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Abstract

The de novo design of protein structures is an intriguing research topic in the
field of protein engineering. Recent breakthroughs in diffusion-based generative
models have demonstrated substantial promise in tackling this task, notably in
the generation of diverse and realistic protein structures. While existing models
predominantly focus on unconditional generation or fine-grained conditioning at the
residue level, the holistic, top-down approaches to control the overall topological
arrangements are still insufficiently explored. In response, we introduce TopoDiff,
a diffusion-based framework augmented by a global-structure encoding module,
which is capable of unsupervisedly learning a compact latent representation of
natural protein topologies with interpretable characteristics and simultaneously
harnessing this learned information for controllable protein structure generation.
We also propose a novel metric specifically designed to assess the coverage of
sampled proteins with respect to the natural protein space. In comparative analyses
with existing models, our generative model not only demonstrates comparable
performance on established metrics but also exhibits better coverage across the
recognized topology landscape. In summary, TopoDiff emerges as a novel solution
towards enhancing the controllability and comprehensiveness of de novo protein
structure generation, presenting new possibilities for innovative applications in
protein engineering and beyond.

1 Introduction

The de novo design of proteins refers to the task of designing a physically plausible protein backbone
and the corresponding sequence without involving naturally occurring proteins as starting points [1],
which is an intriguing field of research with the potential to venture into unknown structure space,
offering limitless opportunities for tailoring proteins to novel applications [2]–[7]. Despite its vast
potential, the de novo protein design has long been recognized as a challenging task, considering the
highly-structured nature of proteins and the stringent requirements on physical restraints [8], [9].

People have used Generative Adversarial Networks (GAN [10]) [11] and Variational Autoencoders
(VAE [12]) [13]–[17] to model the high-dimensional structural space. Those models typically
represent the proteins as 2D distance matrices and the outputs were often a predicted distance matrix
that frequently suffered from inconsistency issues [18]. Despite the limitation, VAE-based models
showed promise in learning a valuable latent space to reduce the dimensionality of the problem,
while also offering increased controllability and interpretability, such as incorporating a differentiable
coordinate-based heuristic with VAE’s generative prior for constrained structure generation [16] and
modifying the protein structure via interpretable manipulations over the latent code [15].
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Recent advances in the diffusion models significantly reshaped the field with its superior ability to
generate novel, diverse and physically plausible structures. Though the pioneer efforts still relied on
1D or 2D protein representations [19]–[21], subsequent works tended to build an equivariant network
to directly learn the physical prior in the Cartesian space [22]–[28]. Despite the encouraging results ,
previous methods primarily focused on generating structures unconditionally or only incorporated
localized conditioning at the residue level [22], [26]. To the best of our knowledge, the only attempt on
global-structure conditioning [27] employed a mechanism methodologically resembling the classifier
guidance [29], which requires the use of well-trained external classifiers, and fundamentally, the
availability of appropriate labels for classifier training. Hence, it remains insufficiently explored
how to learn a meaningful latent space for the global structures of proteins and to enforce global
controllability correspondingly during the structure generation. Furthermore, while the potential
issue of mode collapse in some diffusion-based models has been noticed [25], the current metrics
provide no indication of the extent to which the natural protein space has been covered.

In this work, we seek to bridge the gap between VAE-based models and diffusion-based models,
leveraging the strengths inherent in both approaches. Our contributions are as follows:

• We propose a fully equivariant encoder-decoder network to jointly learn a global structure-
level latent space and a generative module conditioning on such information.

• We adapt a coverage metric to quantitatively measure the coverage of sampled structures
over the natural protein fold space and demonstrate its effectiveness in addressing underrep-
resented topologies.

• We show that the acquired latent space is highly structured and interpretable, and that the
generative module conditioning on it could achieve enhanced coverage of natural topologies
and comparable performance on other established metrics.

• We demonstrate some primary usages of the latent space towards controllable structure
generation.

