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Abstract
Transformer-based Large Language Models
(LLMs) have revolutionized Natural Language
Processing by demonstrating exceptional perfor-
mance across diverse tasks. This study investi-
gates the impact of the parameter initialization
scale on the training behavior and task preferences
of LLMs. We discover that smaller initialization
scales encourage models to favor reasoning tasks,
whereas larger initialization scales lead to a pref-
erence for memorization tasks. We validate this
reasoning bias via real datasets and meticulously
designed anchor functions. Further analysis of
initial training dynamics suggests that specific
model components, particularly the embedding
space and self-attention mechanisms, play piv-
otal roles in shaping these learning biases. We
provide a theoretical framework from the perspec-
tive of model training dynamics to explain these
phenomena. Additionally, experiments on real-
world language tasks corroborate our theoretical
insights. This work enhances our understanding
of how initialization strategies influence LLM per-
formance on reasoning tasks and offers valuable
guidelines for training models.

1. Introduction
With the rapid advancement of deep learning technologies,
Large Language Models have achieved remarkable success
in the field of Natural Language Processing (NLP). These
models have demonstrated exceptional capabilities across a
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Figure 1. Comparison of training loss between PrOntoQA and
TinyStories in one next-token prediction training for this mix
dataset. The red line represents the training loss on the PrOn-
toQA dataset, while the blue line depicts the training loss on the
TinyStories dataset.

wide range of tasks, from text generation to complex reason-
ing (Wei et al., 2022a; Achiam et al., 2023; Liu et al., 2024).
Reasoning, in particular, is a critical ability for LLMs. A
number of studies have focused on improving the reason-
ing ability of these models through data-driven approaches,
such as RHO-1 (Lin et al., 2024) and Phi-4 (Abdin et al.,
2024). However, there remains an ongoing debate as to
whether LLMs genuinely learn the underlying logical rules
or merely mimic patterns observed in the data (Marcus,
2003; Smolensky et al., 2022).

An alternative approach to enhancing the reasoning abil-
ity of LLMs focuses on the model architecture and its
training process. In one such study examining the use of
Transformers to model compositional functions, it was ob-
served that the scale of model parameter initialization sig-
nificantly impacts the model’s reasoning behavior (Zhang
et al., 2024a; 2025). Specifically, smaller initialization
scales bias the model toward fitting the data by learning
primitive-level functions and compositional rules, whereas
larger initialization scales tend to encourage memorization
of input-output mappings. A qualitative rationale for this
phenomenon has been proposed: with a small initialization,
a well-documented effect known as neuron condensation
emerges during training (Xu et al., 2025; Luo et al., 2021;
Zhou et al., 2022; Zhang et al., 2022; Zhang & Xu, 2023;
Zhang et al., 2023; Zhang & Xu, 2024). This phenomenon
suggests that neurons within the same layer tend to behave
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similarly, promoting data fitting with the least possible com-
plexity. To achieve a low-complexity result, the model must
learn a minimal set of rules leading to capture the intrinsic
primitive functions and compositional rules. However, this
rationale does not reveal a critical question: how the opti-
mization process, together with the Transformer structure,
can achieve reasoning solutions with small initialization?

In this work, we identify a reasoning bias during the train-
ing of neural networks that learn natural language when
initialized with small parameter scales. To illustrate this
phenomenon, we employ a GPT-2 model (Radford et al.,
2019) to train on a mixed dataset comprising two types of
language data with distinct levels of reasoning complexity,
within a single next-token prediction training framework.
The first dataset, PrOntoQA (Saparov & He, 2023), con-
sists of question-answering examples that include chains
of thought, which explicitly describe the reasoning neces-
sary to answer the questions correctly. The second dataset,
TinyStories (Eldan & Li, 2023), is a synthetic corpus of
short stories containing only words typically understood
by children aged 3 to 4 years. As shown in Figure 1, the
training loss for PrOntoQA decreases significantly faster
than for TinyStories, suggesting that the model encounters
and learns the reasoning patterns more readily.

We uncover a key mechanism whereby reasoning tasks are
learned earlier during training because the tokens associ-
ated with these tasks become more differentiated in the
embedding space at an early stage of the training process.
We validate this mechanism using both synthetic data and
real-world datasets. Furthermore, we provide a theoretical
explanation for the evolution of token embeddings, which
depends on the distribution of sample labels. Since each
token is encoded as a one-hot vector, its embedding is ad-
justed based on the loss associated with the labels of that
token. Consequently, different label distributions can lead
to distinct learning behaviors for token embeddings. For
memory tasks, the labels associated with each token are
typically random and lack explicit structure, which results
in similar distributions for different memory token labels.
As a result, the embeddings for memory tokens are difficult
to differentiate in the early stages of training. In contrast,
reasoning tokens often exhibit distinct label distributions,
leading to more differentiated embedding vectors for these
tokens. These insights are elaborated through a simplified
model using a multi-layer perceptron (MLP) and embedding
structure, followed by an analysis of a Transformer model.

The primary contribution of this research lies in uncovering
the impact of the parameter initialization scale on the train-
ing behavior and task preferences of LLMs. By combining
theoretical analysis with empirical evidence, we enhance
the understanding of LLM training dynamics and provide
new insights for optimizing model initialization strategies.

2. Preliminary
2.1. Synthetic Composition Task

To study the task bias during the training, we use the con-
cept of anchor function (Zhang et al., 2024b) to construct
a dataset that contains tasks of different reasoning com-
plexities. We consider all tokens belonging to positive in-
tegers. A set of tokens are designated as anchors, denoted
as A := {a ∈ N+|αmin ≤ a ≤ αmax}, where each an-
chor represents an addition/randomness operation in this
work. Another set of tokens are designated as keys, de-
noted as Z := {z ∈ N+|ζmin ≤ z ≤ ζmax} with the
assumption that Z ∩ A = ∅. For convenience, we denote
NZ = ζmax − ζmin + 1 and NA = αmax − αmin + 1.

This section introduces two types of sequence mappings.
The first step involves constructing a sequence of positive
integers with length L, represented as:

X (q,L) = {X|X = [z1, · · · , zp, ap+1,

· · · , ap+q, zp+q+1, · · · , zL] , zi ∈ Z, ai ∈ A} .
(1)

We define q as the number of anchors in the sequence, and p
as the index of the element immediately preceding the first
anchor element ap+1 in the sequence.

For a given sequence X ∈ X (q,L), we define its key-anchor
combination as (zp, ap+1, · · · , ap+q), which is denoted con-
cisely as pair (zp,a), and other keys are regarded as noise
in this input sequence. The anchor set A is divided into two
subsets, i.e., reasoning anchor set Arsn and memory anchor
set Amem, where A = Arsn∪Amem and Arsn∩Amem = ∅.

Reasoning mapping. For any X with ap+i ∈ Arsn, i =
1, · · · , q, we define the following mapping as a reasoning
mapping

Frsn(X) = zp +

q∑
i=1

ap+i.

Memory mapping. For any key-anchor pair (zp,a),
where each element in a belongs to Amem, we randomly
sample a number y(zp,a) from Z as the memory mapping
label of any sequence X containing (zp,a), i.e.

Fmem(X) = y(zp,a), ∀X contains (zp,a) .

A detailed example is provided in Figure 2. It’s noted that
the key-anchor pair may occur at any position within the
sequence. The label is independent of both the noise tokens
and the position of the key-anchor pair within the sequence
but is determined solely by the value of the key-anchor pair.
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Figure 2. Schematic diagram of the synthetic composition task. The gray-shaded area illustrates the specific setup used in this example.
Each block represents a token within the input sequence, with different face colors indicating distinct token types (blue: noise, orange:
key, green: anchor). Each row corresponds to an input sequence paired with its respective label. The left section depicts four examples of
memory mapping, while the right section presents four examples of reasoning mapping.

2.2. Dataset Setup

In this study, we denote a data pair as (X, y), where
X represents the input sequence and y corresponds
to its associated label. We define y as the one-hot
encoded representation of y for convenience. For memory
mapping, all data are contained within the training set
Dmem, and no test set is employed, as the generalization
is not considered in this framework. For reasoning
mapping, we define a set of masked anchor combinations
M ={(ap+1, ap+2, · · · , ap+q) | ap+i ∈ Arsn, i = 1, · · · , q}
and designate all sequences containing any masked com-
bination (ap+1, ap+2, · · · , ap+q) ∈ M as the test set
Drsn,test and set the rest sequence as Drsn,train. The
training set is Dtrain = Dmem ∪ Drsn,train.

2.3. Model Architecture

We give the formulation of the embedding space and
self-attention module here for notation convenience. Let
dvob, dm, dk denote the vocabulary size, embedding space
dimension, and query-key-value projection dimension, re-
spectively. For any token s, denote its one-hot vector by
es ∈ R1×dvob . The embedding vector of s is wemb,s =
esW emb where W emb ∈ Rdvob×dm is the embedding ma-
trix. Additionally, the self-attention operator Attn on any
embedding sequence X ∈ RL×dm is defined as:

Attn (X) = g

(
mask

(
XWQWKTXT

√
dk

))
, (2)

O = Attn (X)XW V WO, (3)

where g (·) is the softmax operator and T means the matrix
transposition. WQ,WK ,W V ∈ Rdm×dk are the query,
key and value projection matrices, respectively. WO ∈

Rdk×dm represents the output projection matrix. The de-
tailed expression of multilayer Transformer models can be
found in Appendix A.1.

2.4. Parameter Initialization

Given any trainable parameter matrix W ∈ Rd1×d2 , where
d1 and d2 denote the input and output dimensions, respec-
tively, its elements are initialized according to a normal
distribution:

Wi,j ∼ N
(
0,
(
d−γ
1

)2)
,

where γ is the initialization rate. Specifically, the initial-
ization scale decreases as γ increases. Note that γ = 0.5
is commonly used in many default initialization methods,
such as LeCun initialization (LeCun et al., 1998) and He ini-
tialization (He et al., 2015). As the network width towards
infinity (Luo et al., 2021; Zhou et al., 2022), the training
of the network with γ > 0.5 exhibits significant non-linear
characteristics, i.e., condensation. Therefore, initialization
scales with γ > 0.5 are generally considered small.

