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Abstract

While federated learning (FL) and differential privacy (DP) have been extensively
studied, their application to automatic speech recognition (ASR) remains largely
unexplored due to the challenges in training large transformer models. Specifically,
large models further exacerbate issues in FL as they are particularly susceptible to
gradient heterogeneity across layers, unlike the relatively uniform gradient behavior
observed in shallow models. As a result, prior works struggle to converge with
standard optimization techniques, even in the absence of DP mechanisms. To the
best of our knowledge, no existing work establishes a competitive, practical recipe
for FL with DP in the context of ASR. To address this gap, we establish the first
benchmark for FL with DP in end-to-end ASR. Our approach centers on per-layer
clipping and layer-wise gradient normalization: theoretical analysis reveals that
these techniques together mitigate clipping bias and gradient heterogeneity across
layers in deeper models. Consistent with these theoretical insights, our empirical
results show that FL with DP is viable under strong privacy guarantees, provided a
population of at least several million users. Specifically, we achieve user-level (7.2,
10−9)-DP (resp. (4.5, 10−9)-DP) with only a 1.3% (resp. 4.6%) absolute drop in
word error rate when extrapolating to high (resp. low) population scales for FL with
DP in ASR. Although our experiments focus on ASR, the underlying principles
we uncover — particularly those concerning gradient heterogeneity and layer-wise
gradient normalization — offer broader guidance for designing scalable, privacy-
preserving FL algorithms for large models across domains. Code of all experiments
and benchmarks is available at https://github.com/apple/ml-pfl4asr.

1 Introduction

Federated learning (FL) allows training models in a distributed manner without storing data centrally
on a server [1]. While FL eliminates privacy risks associated with data aggregation, it remains
vulnerable to inference attacks [2, 3, 4, 5, 6]. Stronger user-level privacy guarantees can be achieved
by combining FL with differential privacy (DP) [7, 8] and secure aggregation [9, 10]. FL introduces
several challenges in training including: heterogeneous data distribution [11, 12], sensitivity to cohort
size [13], and slower convergence rate due to local training [14]. A practical FL with DP with limited
privacy budget also limits extensive hyper-parameter tuning as it incurs additional privacy overhead
apart from communication and computation cost [15, 16], thus necessitating robust training strategies.
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Consequently, training end-to-end (E2E) automatic speech recognition (ASR) models using FL is
also challenging [17, 18, 19, 20, 21], primarily due to the inherently heterogeneous data [22, 20]
across clients but also exacerbated by the depth of the models [23, 24]. Additionally, training large
transformer-based models [25, 26, 27, 28] that underlie most E2E ASR models require optimization
techniques such as learning rate warm-up and decay, gradient clipping, adaptive optimizers, careful
initialization, etc. [29, 30, 31]. Moreover, FL alone provides limited privacy even in the context of
ASR [32, 21]. This work is, to our knowledge, the first to demonstrate a practical training recipe to
enable FL with DP for ASR, along with a strong benchmark and supporting convergence guarantees.

Most prior works on both FL and DP rely on small-scale models, primarily due to (i) communication
complexity [33] and (ii) the difficulty in training large-scale models with DP [34, 35, 36]. We argue
that: (i) practical model sizes are steadily increasing – including for ASR [37] – and (ii) the optimiza-
tion of larger over-parametrized models is often easier [38]2. To address this gap in understanding
large-scale models in the context of FL and DP and to mitigate the optimization challenges associated
with training smaller models, we focus exclusively on a large vanilla transformer model for ASR in
this work. Our key contributions can be summarized as follows:

(i) We empirically study the performance of FL with DP on E2E ASR using a large (250M parame-
ters) vanilla encoder-based transformer model trained with the Connectionist Temporal Classifi-
cation (CTC) loss [40]. Based on the results, we successfully establish the first practical and
competitive benchmark and baselines for FL with DP in ASR with realistic (ε, δ)-DP guarantees.

(ii) We systematically analyze the impact of several key FL factors – including data heterogeneity,
optimization hyperparamters, and seed models initialization (pre-trained with or without domain
shift) – on convergence and performance of ASR trained under FL and FL with DP.

(iii) We revisit per-layer clipping – deemed ineffective by prior works – and demonstrate that
combining it with layer-wise adaptive gradient normalization is the key to achieving strong
model performance under FL with DP. Furthermore, we provide a rigorous theoretical analysis
of the algorithm’s convergence properties, offering insights into observed empirical behavior.

We show that FL can be used to train competitive models for several datasets, covering English, Ger-
man, French languages: FL models are at worst∼ 0.3%-1.4% absolute word error rate (WER) behind
the corresponding central models with a limited number of central steps. Competitive models are
obtained even with heterogeneous data, especially when the training starts from a seed model. The
seed model can even come from another domain and perform relatively poorly on the target dataset.
We also show that FL with user-level DP, which is more preferable to example-level DP, and large
models is viable for E2E ASR and promising even for low-resource languages. With per-layer clip-
ping, our models achieve (7.2, 10−9)-DP (resp. (4.5, 10−9)-DP) with 1.3% (resp. 4.6%) degradation
in absolute WER for extrapolations to high (resp. low) population scale for FL with DP in ASR.

2 Federated Learning with Differential Privacy: Background and Notation

Federated Learning (FL) In this paper, we focus on synchronous cross-device FL where only a
small fraction q of users (clients) participate in each step of central (global) aggregation (step), where
K is the total number of users (population): every user is sampled i.i.d. with probability q from all
users, and S = qK, termed cohort size, is the expected number of users participating in every central
step. Users do not maintain a state across central steps. Each user k has its own local data x ∼ Dk,
where x ∈ RN and Dk is k-client’s data distribution (x is paired audio and the corresponding
ground-truth transcription for ASR task). The objective of FL is to minimize the total loss function
L (θ) given the ASR parameters θ ∈ RD and all user data: minθ∈RD{L (θ) ≜

∑K
k=1 ωkLk(θ)},

where wk > 0,
∑K

k=1 ωk = 1, Lk(θ) = E
x∼Dk

[ℓ(x,θ)] and ℓ(x,θ) is a loss function for a sample
x ∈ RN . In practice, we optimize L (θ) by sampling a set of users Kt at a central step t who receive
a copy of latest global model θ(t). Each client k then performs optimization over the local copy
of the global model θ(t,0)

k = θ(t) using their own data x ∼ Dk via the update step θ
(t,t

loc
+1)

k =

θ
(t,t

loc
)

k − η
loc
g
(t,t

loc
)

k at step t
loc

, where gk(θ) = gk(Bk,θ) (e.g. obtained by SGD) is an estimator
of the ∇Lk(θ), and Bk = {xi}Bi=1 ,xi ∼ Dk. The clients periodically upload their model updates

2Distillation from a large to a small model remains the dominant method for training compact models [39].
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Algorithm 1: Federated learning with differential privacy (marked as red)
Inputs: Initial model θ0 (either randomly initialized or pre-trained on server data), weights ωk ∈ (0, 1) such that

∑K
k=1 ωk = 1,

central steps T , central optimizer opt, clients sampling rate q = S/K, local steps Tloc, local optimizer optloc, clipping

function clip(v, C) = v ·
(

C
max(C,∥v∥)

)
, local clipping bound Cloc, DP clipping bound C and DP noise σ

DP
.