2 Methods

Figure 1: Illustration of the training and sampling process with TopoDiff

Diffusion model. With R denoting the protein with length l, we define the forward process of the
diffusion model as a non-learnable Markovian process that gradually introduces noise to a protein
structure R0 towards a pre-defined prior distribution pT . The reverse process is also a Markovian
process that learns to remove the noise signal, with a fixed-sized latent variable z as a globally aware
condition, representing the structure latent of the ground truth data R0.
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The training objective (Figure 1a) is to predict the ground truth R0, which is, for simplification,
denoted here as reconstruction loss Lreconθ

(
R0, R̂θ(R

t, t, z)
)

. The detailed formulation of the
forward and reverse transition kernels q, pθ, and the loss Lreconθ

are provided in Appendix A.1.
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Topology encoder and the VAE training objective. We incorporate an additional encoder module
designed to learn the fixed-size latent topology representation z for a given data R0. We model the
p(z) with an isotropical Gaussian prior, and add a KL divergence loss term to encourage a continuous
latent structure, effectively shaping our model into a VAE-like framework. Combined with the
diffusion model, our final training objective is:

argmin
ϕ,θ

ER0∼pdata(R)Ez∼qϕ(z|R0)Et∼U{1,T}ERt∼q(Rt|R0)

[
Lreconθ

− βKL
(
qϕ(z | R0)∥p(z)

)]
Additional details of the encoder implementation are provided in Appendix A.2, and the derivation of
the evidence lower bound (ELBO) justifying this training objective is provided in Appendix A.6.

Latent diffusion model over the learned latent space. Motivated by previous works [30], [31], we
train an additional latent diffusion network to model the latent distribution. Further implementation
details are available in Appendix A.3.

Sampling process. We briefly summarize the process of sampling with the model. For unconditional
sampling (Figure 1b), we first sample z with the latent diffusion model. Then, we sample the protein
length l with a straightforward KNN regression scheme, by querying the k nearest neighbours in the
latent space from the training dataset: l̂ = 1

k

∑k
j=1 lNN(z,j) and l ∼ Uniform{(1− ϵl)l̂, (1 + ϵl)l̂},

where the hyperparameter ϵl is engaged to decide the range of variation. Finally, we use (z, l) as the
condition to conduct the structure sampling described in Methods 2. For fixed-length sampling, we
resample latent until the target length falls within the range of variation.

Metrics for sample quality evaluation. We employ a variety of metrics to comprehensively
evaluate the performance of a model during unconditional sampling. Here, we briefly describe the
choice for the newly proposed coverage metric. The exact definitions of all metrics are described
in Appendix A.4. To measure the extent to which our model can cover the natural protein space,
we adapt the coverage metric initially proposed by Naeem et al. [32]. Briefly, we first construct a
KNN manifold of all real samples (i.e. natural proteins) and then measure the fraction of real samples
whose neighbourhoods encompass at least one fake sample (i.e. structures produced by the generative
models). Formally, with {Xi} denoting the set of real samples, {Yi} denoting the all fake samples,
NNDk (Xi) denoting the distance from Xi to its kth nearest neighbour in {Xi} excluding itself, and
B(x, r) denoting the hypersphere around x with a radius of r, the coverage is defined as:

coverage :=
1

N

N∑
i=1

1∃j s.t. Yj∈B(Xi,NNDk(Xi)).

3 Experiments

3.1 Interpretability of the global-structure-centric latent space

Figure 2: t-SNE visualization of the
latent space

To gain an understanding of the latent space learned by the
model, we encode all structures in the CATH-60 [33] dataset
into the 32-dimensional latent codes and visualize with t-SNE.
As shown in Figure 2, the latent codes altogether form a com-
pact and continuous manifold. Interestingly, the clustered
structures perfectly coincide with the human curation of CATH
class annotations, with each class clearly separable from the
others in the 2-dimensional space. Besides, although the latent
space does not necessarily correspond perfectly with human
annotation at the finer level, we find that each CATH Archi-
tecture cluster indeed exhibits a unique spatial distribution
(Figure 4). These observations indicate that the latent space
obtained in this work is highly interpretable. The model learns
to partition over the structure space in an unsupervised man-
ner, forming a continuous while structured manifold that encodes the essential information about
the underlying protein topologies, which may serve as informative conditions to the downstream
generative module for controllable structure generation.
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Figure 3: Evaluation of the models for unconditional sampling

3.2 Results on unconditional generation of monomer proteins

We further conduct a comprehensive evaluation on the performance of our generative module for
unconditional protein structure sampling against other state-of-the-art models. For each model, we
randomly generated 500 structure samples at each fixed length of 50, 75, ..., 225, 250, a series
uniformly spanning the range of our training data, and measured the performance respectively.

