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Abstract
Simultaneous speech translation (SST) takes001
streaming speech input and generates text trans-002
lation on the fly. Existing methods either003
have high latency due to recomputation of in-004
put representations, or fall behind of offline005
ST in translation quality. In this paper, we006
propose FASST, a fast large language model007
based method for streaming speech translation.008
We propose blockwise-causal speech encod-009
ing and consistency mask, so that streaming010
speech input can be encoded incrementally011
without recomputation. Furthermore, we de-012
velop a two-stage training strategy to optimize013
FASST for simultaneous inference. We evalu-014
ate FASST and multiple strong prior models on015
MuST-C dataset. Experiment results show that016
FASST achieves the best quality-latency trade-017
off. It outperforms the previous best model by018
an average of 1.5 BLEU under the same latency019
for English to Spanish translation.020

1 Introduction021

End-to-end simultaneous speech translation (SST)022

translates incomplete speech input into text in a dif-023

ferent language (Ma et al., 2020b), which is widely024

used in multilingual conferences, live streaming025

and etc. Compared to offline ST where speech026

input is complete, SST needs to decide whether027

to continue waiting or to generate more transla-028

tion after receiving new speech input. A common029

approach in building performant SST streaming030

models involves pretraining for offline translation031

and optional finetuning for simultaneous transla-032

tion (Agarwal et al., 2023; Communication et al.,033

2023). The quality-latency trade-off of simultane-034

ous streaming models thus heavily depends on its035

offline performance.036

Large language model (LLM) have recently037

demonstrated its potential to be a strong backbone038

of offline E2E ST (Huang et al., 2023; Zhang et al.,039

2023b). However, LLM introduces larger compu-040

tation overhead compared to regular-sized models041
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.... ....
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Figure 1: Simultaneous speech translation with
AlignAtt-0.1B, LST-7B and our FASST-7B. The LST-
7B model generates translation with significantly higher
latency than AlignAtt, while our FASST-7B achieves
comparable latency with it.

when applied to SST. Figure 1 shows that the com- 042

putation latency of a LLM-based 7B model makes 043

it inferior for real-time application. 044

The computation overhead of SST models comes 045

from both encoding new speech input and decoding 046

new translation. While the latter one has been heav- 047

ily optimized for LLM (Pope et al., 2022; Kwon 048

et al., 2023; Dao, 2024), the former one has not 049

been optimized for SST. As new speech input ar- 050

rives, most SST models re-encode the entire speech 051

and start autoregressive decoding afterwards, ignor- 052

ing the incremental nature of streaming speech in- 053

put. More importantly, the LLM decoder needs to 054

recompute hidden states due to the updated speech 055

features, significantly slowing down the computa- 056

tion. 057

In this work, we propose a FAst LLM-based SST 058

(FASST) method to avoid recomputation while 059

maintaining its translation quality. We develop 060

a blockwise-causal speech encoding technique that 061

incrementally encodes new speech input and intro- 062

duce incremental LLM decoding with consistency 063

mask. We also design an 2-stage training strat- 064

egy for FASST: 1) aligning speech encoder outputs 065
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with LLM embeddings using word-aligned con-066