Result: ASR model θT

1 Initialize central optimizer opt
2 for t = 1, 2, . . . , T do
3 Sample every client i.i.d. with probability q to form a subset K t of clients from all clients K (|K | = K)
4 // For practical implementation we fix the size of the cohort K t to S throughout the training.

5 for i = 1, 2, . . . , |K t|, ki ∈ K t in parallel do
6 Initialize local model θ(t,0)

ki
← θ(t−1) and local optimizer optloc

7 for tloc = 1, 2, . . . , Tloc do
8 // We also use local epochs instead of steps: then this loop has different number of steps per client.

9 Sample train mini-batch B
(tloc)

ki
∈ DK t

ki

and compute gradient estimate g
(t,tloc)

ki
(B

(tloc)

ki
; θ

(t,tloc−1)

ki
)

10 Clip gradients g(t,tloc)

ki
← clip(g

(t,tloc)

ki
, Cloc) and update a local model θ(t,tloc)

ki
← optloc(g

(t,tloc)

ki
)

11 Compute client’s delta ∆
(t)
ki

= θ
(t,0)
ki

− θ
(t,Tloc)

ki
= θ(t−1) − θ

(t,Tloc)

ki

12 Clip client’s delta ∆
(t)
ki
← clip(∆

(t)
ki

, C)

13 Add Gaussian noise to client’s delta ∆
(t)
ki
← ∆

(t)
ki

+ N

(
0, IC2σ2

DP
q∑K

k=1
ω2
k

)
14 Compute central model’s pseudo-gradient g(t) = ∆(t) = 1

q

∑|Kt|
i=1 ωki

∆
(t)
ki

15 Update the central model θ(t) ← opt(g(t))

∆
(t)
k to the server after Tloc local steps given by ∆

(t)
k = θ

(t,0)
k − θ

(t,Tloc)
k = η

loc
G

(t)
k where

G
(t)
k =

∑T
loc
−1

t
loc

=0 g
(t,t

loc
)

k . The server then aggregates the updates ∆(t) = 1/q
∑

ki∈Kt ωki
∆

(t)
ki

and
performs the central model step either through conventional federated averaging [41], or through an
adaptive optimizer [42]. The updated central model is broadcasted to another sampled set of users
and the process is repeated either for a fixed number of central steps T or until convergence.

FL with Differential Privacy (DP) Since no prior work exists that can efficiently train private FL
for ASR, we establish the first competitive baselines for private FL in ASR in the rest of the paper.
We start by referring to DP [43, 44, 7], which provides a mathematical formalism of guarantees on
the amount of information learnt by machine learning models from the user private data:

Definition 1. Differential privacy: A randomized mechanism M : D → R with a domain D (e.g.,
possible training datasets) and range R (e.g., all possible trained models) satisfies (ε, δ)-differential
privacy if for any two adjacent datasets D,D′ ∈ D and for any subset of outputs R ⊆ R it holds
that Pr[M(D) ∈ R] ≤ eεPr[M(D′) ∈ R] + δ.

One key DP component is adjacent datasets [7]. In some applications, prior works consider the
example-level privacy [45, 8]. For FL where each user has multiple data points, user-level [46] is
preferable to example-level privacy [45, 8]. We thus use the following adjacency relation:

Definition 2. User-adjacent datasets: Let D and D′ be two datasets of training examples, where
each example is associated with a user. Then, D and D′ are adjacent if D′ can be formed by adding
or removing all of the examples associated with a single user from D.

To incorporate user-level DP into FL, the client updates ∆(t)
k are: (i) clipped such that their l2 norm

is bounded, i.e., ∥∆(t)
k ∥2 ≤ C at every central training step t and then (ii) perturbed via Gaussian

mechanism, such that client updates under FL with DP are given by ∆
(t)
k +N

(
0, IC2σ2

DP
q∑K

i=1 ω2
i

)
,

where ∆
(t)
k = η

loc
α
(t)
k G

(t)
k and α

(t)
k = C

max
(
C,∥η

loc
G

(t)
k ∥

) . We use the moments accountant [8] to

achieve tight privacy bounds and restate the main theorem of [46] in our parametrization of noise
added to every user’s model update before averaging, assuming ωk = 1/K for simplicity:

Theorem 1. For the DP-mechanism in Algorithm 1, the moments accountant of the sampled Gaussian
mechanism correctly computes privacy loss with the noise scale of z = σDP/S and central steps T ,
where S = 1/(qK) and noise σ

DP
, probability of user selection q, and total number of users in the

population K are given in Algorithm 1.
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Although this work uses the moments accountant and uniform sampling, alternative approaches such
as DP-FTRL [47] or device-level sampling [10] can also be applied. These alternatives are expected
to yield similar results, potentially at the cost of a small constant overhead in the required population
sizes. Since we use large transformer ASR models, user-level DP significantly reduces the utility of
training ASR models even in the absence of FL because the noise overpowers the gradients [48, 34].
Our initial experiments confirmed this problem, which we mitigate via per-layer clipping. The FL
with DP and corresponding terminology are summarized in Algorithm 1.

3 Theoretical Analysis: Adaptive Optimizers and Per-Layer Clipping

LAMB Optimizer. We utilize the layer-wise adaptive optimizer LAMB [49] for updating the global
model using pseudo-gradient ∆(t) (see Appendix E.4 for its definition). Originally proposed for the
large batch training, LAMB scales learning rate for each layer using the ratio of weight norms to the
gradient norms (termed trust ratio), which makes it particularly effective in handling the gradient
scale disparities in deep networks. We posit LAMB is helpful in large model training using FL
since inter-layer gradient heterogeneity is further exacerbated by “divergence accumulation” [23, 24]
wherein deeper layers demonstrate higher divergences in contrast to the shallow.