As depicted in Figure 3, TopoDiff exhibits some unique characteristics and advantages. In terms
of the coverage of natural protein topologies, TopoDiff ranks the top among all sampled lengths,
showing the effectiveness of modeling the natural data distribution with a structure-centric latent
space. To further investigate the exact advantage of our model in mode coverage, we analyze the
sample-wise binary coverage indicators and find that our model could encompass a significantly
larger number of natural folds with mainly beta-strand compositions, a group of topologies that are
typically underrepresented by other methods (Appendix C, D). Regarding designability, TopoDiff
is comparable to other models with similar parameter sizes (Genie [25] and FrameDiff [24]), and
gradually exhibits advantages as the length increases. As for novelty, TopoDiff maintains a fair
balance between the coverage of known topologies and the generalizability to novel topologies, with
the median value of the maxTM consistently around 0.6. In Figure 10, we present several randomly
selected novel structures with considerable confidence in designability.

3.3 Controllable generation with the latent encoding

Since the topologies of sampled structures are primarily determined by the latent encoding in our
method, we could achieve the controllable generation of the protein structures by simply manipulating
the latent code fed to the decoder. Importantly, since the latent code is sampled from a low-
dimensional compact distribution, the time for such manipulations is almost negligible. Hence, in
TopoDiff, global controls could be efficiently exerted over the protein structures, prior to exhaustive
sampling at the residue level in the Cartesian space.

Controlling the trade-off between sample designability and coverage/diversity. We find that
the latent encodings are not equally likely to be decoded into designable proteins. Interestingly, the
likelihood exhibits a specific pattern in the latent space. In Appendix F, we show that by training
an additional layer to predict the expected outcome of the latent codes and conducting rejection
sampling, we could effectively tune the trade-off between designability and coverage/diversity.

Sampling similar topologies with respect to a given query protein. We select representative
proteins of different architectures and randomly vary the latent codes based on the inferred posterior
distribution. As shown in Appendix Figure 12, the artificial samples produced by TopoDiff exhibit
similar spatial arrangements of secondary structures but considerable residue-level diversity with the
query proteins. The result demonstrates that TopoDiff, with its explicitly modeled latent topology
space, could provide additional global controllability for structure sampling.
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4 Discussion

In this work, we propose a general framework for simultaneous learning of a latent representation for
the protein global structures and training of a generative module for atomic-level backbone generation,
all within a completely unsupervised context. The inherent equivariance of the encoder and decoder
endows the model with the capacity to learn and reconstruct crucial structural variations directly
in the Cartesian space, thus circumventing the potential information loss or bias when converting
to other structural parameterizations such as the inter-residue distances. The learned fixed-size
representation encodes essential information of the global structures, altogether forming a compact
and sequence-agnoistic latent space, which holds the potential to advance our comprehension of the
protein structure universe and lays the foundation for controllable structure generation at the same
time. With the help of the latent diffusion module, we could achieve unconditional sampling over the
whole space and discover novel topologies with ease.

We also introduce a novel metric to quantitatively measure the coverage of sampled structures
over the established protein structure space. The ability to cover all known topologies is a useful
indicator to ensure that the model does not suffer from significant mode collapse, which has been
observed in some models particularly within mainly-beta categories but still lacks thorough analysis
[25]. Furthermore, as demonstrated in Appendix D, the metric could be used not only as a global
indicator, but also in a sample-wise manner to pinpoint underrepresented regions, showing promise in
quantifying the sampling limitations of the existing models and guiding future improvements. While
we currently use a third-party model [34] to measure the pair-wise distance between structures for the
implementation of the above metric, it is worth noting that other distance functions can be similarly
utilized, offering flexibility in its implementation. We anticipate that the development of this metric
could facilitate the systematic evaluation of generative models in protein design.