trastive loss (Ouyang et al., 2023) and 2) finetuning067

for SST using wait-k-stride-n policy (Zeng et al.,068

2021). Experiments on MuST-C dataset (Di Gangi069

et al., 2019) shows that our 7B model maintains070

competitive computation aware latency compared071

to 115M baselines while achieving consistent qual-072

ity improvement of at least 1.5 BLEU score on073

English-Spanish direction.074

Our contributions are:075

• We propose FASST, one of the first efficient076

LLM-based methods for simultaneous speech077

translation.078

• We verify FASST on MuST-C dataset and it out-079

performs strong prior methods by 1.5 BLEU at080

the same latency on English-Spanish direction.081

• We further demonstrate that FASST can be gen-082

eralized to other policies like hold-n and policies083

spending more time on encoding benefit more084

from FASST.085

2 Related Works086

End-to-End SST translates partial speech input087

into text in another language without generating088

intermediate transcription. A variety of speech seg-089

mentation techniques and policies have been pro-090

posed to optimize the quality-latency trade-off. Ren091

et al. (2020); Dong et al. (2022); Zeng et al. (2023);092

Zhang et al. (2023c) learn to segment streaming093

speech input by word boundaries. Zhang and Feng094

(2023) further learns to segment speech at moments095

that are beneficial to the translation. On the policy096

side, Ma et al. (2020b) adapts wait-k and mono-097

tonic multihead attention (MMA) from simultane-098

ous text translation to SST model. Ma et al. (2023)099

further improves the numerical stability of MMA.100

Papi et al. (2023b) constructs source-target align-101

ment with attention information to guide the simul-102

taneous inference. Zhang and Feng (2022) decides103

whether to translate based on accumulated informa-104

tion of source speech. Polák et al. (2023) conducts105

blockwise beam search when doing incremental106

decoding. The translation quality of SST models107

depend on not only their policies, but also their of-108

fline performance (Agarwal et al., 2023). Recently109

LLM has been shown as a strong backbone of of-110

fline ST (Zhang et al., 2023b; Huang et al., 2023),111

but its computation overhead prevents it from be-112

ing used in SST scenarios. FASST is one of the113

first LLM-based SST models with a reasonable114

quality-latency trade-off.115

Efficient ST To reduce the computation cost of ST 116

models, Wu et al. (2020); Ma et al. (2020c); Raffel 117

and Chen (2023); Raffel et al. (2023) use segments 118

and explicit or implicit memory banks to calculate 119

self-attention only within the segment. Zhang and 120

Feng (2023); Chen et al. (2021); Wu et al. (2021) 121

adopt unidirectional attention during speech encod- 122

ing. These methods focus on encoder-side opti- 123

mization and can be integrated with FASST. 124

Translation with LLM While LLMs are capa- 125

ble of zero-shot machine translation (Brown et al., 126

2020; OpenAI, 2023; Touvron et al., 2023a,b), their 127

performance can be further improved via in-context 128

learning (Vilar et al., 2023; Zhang et al., 2023a), 129

supervised and semi-supervised finetuning (Rothe 130

et al., 2020; Yang et al., 2023; Zhang et al., 2023d; 131

Xu et al., 2023). For simultaneous machine trans- 132

lation (SMT), Guo et al. (2024) propose a collab- 133

orative translation model with two LLM agents 134

and Koshkin et al. (2024) design a finetuning strat- 135

egy by adding a special "wait" token. Raffel et al. 136

(2024) propose SimulMask to mask token connec- 137

tions under certain policy. SimulMask is a concur- 138

rent work with us and only works on text transla- 139

tion. 140

3 The FASST Method 141

In this section, we first review the problem for- 142

mulation of simultaneous speech translation (SST) 143

and then describe the architecture of our proposed 144

model, FASST, followed by its training and infer- 145

ence strategies. 146

3.1 Problem Formulation 147

Simultaneous speech translation (SST) needs to 148

generate translations while receiving streaming 149

speech input. Let S = (s1, s2, · · · , s|S|) be 150

a speech waveform where si are real numbers. 151

The streaming speech input is cut into segments 152

S1, S2, · · · and the SST model Pθ needs to emit 153

partial translations T1, T2, · · · after receiving each 154

of them, 155

Ti ∼ Pθ(· | S≤i, T<i). (1) 156

Ti can be an empty string, indicating that the 157

SST model needs more speech input to con- 158

tinue the translation. After receiving all in- 159

puts S1, S2, · · · , Sm and emitting all translations 160

T1, T2, · · · , Tm, we obtain the final translation 161

T =
⊕m

i=1 Ti by concatenating all partial ones. 162
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   Large Language Model

I need more coffee
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Figure 2: Overview of FASST. (a) shows the offline translation of LLM-based ST model. (b) depicts the 2-
stage training pipeline of FASST. Stage 1 aligns adapter output with LLM embedding and stage 2 finetunes for
simultaneous translation using wait-k-stride-n policy. (c) illustrates the simultaneous inference procedure of
FASST with incremental speech encoding and LLM decoding with consistency mask.