Per-Layer Clipping. Per-layer clipping was proposed by [46]. However, the authors did not report
a significant improvement in their setting of LSTM models for language. On the contrary, our work
shows that for FL with DP and large transformer models, per-layer clipping mitigates the imbalance
of gradients across different layers in the attention blocks. Formally, we change the global clipping
of clients’ deltas from Algorithm 1, Step 12, to per-layer clipping cliplayer(g, C) defined as follows:

Definition 3. Per-layer clipping: Let the model gradient be g = (g1,g2, ...,gH), where gh is the
h-th layer gradient with total H layers in the model. Then per-layer clipping with clipping parameter

C =
√∑H

h=1 C
2
h is given as cliplayer(g, C) = (g̃1, g̃2, ..., g̃H) where g̃h = clip(gh, Ch).

In our experiments we use either Ch = C√
H

(“uniform” variant) or Ch = C
√

dh∑H
i=1 di

(“dim” variant

based on a layer dimension) where dh is the dimension of the h-th layer and h = 1, 2, . . . ,H , so that
after per-layer clipping we still guarantee ∥∆(t)

k ∥2 ≤ C necessary for Theorem 1 to hold.

Assumptions. Given a global model comprising of H layers, the model parameters are defined as
θ = (θ1, · · · ,θh, · · ·θH). It is presumed that the loss function for each sample x is bounded below:
minθ∈RD ℓ(x,θ) > −∞, where x ∼ Dk, ∀ k . Let ∥ · ∥ denote the l2-norm. Our analysis uses the
following standard assumptions [12, 42, 50, 51, 52, 53, 54]:

1. Smoothness of Loss Function Gradient: ∇ℓ(x,θ) is layer-wise Lh-smooth for ∀h [49]:

∥∇hℓ(x,θ)−∇hℓ(x,θ
′)∥ ≤ Lh ∥θ − θ′∥ , ∀θ,θ′ ∈ RD , x ∈ RN ,∀k, (A1)

where∇h denotes gradient with respect to parameters θh of layer h.

2. Local Gradient Property: Given user k, Bk = {xi}Bi=1 ,xi ∼ Dk and local gradient ∇ℓ(x,θ),
its unbiased estimator gk(θ) = gk(Bk,θ) has a bounded variance ∀k [12, 50, 54]:

EBk

[
∥gk(θ)−∇Lk(θ)∥2

]
≤ σ2

loc
, σ2

loc
≥ 0, ∀θ ∈ RD . (A2)

3. Global Pseudo-Gradient Property: The variance of global (pseudo-) gradient is bounded [52, 42]:

K∑

k=1

ωk ∥∇Lk(θ)−∇L (θ)∥2 ≤ σ2
glob

, σ
glob
≥ 0, ∀θ ∈ RD . (A3)

Corollary 1. Assume A1.1, A2.1, A2.2, and A3, η
glob

L < 1 and κ =
[
1− 8(1− η

loc
T

loc
)2
]
> 0. If

the trust ratio in LAMB optimizer is controlled in the Algorithm 1 (global optimizer is LAMB and
local optimizer is SGD) and η

glob
= Θ

(
1

L
√
T

)
and η

loc
= Θ

(
1

L
√
TlocT

)
, then Algorithm 1 converges
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to a stationary point of the global loss function with the convergence bound characterized as:

κ

T

T−1∑

t=0

E
t
loc

[∥∥∥∇L
(
θ(t)
)∥∥∥

2
]
≤ O

(
1√
T

)

︸ ︷︷ ︸
optimization

+O

(
Tlocσ

2
glob

T

)

︸ ︷︷ ︸
global update noise

+O

(
Tlocσ

2
loc

T

)

︸ ︷︷ ︸
local update noise

+ O

(
C2σ2

DP

H∑

h=1

R2
hdh

)

︸ ︷︷ ︸
differential privacy noise

+O

(
Tloc

T

H∑

h=1

M2
h

C2
h

)

︸ ︷︷ ︸
clipping bias

+O

(
Tloc

T

H∑

h=1

R2
hM

2
h

C2
h

[
Ψ

intra

h +Ψ
inter

h

])

︸ ︷︷ ︸
intra- and inter-client update variance

,

(1)

where Ψ
intra

h = E
t,k

[
Vart

loc

(∥∥∥G(t)
h,k

∥∥∥
)]

and Ψ
inter

h = Et

[
Var

k

(
Et

loc

[∥∥∥G(t)
h,k

∥∥∥
])]

.

Refer Appendix E for the proof of Theorem 2 and its Corollary 1 with derived asymptotic bound.

Interpreting the Bounds. Corollary 1 highlights the key contributors to the convergence behavior:
(i) the optimization process, (ii) global and local update noises, (iii) DP noise, and (iv) clipping.
Specifically, it emphasizes the complex coupling among per-layer clipping (Ch), layer-wise scaling
Rh, and intra-client (Ψ

intra

h ) and inter-client (Ψ
inter

h ) update variance. Although the analysis presents
several of these terms separately, they are often interdependent and may interact in non-trivial ways.
The remainder of this section summarizes the key takeaways from the bound in Corollary 1.

Recovering Prior Bounds. As a validation, we recover bounds similar to several prior works.
For example, by setting σ2

DP
= 0 and letting Ch → ∞, we obtain a bound similar to adaptive

optimizers [42] and vanilla FL [12, 16] – modulo constant factors. Similarly, the bound for [55]
can be recovered by choosing a constant clipping value C for all layers and adding an appropriate
DP noise. These reductions demonstrate that our result generalizes several known convergence
guarantees as special cases. See Appendix E.7 for details on how specific prior bounds are recovered.

Impact of Gradient Heterogeneity across Batches and Clients. The terms Ψ
intra

h and Ψ
inter

h in the
convergence bound quantify the impact of data-heterogeneity within and across clients, respectively.
Within-client heterogeneity Ψ

intra

h can be reduced by shuffling data locally on each client. However,
this becomes challenging when client data is limited. In such cases, data augmentation can serve
as a practical alternative, reducing batch-level variance and improving performance [56]. Similarly,
inter-client heterogeneity Ψ

inter

h can be tackled by incorporating (i) server-side adaptive optimizers
that intrinsically reduce gradient heterogeneity across clients [56], (ii) anchored optimization methods
such as SCAFFOLD [57], FedProx [11], and (iii) adaptive client weighting [12].