A distinctive highlight of our work is the latent encoding learned by the model, which can serve as
a control over the overall topology. This control paradigm stands orthogonal to the residue-level
finer-grained control [11], [26]. While finer-grained control holds utility in numerous situations,
the manual assignment of residue-wise condition demands domain expertise and might limit the
exploration space of sampling. The global control, in contrast, resembling a top-down approach to
control the designed topology, offers advantages in scenarios where both topology-level control and
residue-level variation are desirable [35], [36]. We believe that the combined utilization of global and
residue-wise conditions could represent a potent approach for achieving controllable de novo design.
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Appendix

A Implementation detail

A.1 Implementation detail of the diffusion model

Parameterization of the protein In alignment with prior research [22]–[26], we represent the
protein as residue clouds in the SE(3)N space. Briefly, for a sequence of length l, each residue
is parameterized as the collection of the translation of its Cα atom, denoted as ti ∈ R3, and its
orientation, uniquely defined by the coordinate of three atoms denoted as ri ∈ SO(3). Collectively,
we denote the whole sequence as R = {(ti, ri)} ∈ SE(3)l.

Diffusion on R3 space For translation coordinates ti, the diffusion process closely follows the
original setup of DDPM [37], where the coordinates are gradually perturbed towards N (tT ;O, I).

q (tt | tt−1) = N (tt;
√
αttt−1, (1− αt) I)

q (tt | t0) = N
(
tt;

√
ᾱtt0, (1− ᾱt) I

)
The model is trained to predict the ground truth coordinates at t = 0, and the reverse process is given
by:
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pθ
(
tt−1 | tt, t̂θ

)
= N

(
tt−1;

√
αt (1− ᾱt−1) tt +

√
ᾱt−1 (1− αt) t̂θ

1− ᾱ t
,
(1− αt) (1− ᾱt−1)

1− ᾱt
I

)

Diffusion on SO(3) space For SO(3) space, the forward transition is formulated to compose a
perturbation with the ground truth orientation, which conforms to IGSO(3) distribution. Practically,
we represent the perturbation with the axis-angle representation (ω,v), where ω is sampled from the
marginal distribution of IGSO(3) in radians, and v is uniformly sampled from S2 unit sphere.

q
(
ω
(
r(0)⊤rt

)
| r0
)
= IGSO(3)

(
ω, σ2

t

)
=

1− cosω

π

∞∑
l=0

(2l + 1) exp
{
−l(l + 1)σ2

t

} sin ((l + 1
2

)
ω
)

sin(ω/2)

v ∼ Uniform
(
S2
)

Following [23], we empirically formulate the reverse transition in an iterative perturb-denoise scheme.

pθ
(
ω
(
r̂⊤θ r

t−1
)
| r̂θ
)
= IGSO(3)

(
ω, τt(σ

2
t − σ2

t−1)
)

{σt}, {τt} are two fixed schedules that determine the noise scales for each transition.

Model architecture The model backbone we use is adapted from [24], which comprises an
embedder module for all conditional information (e.g., timestep, residue index, topology latent) and a
structure module with 4 IPA layers for structure prediction. The total timestep is set to 200.

Training objective The training objective is to predict the ground truth R0 out of the noised data
Rt.

Ltranslation = E

[
1

N

∑
i

∥∥t0i − t̂i
∥∥
2

]

Lrotation = E

[
1

N

∑
i

∥∥∥(r0i )⊤ r̂i − I
∥∥∥2
F

]

In addition, we use fape loss Lfape and distogram loss Ldistogram as auxiliary losses to stabilize the
training, which is defined the same as [38].

A.2 Implementation detail of the topology encoder

Inspired by [34], we use six-layer EGNN [39] to extract the local topology information and incorporate
two layers of transformer encoder for information integration and pooling.

A.3 Implementation detail of the latent diffusion model

The formulation of the latent diffusion mirrors the translation diffusion on RN space. We use a
backbone of a 10-layer MLP with skip-connections as the model backbone. The total time step is set
to 200.

A.4 Implementation detail of the evaluation metrics

Designability To assess the designability of a given sample, we first use ProteinMPNN [40] to
sample 8 amino acid sequences with a temperature of 0.1. Subsequently, the sequences are fed to
ESMFold [41] to infer the structures. The minimum RMSD of the inferred structures to the given
sample is reported as scRMSD.
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Novelty To assess the novelty of a given sample. We begin by using Foldseek [42] to query the
sample against the CATH-40 dataset [33] with the parameter "-a 1 –exhaustive-search 1 -e inf -c
0.5 –alignment-type 1". As Foldseek employs a slightly different implementation of TM-align [43],
we subsequently select the top 25 matches from the query results with the highest TM-scores and
re-compute the alignment with TM-align [43]. The highest TM-score to the chains in the dataset
is reported as maxTM, representing the novelty of a sample (a higher score implies the sample is
generally less novel).