The objective of SST is to emit high-quality163

translation at a low latency. Quality is evaluated164

by comparing generated T with the ground-truth165

T ∗, while latency is evaluated based on the amount166

of lagging of each generated word. In this paper,167

we consider the computation-aware latency of SST168

models.169

3.2 Model Architecture170

As shown in Figure 2, our model is composed of a171

speech encoder, an adapter and a LLM decoder.172

Blockwise-Causal Speech Encoder (BCSE) ex-173

tracts contextualized acoustic features from the174

raw waveform incrementally. It consists of sev-175

eral casual convolutional layers as the audio fea-176

ture extractor and a blockwise-causal Transformer177

Encoder as the contextual encoder.178

Our causal convolutional layers are built upon179

non-causal ones. Denote Hin ∈ Rl×d as the in-180

put vectors to non-causal convolution Conv(·) with181

kernel size w. We add additional zero padding182

Pad ∈ R(w/2−1)×d to its left so that each output183

vector only depends on input vectors to its left, and184

remove the last w/2 − 1 states to keep its output185

length the same as before,186

Hout = Conv (Pad ⊕Hin):−w/2+1 . (2)187

Besides, we apply blockwise-causal masking to188

Transformer Encoder. Define attention mask M of189

speech encoder as follows 190

MjQ,jK =

{
0

⌊
jQ
b

⌋
≥
⌊
jK
b

⌋
−∞ otherwise

(3) 191

where b is the block size, i.e., the number of hidden 192

states of the speech encoder corresponding to one 193

segment, and jQ, jK are row indices of query ma- 194

trix Q and key matrix K. The attention output of 195

speech encoder during training can then be written 196

as 197

O = Softmax
(
QKT

√
d

+M

)
V, (4) 198

where V is the value matrix. 199

Adapter receives speech encoder outputs and 200

converts them to the LLM embedding space. It con- 201

sists of two causal convolutional layers to reduce 202

the length of speech encoder outputs by four and 203

one linear layer to project features into the LLM 204

embedding space. We call the adapter outputs as 205

speech embeddings, 206

Es
≤i = Adapter(BCSE(S≤i)). (5) 207

LLM receives speech embeddings and embed- 208

dings of previously generated tokens to decode au- 209

toregressively according to a wait-k-stride-n policy 210

π. 211

Ti ∼ LLM(· | Es
≤i, T<i, π). (6) 212
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Read: segment 1

Write: How are

segment 2

you ?

Figure 3: Example of wait-1-stride-2. It waits for 1
segment at the beginning and then alternate between
generate 2 words (including punctuations) and reading
new segment.

Wait-k-stride-n policy waits for k speech segments213

at the beginning and then alternate between gener-214

ating n words and reading new segment. Figure 3215

shows an example of wait-1-stride-2.216

3.3 Training217

As shown in Figure 2 (b), we employ a 2-stage218

approach to train our model.219

Stage 1. Speech-text alignment. We align the220

speech embedding with LLM input embedding us-221

ing word-aligned contrastive (WACO) loss. Both222

transcription embeddings Et and speech embed-223

dings Es are grouped into word embeddings W t224

and W s by word boundaries. Word boundaries225

of speech are obtained through Montreal Forced226

Aligner 1. We treat speech and transcription embed-227

dings of the same word as positive pair and others228

as negative pairs and train the speech encoder and229

the adapter with contrastive loss,230

LCTR = −Ei

[
log

exp(sim(W s
i ,W

t
i )/τ)∑

j exp(sim(W s
i ,W

t
j )/τ)

]
(7)