Trade-offs Between Clipping Constant and DP noise. While an inverse relationship with the clip-
ping Ch suggests that increasing Ch would improve convergence [58], the proportional relationship
σ2

DP
∝ C2

h complicates the dynamics; while increasing Ch reduces clipping bias, it also requires
proportionally more DP noise for the same privacy guarantees. Additionally, the convergence bound
indicates a linear decay of clipping bias with T , whereas DP noise increases linearly with it. Thus,
over long training horizons, the impact of clipping becomes negligible relative to that of DP noise.
However, in practical settings with limited central steps T , clipping bias can remain significant –
particularly when gradient norm Mh and intra-client (Ψ

intra

h ) and inter-client (Ψ
inter

h ) update variances
are large. Unlike [55], we capture this coupling explicitly that underscores the importance of tuning
both Ch and DP noise jointly to optimize privacy-utility trade-off. Consistent with our theoretical
bound, Table 1 shows a negligible impact of clipping on centralized model training whereas DP noise
significantly degrades performance in FL with DP. While local clipping, used for transformer training
stability [59], reduces model’s sensitivity to global clipping, the model is still affected by DP noise.

Benefits of Per-Layer Intervention. Our convergence bound is decomposed over several layer-wise
dynamics including gradient norm Mh, trust ratio Rh, clipping constant Ch, and variance terms Ψ

intra

h

and Ψ
inter

h . This per-layer decomposition gives a tighter bound when: (i) heterogeneous gradient
distribution is observed across layers and transformer blocks as seen in Figure 5 and Figures 17-
19 and (ii) “divergence accumulation” in deep networks in FL training [60] further amplifies the
mismatch across layers. Based on these observations, we only redistribute the total clipping budget
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C across the model via per-layer clipping Ch given by Ch = C/
√
H or Ch = Cdh/(

∑H
i=1 di),

thus ensuring that overall DP noise remains unchanged. Consequently, the redistribution of clipping
budget can be viewed as altering the signal to noise ratio (SNR) at the layer level relative to DP
noise. In tandem, the per-layer trust ratio Rh further modulates both noise scale and clipping bias.
Empirically, under similar settings LAMB extracts better performance in FL with DP when compared
to Adam. Advantages of LAMB was also reported by [56] showing that it improves FL when used
as a local optimizer. We instead use SGD locally owing to the memory overhead of LAMB that
can be prohibitive on resource-constrained devices. Together, these layer-wise treatments should
empirically result in an improved convergence compared to global clipping for cases with greater
gradient heterogeneity or stronger DP noise. This is in fact evident from the following observations:

(i) Per-layer clipping has a more significant impact on FL with DP compared to centralized training.
This improvement is more pronounced for higher DP noise levels (see Tables 1 & 18).

(ii) Experiments on CV-en show both a higher improvement compared to CV-fr & CV-de (see
Table 1 vs. Table 18) and a higher gradient diversity across layers (see Fig. 17 vs Fig. 18 & 20).

4 Empirical Analysis

Data We use LibriSpeech (LS) data [61]: train-clean-100 (LS-100), train-clean-360 (LS-360) and
train-other-500 (LS-500) as training data. LS-960 is the union of LS-100, LS-360 and LS-500. LS-860
is the union of LS-360 and LS-500. We use standard validation (dev-clean and dev-other) and test
(test-clean and test-other) sets. We also use Common Voice (CV), v13.0 (English, German and
French) data [62]: the train, validation and test sets are provided in the dataset. In addition, we split
the training data using a specific percentage of users to train a seed model only and the rest of users
for FL training: e.g., we create CV-en-train-10(-5) by selecting all the data for a randomly chosen
10% (5%) of the users from CV-en-train and we denote the remaining data by CV-en-train-90(-95).
Statistics on speakers are given in Figure 1: it shows that CV data are much more heterogeneous than
LS as highlighted by [20]. CV data thus enable a more realistic scenario for testing FL and FL with
DP. The most realistic scenario for FL uses a small central dataset to train a seed model (e.g. LS-100),
and a larger dataset from a different distribution for FL (e.g. CV-en-train).3

Central Training We use standard feature extraction for audio [25, 27] by comput-
ing log-mel filterbanks with 80 coefficients with a 25ms sliding window and 10ms
stride length, later normalized to zero mean and unit variance for each input sequence.
We employ a vanilla encoder-based transformer model trained with the CTC loss [40].

100 101 102 103 104

# minutes

100

101

102

103

#
sp

ea
ke

rs

CV-en
CV-fr
CV-de
LS-100
LS-360
LS-500

101 103 105

# samples

101

103

#
sp

ea
ke

rs

Figure 1: Train distribution in
LS and CV: per speaker #minutes
(top) and #samples (bottom).

We start our experimentation with the state-of-the-art model on
LS-100 from [63] with 255M parameters. We use SpecAug-
ment [64] and clip all gradients during training to have a norm
of at most 1 (see Appendix F and G.6 for a discussion). We
found it difficult (see Appendix G.3) to switch to FL from central
training when post-LayerNorm was used (similar issues were
reported by [31]). Following [31] we thus do central training
with pre-LayerNorm (also used in FL), LARS [65], and relatively
high (0.5) learning rate (LR) without any warmup and with step-
wise decay to simplify the recipe and have stable training while
maintaining the performance.

Federated Training We simulate FL by considering every
speaker and its data as a separate user. In most experiments,
SGD [66] with constant LR is used as the local optimizer and
LAMB [65] is used as the central optimizer. We found this com-
bination most robust (see Appendix G.4). The central LR is
constant with further exponential decay unless noted otherwise,
gradient clipping is set to 1 for each client. Unless noted other-
wise, we restrict the number of central steps to 2k. Although most
simulations would further improve after 2k steps, the per-step latency and DP noise addition typically

3Datasets such as LibriSpeech, CommonVoice, VCTK, TED-LIUM offer speaker metadata necessary for
creating heterogeneous FL clients. Datasets like People’s Speech, GigaSpeech, SPGISpeech lack speaker
metadata. We choose LibriSpeech and CommonVoice as they offer the greatest speaker diversity.
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Figure 2: Impact of the cohort size S and seed models on FL models trained on LS. We use exponential
decay for central LR starting at t = 1, 000, decay rate 0.6, and transition steps 500 (w/o seed model)
or 250 (w/ seed model) with T = 2k total central steps and 10 local epochs. Local (central) LR is 0.4
(0.006) (w/o seed model) or 0.2 (0.003) (w/ seed model). See details in Appendix G.2, Table 3.