3. Result
In this section, we present empirical evidence of a reasoning
bias during the training of Transformers with small initial-
ization by utilizing composition tasks. To further explore
this phenomenon, we introduce a simplified model consist-
ing of an embedding layer and a multi-layer perceptron,
which reproduces the reasoning bias and enables theoretical
analysis. A key mechanism underlying this bias is that the
training behavior of each token’s embedding depends on the
label distribution of the samples containing that token. For
reasoning anchors, the label distributions typically exhibit
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Figure 3. A: Loss and prediction accuracy of the models on different datasets under varying initialization scales (γ = 0.3, 0.5, 0.8). The
top row depicts the evolution of the loss during training for three datasets: Dmem (blue lines), Drsn,train (purple lines), and Drsn,test

(orange lines). The bottom row presents the corresponding prediction accuracies for these datasets. Each column represents results
obtained with different initialization scales. B: Prediction accuracy of Emb-MLP under initialization rate γ = 0.3 and γ = 0.8.

greater variability compared to memory anchors, leading to
the more rapid differentiation of their embeddings early in
training. Additionally, we extend our analysis to the Trans-
former architecture to demonstrate the generalizability of
this effect. For each observation mentioned in the following,
we provide a similar analysis with larger initialization scales
in Appendix C.

3.1. Reasoning Bias in Transformer with Composite
Anchor Functions

In our experiment, we set that q = 2, L = 9. The
dataset is constructed with the following configurations:
Z = {21, · · · , 120},Amem = {1, · · · , 10},Arsn =
{11, · · · , 20} and M = {(11, 13), (13, 11)}. The dataset
contains 200000 data pairs, ensuring an equal number of
samples for each anchor combination. The loss function em-
ployed is Cross Entropy and the optimization algorithm used
is AdamW. The model architecture comprises a decoder-
only Transformer structure with 2 layers and a single atten-
tion head. We train the model under different initialization
scales with γ = 0.3, 0.5, 0.8 utilizing the last token pre-
diction method. Additional details about the experimental
setup can be found in Appendix A.

To investigate the impact on training behavior under varying
initialization scales, we analyze the dynamics of loss and
prediction accuracy on Dmem,Drsn,train and Drsn,test. As
illustrated in Figure 3A, for γ = 0.3, the losses on Dmem

and Drsn,train decrease at nearly identical rates, while the

loss on Drsn,test remains effectively unchanged. This ob-
servation suggests that the model primarily memorizes the
training data in this setting. In contrast, when γ = 0.8,
the losses on Drsn,train and Drsn,test decrease significantly
faster than the loss on Dmem. This behavior indicates a
shift towards a reasoning bias in the model. These findings
reveal that the model’s learning bias is influenced by the
initialization scale: as the initialization scale decreases, the
model exhibits a progressively stronger reasoning bias.

3.2. Simplified Model: Phenomena and Analysis

To further investigate the underlying cause of the reasoning
bias under a small initialization scale, we begin by em-
ploying a two-layer fully connected network to address a
particular task, where p ≡ 1 and L = q + 1. The network
structure is defined as follows:

Definition 1. Given that W (1) ∈ Rdm×df ,W (2) ∈
Rdf×dvob , and σ as the activation function. Given any
sequence X ∈ X (q,q+1), we define the Embedding-MLP
model (Emb-MLP) Gθ as

Gθ (X) := σ

(∑
s∈X

wemb,sW (1)

)
W (2).

Comparing with a large initialization scale (γ = 0.3), a
noticeable reasoning bias can still be observed in Figure 3B
for a small initialization scale (γ = 0.8).
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Embedding space exhibits distinct patterns To investi-
gate the causes of the reasoning bias under small initializa-
tion for such a simplified model, it’s critical to understand
the structure of the embedding space. Figure 4A depicts
the cosine similarity matrices for embeddings of memory
anchors and reasoning anchors at epochs 50 and 900. The
results reveal that the cosine similarity between reasoning
anchors si, sj decreases with the increase of |si − sj |, sug-
gesting that reasoning anchors quickly establish a hierar-
chical structure within the embedding space. In contrast,
the memory anchors exhibit consistently high similarity and
alignment, leading to a lack of differentiation among them.
Nevertheless, given that the model needs to learn more
primitive-level mappings for memory mapping than reason-
ing mapping, the embedding space associated with memory
mapping should, in principle, exhibit greater complexity
and variability. This phenomenon reveals that the primary
challenge preventing the model from effectively learning
memory mapping could highly possibly lie in its difficulty in
identifying and differentiating between individual anchors.

Figure 4. A: Cosine similarity matrices for memory (top row) and
reasoning (bottom row) anchors at epoch 50 (left) and epoch 900
(right) of a model initialized with γ = 0.8. B: Distribution of
P s − 1

dvob
1 for different reasoning anchor s. C: Cosine similarity

between P si − 1
dvob

1 and P sj − 1
dvob

1 for any reasoning anchor
si, sj , exhibiting a similar structure to the embedding space of
reasoning anchors observed in A.

Target distribution shapes the embedding This phe-
nomenon can be interpreted through the training dynamics.
To facilitate our analysis, we give the following assump-
tion (Chen et al., 2024):

Assumption 1. The activation function σ ∈ C2(R),
and there exists a universal constant CL > 0 such
that its first and second derivatives satisfy ||σ′(·)||∞ ≤
CL, ||σ′′(·)||∞ ≤ CL. Moreover, σ(0) = 0, σ′(0) = 1.

For any token s, let
{(

Xs,i, ys,i
)}ns

i=1
denote all input

sequences containing s and corresponding labels, where
ns means the appearance times of s. As the initial-
ization scale decreases, with Assumption 1, we have

σ′ (∑
x∈Xi wemb,xW (1)

)
= 1, softmax

(
Gθ

(
Xs,i

))
=

1
dvob

1, where 1 ∈ R1×dvob means the vector with all ele-
ments equal to 1. Then the gradient flow of wemb,s could
be approximated by the limit formulation, i.e.,

dwemb,s

dt
=

1

n

ns∑
i=1

(
ys,i − 1

dvob
1

)
W (2)TW (1)T , (4)

where n represents the count of all tokens. We consider
n → ∞ to obtain the asymptotic form of the following
gradient flow.

Proposition 1. For any token s, denote Y s as a random
variable, which takes values randomly from the label of any
input sequence that contains token s. In the limit n → ∞,
we define P s with its i-th element as the probability of
Y s = i, i.e., P s

i = P (Y s = i). Assume the ratio of the
token s in the whole dataset rs := ns

n remains constant,
then (4) can be approximated as:

dwemb,s

dt
= rs

(
P s − 1

dvob
1

)
W (2)TW (1)T . (5)

The proof is provided in Appendix B.1. Proposition 1
demonstrates that for any token s, its embedding vector
is dominated by the distribution of Y s which indicates that
it’s significant to discuss the distribution Y s for different
tokens. Firstly, we define the following random variables
(U for discrete uniform distribution):

Z ∼ U (Z) , Aj ∼ U (Arsn) , j = 1, 2, · · · , q. (6)

Then we have the following results:

P (Y s = i | s ∈ Amem) =
1

NZ
δi∈Z , (7)

and
P (Y s = i | s ∈ Arsn)

=P

Z +

q−1∑
j=1

Aj = i− s | s ∈ Arsn

 .
(8)

Equation (7) reveals that the information to different mem-
ory anchors is identical such that the embedding space of
memory anchors exhibits a high similarity. However, (8)
demonstrates that the distribution of Y s exhibits shifts in the
mean values that depend on the specific s for any s ∈ Arsn.
Figure 4B and 4C visualize the distribution of P s − 1

dvob
1

and the resulting cosine similarity among different reason-
ing anchors s, suggesting that the labels’ distributions play
a critical role in establishing the embedding structure of
reasoning anchors during the early stages of training, facili-
tating the differentiation among the embeddings associated
with different reasoning anchors. The detailed formulations
can be found in Appendix B.2.
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Figure 5. Embedding structure of a Transformer model with small initialization scale. A: Cosine similarity matrices for memory (top) and
reasoning (bottom) anchors at epoch 200 (left) and epoch 900 (right). B: Visualization of the embedding space projected onto the first two
principal components computed via PCA. C: Cosine similarity between the constructed embedding vectors of reasoning anchors w̃emb,s

(see (12)) as derived in Theorem 1 (top) and Cosine similarity comparison between experimental results with theoretical approximations
where si = 15 (bottom). D: PCA projection of the constructed embedding space w̃emb,s for s ∈ Z (top) and s ∈ Arsn (bottom) onto the
first two principal components.

3.3. Transformer with General Task

In the previous section, we investigate the key mechanisms
driving the learning bias of Emb-MLP and analyze the dy-
namics of its embedding space. However, when applied to
a general sequence containing some degree of noise, i.e.,
L > q + 1, we find the MLP model fails to perform effec-
tively due to its inability to extract critical tokens zp, ap+1,
and ap+2. In contrast, Transformer architectures overcome
this limitation through self-attention mechanisms, which
can identify the key and anchor elements and propagate
their information.

In the following section, we conduct an in-depth analysis
of the Transformer’s characteristics and processing mech-
anisms under a small initialization scale. Specifically, we
investigate whether the embedding space exhibits similar
phenomena to those observed in Emb-MLP and assess how
the model captures critical information from the input se-
quence.