231

where τ is the temperature and sim() is the cosine232

similarity function. LLM parameters are frozen233

during stage 1.234

Stage 2. Finetuning for simultaneous transla-235

tion. We finetune the entire model for simultane-236

ous speech translation using wait-k-stride-n policy.237

Speech input is encoded into speech embeddings238

Es. Then we concatenate Es with embeddings of239

reference translation and feed them to LLM. Posi-240

tion indices of both speech embeddings and trans-241

lation embeddings start with the same index and242

ascend separately, so that text generation during in-243

ference does not affect the positional embeddings244

of speech embeddings.245

Then we randomly select k ∈ K and mask246

out attentions from translation words with indices247

1https://github.com/MontrealCorpusTools/
Montreal-Forced-Aligner

from in to (i+ 1)n− 1 to speech segments S>i+k 248

for each i, since these words are generated before 249

speech segments S>i+k arrive during inference. Fi- 250

nally, we apply the cross-entropy loss to train the 251

entire model, 252

LCE = −Ei [LLM(T ∗
i | Es, T ∗

<i,mask)] , (8) 253

where T ∗ is the reference translation. 254

3.4 Efficient Simultaneous Inference 255

Figure 2 (c) illustrates how we conduct efficient 256

simultaneous inference. FASST waits for k seg- 257

ments at the beginning and then start generat- 258

ing. Suppose now we have received S1, S2, · · · , Si 259

where i ≥ k. 260

Incremental Speech Encoding The blockwise- 261

causal mask of speech encoder allows us to use 262

KV cache of previous speech segments to avoid 263

recomputation. Let Hs =
(
hs1, · · · , hsli

)
be input 264

vectors of the attention. We group them into blocks 265

Bj =
(
hs(j−1)b+1, · · · , h

s
jb

)
where 1 ≤ j ≤ i and 266

i · b = li. The query, key and value matrices can be 267

written as follows 268

Q = HsMQ = (B1MQ, · · · , BiMQ) (9) 269

K = HsMK = (B1MK , · · · , BiMK) (10) 270

V = HsMV = (B1MV , · · · , BiMV ) (11) 271

Here the keys and values of previous 272

segments (B1MK , · · · , Bi−1MK) and 273

(B1MV , · · · , Bi−1MV ) are stored in the KV 274

cache. Now we only need the KV cache and the 275

query BiMQ, key BiMK and value BiMV of the 276

latest segment to compute its attention output, 277

Os
i = Softmax

(
BiMQK

T

√
d

)
V. (12) 278

This results in same output as running attention 279

with full query, key and value matrices and a 280

blockwise-causal mask. In this way, we reduce the 281

time complexity of attention from O(lid
2 + l2i d) 282

to O(bd2 + libd). Here b is a constant while li 283

increases with the longer speech input. 284

Adapting We store the speech encoder outputs 285

of previous segments and concatenate them with 286

encoder outputs of segment i. Then we pass them 287

to the causal convolutional layers and the linear 288

layer to obtain the speech embeddings Es
≤i. 289
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LLM Decoding with Consistency Mask We par-290

tition speech embeddings Es
≤i into Es

1, · · · , Es
i by291

speech segment. Following the wait-k-stride-n, the292

inputs to LLM are organized in the follow way293

I = Es
1 ⊕ · · · ⊕ Es

k ⊕ Emb(Tk)⊕ Es
k+1⊕294

Emb(Tk+1)⊕ · · · ⊕ Es
i , (13)295

where T1:k−1 are empty strings and Tj consists of296

n words for each k ≤ j < i. Now we need to297

reuse KV cache of previous i− 1 speech segments298

and partial translations to compute LLM hidden299

states of ith segment. Since speech embeddings are300

always ahead of text embeddings during training,301

we design a consistency mask to ensure speech seg-302

ments can only attend to speech segments before303

them.304

Let δ(z) be indicator function that equals to 1305

if zth position of input I belongs to text and 0306

otherwise. Define consistency mask M c as follows,307

M c
zQ,zK

=

{
0 zQ ≥ zK and δ(zQ) ≥ δ(zK)

−∞ otherwise
(14)

308

Let Qi,Ki, Vi ∈ Rti×d be query, key and value309

matrices of segment i and K<i, V<i be cached key310

and value matrices. We first concatenate Ki and311

Vi with cache to obtain K≤i and V≤i. The atten-312

tion output of segment i can then be computed as313

follows314

Ot
i = Softmax

(
QiK

T
≤i√
d

+M c
−ti:,:

)
V≤i. (15)315

After computing hidden states for speech seg-316

ment Si, the LLM decodes n words autoregres-317

sively following the policy.318

4 Experiment319

4.1 Dataset320

We conduct experiments on two language di-321

rections of MuST-C v1.0 dataset (Di Gangi322

et al., 2019): English→Spanish (En-Es) and323

English→German (En-De). Each language direc-324

tion contains around 400 hours of audio recordings.325

The average duration of utterances is less than 10326

seconds. To simulate long speech scenarios, we327

concatenate adjacent utterances in the same TED328

talk so that each resulting utterance is around 30329
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Figure 4: Duration distribution of MuST-C-Short and
MuST-C-Long. The average duration of MuST-C-Short
is around 5 seconds while that of MuST-C-Long is
around 25 seconds.

