of SFT can be found in Table 6.

MLP(dim(S), 256, 256, 256, dim(A))policy network policy distribution deterministic (Dirac distribution) optimizer Adam 0.0003 learning rate 500k training steps

Table 6: Hyper-parameters for SFT.

EXPERIMENTAL SETUPS С

983 In this section, we provide additional details for the main results in Section 5. 984

Benchmark results (Table 1). We use the full amount of preference datasets and unlabeled datasets as detailed in Section A for MuJoCo tasks and Adroit tasks. For Meta-World tasks, we take the first 500 queries as the preference dataset $\mathcal{D}_{\rm p}$ and the first 5000 queries as the unlabeled dataset $\mathcal{D}_{\rm u}$. The $\mathcal{D}_{\rm p}$ and $\mathcal{D}_{\rm u}$ match each other in terms of the data source.

989 **Results of the mismatched tasks (Figure 5).** We created a series of tasks by cross-matching the 990 preference datasets and the unlabeled datasets, as detailed in the main text. Besides, we use the full 991 amount of the datasets, without further selection.

992 Scaling trends with varied sizes of \mathcal{D}_{μ} (Figure 7b). In this set of experiments, we keep the setups 993 and the hyper-parameters exactly the same as in Table 1, except for the sizes of the unlabeled dataset. Specifically, we select the first 1k, 2.5k, 5k, 7.5k, and 10k trajectories from the dataset (which 995 correspond to 10%, 25%, 50%, 75%, and 100% of the total capacity of \mathcal{D}_u). 996

Scaling trends with varied sizes of \mathcal{D}_p (Figure 7c). In this set of experiments, we keep the setups 997 and the hyper-parameters exactly the same as in Table 1, except for the sizes of the preference dataset. 998 We select the first 100, 200, 300, 400, 500, and 1000 queries from the dataset, as depicted in the 999 figure. 1000

1001 1002

1003

1008 1009

1010

1011

1012

1013

1014

1015 1016

1017

1018 1019

1020 1021

D DISCLOSURE OF COMPUTATIONAL RESOURCES AND EFFICIENCY

1004 Throughout the experiments, we evaluate HPL as well as other baseline methods with workstations 1005 equipped with NVIDIA RTX 4090 cards. The running time of each method for the button-press task in the Meta-World environment is presented in Figure 10. 1007

1023 Figure 10: The running time of HPL and baseline methods, using button-press from Meta-World as 1024 an example. 1025

974

975

976

977

982

985

986

987

988

994

1026 E SUPPLIMENTARY EXPERIMENT RESULTS

Due to the limited space of the main text, we present additional supplementary results in this section.

1030 1031 E.1 Comparison between HPL and Additional Baselines

Table 7: Normalized averaged score for HPL, SFT, OPPO, and CPL. In the table, we use the same abbreviations for tasks as in Table 1. We report the average and the standard deviation of the performances across 10 evaluation episodes and 5 seeds, and bold the values that are within 95% of the top-performing methods.

Dataset	SFT	OPPO	CPL	HPL
hop-m-r	22.2	$37.4_{\pm 20.7}$	$25.0_{\pm 9.6}$	$83.3_{\pm 14.4}$
hop-m-e	5.2	$16.4_{\pm 6.5}$	$54.7_{\pm 1.9}$	$104.0_{\pm 7.7}$
walk-m-r	9.0	$44.9_{\pm 15.5}$	$16.6_{\pm 5.5}$	$64.1_{\pm 8.9}$
walk-m-e	0.4	$78.1_{\pm 20.2}$	$78.5_{\pm 5.8}$	$108.9_{\pm 0.8}$
drawer-open	0.42	-	$0.48_{\pm 0.2}$	$0.95_{\pm 0.07}$
button-press	0.26	-	$0.05_{\pm 0.05}$	$0.70_{\pm 0.14}$
plate-slide	0.26	-	$0.41_{\pm 0.23}$	$0.43_{\pm0.13}$
sweep-into	0.24	-	$0.03_{\pm 0.04}$	$0.37_{\pm0.11}$