Embedding space. The embedding space of the Trans-
former exhibits a phenomenon similar to that observed in the
Emb-MLP. Figure 5A illustrates the cosine similarity among
different anchors’ embedding vectors, revealing distinct pat-
terns for reasoning and memory tasks. Reasoning anchors
display a hierarchical structure, the further distance, the
smaller similarity, suggesting a clearer organization within
the embedding space. In contrast, memory anchors exhibit
high similarity and alignment. Additionally, we apply Prin-
cipal Component Analysis (PCA) to the entire embedding

space to examine its structural properties. The results in
Figure 5B reveal a strong inherent numerical order. This
structure is particularly advantageous for reasoning tasks,
as it supports the model’s capacity to generalize based on
the underlying numerical relationships.

First attention module. As illustrated in Figure 6, the
first attention matrix approaches the behavior of an aver-
age operator when initialized with small scales, such that
(Attn (X)V )i =

1
i

∑
j≤i Vj , where V = XW V . Con-

sequently, each token aggregates information from all pre-
ceding tokens. Additionally, the largest singular value of
W V is significantly larger than the remaining singular val-
ues, and its corresponding singular vector is aligned closely
with the embedding vectors of reasoning anchors, but nearly
orthogonal to those of memory anchors. These phenom-
ena suggest reasoning anchors are prominently captured by
W V and subsequently propagated to all subsequent tokens
in the sequence via the average operation. However, the
memory anchors are not distinctly identified, indicating that
the model faces challenges in capturing significant informa-
tion from a memory sequence effectively. More analysis of
W V can be found in Appendix B.8.

Second attention module. The second attention module
functions to extract the key, and propagate its information to
the final position in the sequence. This is facilitated through
the use of position embeddings. Since this mechanism is
applicable to both memory and reasoning tasks, we provide
a detailed explanation in Appendix D.
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Figure 6. Characteristics of the first attention module under small initialization (γ = 0.8) in the early training stage (epoch 200). A:
Heatmap of the attention matrix for a random sample. B: Distribution of the relative error between attention Ajk and 1

j
across all training

sequences. C: Distribution of singular values of W V . D: Cosine similarity between the left singular vectors and average embedding
vectors of the anchors.

Theoretical analysis. Based on the observations from the
experiments, we extract the sketch component of the model,
which is crucial to its learning preferences, and analyze the
underlying mechanisms for its occurrence. We define the
following one-layer Transformer model:

Definition 2 (One-layer Transformer). Let df ∈ N+ de-
notes the hidden layer of the feedforward neural network
(FNN). For any X ∈ X (q,L), denote Attn

(
W emb,X

)
by A,

then we define fθ : X (q,L) → Rdm as follows:

fθ(X) =σ((AL,:W
emb,XW V WO +W emb,X

L,: )W f1)W f2

+AL,:W
emb,XW V WO +W emb,X

L,: ,
(9)

where W f1 ∈ Rdm×df ,W f2 ∈ Rdf×dm are the feedfor-
ward layer projection matrices. The subscript L, : in AL,:

and W emb,X
L,: denotes the L-th row.

Definition 2 is introduced to facilitate the theoretical anal-
ysis, excluding the Layer Normalization and the final pro-
jection operator, as they do not impact our results (see Ap-
pendix F).

As we observed, with a small initialization scale, the atten-
tion operator A can be interpreted as an average operator.
Specifically, we have

Lemma 1. For any ε ∈ (0, 1], there exists C > 0 such
that for any γ > C, the elements of A at initialization,
denoted by Ai,j , satisfy

∣∣Ai,j − 1
i

∣∣ ≤ ε for any i ≤ j with
probability at least 1− ε.

Denote that W f = W f1W f2,W V O = W V WO and
W̃ =

(
W f,T + I

) (
W V O,T + I

)
, where the identity ma-

trix I comes from the resnet. Using techniques similar to
those employed in the previous section, we derive the gra-
dient flow of wemb,s under small initialization scales as
follows:

Proposition 2. For any s ∈ Amem, let n, γ → ∞, with

Assumption 1 we have the following result:

dwemb,s

dt
=

rs
L

(
δZ

NZ
− 1

dm
1

)
W̃ . (10)

Proposition 3. For any s ∈ Arsn, let n, γ → ∞, with
Assumption 1 we have the following result:

dwemb,s

dt
=

rs
L

(
P s − 1

dm
1

)
W̃ , (11)

where the i-th element of P s is defined as P s
i =

P
(
Z +

∑q−1
j=1 Aj = i− s | s ∈ Arsn

)
.

Furthermore, we utilize the normal distribution to approxi-
mate the distribution of Y s, s ∈ Arsn and give an approxi-
mation of wemb,s to describe the overall structure and inter-
nal relationships within the embedding space observed in
real-world training scenarios.

Theorem 1. let n → ∞, define the learning rate η and
assume that L− q = O(1), rsη

L = O(1) and ||wemb||∞ ≤
O (d−γ

m ) at initialization. We propose the approximation of
wemb,s, s ∈ Arsn by

w̃emb,s
j = C1

(
C2e

− (j−s)2

2σP − 1

dm

)
+ ε, (12)

where C1, C2, σP are constants depending on rs, η, L, q
and ε ∼ N (0, (d−γ

m )2). Then we have the following result

sup
i,j

∣∣(w̃emb,sj , w̃emb,si
)
−
(
wemb,sj ,wemb,si

)∣∣
≤ O

(
d1−γ
m

(
q−

1
2 + d−γ

m

))
,

(13)

where (·, ·) denotes the inner production.

Additionally, for any key z ∈ Z and Amem, we could have
a similar result. To validate our theory analysis, we set the
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Figure 7. Reasoning bias of GPT-2 in real language tasks. A: dynamics of ∆L during early training stage with initializations scales
γ = 0.3, 0.5 and 0.8. B: Cosine similarity among embedding space of PrOntoQA dataset and TinyStories dataset at step 5000 with
γ = 0.8.

detailed formulation of reasoning anchors and keys as

w̃emb,s
i = e−

(i−s)2

12 − 1

dm
+ ε, s ∈ Arsn,

w̃emb,s
i = e−

(i−s)2

12 + ε, s ∈ Z.

(14)

Figure 5C exhibits the cosine similarity among the w̃emb,s

for any s ∈ Arsn (top) and compare cos
(
wemb,15,wemb,sj

)
in real training process with the theoretical approximation
cos
(
w̃emb,15, w̃emb,sj

)
(bottom, a complete comparison is

provided in Appendix B.7). Figure 5D presents the PCA
projection of wemb,s for s ∈ Arsn and Z , respectively.
These visualizations exhibit a strong alignment with the ex-
perimental observations, thereby substantiating the validity
of our analysis. The proofs of our theoretical results are
provided in Appendix B.4, B.5, and B.6.

3.4. Real Language Tasks

For the experiment in Figure 1, we also conduct compar-
isons with initialization scales γ = 0.3 and 0.5. To quantify
the reasoning bias of the model, we define the following
metric:

∆L :=
LTinystories − LPrOntoQA

LPrOntoQA
,

where LTinystories and LPrOntoQA denote the loss on TinyS-
tories and PrOntoQA, respectively. As γ increases, ∆L
exhibits an upward trend, indicating a growing bias for rea-
soning task, which is depicted in Figure 7A. To further
validate our analysis, we examine the embedding space of
the GPT-2 model during the early stages of training which
we train with a small initialization scale. Figure 7B reveals
that the embeddings of tokens in PrOntoQA are significantly
more distinguishable from each other compared to the to-
kens in TinyStories. The average cosine similarity among
the PrOntoQA is 0.123 while 0.531 among the TinySto-
ries. These results provide strong support for our analysis,
highlighting the impact of embedding distinguishability on
training preference.

3.5. Effect of Label’s Distribution

Figure 8. Left: Distribution of targets and predictions in 4 groups
of memory tasks. Red represents the target distribution in each
group and blue represents the prediction distribution. Right: Learn-
ing speed comparison for Fmem,1 (red) and Fmem,2 (blue).

Previous sections reveal that under small initialization, the
distribution of labels plays a pivotal role in shaping the em-
bedding space of tokens and regulating the model’s training
dynamics. To more intuitively demonstrate the impact of the
label distribution of each token on its output, we designed
four groups of memory mappings. The label ranges of the
four groups are set to {30, · · · , 29 + 20× i}, i = 1, 2, 3, 4.
The right picture of Figure 8 illustrates the distribution
of the model’s outputs for each group during the early
stages of training. Notably, it can be observed that even
at this initial stage, when the model’s accuracy is still rel-
atively low, its outputs do not exceed the range of the la-
bel distributions. This highlights the critical influence of
label distributions on the token structure, which in turn
significantly impacts the model’s outputs. Additionally,
we compare two memory tasks with differing label distri-
butions. In the first task, denoted Fmem,1, for any key-
anchor pair (zp,a), the label y(zp,a) is randomly sampled
from Z . In the second task Fmem,2, y(zp,a) is randomly

sampled from
{
zp −

∑p+q
i=p+1 ai, · · · , zp +

∑p+q
i=p+1 ai

}
.

While both tasks are clearly memory tasks, the label distri-
butions in Fmem,2 vary depending on the anchor. As shown
in the left picture of Figure 8, the learning rate for Fmem,2
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is significantly faster than that for Fmem,1. This observation
underscores the crucial role that label distribution plays in
the model’s learning process.