Diversity To compute the diversity of N samples, we first use TM-align [43] to compute the
pairwise TM-scores. Then, we cluster the samples with a cutoff of 0.6. The proportion of total
clusters to the total number of samples N is reported as diversity.

Coverage As is described in Methods 2, for N given samples, the coverage over target sample
distribution is defined as:

NNDk (Xi) : = D(Xi, XNN(Xi,k))

B(x, r) : = {y | D(x, y) < r}

coverage : =
1

N

N∑
i=1

1∃j s.t. Yj∈B(Xi,NNDk(Xi))

where {Xi} denotes the set of real samples, {Yi} denotes the set of all fake samples, NNDk (Xi)
denotes the distance from Xi to its kth nearest neighbour in {Xi} excluding itself, and B(x, r)
denotes the hypersphere around x with a radius of r.

Based on this definition, we need to define a function D(·, ·) to measure the distance of two arbitrary
structures. Specifically, we need to compute at least the distance between Xi and the kth nearest
neighbours in {Xj | j ̸= i} to construct the KNN manifold at the given point, and then use the
distance between Xi and its 1st nearest neighbour in {Yi} to decide if Xi is covered by an arbitrary
fake sample. The final coverage metric is obtained by averaging the binary indicators over {Xi}.

As k increases, the accurate calculation of such distances can be exceedingly time-consuming when
using traditional structural alignment algorithms (e.g., TM-align), which involve a series of dynamics
programming and heuristic iterative algorithms to refine optimal solutions. Therefore, we resort to a
third-party tool [34], which employs supervised contrastive learning to learn a metric for structure
comparison. In practice, we read the coordinates of all samples, encode them with the model to get
their vectorized representations, and then compute the pairwise cosine similarities, following the
designated usage of the model.

The choice of k is a hyperparameter that should be determined prior to the computation of the metric.
Following the recommendation of the original paper [32], we choose k such that a sample size
equivalent to the artificial samples from the very same distribution of real samples could achieve
a coverage close enough to 1. To do this, we initially randomly sample 500 natural chains as the
pseudo-query set, use the remaining chains as samples from the target distribution, and then compute
the coverage of the pseudo-query set against the target distributions for different choices of k. Based
on such a scheme, we ultimately use k = 100 for all experiments, although we find different choices
of k generally do not alter the relative rankings of the evaluated models.

When comparing the samples of a fixed length to the natural protein distribution, at each sampling
length l, we consider all natural protein structures in the CATH-40 dataset [33] lying within the
interval of [l − 25, l + 25].

A.5 Training

Dataset We use the CATH-60 non-redundant annotation list [33] for the training of the model. For
each sample (chain), we first trim the leading and tailing residues that lack ground truth coordinates
to get the effective length of a sample. We then subset the dataset to contain only samples within the
range of [50, 256]. We also remove samples with more than 20% inner gaps or over 60% disordered
regions. Following these data preprocessing steps, our training dataset comprises a total of 30,074
samples.
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A.6 Derivation of the evidence lower bound (ELBO)

Modeling the protein space with variable length The training dataset frequently encompasses
protein samples of varying length. To standardize the representation of these structures, we denote
the maximum residue length in the dataset as Lmax. For a training sample with length l, we could
uniquely map it to the higher dimensional manifold SE(3)Lmax , with the first l frames representing
its coordinate at SE(3)l manifold, followed by Lmax − l padding frames.

Under this parameterization scheme, the prior distribution pT
(
RT | l

)
characterizes a process that

perturbs the first l frames in accordance with the respective prior distribution, leaving the rest of
frames padded. Thus, for any timestep t, q (l | Rt) is the delta distribution concentrated at lR0 , as
the length is naturally determined by the number of non-padded dimensions.