seed L = 8 L = 16 L = 32 L = 64 L = 128 L = 256 central
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W
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R
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C

V
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t Seed: None, Train: CV-en

Seed: CV-en-05, Train: CV-en-95
Seed: CV-en-10, Train: CV-en-90
Seed: LS-100, Train: CV-en
Seed: LS-960, Train: CV-en

seed L = 8 L = 16 L = 32 L = 64 L = 128 central

101

102
Seed: None, Train: CV-fr
Seed: None, Train: CV-de
Seed: CV-fr-10, Train: CV-fr-90
Seed: CV-de-10, Train: CV-de-90

Figure 3: Impact of the cohort size S and seed models on FL models trained on CV: English (left)
and French/German (right). We use exponential decay for central LR starting at t = 1, 000 (w/o seed
model) or 750 (w/ seed model), decay rate 0.6, and transition steps 500 (w/o seed model) or 750 (w/
seed model) with T = 2k total central steps and 10 local epochs. Local (central) LR is 0.4 (0.006)
(w/o seed model) or 0.2 (0.002) (w/ seed model). See details in Appendix G.2, Tables 4 and 10.

seed L = 8 L = 16 central

101

102

W
E

R
(%

)

test-clean

Seed: None, Train: LS-960
Seed: LS-100, Train: LS-860
Seed: CV-en, Train: LS-960

seed L = 8 L = 16 central

101

102
test-other

FL non-IID
FL IID

seed L = 16 L = 32 central

102

2×101

3×101

4×101

6×101

CV-en-test

Seed: None, Train: CV-en
Seed: LS-100, Train: CV-en

Figure 4: Impact of randomizing the distribution of data across users for LS (left, middle) and CV
(right) measured by WER. Parameter settings are described in Figure 2 for LS and Figure 3 for CV.
While the original training data are non-IID (solid), IID (dashed) versions of LS-960, LS-860 and
CV-en-train are created by choosing a user id uniformly and randomly from the set of user ids for
each data point in the corresponding dataset. Detailed numbers are in Appendix G.2, Tables 5 and 6.

limit the number of iterations in practical private FL systems to this range [67, 56]. To keep simple
and robust training recipes, we do not do extensive hyper-parameters search. After finding the best
configuration on one training setup we apply the same hyper-parameters to the rest of experiments.

4.1 Impact of Seed Models and Cohort Size

In Figures 2 and 3 we show that initializing FL with seed models instead of randomly significantly
decrease word error rate (WER) for both LS and CV (all languages), even with domain shift for the
seed model training (e.g, using LS seed model for CV and vice-versa). Using seed model initialization
for FL, we can almost close the gap between central and FL trainings within 2k central steps and
moderate cohort sizes: ≥ 64 (≥ 128) for LS (CV). Larger cohorts consistently improve the outcomes
within 2k central steps – increasing the cohort size directly increases the amount of seen data. Even
without seed models, FL is competitive with central models given a large enough cohort size.

Increasing the amount of data for seed model training improves the trained FL models regardless
of whether the data come from the same domain or not (e.g. compare CV-en-train-05 seed vs.
CV-en-train-10 seed or LS-100 seed vs. LS-960 seed on CV-en-train in Figure 3). In fact, the use
of seed models trained on considerably more data from another domain can outperform the use of
seed models trained on less data from the same domain: the results on CV-en-train with a LS-960
seed model are better than the results with a CV-en-train-10 seed model on CV-en-train-90 (see
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Table 1: Results for FL with DP and a model pre-trained on LS-100 (∼100h) used as central data
and afterwards fine-tuned with FL on CV-en-train (∼1.6k hours) used as clients data. We report
added noise N(0, IC2σ2

DPqK) per client (ωk = 1
K ) and CV dev and test WERs (%) for two clipping

variants with clipping C: global and per-layer “uniform” (“dim”). The total number of users is K,
the cohort size is S = qK, and the number of central steps is T . We set δ = 10−9 following [46]
and report ε for which (ε, δ)-DP holds for given S and K using the moments accountant of [8]. For
scaling S and K where it is practically intractable to run model training (marked “-”), we extrapolate
(ε, δ)-DP following [46] and, assuming the training dynamic remains unchanged, thus similar WER
could be obtained. Central training gives 14.7%/17.8% WER on dev/test. Extended results are given
in Appendix H and in Table 17. ε should be below 10 to be practically useful (marked with blue).

z
σDP C S K q = S/K T ε

Renyi global clipping per-layer clipping: uniform (dim)

(·10−6) order dev WER test WER dev WER test WER

- - - 0 34,753 0 0 0 - 54.7 61.2 54.7 61.2

0.03072 30.0 0.01 1,024 34,753 0.0295 2,006 1.1·106 1.1 - - 25.2 (24.2) 29.3 (28.2)
0.3072 30.0 0.01 10,240 347,530 0.0295 2,006 3.7·102 1.1 - - - -
1.536 30.0 0.01 51,200 1,737,650 0.0295 2,006 6.5·100 7.0 - - - -

0.02048 20.0 0.01 1,024 34,753 0.0295 2,006 2.6·106 1.1 - - 23.7 (22.6) 27.6 (26.5)
1.024 20.0 0.01 51,200 1,737,650 0.0295 2,006 1.3·100 4.0 - - - -
2.048 20.0 0.01 102,400 3,475,300 0.0295 2,006 4.5·100 9.0 - - - -

0.01024 10.0 0.01 1,024 34,753 0.0295 2,006 1.1·107 1.1 30.7 35.2 21.3 (20.1) 25.0 (23.7)
0.512 10.0 0.01 51,200 1,737,650 0.0295 2,006 7.2·101 1.5 - - - -
1.024 10.0 0.01 102,400 3,475,300 0.0295 2,006 1.3·101 4.0 - - - -
2.048 10.0 0.01 204,800 6,950,600 0.0295 2,006 4.5·100 9.0 - - - -

0.003072 3.0 0.01 1,024 34,753 0.0295 2,006 1.2·108 1.1 27.0 31.1 17.9 (17.1) 21.2 (20.4)
0.3072 3.0 0.01 102,400 3,475,300 0.0295 2,006 3.7·102 1.1 - - - -
0.6144 3.0 0.01 204,800 6,950,600 0.0295 2,006 4.2·101 2.0 - - - -
0.6144 3.0 0.01 204,800 69,506,000 0.00295 2,034 7.2·100 3.0 - - - -
0.6144 3.0 0.01 204,800 695,060,000 0.000295 3,390 3.7·100 6.0 - - - -

0.001024 1.0 0.01 1,024 34,753 0.0295 2,006 1.1·109 1.1 22.9 26.7 16.2 (16.0) 19.5 (19.3)
0.2048 1.0 0.01 204,800 6,950,600 0.0295 2,006 1.1·103 1.1 - - - -
0.2048 1.0 0.01 204,800 69,506,000 0.00295 2,034 2.7·102 1.1 - - - -
0.2048 1.0 0.01 204,800 695,060,000 0.000295 3,390 9.4·101 1.3 - - - -

- 0 0.01 1,024 34,753 0.0295 2,000 inf - 15.7 18.9 15.9 19.1
- 0 1.0 1,024 34,753 0.0295 2,000 inf - 15.7 18.9 15.7 18.9

more ablations in Appendix G.9, Table 15). The gap between FL models with different seed models
decreases as the cohort size increases – the latter directly increases seen data in FL training.