4. Related Works
Recent advancements in large language models have shown
remarkable capabilities, often surpassing human-level per-
formance in many tasks (Fu et al., 2022; Wei et al., 2022a).
However, despite their strong performance in many as-
pects (Srivastava et al., 2022), LLMs face challenges in
handling complex reasoning tasks (Csordás et al., 2021;
Dziri et al., 2024; Hupkes et al., 2018; Lepori et al., 2023;
Okawa et al., 2023; Yun et al., 2022; Wang et al., 2024d;
Csordás et al., 2022). For example, Ramesh et al. (Ramesh
et al., 2023) show that Transformers trained on a synthetic
benchmark struggle when tasked with combining multiple
reasoning steps. Similarly, Liu et al. (Liu et al., 2022) sug-
gest that shallow Transformers tend to learn shortcuts during
training, which limits their ability to perform well in more
complex reasoning scenarios. Several strategies have been
proposed to address these challenges, such as encouraging
the generation of explicit reasoning steps in a single out-
put (Wei et al., 2022b) or using LLMs to iteratively produce
reasoning steps (Creswell et al., 2022; Creswell & Shanahan,
2022). Despite these efforts, achieving reliability remains
a significant challenge. Additionally, some studies have
explored the internal mechanisms of language models to
enhance their performance (Wang et al., 2024b;c; 2023), but
they often do not address the impact of training dynamics
on the model’s final behavior. To better understand these
models’ behaviors and inner workings, Zhang et al. (Zhang
et al., 2024b) introduced anchor functions as a tool for prob-
ing Transformer behavior. Building on this framework, our
research investigates how different initialization scales in-
fluence model reasoning bias and internal mechanisms from
a perspective of training dynamics.

The fitting ability and generalization of deep learning mod-
els are critical in understanding deep learning (Breiman,
1995; Zhang et al., 2016), and the initialization of neural
network parameters plays a crucial role in determining the
network’s fitting results (Arora et al., 2019; Chizat & Bach,
2018; Zhang et al., 2019b; E et al., 2020; Jacot et al., 2018;
Mei et al., 2018; Rotskoff & Vanden-Eijnden, 2018; Sirig-
nano & Spiliopoulos, 2020; Williams et al., 2019). Luo et
al. (Luo et al., 2021) and Zhou et al. (Zhou et al., 2022)
primarily identify the linear and condensed regimes in wide
ReLU neural networks. In the condensed regime, neuron
weights within the same layer tend to become similar. A
body of research indicates that condensed networks often
exhibit strong generalization capabilities (Zhang et al., 2022;
Zhang & Xu, 2023; Zhang et al., 2023; Zhang & Xu, 2024).
See (Xu et al., 2025) for an overview of condensation. In our

study, we demonstrate that with small initialization values,
the parameters of the embedding layer can reach a low-rank
state rather than a condensed state. This means that while
embeddings of different tokens become linearly dependent,
they are not identical. This distinction allows low-rank mod-
els to effectively capture essential patterns and generalize
well without the stringent alignment required by condensa-
tion, which is particularly important for applications such
as word embedding matrices where distinct representations
for different tokens are necessary. Recent investigations
have also explored how initialization affects the training
dynamics of LLMs (Huang et al., 2020; Liu et al., 2020;
Trockman & Kolter, 2023; Wang et al., 2024a; Zhang et al.,
2019a; Zhu et al., 2021). These studies mainly examine
how the scale of initialization influences the stability of
the training process and is vital for ensuring efficient and
effective training of LLMs. In our work, we observe that
different initialization schemes result in varying speeds of
convergence for memorization tasks versus reasoning tasks
and provide a theoretical rationale for this behavior.

5. Conclusions
In this paper, we investigate the underlying mechanism of
which small initialization scales promote a reasoning prefer-
ence in language models. Our findings suggest that the label
distribution of tokens plays a pivotal role in shaping the em-
bedding space, thereby influencing the learning dynamics
and task complexity. Our result can be readily extended to
the next-token prediction training and obtain similar results.
This perspective is supported through a combination of ex-
perimental observations and theoretical analysis, providing a
deeper understanding of how initialization strategies impact
task-specific behavior in language models.
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under small initialization scales, as well as the training
behavior of individual modules within the model architec-
ture. These findings not only contribute to understanding
the model behavior and training mechanisms, but also help
with optimizing model initialization strategies and design-
ing novel algorithms to enhance the reasoning capabilities
of language models.
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A. Basic Settings
A.1. Transformer Architecture

For any sequence X ∈ X (q,L), we denote its one-hot vector by eX . The word embedding W emb and the input to the first
Transformer block X(1) is calculated as:

W emb,X = eXW emb, X(1) = W emb,X +W pos, (15)

where W pos is a trainable positional vector. For the l-th layer, the Q,K,V are defined as:

Q(l) = X(l)WQ(l), K(l) = X(l)WK(l), V (l) = X(l)W V (l). (16)

The attention matrix Attn(l) and its subsequent output Xqkv(l) for the l-th layer is computed as:

Attn(l) = softmax

(
mask

(
Q(l)K(l)T

√
dk

))
, Xqkv(l) = Attn(l)V (l). (17)

The output of the l-th attention layer is obtained as:

Xao(l) = LN
(
X(l) +Xqkv(l)WO(l)

)
, X(l+1) := Xdo(l) = LN

(
MLP

(
Xao(l)

)
+Xao(l)

)
, (18)

where “LN” refers to Layer Normalization. The final output is obtained by projecting the output of the last layer Xdo(L)

using a linear projection layer, followed by a softmax operation and argmax to obtain the predicted token.

A.2. Experimental Setups

For those experiments about the Transformer structure, we train three Transformer models on a dataset of 200,000 samples,
with each input sequence having a fixed length of 9 tokens. The vocabulary size dvob is set to 200, and the model architecture
includes an embedding dimension dm of 200, a feedforward dimension df of 512, and query-key-value projection dimension
dk of 64. The Transformer-based model uses 2 decoder layers with 1 attention head per layer. The training is conducted for
1000 epochs with a batch size of 100, and gradient clipping is applied with a maximum norm of 1. The AdamW optimizer is
employed with an initial learning rate of 1× 10−5. The initialization rates of the three models are γ = 0.3, 0.5, 0.8.

For those experiments related to Emb-MLP, we train three Emb-MLP models with dvob = 200, dm = 200, df = 512
and initialization scales γ = 0.3, 0.5, 0.8. A dataset comprising 1, 000, 000 data pairs is employed. We set that Amem =
{1, 2, · · · , 10} ,Arsn = {11, 12, · · · , 20} ,Z = {21, 22, · · · , 120} ,M = {(11, 13) , (13, 11)}. The initial learning rate is
5× 10−6 and all other training setups remain consistent with those described in the first paragraph.

For Figure 1 and Figure 7, we use GPT-2 models with an initialization scale γ = 0.3, 0.5, 0.8. The dataset contains 10,000
data sequences, with half of them sourced from PrOntoQA and the other half from TinyStories. The AdamW optimizer is
employed with an initial learning rate of 1 × 10−5. The model is trained for 200 epochs, ensuring that the loss for both
datasets decreases to a similar level.

B. Theory Details
B.1. Proof of Proposition 1

Lemma 2. For any token s, let {
(
Xs,i, ys,i

)
}ns
i=1 denote all input sequences containing s and corresponding labels. The

gradient flow of wemb,s can be expressed as:

dwemb,s

dt
=

1

n

ns∑
i=1

((
ps,i − ys,i

)
W (2)T

)
⊙ σ′

( ∑
x∈Xs,i

wemb,xW (1)

)
W (1)T , (19)

where ps,i = softmax
(
Gθ

(
Xs,i
))

, σ′ denotes the derivative of σ and n means the count of all training data. ⊙ represents
the elements-wise production.
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Proof. For any data pair
(
Xs,i, ys,i

)
, the cross entropy function R could be expressed as:

R
(
Xs,i

)
= − log

e
Gθ(Xs,i)

ys,i∑dvob

j=1 eGθ(Xs,i)j
,

where the subscript j represents the element index. Then the derivative of R respect with wemb,s can be expressed as:

∂R
(
Xs,i

)
∂wemb,s

=

dvob∑
j=1

∂R
(
Xs,i

)
Gθ (Xs,i)j

∂Gθ

(
Xs,i

)
j

∂wemb,s
=

dvob∑
j=1

(ps,i
j − ys,i

j )
∂Gθ

(
Xs,i

)
j

∂wemb,s
.

Using the trace theorem, we obtain:

dGθ

(
Xs,i

)
j
= tr

(
dGθ

(
Xs,i

)
j

)
= tr

(
dσ

( ∑
x∈Xs,i

wemb,xW (1)

)
W

(2)
:,j

)

= tr

(
σ′

( ∑
x∈Xs,i

wemb,xW (1)

)
⊙
(
dwemb,sW (1)

)
W

(2)
:,j

)

= tr

W (1)

W
(2)
:,j ⊙ σ′

( ∑
x∈Xs,i

wemb,xW (1)

)T
 dwemb,s

 .

Then we have

∂R
(
Xs,i

)
∂wemb,s

=

dvob∑
j=1

(
ps,i
j − ys,i

j

)(
W

(2)T
:,j ⊙ σ′

( ∑
x∈Xs,i

wemb,xW (1)

))
W (1)T

=
((

ps,i − ys,i
)
W (2)T

)
⊙ σ′

( ∑
x∈Xs,i

wemb,xW (1)

)
W (1)T ,

and furthermore

dwemb,s

dt
= − 1

n

ns∑
i=1

∂R
(
Xs,i

)
∂wemb,s

=
1

n

ns∑
i=1

((
ps,i − ys,i

)
W (2)T

)
⊙ σ′

( ∑
x∈Xs,i

wemb,xW (1)

)
W (1)T .

As the initialization scale decreases γ → 0, with the Assumption 1, we have that σ′ (∑
x∈Xs,i wemb,xW (1)

)
=

1, softmax
(
Gθ

(
Xs,i

))
= 1

dvob
1, where 1 ∈ R1×dvob means the vector with all elements equal to 1. Then the gradi-

ent flow of wemb,s could be approximated by the limit formulation, i.e.

dwemb,s

dt
=

1

n

ns∑
i=1

(
ys,i − 1

dvob
1

)
W (2)TW (1)T . (20)

Consider n → ∞ and denote the random variable Y s which follows the distribution of
{
ys,i
}ns

i=1
, then we obtain the

asymptotic form by the law of large number

1

n

ns∑
i=1

ys,i = rsEY s [Y s] = rsP
s,

where Y s is the one-hot representation of Y s and the i-th element of P s is P s
i = P (Y s = i). Then we obtain the

Proposition 1.
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B.2. Distribution of Y s

Memory anchor. Since we select a label for any key-anchor pair randomly from U (Z), the label s meets would follow
the same distribution for any s ∈ Amem. specifically, we have

P (Y s = i) =
1

NZ
δi∈Z , (21)

where δi∈Z = 1 if i ∈ Z otherwise 0.