Modeling the joint distribution of data and intermediate variables In accordance with the
sampling process outlined in Figure 1, we could now formulate the joint distribution of all variables
involved in structure sampling as below:

p
(
R0:T , l, z

)
= p (z) p (l | z) p

(
RT | l

) T∏
t=1

pθ
(
Rt−1 | Rt, l, z

)
Evidence lower bound We could eventually derive the ELBO of our diffusion-VAE model.

log p
(
R0
)
= log

∫
p
(
R0:T , l, z

)
dR1:T dldz

= log

∫
p
(
R0:T , l, z

)
q (R1:T , l, z | R0)

q
(
R1:T , l, z | R0

)
dR1:T dldz

= logEq(R1:T ,l,z|R0)

p
(
R0:T , l, z

)
q (R1:T , l, z | R0)

≥Eq(R1:T ,l,z|R0) log
p
(
R0:T , l, z

)
q (R1:T , l, z | R0)

=Eq(R1:T ,l,z|R0) log
p (z) p (l | z) p

(
RT | l

)∏T
t=1 pθ

(
Rt−1 | Rt, l, z

)
qϕ (z | R0) q (l | R0)

∏T
t=1 q (Rt | Rt−1)

=Eq(R1:T ,l,z|R0) log
p (z) p (l | z) p

(
RT | l

)∏T
t=1 pθ

(
Rt−1 | Rt, z

)
qϕ (z | R0) q (l | R0) q (RT | R0)

∏T
t=2 q (Rt−1 | Rt,R0)

=Eq(R1:T ,z|R0) log
p (z) p (lR0 | z) p

(
RT | lR0

)∏T
t=1 pθ

(
Rt−1 | Rt, z

)
qϕ (z | R0) q (RT | R0)

∏T
t=2 q (Rt−1 | Rt,R0)

=Eq(R1:T ,z|R0)

[
log

p (z)

qϕ (z | R0)
+ log p (lR0 | z) + log

p
(
RT | lR0

)
q (RT | R0)

+ log pθ
(
R0 | R1, z

)
+

T∑
t=2

log
pθ
(
Rt−1 | Rt, z

)
q (Rt−1 | Rt,R0)

]

=Eqϕ(z|R0) log
p (z)

qϕ (z | R0)
+ Eqϕ(z|R0) log p (lR0 | z) + Eq(RT |R0) log

p
(
RT | lR0

)
q (RT | R0)

+ Eq(R1,z|R0) log pθ
(
R0 | R1, z

)
+

T∑
t=2

Eq(Rt−1,Rt,z|R0) log
pθ
(
Rt−1 | Rt, z

)
q (Rt−1 | Rt,R0)

=−DKL

(
qϕ
(
z | R0

)
∥p (z)

)︸ ︷︷ ︸
latent prior matching term

+Eqϕ(z|R0) log p (lR0 | z)︸ ︷︷ ︸
length prediction term

−DKL

(
q
(
RT | R0

)
∥p
(
RT | lR0

))︸ ︷︷ ︸
structure prior matching term

+ Eq(R1,z|R0) log pθ
(
R0 | R1, z

)
−

T∑
t=2

Eq(Rt,z|R0)DKL

(
q
(
Rt−1 | Rt,R0

)
∥pθ

(
Rt−1 | Rt, z

))
︸ ︷︷ ︸

structure reconstuction term

The structure prior matching term has no trainable parameters and is fulfilled naturally with our
pre-defined noise schedule. In the current implementation, we estimate the length distribution with
a KNN approach described in Methods 2, which is empirically sufficient and also non-learnable.
Therefore, our training objective is to minimize the collection of latent prior matching term (the KL
divergence between the posterior and prior of z) and the structure reconstruction term.
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B Visualization of the latent space with CATH Architecture annotations

Figure 4: Density plot of each CATH architecture in the t-SNE dimension-reduced latent space
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C Comparison of the distribution of secondary structure composition

Figure 5: Comparison of the distribution of secondary structure composition at each length range. For
each sampled length, we calculate the secondary structure composition for each sample and visualize
the distribution of both natural proteins and the four models. The samples generated with our model
consistently exhibit strong alignment with the natural distribution.
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D Using coverage metric to find underrepresented natural folds in generated
samples

When computing the coverage, besides the final scalar bounded between 0 and 1 indicating the extent
to which the target distribution has been covered, we could also examine the sample-wise binary
indicator to gain a deeper understanding of which specific modes are covered and which are not.
Here, we illustrate this analysis using the artificial samples with the chain length of 125.