seconds. We call the induced dataset as MuST-C- 330

Long2 and the original one as MuST-C-Short. The 331

duration distribution of both datasets are shown in 332

Figure 4. 333

4.2 Model Configurations 334

Architecture We intialize our speech encoder 335

with wav2vec 2.0 large model3 (Baevski et al., 336

2020) and our LLM with Llama2 7b Base4 (Tou- 337

vron et al., 2023a). Wav2vec 2.0 large consists 338

of a 7-layer convolutional feature extractor and a 339

24-layer Transformer encoder with 1024 hidden 340

units. The block size of speech encoder is set to 341

50, i.e., around 1 second each block. The adapter 342

connecting wav2vec 2.0 and Llama2 consists of 343

two 1-D convolutional layers with kernel size 3, 344

stride 2 and hidden size 1024 and a linear layer to 345

project hidden size from 1024 to 4096 to match 346

that of LLM embedding. Llama2 7b Base adopts 347

a 32-layer Transformer decoder with hidden size 348

4096. It uses a vocabulary of size 32000 and rotary 349

positional embedding (Su et al., 2023). 350

Training We train our model with mixed MuST- 351

C-Short and MuST-C-Long data. The input speech 352

is raw 16-bit 16kHz mono-channel waveform. We 353

filter out speech that is shorter than 320ms during 354

training. The batch size of stage 1 is 16.7 minutes 355

and that of stage 2 is 14 minutes. We use AdamW 356

optimizer with cosine learning rate decay. The 357

warmup steps of stage 1 is 25k and that of stage 2 358

is 500 steps. The maximum learning rate of stage 359

2The manifest of MuST-C-Long will be released together
with the code.

3https://dl.fbaipublicfiles.com/fairseq/
wav2vec/wav2vec_vox_960h_pl.pt

4https://huggingface.co/meta-llama/Llama-2-7b
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Figure 5: Quality-latency trade-off of FASST and baselines on English-Spanish and English-German direction.
Quality is reflected by BLEU and latency is reflected by computation-aware length-adaptive average lagging
(LAAL-CA). Given long speech input and large batch size, our model achieves overall the best quality-latency
trade-off.