Reasoning anchor. For any reasoning anchor s ∈ Arsn, we assume that the other elements of a key-anchor pair containing
s is z, a1, a2, · · · , aq−1. Since the other elements are randomly chosen from the corresponding scope, the label could be
represented as ys = s+ z +

∑q−1
j=1 aj . Then Y s follows the distribution s+ Z +

∑q−1
j=1 Aj , then we have

P (Y s = i) = P

Z +

q−1∑
j=1

Aj = i− s


=

ζmax∑
ζ=ζmin

P (Z = ζ)P

q−1∑
j=1

Aj = i− s− ζ


=

1

NZ

1

Nq−1
Arsn

ζmax∑
ζ=ζmin

(
q − 1

i− s− ζ − (q − 1)αrsn
min

)
NArsn

,

(22)

where the combination number
(
n
j

)
k+1

can be defined by
(
1 + x+ · · ·+ xk

)n
=
∑kn

j=0

(
n
j

)
k+1

xj (Caiado & Rathie, 2007).
Specifically, when q = 2, we have the following result:

P (Y s = i) =

ζ=ζmax∑
ζ=ζmin

P (Z = ζ)P (A1 = i− s− ζ)

=



i−s−αrsn
min∑

ζ=ζmin

1

NZNArsn

, i = ζmin + αrsn
min + s, · · · , ζmin + αrsn

max + s.

i−s−αrsn
min∑

ζ=i−s−αrsn
max

1

NZNArsn

, i = ζmin + αrsn
max + 1 + s, · · · , ζmax + αrsn

min + s.

ζmax∑
ζ=i−s−αrsn

max

1

NZNArsn

, i = ζmax + αrsn
min + 1 + s, · · · , ζmax + αrsn

max + s.

=



i− s− αrsn
min − ζmin + 1

NZNArsn

, i = ζmin + αrsn
min + s, · · · , ζmin + αrsn

max + s.

1

NZ
, i = ζmin + αrsn

max + 1 + s, · · · , ζmax + αrsn
min + s.

ζmax + αrsn
max − i+ s+ 1

NZNArsn

, i = ζmax + αrsn
min + 1 + s, · · · , ζmax + αrsn

max + s.

Key. For any s ∈ Z , its labels come from two parts, memory mapping and reasoning mapping. In the memory mapping, z
meets each token in Z with the same probability 1

NZ
. In the reasoning mapping, the label ys = s+

∑q
i=1 ai. Assume that

15
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the ratio of memory mapping is identified with reasoning mapping, then we have

P(Y s = i) =
1

2
(Pmem (Y s = i) + Prsn (Y

s = i)) (23)

=
1

2

 1

NZ
δi∈Z + P

s+

q∑
j=1

Aj = i

 (24)

=
1

2

(
1

NZ
δi∈Z +

1

Nq
Arsn

(
q

i− s− qαrsn
min

)
NArsn

)
. (25)

Specifically, when q = 2

P (Y s = i) =
1

2

(
1

NZ
δi∈Z +

NArsn
− |αrsn

max − αrsn
min − i+ s|

N2
Arsn

)
.

Generally, consider the usual sequence containing some noise. Then the label consists of a third part when s appears as a
noise. With a similar method, we have

Pnoise (Y
s = i) =

1

2
(Pnoise,mem (Y s = i) + Pnoise,rsn (Y

s = i))

=
1

2

 1

NZ
δi∈Z + P

Z +

q∑
j=1

Aj = i


=

1

2

 1

NZ
δi∈Z +

1

NZ

1

Nq
Arsn

ζmax∑
ζ=ζmin

(
q

i− ζ − qαrsn
min

)
NArsn

 .

Combine them together, we have in the general setting X (q,L), we have that

P(Y s = i) =
1

2 (L− q)

 1

NZ
δi∈Z + P

s+

q∑
j=1

Aj = i

+
L− q − 1

2 (L− q)

 1

NZ
δi∈Z + P

Z +

q∑
j=1

Aj = i


=

1

2NZ
δi∈Z +

1

2 (L− q)

P

s+

q∑
j=1

Aj = i

+ (L− q − 1)P

Z +

q∑
j=1

Aj = i


=

1

2NZ
δi∈Z +

1

2 (L− q)Nq
Arsn

( q

i− s− qαrsn
min

)
NArsn

+ (L− q − 1)
1

NZ

ζmax∑
ζ=ζmin

(
q

i− ζ − qαrsn
min

)
NArsn

 .

B.3. Gradient Flow of Embedding Space in Emb-MLP

With the discussion in Section B.2, we obtain the detailed formulation of (5) for different anchors of different tasks.
Specifically, we have the following result:
Corollary 1. Given any s ∈ Amem, assume that n → ∞ and assume the ratio of sequences containing s in the training set
rs keeps constant, then we have

dwemb,s

dt
= rs

(
δZ

NZ
− 1

dvob
1
)
W (2)TW (1)T , (26)

where δZ ∈ Rd is a vector with elements equal to 1 for indices belonging to Z , and 0 otherwise.
Corollary 2. Given any s ∈ Arsn, assume that n → ∞ and the ratio of sequences containing s in the training set rs
remains constant. Then, the gradient flow of the embedding vector corresponding to s is given by:

dwemb,s

dt
= rs

(
P s − 1

dvob
1
)
W (2)TW (1)T , (27)

where P s ∈ Rd is a probability vector whose i-th element is P s
i = 1

NZ
1

Nq−1
Arsn

∑ζmax

ζ=ζmin

(
q−1

i−s−ζ−(q−1)αrsn
min

)
NArsn

.
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B.4. Proof of Lemma 1

Proof. We assume that W emb,X
i,j ∼ N

(
0, (d−γ

m )
2
)
,WQ

i,j ∼ N
(
0,
(
d−γ
k

)2)
,WK

i,j ∼ N
(
0,
(
d−γ
k

)2)
. We have that

(
W emb,XWQWKTW emb,X,T

)
i,j

=

dm∑
k=1

dm∑
l=1

W emb,X
i,k

(
dk∑
p=1

WQ
k,pW

K
l,p

)
W emb,X

j,l

=

dm∑
k=1

dm∑
l=1

dk∑
p=1

W emb,X
i,k WQ

k,pW
K
l,pW

emb,X
j,l

∼ N

(
0,

(
d2mdk

2 (dγm + dγk)

)2
)
.

Then the attention operator(
W emb,XWQWKTW emb,X,T

)
i,j√

dk
∼ N

(
0,

(
d2m

√
dk

2 (dγm + dγk)

)2
)
.

Utilizing the Chebyshev’s Inequality, then we have

P


∣∣∣(W emb,XWQWKTW emb,X,T

)
i,j

∣∣∣
√
dk

> δ

 ≤ d4mdk

4δ2 (dγm + dγk)
2 ,

for any δ > 0. Given any ε ∈ (0, 1], let C = 1
2 logdm+dk

d4
mdk

4δ2ε , then for any γ > C, we have

P


∣∣∣(W emb,XWQW

T
KW emb,X,T

)
i,j

∣∣∣
√
dk

> δ

 ≤ d4mdk

4δ2 (dγm + dγk)
2 ≤ ε,

which implies that Ai,j
P−→ 1

i , for any i ≤ j as γ → ∞.

B.5. Proof of Proposition 2, 3

For convenience in further analysis, we introduce the following notations Hs,i := (W
emb,Xs,i

W V WO +

W emb,Xs,i

L )W f1,W V O = W V WO,W f = W f1W f2,ps,i = softmax(fθ(X
s,i)). Firstly, we have the following

result:

Lemma 3. Given any token s, the gradient flow of wemb,s can be expressed as

dwemb,s

dt
=− 1

n

(
ns∑
i=1

1

L

((
ps,i − ys,i

)
W fTW V O,T ⊙ σ′ (Hs,i

)T
+
(
ps,i − ys,i

)
W V O,T

)
+

ñs∑
i=1

(
ps,i − ys,i

)
W fT ⊙ σ′ (Hs,i

)T
+
(
ps,i − ys,i

))
,

where ñs denotes the time s appears in the final position of a sequence.

Proof. For any data pair
(
Xs,i, ys,i

)
, we have

dfθ(X
s,i)j = d

(
σ
(
Hs,i

)
W f2

:,j +W
emb,Xs,i

W V O
:,j +W emb,Xs,i

L,j

)
= σ′ (Hs,i

)
⊙
(
dW

emb,Xs,i

W V OW f1 + dW emb,Xs,i

L W f1

)
W f2

:,j + dW
emb,Xs,i

W V O
:,j + dW emb,Xs,i

L,j .

17
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By the trace theorem, we have

dfθ

(
Xs,i

)
j
= tr

(
dfθ

(
Xs,i

)
j

)
= tr

(
W V OW f1

(
W f2

:,j ⊙ σ′ (Hs,i
)T)

dW
emb,Xs,i

)
+ tr

(
W f1

(
W f2

:,j ⊙ σ′ (Hs,i
)T)

dW emb,Xs,i

L,:

)
+ tr

(
W V O

:,j dW
emb,Xs,i

)
+ tr

(
dW emb,Xs,i

L,j

)
= tr

((
W V OW f1

(
W f2

:,j ⊙ σ′ (Hs,i
)T)

+W V O
:,j

)
dW

emb,Xs,i
)

+ tr
((

W f2
:,j ⊙ σ′ (Hs,i

)T
+ 1
)
dW emb,Xs,i

L,:

)
.