First, we present a Venn diagram for the four models under evaluation to visualize the overlapping
coverage of natural folds (Figure 6). Out of the 9515 natural folds within the range of [100, 150],
2659 folds are commonly covered by all of the 4 models (region a), and a total of 5871 folds are
covered by at least 3 models. Our model stands out by having a unique coverage over 757 folds
(region b), a number even remarkably higher than the sum of all folds uniquely covered by the other
three models. Additionally, there are also 1074 natural folds that are not considered as covered by
any of the four models (region c).

To gain a more intuitive understanding of the characteristics of the regions of samples stated above
(e.g., region a, b, c), we randomly select 50 samples from each region and provide visualization as
below. For the commonly covered natural folds (region a, Figure 7), most of them consist of a high
proportion of alpha helices and are generally well-packed into a globular shape. Further examination
of the samples uniquely covered by TopoDiff (region b, Figure 8) reveals that our model could cover
a great number of natural folds characterized by a mainly beta composition. Moreover, most of the
commonly uncovered folds (region c, Figure 9) are still proteins of this category, with some adopting
even more complex global arrangements. There are also some uncovered highly stretched up-down
bundles, which are unlikely to be useful in real design scenarios. Overall, our result demonstrates
that there is still room for improvement in the current generative models on the successful modeling
of complex and diverse proteins with the mainly beta composition.

This demonstration highlights the utility of the coverage metric in identifying uncovered folds
and detecting potential regions of mode collapse, which may provide valuable insights for model
improvement.
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Figure 6: Venn diagram of covered natural folds with different methods (length 125)
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Figure 7: Examples of commonly covered natural folds

Figure 8: Examples of uniquely covered natural folds by TopoDiff
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Figure 9: Examples of commonly uncovered natural folds
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E Examples of novel proteins in generated samples

Figure 10: Randomly selected novel folds with confidence in designability. Using maxTM < 0.5
(maxTM < 0.55 for length 50 and 75) and scRMSD < 2Å as cutoff, we subsample a series of
novel folds with confidence in their designability. Here, we randomly select 10 samples per length
for visualization.
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F Controlling the trade-off of designability and coverage/diversity
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Figure 11: Controlling the trade-off between sample designability and coverage with latent space
rejection sampling

Specifically, for each chain length in the range of [50, 250], we randomly sample 10 structures,
ensuring broad coverage across the entire latent manifold, and measure the scRMSD values of these
samples. We then collect all measurements to train a simple prediction network that forecasts the
expected scRMSD for a given latent encoding, and finally use this prediction as a cutoff to refrain
from sampling in the region of latent space with predicted scRMSD higher than this cutoff.

As shown in Figure 11, by adjusting the cutoff over predicted scRMSD, we obtain various models with
different performance trade-offs between designability and diversity/novelty/coverage. Therefore,
instead of the traditional computationally intensive approach of exhaustive sampling directly at the
residue level in the Cartesian space followed by post-hoc selection, our method allows the learning
of the relationship between the latent encodings and expected outcomes, through which conditional
sampling could be performed in the latent space to finely tune the trade-off between designability and
diversity/coverage a priori, a scheme that is significantly less costly in computation considering the
low-dimensionality of the continuous latent space.

This experiment also demonstrates another noticeable advantage of our model. One major reason
for the non-uniform designability arises from the complex composition of the CATH-60 dataset [33]
used for model training, which comprises a proportion of disordered structures. Although the encoder
successfully learns to encode them into a specific region in the latent manifold, by default, the latent
diffusion model and the generative diffusion model still collectively learn to faithfully sample around
those highly disordered proteins. Since these samples and high-quality ones have distinct latent
distributions, we could freely choose to include or exclude the sampling of those regions with the
assistance of additional latent classifiers or guidances. Empirically, a cutoff of 0.6 would prohibit
sampling these regions with only minor decreases on the other metrics. Hence, as long as the model
has sufficient expressivity, the existence of noisy or bad samples will have a limited effect on the
model’s learning of high-quality samples. That is, the model is likely to exhibit higher robustness to
noisy training data.
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G Controlling topologies of sampled proteins with specified query proteins

Figure 12: Sampling proteins with similar topology with respect to query proteins. We select one
representative structure for each of the six largest CATH architectures clusters, and randomly sample
10 latent codes based on the inferred posterior distribution with a temperature of 0.1. The sampled
structures exhibit a level of similarity in global topology arrangement, as well as certain residue-level
diversity.
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