1 is 1e-4 and that of stage 2 is 2e-5. Gradients are360

clipped by the norm of 10. We train stage 1 for361

500k steps and stage 2 for 1 epoch. We choose362

the checkpoint with the lowest dev loss. All our363

models are trained on 4 Nvidia A6000 GPUs with364

fp16. The temperature of WACO loss is 0.2 and365

we set K = {1, 2, 3, 4, 5, 100}, n = 3 for stage 2366

training.367

Inference We set speech segment size to 1 sec-368

ond to match the block size. We wait for 1 ≤ k ≤ 5369

segments at first. Then as each segment arrives,370

the speech encoder encodes its speech embedding371

incrementally and pass it to LLM, where LLM372

computes hidden states without recomputation and373

generates n = 3 words with greedy decoding as374

the partial translation.375

4.3 Evaluation376

We use SimulEval (Ma et al., 2020a) to evaluate377

our models and baselines. All models are evalu-378

ated on MuST-C-Long tst-COMMON with batch379

size of 8 during inference to simulate heavy work-380

load. Since SimulEval does not support batch-381

ing multiple instances, we duplicate each instance382

by 8 during model forwarding. We report Sacre-383

BLEU (Post, 2018) for translation quality and384

computation-aware length-adaptive average lag-385

ging (LAAL-CA) (Papi et al., 2022) for latency. All386

models are evaluated using a single A6000 GPU.387

4.4 Baselines388

Wait-k-Stride-n LST waits k fixed-length389

speech segments and translates n words every time390

(Ma et al., 2020b; Zeng et al., 2021). We run wait-391

k-stride-n policy on a strong offline LLM-based 392

model LST (Zhang et al., 2023b) trained on the 393

same mixed data as FASST. LST has the Encoder- 394

Adapter-LLM architecture similar to FASST but 395

employs bidirectional speech encoder and requires 396

recomputation every time a new speech segment 397

arrives. We set k ∈ {1, 2, 3, 4, 5}, n = 3 and 398

segment length 1 second to match the setting of 399

FASST. 400

EDAtt is an attention-based adaptive policy (Papi 401

et al., 2023a). It leverages the encoder-decoder 402

attention of an offline ST model to decide when 403

to emit partial translations. The intuition is that if 404

the attention is focused on early audio frames, the 405

current translation can be emitted since sufficient 406

information has been received. We use the model 407

checkpoint and settings provided by the authors. 408

AlignAtt is the current state-of-the-art (SOTA) 409

method that extends EDAtt by explicitly generating 410

audio-translation alignments from encoder-decoder 411

attention (Papi et al., 2023b). While EDAtt emits 412

based on attention scores directly, AlignAtt decides 413

based on whether a predicted token aligns with the 414

latest audio frames, providing a more interpretable 415

latency control. We also use the model checkpoint 416

and optimal settings provided by the authors of 417

AlignAtt. 418

Seamless is a multilingual streaming speech 419

translation system with efficient monotonic mul- 420

tihead attention mechanism (Ma et al., 2023) to 421

generate low latency translation (Communication 422

et al., 2023). It computes target to source alignment 423

using cross attention and writes translation if the 424
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Figure 6: Ablation on the choice of pretrained speech
encoder and LLM. We replace wav2vec 2.0 large with
HuBERT large and Llama2 7B with Mistral 7B v0.3
base. FASST consistently has lower latency than Wait-
k-Stride-n LST while maintaining an acceptable trans-
lation quality.

alignment probability is larger than a threshold. We425

vary the threshold in [0.2, 0.4, 0.6, 0.8] to evaluate426

its quality-latency trade-off.427

4.5 Main Results428

Main results are shown in Figure 5. Our model429

achieves the best quality-latency trade-off for En-430

Es direction. Although wait-k-stride-n LST has a 2431

BLEU score advantage at the latency of 8 seconds,432

its bidirectional encoding and inefficient use of KV433

cache prohibit it reaching latency smaller than 6434

seconds. Comparing to EDAtt and AlignAtt which435

do not use LLM and has much less parameters436

(115M) than our model (7B), our model has similar437

computation aware latency while achieving a 1.5438

BLEU score improvement. For En-De direction,439

FASST achieves competitive results to AlignAtt,440

with slightly better quality when latency is smaller441

than 4 seconds or larger than 6 seconds.442

4.6 Ablation Studies443

We conduct ablation studies to examine the impact444

of each component in our model.445

Speech Encoder and LLM We replace wav2vec446

2.0 large with HuBERT large (Hsu et al., 2021) and447

Llama2 7B base with Mistral 7B v0.3 base (Jiang448

et al., 2023) to examine whether FASST is sensi-449

tive to the choice of pretrained speech encoder and450

LLM. We also train Wait-k-Stride-n LST baseline451

with these configurations as a comparison. Re-452

sults are shown in Figure 6. For all configura-453

tions, FASST has lower latency than the baseline.454

FASST with HuBERT results in the best quality455
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Figure 7: Ablation on incremental speech encoding and
LLM decoding. Removing both incremental encoding
and decoding can result in 4x larger latency for 60 sec-
onds speech input.

when the latency is around 5.5∼6.5 seconds and 456

FASST with wav2vec 2.0 becomes the best when 457

the latency is smaller than 5.5 seconds. 458

Incremental Encoding and Decoding We ablate 459

the incremental speech encoding and the incremen- 460

tal LLM decoding to examine their impact. For 461

encoding, we use the same architecture but recom- 462

pute the entire speech encoder at each step. For de- 463

coding, we recompute the entire LLM hidden states 464

given updated speech input and then incrementally 465

decode the translation as each speech segment ar- 466

rives. This also provides translation tokens with 467

more context since they can attend to speech em- 468

beddings appear after them. Results are shown in 469

Figure 7. Incremental encoding of speech encoder 470

reduces the computational latency consistently by 471

at least 200ms compared to recomputing encoder. 472

Recomputing LLM does improve translation qual- 473

ity (1 ∼ 5 BLEU), but also introduces significant 474

computation overhead (∼ 1.5 second), making it 475

inferior for real-time application. 476

We also plot the computation cost of each 477

read/write step for each variant in Figure 7 with 478

wait-2-stride-3 policy. FASST scales the best with 479

the speech input length and reduces the overhead by 480

at most 4x compared to the one without incremen- 481
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Figure 8: Ablation on the training strategy of FASST.
We train stage 1 WACO loss with CTC and cross en-
tropy (CE) loss and also change the training data to only
MuST-C-Short and only MuST-C-Long. WACO and
mixed-data training achieves the best performance.