Utilizing the chain rule, we have

∂R
(
Xs,i, ys,i

)
∂W emb,s

=

dm∑
j=1

∂R
(
Xs,i, ys,i

)
∂fθ (Xs,i)j

∂fθ

(
Xs,i

)
j

∂W emb,s
=

dm∑
j=1

(
ps,i
j − ys,i

j

) ∂fθ

(
Xs,i

)
j

∂W emb,s

=


1

L

(((
ps,i − ys,i

)
W f2,T ⊙ σ′ (Hs,i

))
W f1,TW V O,T +

(
ps,i − ys,i

)
W V O,T

)
+
((
ps,i − ys,i

)
W f2,T ⊙ σ′ (Hs,i

))
W f1,T +

(
ps,i − ys,i

)
, s occurs on last position.

1

L

(((
ps,i − ys,i

)
W f2,T ⊙ σ′ (Hs,i

))
W f1,TW V O,T +

(
ps,i − ys,i

)
W V O,T

)
, otherwise.

Then we obtain the gradient flow as

dwemb,s

dt
=− 1

n

(
ns∑
i=1

1

L

((
ps,i − ys,i

)
W f2,T ⊙ σ′ (Hs,i

)
W f1,TW V O,T +

(
ps,i − ys,i

)
W V O,T

)
+

ñs∑
i=1

(
ps,i − ys,i

)
W f2,T ⊙ σ′ (Hs,i

)T
W f1,T +

(
ps,i − ys,i

))
.

As the initialization scales decrease to zero, we derive the gradient flow under a small initialization scale as follows via
Assumption 1.

dwemb,s

dt
=

1

n

(
ns∑
i=1

1

L

(
ys,i − 1

dm
1

)(
W V OW f +W V O

)T
+

ñs∑
i=1

(
ys,i − 1

dm
1

)
W f,T +

(
ys,i − 1

dm
1

))
.

(28)

We consider the ideal condition n → ∞, with the law of large number, (28) can be approximated as follow:

dwemb,s

dt
=

rs
L
EY s

[
Y s − 1

dm
1

]
W̃ . (29)

With the distribution we discussed in Section B.2, we complete the proof of Proposition 2, 3.
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B.6. Proof of Theorem 1

Proof. Consider the linear expansion of wemb,s = wemb,s
t0 + dwemb,s

dt η where wemb,s
t0 is the initialization of wemb,s, then

we have

wemb,s =wemb,s
t0 +

dwemb,s

dt
η (30)

=wemb,s
t0 +

rsη

L
EY s

[
ys − 1

dm
1

] (
W f,T + I

) (
W V O,T + I

)
(31)

=
rsη

L
EY s

[
ys − 1

dm
1

]
+wemb,s

t0 +O
(
d−2γ
m 1

)
. (32)

For any s ∈ Arsn, the formulation can be rewritten as

wemb,s
i =

rsη

L

P

s+ Z +

q−1∑
j=1

Aj = i

− 1

dm

+ ε, (33)

where ε ∼ N
(
0, (dγm)

2
)

. Let q enlarge enough, then P
(
s+ Z +

∑T−1
j=1 Aj = i

)
can be approximated by the following

formulation using the Berry-Esseen central limit theorem

sup
i

∣∣∣∣∣∣P
s+ Z +

q−1∑
j=1

= i

− 1√
2πσP

e
− (i−s−µ)2

2σP

∣∣∣∣∣∣ ≤ O
(
q−

1
2

)
, (34)

where µ and σP is the expectation and standard deviation of Z +
∑q−1

j=1 Aj . Denote that w̃emb,s
i =

rsη
L

(
1√

2πσP
e
− (i−s−µ)2

2σP − 1
dm

)
+ ε, then we have:

sup
i

∣∣∣w̃emb,s
i −wemb,s

i

∣∣∣ ≤ O
(
q−

1
2 + d−γ

m

)
.

Then the difference in inner production can be derived as follows:

sup
i,j

∣∣(w̃emb,sj , w̃emb,si
)
−
(
wemb,sj ,wemb,si

)∣∣ = sup
i,j

∣∣∣∣∣∑
k

w̃
emb,sj
k w̃emb,si

k −w
emb,sj
k wemb,si

k

∣∣∣∣∣
≤
∑
k

sup
i,j

∣∣∣w̃emb,sj
k w̃emb,si

k −w
emb,sj
k wemb,si

k

∣∣∣
≤ O

(
d1−γ
m

(
q−

1
2 + d−γ

m

))
.

Since an axis transformation does not affect the inner product, we set ĩ = i−µ, then we complete the proof of Theorem 1.

B.7. Validation of Theorem 1

To verify the validity and generality of our theoretical analysis, we compare the cosine similarity of the embedding
vectors within the reasoning anchors between experimental results and theoretical approximations. The results in Figure 9
demonstrate that our theoretical estimates align well with the experimental results in most cases, with discrepancies observed
only when |si − sj | becomes large, likely due to the omission of higher-order terms.

B.8. Discussion about WV

For the phenomenon where the W V of the first attention module exhibits a preference for capturing the reasoning anchors,
a general theoretical explanation would require a more comprehensive and sophisticated analysis. However, a similar result
can be derived under a special and constrained condition.
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Figure 9. Cosine similarity comparison between experimental results cos
(
wemb,si ,wemb,sj

)
with theoretical approximations

cos
(
w̃emb,si , w̃emb,sj

)
(see (12)), for any si, sj ∈ Arsn.

Theorem 2. Let n, γ → ∞, NZ = dm, Define that A ∼ U (Arsn) and Y as a random variable which randomly takes value
from the whole dataset’s labels, then we have the following result:

dW V

dt
=

1

2
EAw

emb,AEY

[
Y − 1

dm
1

]T
WO

(
W f + I

)
.

Theorem 2 highlights that W V inherently demonstrates a preference for reasoning tasks, thereby enhancing its ability to
capture information associated with reasoning anchors.

Proof. Firstly we have the following formulation:

Lemma 4. Given the dataset {(Xi, yi)}ni=1, the gradient flow of W V can be expressed as follow:

dW V

dt
= − 1

n

n∑
i=1

(
σ′ (Hi

)
⊙W

emb,Xi
)T (

pi − yi
) (

WOW f
)T

+W
emb,Xi,T (

pi − yi
)
WO,T . (35)

Proof. For each data pair
(
Xi, yi

)
, we have

fθ

(
Xi
)
j
= σ

((
AL,:W

emb,Xi

W V WO +W emb,Xi

L,:

)
W f1

)
W f2

:,j +AL,:W
emb,Xi

W V WO
:,j +W emb,Xi

L,j .

Compute its differential, we have

dfθ

(
W emb,Xi

)
j
= d

(
σ

((
W

emb,Xi

W V WO +W emb,Xi

L,:

)
W f1

)
W f2

:,j + dW
emb,Xi

W V WO
:,j

)
= σ′ (Hi

)
⊙ d

((
W

emb,Xi

W V WO +W emb,Xi

L,:

)
W f1

)
W f2

:,j +W
emb,Xi

dW V WO
:,j

= σ′ (Hi
)
⊙W

emb,Xi

dW V WOW f1W f2
:,j +W

emb,Xi

dW V WO
:,j .
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Using the trace theorem

dfθ

(
Xi
)
j
= tr

(
dfθ

(
Xi
)
j

)
= tr

(
σ′ (Hi

)
⊙W

emb,Xi

dW V WOW f
:,j

)
+ tr

(
W

emb,Xi

dW V WO
:,j

)
= tr

(
WOW f

:,jσ
′ (Hi

)
⊙W

emb,Xi

dW V

)
+ tr

(
WO

:,jW
emb,Xi

dW V

)
= tr

((
WOW f

:,jσ
′ (Hi

)
⊙W

emb,Xi

+WO
:,jW

emb,Xi
)
dW V

)
,

which suggests that

∂fθ

(
Xi
)
j

∂W V
=

(
WOW f

:,jσ
′ (Hi

)
⊙W

emb,Xi

+WO
:,jW

emb,Xi
)T

.

Utilizing the chain rule, we have

∂R
(
Xi
)

∂W V
=

dm∑
j=1

∂R
(
Xi
)

∂fθ (Xi)j

∂fθ

(
Xi
)
j

∂W V

=

dm∑
j=1

(
pi
j − yi

j

)(
WOW f

:,jσ
′ (Hi

)
⊙W

emb,Xi

+WO
:,jW

emb,Xi
)T

=

(
σ′ (Hi

)
⊙W

emb,Xi
)T (

pi − yi
) (

WOW f
)T

+W
emb,Xi,T (

pi − yi
)
WO,T ,

where pi = softmax(fθ(X
i)). Then gradient flow of W V can be expressed as

dW V

dt
= − 1

n

n∑
i=1

∂R
(
Xi
)

∂W V

= − 1

n

n∑
i=1

(
σ′ (Hi

)
⊙W

emb,Xi
)T (

pi − yi
) (

WOW f
)T

+W
emb,Xi,T (

pi − yi
)
WO,T .