To demonstrate robustness of found hyper-parameters and observed results in Figure 3 (left), we
applied the exact same training configuration to train FL models on CV French and German data.
We confirm in Figure 3 (right) that the training configuration found on English data is robust: similar
trends and results hold for French and German.

4.2 Impact of Data Heterogeneity

Prior works argued that data heterogeneity poses a challenge for FL [11, 12]. Figure 4 shows that
distributing data uniformly and randomly across users indeed improves performance for all settings.
Since for LS, every client’s data are of similar duration and we use dynamic batching, this is unlikely
to be due to the differences in the amount of data between clients. The impact of using i.i.d. data
decreases with increasing cohort size. Figure 4 suggests that algorithms such as FedProx [11],
ProxSkip [68], and SCAFFOLD [57] could further improve FL performance. We evaluated FedProx,
which marginally improved FL performance in some cases (see Appendix G.7, Table 13).

4.3 Federated Learning with Differential Privacy

For FL with DP we consider a setting close to the real-world scenario: LS-100 is used as central
data to train a seed model (without DP); CV-en-train is considered as clients’ data on which the seed
model is trained afterwards using FL. In this setting (i) the clients’ data are ∼16 times bigger than the
server data and (ii) there is a domain shift in clients’ data.

As discussed in Section 2, DP is challenging for larger models due to their size. To make the
model training more resistant to noise, we need to increase the cohort size, e.g. in recent work [69]
used 150k cohort size for FL with DP. We take exactly the same setup as in Figure 3 with the data
CV-en-train and the seed model trained on LS-100. First we scale the FL training to the cohort size
of 1024; to mitigate the resulting increase in the computational cost of the training, we switch from
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Figure 5: Client delta norms computed per layer in the model. We average statistics across all clients
and central steps, and plot the mean and standard deviation. The model is trained with σDP = 3 ·10−6
and global clients’ deltas clipping C = 10−2 (Algorithm 1). Transformer block consists of attention
parameters (wqkv and wf) with LayerNorm (ln1), and MLP (w1 and w2) with LayerNorm (ln2).

10 local epochs to 10 local steps (see Appendix H.2, all other hyper-parameters stay the same). As
we discuss in Appendix H.2, we expect that more local compute that would be feasible in a real
deployment, should lead to better results than what we get in our experiments. Increasing the cohort
size further closes the gap with the central baseline. Second, we use and vary the clipping C applied
to clients’ deltas without adding DP noise yet. Although the average norm of clients’ deltas is 0.7
(see Appendix H, Figure 7), they can be clipped with C as low as C = 10−8 without any impact
on model’s quality. This is consistent with Corollary 1: the interaction of trust ratio Rh with Ch

re-normalizes the gradients. Further we set C = 10−2 to prevent numerical precision errors. Finally,
we add different levels of noise σ

DP
to every client’s delta before averaging the deltas across clients.

In Table 1, we estimate (ε, δ)-DP by the moments accountant of [8] for every level of noise, number
of clients K, clients sampling q, clients’ deltas clipping C, and number of central training steps
T , where ωk = 1

K . Using FL with DP, we can improve over the poor performing LS-100 seed
model due to limited server data and their domain shift: WER is reduced from 61.2% to 31.1% with
σDP = 3 · 10−6 and (7.2, 10−9)-DP assuming the training effectiveness (WER) remains the same if,
following [46], we extrapolate to ∼70M clients with the cohort size of ∼200k4. Lowering the DP
noise σ

DP
decreases model’s WER, but DP guarantees become impractical even if we scale K and S.

In Figure 5, we analyse the clients’ deltas by computing model’s per-layer deltas norm. We highlight
that the norms are imbalanced across different transformer layers and also across different types of
parameters: (i) first transformer layers have a larger deltas norm magnitude; and (ii) delta norms for
attention parameters are an order of magnitude lower than those for LayerNorms. This observed
imbalance motivates the application of per-layer intervention, as formally discussed in Section 3.

To avoid σ
DP

dominating the attention layers and slowing down the convergence, following Theorem 2,
we apply per-layer clipping (Definition 3) which significantly improves model convergence (see
Figure 12 in Appendix): with the same σDP = 3 · 10−6 we are able to closely match the model
trained without DP noise (σDP = 0) with only a small WER degradation (from 19.1% to 21.2%
WER) while guaranteeing (7.2, 10−9)-DP assuming the training effectiveness remains the same if,
following [46], we extrapolate to ∼70M clients with the cohort size of ∼200k. Moreover, we can
now increase DP noise up to σ

DP
= 10−5 getting 23.7% WER with (4.5, 10−9)-DP by following [46]

and extrapolating only to ∼7M clients with the cohort size of ∼200k (see Table 1). The latter is a
realistic scenario even for mid/low resource languages. We can further reduce WER by ∼1% for the
same (ε, δ)-DP guarantee if we apply per-layer clipping based on the layer dimension (see Table 1).

5 Related Works

FL for ASR was first studied by [70] using attention-based Seq2Seq LSTM models. The paper
showed that FL in ASR suffers from data heterogeneity, a known problem in FL [71, 33]. They
proposed gradient weighting to speed up convergence and improve performance. Building on this, [22]
used hybrid LSTM models and introduced client adaptive normalization to mitigate data heterogeneity.
Similarly, [17] used RNN from [72] and added noise to local gradients to address data heterogeneity.
However, these FL-trained ASR models significantly underperformed their centralized counterparts.