1028

1029

1032

1037

1048 In the main text, we compare HPL to popular reward-model-based algorithms such as PT. Recently, a 1049 wide range of direct alignment methods (Hejna et al., 2023; Kang et al., 2023; Rafailov et al., 2023; 1050 An et al., 2023) have been proposed to circumvent the onerous RL process and directly optimize the 1051 policies to align with human preferences. Among them, we focus on Contrastive Preference Learning 1052 (CPL) (Hejna et al., 2023), which is conceptually similar to both DPO (Rafailov et al., 2023) and 1053 DPPO (An et al., 2023); and also **OPPO** (Kang et al., 2023), which establishes a connection between 1054 high-dimensional trajectories and compact latent embeddings and optimizes the preferences in the latent space. 1055

For the OPPO method, we employed the open-source code provided by the authors without any alterations, utilizing the same hyperparameters outlined in the original paper. For CPL, due to the limited size of our preference dataset (<500 pairs as compared to 20k pairs in CPL paper), vanilla CPL will lead to degraded performance. To mitigate this issue, we implement BC-Regularized CPL, which incorporates an auxiliary objective that behavior-clones the trajectories from the vast offline dataset to prevent performance collapse.

A summary of the performances is provided in Table 7. Although OPPO and CPL both outperform SFT, they still lag behind HPL by a large margin. Additionally, we observe that OPPO exhibits significant fluctuations in its learning curve and a decline in performance over time. Given these findings, we contend that in scenarios characterized by limited preference data, reinforcement learning algorithms may offer advantages over direct methods, as they provide enhanced generalization capabilities.

1068

1069 E.2 BENCHMARK RESULTS OF AWAC VARIANTS 1070

In Section 5.1, the results are obtained by using IQL (Kostrikov et al., 2022) as the policy optimization algorithm. However, given that IQL relies on expectile regression rather than the policy for bootstrapping, it may not fully reveal the potential shortcomings of the learned rewards. Additionally, the choice of expectile could significantly affect the outcomes. In this section, we instead implement AWAC, another offline reinforcement learning algorithm that integrates policy into bootstrapping, to both HPL and the baseline algorithms. This approach aims to provide a more thorough assessment of reward quality.

1078 The results are listed in Table 8. Similar to HPL-IQL, HPL-AWAC demonstrates stable and consistent
 1079 advantages over the baseline methods in most of the tasks. Overall, HPL-AWAC achieves the best
 performance on average across these three task suites.

¹⁰⁴⁶ 1047

Dataset	Oracle	SFT	MR-AWAC	PT-AWAC	IPL-AWAC	HPL-AWAC
hop-m-r	97.4	22.2	$31.2_{\pm 0.2}$	$68.7_{\pm 18.3}$	$69.8_{\pm 13.6}$	$94.6_{\pm 3.1}$
hop-m-e	107.4	5.2	$70.9_{\pm 34.5}$	$93.3_{\pm 13.9}$	$55.3_{\pm 17.2}$	$98.0_{\pm 15.9}$
walk-m-r	82.2	9.0	$63.1_{\pm 9.1}$	$77.6_{\pm 5.4}$	$8.9_{\pm 11.0}$	$71.2_{\pm 4.0}$
walk-m-e	111.7	0.4	$91.7_{\pm 38.7}$	$76.7_{\pm 47.4}$	$46.3_{\pm 52.8}$	$95.1_{\pm 8.5}$
Gym average	99.7	9.2	64.2	79.1	45.1	89.7
pen-h	78.5	35.4	$10.5_{\pm 9.9}$	$0.0_{\pm 3.9}$	$11.7_{\pm 8.2}$	$44.7_{\pm 27.6}$
pen-c	83.4	31.1	$8.9_{\pm 11.8}$	$12.9_{\pm 14.3}$	$13.0_{\pm 17.6}$	$36.4_{\pm 27.8}$
ham-h	1.8	0.3	$0.3_{\pm 0.5}$	$0.0_{\pm 0.1}$	$0.0_{\pm 0.2}$	$4.7_{\pm 5.9}$
ham-c	1.5	2.6	$0.1_{\pm 0.2}$	$0.1_{\pm 0.1}$	$0.1_{\pm 0.1}$	$0.2_{\pm 0.0}$
Adroit average	41.3	17.4	5.0	3.3	6.2	21.5
drawer-open	-	0.42	$0.77_{\pm 0.28}$	$0.56_{\pm 0.29}$	$0.58_{\pm 0.19}$	$0.89_{\pm 0.07}$
button-press	-	0.26	$0.78_{\pm 0.14}$	$0.67_{\pm 0.23}$	$0.66_{\pm 0.26}$	$0.69_{\pm 0.12}$
plate-slide	-	0.26	$0.35_{\pm 0.25}$	$0.07_{\pm 0.10}$	$0.52_{\pm 0.18}$	$0.47_{\pm 0.21}$
sweep-into	-	0.24	$0.30_{\pm 0.19}$	$0.10_{\pm 0.12}$	$0.24_{\pm 0.11}$	$0.49_{\pm0.09}$
Meta-World average	-	0.30	0.55	0.35	0.50	0.64