When initialized with a small scale, the gradient flow for W V could be interpreted by:

dW V

dt
=

1

n

n∑
i=1

W
emb,Xi

(
yi − 1

dm
1

)T (
WOW f +WO

)T
(36)

=
1

nL

n∑
i=1

L∑
j=1

wemb
(i,j)

(
yi − 1

dm
1

)T (
WOW f +WO

)T
, (37)

where wemb
(i,j) denotes the j-th element of W emb,Xi

. In this formulation, there are nL tokens, and we reorder all tokens along
with their corresponding labels. Let wemb,si denote the embedding vector of the i-th token, and let ysi be its corresponding
label. Consequently, the gradient flow can be expressed as:

dW V

dt
=

1

N

N∑
i=1

wemb,si

(
ysi − 1

dm
1

)T (
WOW f +WO

)T
. (38)

If we interpret wemb,si by its linear expansion wemb,si
t0 + η dwemb,si

dt , we obtain that

dW V

dt
=

1

N

N∑
i=1

(
wemb,si

t0 + η
dwemb,si

dt

)(
ysi − 1

dm
1

)T (
WOW f +WO

)T
=

1

N

N∑
i=1

(
wemb,si

t0 + η
rsi
L

EY si

[
Y si − 1

dm
1

] (
W f,T + I

) (
W V O,T + I

))(
ysi − 1

dm
1

)T (
WOW f +WO

)T
.
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Let W 1 =
((

W f
)T

+ I
)((

W V O
)T

+ I
)
,W 2 =

(
WOW f +WO

)T
, then the formulation could be rewritten as

dW V

dt
=

1

N

N∑
i=1

(
wemb,si

t0 + η
rsi
L

EY si

[
Y si − 1

dm
1

]
W 1

)(
ysi − 1

dm
1

)T

W 2

=Esi,Y

[(
wemb,si

t0 + η
rsi
L

EY si

[
Y si − 1

dm
1

]
W 1

)(
ysi − 1

dm
1

)T

W 2

]

=Esi,Y

[
η
rsi
L

EY si

[
Y si − 1

dm
1

]
W 1

(
Y si − 1

dm
1

)T

W 2

]
+ Esi,Y si

[
wemb,si

t0

(
Y si − 1

dm
1

)T

W 2

]

=
rsη

L
Esi

[
EY si

[
Y si − 1

dm
1

]
W 1EY si

[
Y si − 1

dm
1

]T
W 2

]
+ Esi,Y si

[
wemb,si

t0

(
Y si − 1

dm
1

)T

W 2

]

=
rsη

L
EY

[
Y − 1

dm
1

]
W 1EY

[
Y − 1

dm
1

]T
W 2 + Esi,Y si

[
wemb,si

t0

(
Y si − 1

dm
1

)T

W 2

]
.

While EY

[
Y − 1

dm
1
]
i
= P (Y = i) − 1

dm
, using the discussion in section B.2, Let Z ∼ U (Z) , A1, · · ·Aq ∼ U (Arsn)

we have

P (Y = i)− 1

dm
=

1

2
(Pmem (Y = i) + Prsn (Y = i))− 1

dm

=
1

2

δi∈Z

NZ
+ P

Z +

q∑
j=1

Aj = i

− 1

dm

=
1

2

P

Z +

q∑
j=1

Aj = i

− 1

dm

+
1

2

(
δi∈Z

NZ
− 1

dm

)

=
1

2

EA1

P
Z +

q∑
j=1

Aj = i | A1 = a

− 1

dm

+
1

2

(
δi∈Z

NZ
− 1

dm

)

=
1

2
EA1

P
Z +

q∑
j=1

Aj = i|A1 = a

− 1

dm

+
1

2

(
δi∈Z

NZ
− 1

dm

)

=
1

2
EA1

[
EY s

[
ys − 1

dm

]
i

]
.

Then we have that

dW V

dt
=

rη

2L
EA1

[
EY s

[
Y s − 1

dm
1

]]
W 1EY

[
Y − 1

dm
1

]T
W 2 + Esi,Y si

[
wemb,si

t0

(
Y si − 1

dm
1

)T

W 2

]

=
1

2
EA1

[
wemb,A]EY

[
Y − 1

dm
1

]T
W 2 +O

(
d−4γ
m 1

)
.
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C. Mechanisms under Varying Initialization Scales
C.1. Embedding Space of Emb-MLP

Figure 10 exhibits the cosine similarity within the embedding space of Emb-MLP models with initialization rates γ = 0.3
and γ = 0.5. The results indicate that under a large initialization scale, the embedding space of the model becomes less
influenced by the label distributions and instead relies predominantly on orthogonality to differentiate all tokens. This
mechanism neglects the intrinsic relationships among tokens, leading to a loss of generalization.

Figure 10. Cosine similarity among different anchors’ embedding vectors of Emb-MLP under initialization rates γ = 0.3, 0.5 for memory
anchors (top row) and reasoning anchors (bottom row).

C.2. Embedding Space of Transformer

Figure 11 exhibits the structure of the Transformer’s embedding space with γ = 0.3 and γ = 0.5. The left and middle
panels exhibit the cosine similarity within the embedding space of memory anchors an reasoning anchors, demonstrating
that a larger initialization scale promotes orthogonality among embedding vectors. The right panel presents the PCA
projection of the embedding space, suggesting that under a large initialization scale, the embedding space lacks a meaningful
structure conducive to learning the reasoning mapping. These findings suggest that a large initialization scale encourages
differentiation of tokens primarily through orthogonality, taking tokens as independent from the others and neglecting
intrinsic token relationships, and ultimately impairing the generalization capability.

C.3. The First Attention Module of Transformer

Figure 12 exhibits the structure of the first attention module with γ = 0.3 and γ = 0.5 at epoch 200. The comparison reveals
that a larger initialization scale results in a more complex attention mechanism, which exhibits no specific preference for any
particular task.

C.4. Low-rank Phenomena of Transformer

Figure 13 illustrates the distribution of singular value across different parameter matrices under varying initialization scales.
The results reveal that as the initialization scale decreases, the parameter matrices exhibit a pronounced low-rank structure,
which in turn facilitates a simpler learning mode.
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Figure 11. Characteristic of embedding space of Transformer with initialization rates γ = 0.3, 0.5. The left and middle panels depict the
cosine similarity among embedding vectors of memory anchors and reasoning anchors at epochs 200 and 900. The right panel shows a
PCA projection of the embedding space with the key and reasoning anchors.
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Figure 12. Characteristics of the first attention module of Transformers (step 200) with initialization rates γ = 0.3 (top row) and γ = 0.5
(bottom row). A: Heatmap of the attention matrix for a random sample. B: Distribution of the relative error between attention Ajk and
1
j

across all training sequences. C: Distribution of singular values of W V . D: Cosine similarity between the left singular vectors and
average embedding vectors of the anchors.

Figure 13. The distribution of singular value in different parameter matrices under different initialization scales (step 200). We denote the
singular value vector by S and the i-th largest singular value by si.
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C.5. Embedding Space in Real Language Tasks.

Figure 14 exhibits the cosine similarity within the embedding space of PrOntoQA and TinyStories tasks trained by GPT-2
models with initialization rates γ = 0.3 and γ = 0.5. It’s noted that under a large initialization scale, the embedding vectors
are mutually orthogonal, indicating that the model neglects the associations among different tokens.

Figure 14. Characteristic of embedding space of PrOntoQA and TinyStories with initialization rates γ = 0.3, 0.5 (step 5000).

D. The Second Attention Module
The function of the second attention module is to extract the key preceding the anchors zp, and transfer its information to the
last position. Figure 15A depicts the last row of the attention matrix before applying softmax, whose variation trend with
respect to position index i can be divided into three parts: (1) for i ≤ p, the attention increases progressively as i increases;
(2) for p+ 1 ≤ i ≤ p+ q, the attention exhibits a slight decrease; and (3) for i ≥ p+ q, the attention drops sharply.

Figure 15. Characteristic of the second attention module. A: The last row of the second attention matrix (without applying softmax)
for a randomly selected sequence. B: A heatmap of the second attention matrix for the same sequence. C: The last row of the matrix
QW posWK/

√
dk immediately before the final token. D: The cosine similarity of positional embeddings cos

(
wpos,i,wpos,j

)
for

i, j = 1, 2, · · · , L− 1.

Positional encoding plays a crucial role in this step. Figure 15C illustrates the last row of the attention matrix after
substituting K with W posWK , suggesting a increasing trend with the position index. Note that we only present the index
immediately before the final token, as the key does not appear at the last position and thus is not required to adhere to the
same pattern. Furthermore, since the reasoning anchor and the tokens following it are augmented with reasoning anchor’s
information in the first attention module, this information can be utilized to reduce the attention for tokens after the token.
We construct a detailed mechanism about this in E.3.

E. Reconstruction Mechanism for Information Capturing
To verify our observation is significant for information capturing for the Transformer model, we reconstruct the embedding
space, the first attention module, and the second attention module and exhibit the process of extracting the key-anchor pair
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from a reasoning sequence.

E.1. Embedding Space

Assumption 2 (Word Embedding). We assume the embedding space has the following properties:

1. cos
(
wemb,smem ,wemb,srsn

)
= 0, cos

(
wemb,srsn ,wemb,skey

)
= 0, ∀smem ∈ Amem, srsn ∈ Arsn, skey ∈ Z .

2. Fix any s1 ∈ Z , cos
(
wemb,s1 ,wemb,s2

)
≥ cos

(
wemb,s1 ,wemb,s3

)
if |s1 − s2| ≤ |s1 − s3| , ∀s2, s3 ∈ Z .

3. There exists a universal constant Cw < ∞ such that ||wemb,s||∞ ≤ Cw for any token s.

In addition to word embeddings, position embeddings should be effectively utilized, as they play a critical role in the
functionality of the second attention module. Here, we propose some assumptions about the relationship between word
embeddings and position embeddings, with further characteristics to be elaborated upon later.

Assumption 3 (Position Embedding 1). Given any position embedding vector wpos,i where i denotes the position index, we
assume that wpos,i ⊥ wemb,s for all i = 1, 2, · · ·L and s ∈ Z ∪ Arsn ∪ Amem.

Assumption 4 (Position Embedding 2). We assume that cos
(
wpos,i,wpos,j

)
= cos |i−j|

L π and ||wpos,i|| = 1 for any
i, j ∈ [1, L].

Given any sequence X , the output of the embedding layer is

X(1) = eXW emb +W pos.