End-to-End ASR models in FL [19] used a ∼120M parameters conformer [27] model together
with federated dropout to train only a subset of parameters on each client. This reduced com-

4[69, 67] showed it is realistic to (i) have millions of users to participate in FL and (ii) use a large cohort size
of 150k in FL deployments.
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munication and improved FL performance relative to central training. However, the setup used
10k-100k central steps and homogeneous data distribution, which is impractical in real-world scenar-
ios. [20] used Seq2Seq model with a CNN encoder and RNN decoder trained with joint CTC-attention
objective. They noted that training E2E ASR model from scratch in a realistic FL setup is “nearly
impossible”, and proposed an additional training step on held-out server data, after model aggregation.
They also emphasized switching from LS data to CV due to its more realistic data distribution. Re-
cently, [73] trained a ∼130M parameter model using weighted client aggregation and word frequency
histograms, initialized from a centrally pretrained model. [56] showed FL training with similarly
sized conformer models using adaptive optimizers from scratch. We borrow several real-world
settings from prior works: (i) limiting to 2k central steps [56], (ii) training large transformer models
from scratch [56], and (iii) using both CV [62] and LS [61] datasets for experiments [19, 56] to
evaluate robustness across datasets and languages. Unlike prior work, we also study: (i) FL with DP
for ASR and (ii) impact of domain mismatch between the data used for central pretraining and FL.

Data Leakage in FL for ASR. [21] improves ASR performance using large (∼300M parameters)
pre-trained self-supervised model (transformer) to initialize FL and observe speaker information
leakage via model updates. Audio can further leak sensitive attributes such as gender and health
conditions [74]. Given that FL alone does not guarantee user privacy [2, 4] and several recent
works [32, 21] have explored privacy attacks targeting FL in ASR, it is very important to enable FL
training with DP. To this end, our work addresses this critical gap by enabling FL with DP for ASR.

Adaptive Clipping and Convergence Bounds Adaptive clipping was first proposed in [8], but the
authors reported no observable impact on convergence. Recently, [75] proposed adaptive clipping
using privately estimated quartile statistics, incurring a negligible privacy budget. They noted a
dependence on non-private data and fixed learning rate (LR), which can be prohibitive in practice.
[76] later provided a comprehensive convergence analysis in a central setup, showing that LR depends
on the clipping constant. [55] is one of the few works providing convergence bound under clipping
using FedAvg [1]. However, it cannot be trivially extended to per-layer clipping or adaptive optimizers.
Additionally, [77] is a contemporary work that proposes adaptive layer-wise clipping for DP-SGD by
distributing clipping budget over the layers proportional to the layer-wise gradient statistics gathered
on a public dataset. While this method can uncover more fine-grained gradient distribution over
layers, it introduces a reliance on representative public dataset. In contrast, our work adopts a
different perspective: rather than conditioning clipping on public dataset, we redistribute the clipping
budget structurally (uniform or dimension-aware) and rely on the LAMB optimizer to dynamically
regulate inter-layer heterogeneity. Thus, while [77] depends on static, public-data informed sensitivity
distribution, our analysis and experiments highlight the importance of dynamic, optimizer-driven
adaptivity. To the best of our knowledge, we present the first explicit convergence bound for FL
with DP that incorporates per-layer clipping, LAMB optimizer, and DP noise – highlighting the
interdependence among trust ratio in LAMB, per-layer clipping constant and DP noise in FL.

Divergence Accumulation Recently, [23, 24] showed that deeper models in FL suffer from “diver-
gence accumulation” – accumulation of dissimilarities among client models during back-propagation.

6 Conclusion

ASR provides a valuable and realistic benchmark for (private) federated learning (FL), offering large
datasets that are naturally partitioned by speakers and exhibit heterogeneity typical in real-world
settings. With the exception of language modeling, benchmarks commonly used in works studying
FL with DP lack these characteristics, limiting their practicality. In this work, we focused on real-
world constraints such as the task of adapting a model trained centrally on LibriSpeech to Common
Voice data via FL, a benchmark for both FL and FL with DP that captures core FL challenges:
domain shift, user-level heterogeneity, and privacy constraints at scale. We demonstrate that with a
practical number of central aggregations, it is possible to train large transformer models that perform
competitively in the federated settings – both from scratch or when starting from an out-of-domain
seed model. We highlight that enabling FL with DP for ASR is non-trivial and requires solutions that
manage the interaction between privacy, clipping, and model size. To this end, we revived per-layer
clipping and used layer-wise adaptive optimization, thus achieving user-level (7.2, 10−9)-DP (resp.
(4.5, 10−9)-DP) with only a 1.3% (resp. 4.6%) absolute drop in the WER, when extrapolating to
high (resp. low) population scale. These results establish a practical and scalable foundation for
privacy-preserving FL training with DP for large models beyond ASR.
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Common Voice v13.0 (CC BY-SA 3.0). Data processing is described in the main body of the
paper. We describe all configurations, training details, ablations, and our procedure of selecting
hyper-parameters throughout the paper and in Appendix. We also provide important discussions on
different aspects of the empirical results as well as detailed plots of various characteristics tracked
during training in the Appendix. The code is open sourced and available at https://github.com/
apple/ml-pfl4asr.

C Societal Impact

This work explores research in the intersection of privacy, optimization, federated learning, and speech
recognition. Given the widespread adoption of ASR models deployed in production environments
ranging from virtual assistants to accessibility applications, enabling privacy-preserving training
of ASR models using differential privacy has the potential to benefit the end users, particularly in
sensitive domains such as healthcare and biometrics. This work contributes towards the responsible
development of ASR models by overcoming a long-standing obstacle to applying DP to deep
architectures. However, the deployment of FL with DP does not eliminate all privacy risks. Real-world
deployments must ensure additional measures including secure aggregation and careful consideration
of population-scale that influence the strength of the privacy introduced by DP in this work.

D Discussion

D.1 Need for Private Federated Learning

In Section 1 we discussed that FL on its own does not guarantee user privacy. For example, [2]
showed that the gradients sent to the server can be used to reconstruct the original training images
and text. [3] showed that a model can memorize specific pieces of data that can be reconstructed
using only the model itself. In the context of ASR, [32] developed two attacks that aim to infer
speaker identity from the model updates without access to the actual users’ audio data. [74] showed
that audio data reveal information about the content but they can also be used to derive other pieces
of sensitive information including biometric identity, physical traits, geographical origin, emotions,
level of intoxication, age, gender and health.

These and many other works emphasize the necessity of developing private FL with strong guarantees
on the user privacy. In this paper, we focus on providing first insights for private FL with DP for ASR.

D.2 Why Do We Study Larger Models for FL and DP?