Table 8: Normalized averaged score for AWAC variants of HPL and baseline algorithms. In the table, we use the same abbreviations for tasks as in Table 1. We report the average and the standard deviation of the performances across 10 evaluation episodes and 5 seeds, and bold the values that are within 95% of the top-performing methods among all methods except for the *Oracle*.

1123

1124 1125

E.3 Ablation on Future Length k

The parameter k controls the lengths of future segments encoded into the embedding. At the extreme of $k \rightarrow 0$, HPL theoretically degenerates to MR as the conditional reward r_{ψ} contains no information about the future.

Figure 11 illustrates the performance of HPL across various values of k for all tasks in Meta-World. As k increases from zero, the performance generally improves, supporting the efficacy of future conditioning. However, beyond a certain threshold, further increases in k lead to performance declines and fluctuations. This phenomenon may be attributed to the incapability of modeling excessively long trajectory segments with the VAE structure.

Figure 11: Success rate of HPL with various encoded future lengths k. We report the average and the standard deviation of the performances across 20 evaluation episodes and 10 seeds.

1126 E.4 SCALING WITH DATASET SIZES

1128 In this section, we investigate the performance of HPL as well as MR with various dataset sizes. 1129 We vary the sizes of the preference dataset D_p and the unlabeled dataset D_u , and plot the curve of 1130 the performances in Figure 12 and Figure 13, respectively. While both methods exhibit an upward 1131 trend in success rates as the dataset sizes $|D_p|$ and $|D_u|$ grow, HPL outperforms MR in almost every 1132 configuration. These experiments collectively confirm the superiority and scalability of HPL. In some 1133 tasks (e.g. drawer-open and sweep-into), we observe that the performance may drop as the sizes of 1134 both datasets increase. We have identified that this phenomenon is attributable to the non-uniform

button-press plate-slide sweep-into 8 60 MR Success Rate (%) 07 07 07 (%) Success Rate (9 HPL Success Rate MR MR MR HPL HPL HPI 0.51 0.51 З 0.51 # of Preference Data (x10²) # of Preference Data (x10²) # of Preference Data (x10²) # of Preference Data (x10²)

Figure 12: Success rate of HPL and MR with various sizes of D_p . We report the average and the standard deviation of the performances across 20 evaluation episodes and 10 seeds.

Figure 13: Success rate of HPL and MR with various sizes of D_u . We report the average and the standard deviation of the performances across 20 evaluation episodes and 10 seeds.

distribution of the datasets. In certain instances, the preceding proportion of trajectories yields greater
rewards, leading to a more effective policy compared to using the whole dataset. This improvement
occurs because the AWR objective used by IQL is influenced by the quality of the behavior policy.