tal encoding and decoding. Removing incremental482

decoding results in larger additional computation483

overhead compared to removing incremental en-484

coding since LLM has far more parameters than485

the speech encoder.486

Speech-Text Alignment Training We replace487

WACO loss with CTC loss (Graves et al., 2006) and488

cross entropy loss in stage 1 to examine its impact489

on model performance. CTC loss aligns speech490

and text embeddings by optimizing all possible491

alignment paths. For cross entropy loss, we pass492

the speech embeddings to LLM and optimize the493

cross entropy loss with LLM parameters frozen.494

As shown in Figure 8, WACO loss consistently495

outperforms CTC and cross entropy by at least 1496

BLEU score at the same latency.497

Mixing MuST-C-Long and Short We train our498

model separately with only MuST-C-Short and499

only MuST-C-Long for the same number of epochs.500

As shown in Figure 8, the model trained with both501

long and short data outperforms the one trained502

with short data by up to 4 BLEU points. Though503

we are using LLM, the length extrapolation is still504

unsatisfactory. Training with long data improves505

the quality compared to short data at high latency,506

but still outperformed by mixed-data training.507

4.7 Generalizability to Other Policy508

We have demonstrated that our method works with509

wait-k-stride-n policy. However, plenty of policies510

other than wait-k and its variants have been devel-511

oped to conduct simultaneous translation. Here we512

apply our method to hold-n policy (Liu et al., 2020)513

to exemplify how our method works on a different514
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Figure 9: Quality-latency trade-off of FASST when
applied to hold-n policy. We observe less improvement
with respect to LST than wait-k-stride-n policy.

policy and in the meanwhile explain the factors that 515

influence the effectiveness of our method. 516

Hold-n policy selects the best hypothesis after 517

each speech segment arrives, discard the last n 518

tokens from it and outputs the rest as the partial 519

translation. Since hold-n is a test-time policy for 520

offline ST model, we train an offline version of our 521

model by replacing stage 2 finetuning with standard 522

offline finetuning using cross entropy loss but keep 523

blockwise-causal encoding. During inference, we 524

still conduct the same incremental encoding and 525

decoding. 526

As shown in Figure 9, our method has less ad- 527

vantage when applied to hold-n comparing to wait- 528

k-stride-3. The major difference between two poli- 529

cies in terms of computation is that hold-n pol- 530

icy spends more time on autoregressive decoding 531

since it decodes more tokens each time. On av- 532

erage hold-n policy generates more than 6 words 533

each step while wait-k-stride-3 generates at most 3 534

words. FASST accelerates the encoding of existing 535

features, but for policies like hold-n that involve 536

heavy autoregressive decoding the advantage of our 537

method gets marginalized. 538

5 Conclusion 539

In this work, we introduce FASST, a fast LLM- 540

based simultaneous speech translation model. 541

FASST consists of blockwise-causal speech encod- 542

ing, incremental LLM decoding with consistency 543

mask, and a novel 2-stage training strategy. Experi- 544

ments on MuST-C dataset show that FASST signif- 545

icantly reduce computation overhead while main- 546

taining its translation quality. Our generalization 547

study shows that policies that spend more time on 548

encoding than decoding benefit more from FASST. 549
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Limitations550

• There might be data leakage since LLM is trained551

on vast amount of text data, so we cannot guar-552

antee LLM does not see the test translation data553

during pretraining.554

• FASST is only tested on two language directions555

instead of all 8 language directions of MuST-C,556

so its generalizability to other language direc-557

tions is unknown.558

• There is still a quality gap between blockwise-559

causal speech encoding and bidirectional speech560

encoding. It is unclear how to further close the561

gap.562

• We only explore one LLM-ST architecture in the563

paper and we cannot guarantee that FASST or its564

idea works on other architectures.565
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