E.2. First Attention Module

In the first attention module, due to the impact of small initialization, the attention matrix A(1) functions as an average
operator. Specifically, the result of the first attention module can be interpreted as

(
Attn(1)

(
X(1)

)
X(1)W V (1)

)
j
=

1

j

∑
i≤j

X
(1)
i,:

W V (1). (39)

Furthermore, performing singular value decomposition (SVD) on the value projection matrix W V (1) reveals that its largest
singular value is significantly greater than the remaining singular values. The left singular vector corresponding to the largest
singular value W V (1) is highly similar to the embedding vectors of the reasoning anchors which indicates that W V (1) can
be approximated by

W V (1) = λV

(
1

||
∑

s∈Arsn
W emb,s||2

∑
s∈Arsn

W emb,s

)T

v, (40)

where λV is the singular value and v ∈ R1×dk denotes the right singular vector. Since wemb,srsn ⊥ wemb,smem for any
srsn ∈ Arsn, smem ∈ Amem and wemb ⊥ wpos. Then the result of the attention operator can be interpreted as

(
Attn(1)

(
X(1)

)
X(1)W V (1)

)
j,:

=
λ̃V

j

∑
i≤j

W emb,X
i,:

wemb,T
Arsn

v, (41)

where wemb
Arsn

=
∑

s∈Arsn
wemb,s, λ̃V = λV

||wembArsn ||
. Substituting the reasoning sequence Xrsn and memory sequence

Xmem, respectively, into this formulation, we derive the following results:(
Attn(1)Xmem,(1)W V (1)

)
j,:

= 0, (42)

(
Attn(1)Xrsn,(1)W V (1)

)
j,:

=


0, j ≤ p,

λ̃V

j

min(j,p+q)∑
i=p+1

W emb,Xrsn

i

wemb,T
Arsn

v, p < j ≤ L,
(43)
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where j means the row index. Thus, all tokens following the reasoning anchor are effectively “tagged,” facilitating the
identification of the anchor. Define the output of the first attention module is as follows:

X(2) = X(1) +Attn(1)
(
X(1)

)
X(1)W V (1).

Under the Assumption 2, we can formulate the output of the reasoning sequence further

X
rsn,(2)
j,: =



wemb,zj +wpos,j , j ≤ p,

wemb,aj +wpos,j +
λ̃V

j

 j∑
i=p+1

wemb,ai

wemb,T
Arsn

v, p+ 1 ≤ j ≤ p+ q,

wemb,zj +wpos,j +
λ̃V

j

 p+q∑
i=p+1

wemb,ai

wemb,T
Arsn

v, p+ q + 1 ≤ j ≤ L.

E.3. Second Attention Module

We observe that the first attention module introduces additional information to all tokens with indices j ≥ p + 1. The
subsequent challenge is to identify the reasoning tokens and the key token, and effectively propagate their information to
the last position in the sequence. To achieve this, we construct the following attention distribution and demonstrate its
properties:

Definition 3 (Cliff Sequence). Given a sequence l ∈ RL, we define l as a (p, q)-cliff sequence if there exists p, L ∈ N+

such that l satisfies the following conditions:

1. (Increasing Segment) li+1 > li for all i < p.

2. (Plateau) lp−1+lp
2 ≤ lp+1, · · · , lp+q ≤ lp.

3. (Descending Segment) li < l1 for all p+ q < i ≤ L.

It is evident that if the attention of the last token forms a (p, q)-cliff sequence, it can effectively capture the information of
the tokens and the key. Specifically, we have the following results to illustrate its feasibility.

Lemma 5. For any ε > 0, there exists a (p, q)-cliff sequence l with norm C such that softmax(l)i ≤ ε for any i ∈
[1, p− 1] ∪ [p+ q + 1, L].

Proof. It’s evident that we just need to illustrate softmax(l)p−1 → 0 as C → ∞. Denote that l = C l̃, then we have

softmax (l)p−1 =
eC l̃p−1∑L
j=1 e

C l̃j

=
1∑

j∈[1,p−1]∪[p+q+1,L] e
C(l̃i−l̃p−1) +

∑
j∈[p,p+q] e

C(l̃i−l̃p−1)
.

Since that l̃j ≤ l̃p−1 for any j ∈ [1, p− 1] ∪ [p+ q + 1, L] and l̃j ≥ l̃p−1 for any j ∈ [p, p+ q], so we have

lim
C→∞

∑
j∈[1,p−1]∪[p+q+1,L]

eC(l̃i−l̃p−1) = 0 and lim
C→∞

∑
j∈[p,p+q]

eC(l̃i−l̃p−1) = ∞,

then softmax (l)p−1 → 0.

Here we provide a mechanism to construct a real matrix Ã ∈ Rdm×dm such that Xrsn,(2)
L,: ÃXrsn,(2),T is a (p, q)-cliff

sequence. Assume that Ã = π (span{wpos}) − µvTv, µ > 0, where π (span{wpos}) denotes the subspace spanned by
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{wpos}. Then we have

X
rsn,(2)
L,: ÃXrsn,(2),T =



(
wpos,L,wpos,j

)
, j ≤ q,

(
wpos,L,wpos,j

)
− λ̃V µ

L

 p+q∑
i=p+1

wemb,ai ,wemb
Arsn

(v,wemb,aj
)

− λ̃2
V µ

jL

 p+q∑
i=p+1

wemb,ai ,wemb
Arsn

 j∑
i=p+1

wemb,ai ,wemb
Arsn

 , p+ 1 ≤ j ≤ p+ q,

(
wpos,L,wpos,j

)
− λ̃2

V µ

jL

 p+q∑
i=p+1

wemb,ai ,wemb
Arsn

2

, p+ q + 1 ≤ j ≤ L.

Define φj =
(∑j

i=p+1 w
emb,ai ,wemb

Arsn

)
, applying the Assumption 4 on the position embedding, then we have the following

result:

X
rsn,(2)
L,: ÃXrsn,(2),T =



cos

(
1− j

L

)
π, j ≤ p,

cos

(
1− j

L

)
π − λ̃2

V µ

jL
φp+q

(
j||wemb,aj ||

λ̃V

cos
(
v,wemb,aj

)
+ ϕj

)
, p+ 1 ≤ j ≤ p+ q,

cos

(
1− j

L

)
π − λ̃2

V µ

jL
φ2
p+q, p+ q + 1 ≤ j ≤ L.

To satisfy the Increasing Segment condition, we need that:

cos

(
1− j

L

)
π − λ̃2

V µ

jL
φp+q

(
j||wemb,aj ||

λ̃V

cos
(
v,wemb,aj

)
+ φj

)
≥ 1

2
cos
(
1− p

L

)
π +

1

2
cos

(
1− p− 1

L

)
π,

for any p ∈ [1, L− q] , j ∈ [p+ 1, p+ q]. Denote that:

M̃ := max
p,q

φp+q, m̃ := min
p,q

φp+q. (44)

Then we have

λ̃2
V µ

jL
M̃

(
j||wemb,aj ||
λ̃V ||v||

cos
(
v,wemb,aj

)
+ M̃

)
≤ − cos

(
p+ 1

L

)
π +

1

2
cos
( p
L

)
π +

1

2
cos

(
p− 1

L

)
π

→ λ̃2
V µ

jL
M̃

(
j||wemb,aj ||
λ̃V ||v||

cos
(
v,wemb,aj

)
+ M̃

)

≤

√(
1

2

(
1− cos

(π
L

)))2

+

(
3

2
sin
(π
L

))2

cos

(
L− 1

L
π − arctan

3 sin
(
π
L

)
1− cos

(
π
L

)) .

Denote the right side by CM , and simplify it with

||wemb,aj ||
λ̃V

cos
(
v,wemb,aj

)
≤ LCM

λ̃2
V µM̃

− M̃

L
. (45)

For another side, we assume that:

cos

(
1− j

L

)
π − λ̃2

V µ

jL
φp+q

(
j||wemb,aj ||

λ̃V

cos
(
v,wemb,aj

)
+ φj

)
≤ cos

(
1− p

L

)
π,
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which implies that:

− λ̃2
V µ

jL
φp+q

(
j||wemb,aj ||

λ̃V

cos
(
v,wemb,aj

)
+ φj

)
≤ −2 sin

(
2p+ q

2L
π

)
sin
( q

2L
π
)
.

We have that:

||wemb,aj ||
λ̃V

cos
(
v,wemb,aj

)
≥ LCm

λ̃2
V µm̃

− m̃

L
. (46)

These two conditions give the direction scope of v. For the Descending Segment condition, we have that

cos

(
1− 1

L

)
π > cos

(
1− j

L

)
π − λ̃2

V µ

jL
φ2
p+q

→λ̃2
V µ > jL

(
cos
(π
L

)
− cos

(
jπ

L

))
φ−2
p+q

→λ̃2
V µ > L2

(
1 + cos

(π
L

))
m̃−2.

(47)

With (45),(46), and (47), we could give a range of λ̃V , µ and the direction of v which makes X
rsn,(2)
L,: ÃXrsn,(2),T is a

(p, q)-cliff sequence.

F. Layer Normalization
We conduct an experiment with removing the Layer Normalization module, exhibiting the same phenomena, i.e., smaller
initialization scales bias reasoning task, and results are depicted in Figure 16.

Figure 16. Training dynamics of Transformers under γ = 0.3, 0.5, 0.8 without Layer Normalization.

G. Learning Rate
We conduct experiments with the learning rate belonging to

[
10−5, 5× 10−4

]
. Figure 17 exhibits the loss dynamics under

different γ, remaining consistent learning bias across these learning rate configurations. However, when the learning rate
increases to 0.001, the training becomes highly unstable, manifesting a severe loss spike.
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Figure 17. Training dynamics of Transformers under γ = 0.3, 0.5, 0.8 and varying learning rates.
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