As discussed in Section 1, we focus on the model size of 250M parameters. Prior works in FL with DP
primarily focused on studying models of up to 30M parameters, justifying the use of smaller models
by communication and training costs associated with the model size and the difficulty of training
reasonable models with DP because the impact of noise scales with the model size. However, [78, 79]
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showed that it is possible to (centrally) fine-tune large language models with hundreds of millions of
parameters with DP and DP impact does not prevent efficient training if gradients are low rank.

Our main reason to focus our study on larger models for both FL and DP is the observation that larger
models are simpler to train in practice. It is a hard and open problem to efficiently train small models
that perform the same or better than models obtained for example by distillation of large models into
smaller models [39]. To disentangle the ability to train small models efficiently from the problem of
matching central training with FL and FL with DP, we study larger models. Our results give a hint
that the gap that existed between FL and central models could be related to the absence of proper
training recipes for smaller models.

One could argue that current model sizes are huge in the era of large language models, and different
techniques, like LoRA [80], could be used to reduce training time on clients as well as communication
costs. This was done for example by [48] who used partial and low-rank model updates to train large
language models with private FL. However, we believe that first we need to train competitive baseline
models from scratch or from out-of-domain seed models, and understand their behaviour and limits.

D.3 Clipping and Adaptive Optimizers

[55] investigated how clipping fights data heterogeneity in FL. As discussed in Section 2, clipping is
also an essential part of DP. To be able to train transformer models, we must use clipping too, and
thus the recipes used for transformers are aligned with FL with DP. In Appendix H Figure 7, we show
that gradient clipping during local training leads to bounded norms of user deltas where the latter is
necessary for DP. Without applying gradient clipping, the gradient norms would be huge already at
the beginning of the training and even with LARS, pre-LayerNorm and central training we would not
be able to train a reasonable model. Thus, it is extremely hard to disentangle any empirical results for
transformers to understand how clipping helps the training for FL with DP.

[42] and [56] showed that adaptive optimizers alleviate the issue of data heterogeneity for FL. At
the same time it is hard to train transformer models without adaptive optimizers [81, 55]. This is yet
another example of alignment between FL and central training of transformer models; a technique
that helps alleviate data heterogeneity in FL is a must when training large transformer models even
centrally.

D.4 Fusion of ASR Model with a Language Model

To further improve WERs, ASR models can be combined with language models during inference.
This can be done in various ways, e.g. using beam-search decoding for CTC models [25, 82], or
using shallow fusion [83], cold fusion [84], deep fusion [85], and simple fusion [86] for Seq2Seq
or transducer-based models. In this paper, we leave the study on how a language model integration
affects the final model performance as a future work. In the latter case, language models can also be
trained using FL with DP [46, 48, 67].

D.5 Conformer vs Transformer

Purposefully, we do not use the conformer architecture [27] in the paper. In prior work by [28], it was
shown that, e.g., for CTC models both conformer and transformer architectures give similar results
while conformer has fewer parameters. We focus on larger models to understand their behaviour.
Moreover, vanilla transformers are still de facto a standard in other domains, while conformers were
adopted only in speech recognition. Therefore, focusing on vanilla transformer models will broaden
the impact of our findings for speech recognition on the FL and DP communities at large.

D.6 Seed Models

[20] trained seed models to initialize FL using a small fraction of speakers (117 speakers, or 2.8%,
for French and 99 speakers, or 13.2%, for Italian) and used the rest of the data for FL training. Recent
work [87] showed that model quality depends on the number of speakers and the diversity of the
training data: it is better to have more speakers with shorter total audio duration than to have fewer
speakers with longer total audio duration.
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Based on the recommendation of [87] to have at least 1k speakers in the training data, we randomly
sampled 5% (English) or 10% (all languages) of speakers for the in-domain seed model training.
This provided more than 1k users for training CV seed models for English. While for French the seed
model is trained from only 685 users and for German the seed model is trained from only 712 users,
we note that French and German languages are easier to train. Furthermore, for FL models training
on CV (English) we use a seed model trained on LS-100 that has only 251 speakers; however, LS-100
has over 100 hours of audio, which is approximately 6.3% of the total audio in CV.

Preliminary experiments showed that the seed model training on a subset of 5% speakers with the
shortest total audio does not converge: even for English the subset contains less than 2 hours of
audio, which is known to be hard for any E2E ASR model training. In contrast, if we take a subset
of 5% speakers with the longest total audio as in [20], a seed model is very well trained as then
the dataset has more than 64% of total audio in the CV dataset for English language and training
on the rest of the data brings little benefit. Thus, we found the subsets with minimum-duration or
maximum-duration users to not be practical scenarios.

For LS, validation (test) set has 5h of audio with mean of ∼8min and standard deviation of 0.1min
for the total duration per speaker. For CV, validation (test) set has ∼30h with mean of ∼15s and
standard deviation of 1.5s for the total duration per speaker. Thus validation and test datasets have
homogeneous distribution which weights speakers (users) equally for evaluation. For both LS and CV
we use original validation and test sets, without any modification. Thus, the disjoint set of speakers in
different splits and the disjoint set of speakers in a seed model and FL training ensure that speakers
(clients) are not accounted twice in the privacy budget.

D.7 Limitations

Our theoretical results are derived under some assumptions listed in Section 3. Empirical results are
limited to i) LibriSpeech and CommonVoice (en, de, fr) read speech data; ii) monolingual models;
iii) CTC-based models of size 100M-500M parameters; iv) absence of external language models;
v) audio data assumed to be labeled. Future work would include theoretical and empirical analysis to
overcome these limitations.

E Theoretical Analysis

E.1 Assumptions

Given a global model comprising of H layers, the model parameters are defined as θ =
(θ1, · · · ,θh, · · ·θH). It is presumed that the loss function for each sample x is bounded below:
minθ∈RD ℓ(x,θ) > −∞, where x ∼ Dk, ∀ k . Let ∥ · ∥ denote the l2-norm. Our analysis uses the
following standard assumptions [12, 42, 50, 51, 52, 53, 54]:
1. Smoothness of Gradient of Loss Function: Gradient of loss function is layer-wise Lh-smooth for
∀h [49]:
∥∇hℓ(x,θ)−∇hℓ(x,θ

′)∥ ≤ Lh ∥θ − θ′∥ , ∀θ,θ′ ∈ RD , x ∈ RN ,∀k, (A1.1)
where ∇h denotes gradient with respect to parameters θh of layer h. Consequently, the loss

function is also L-smooth, where L = ∥(L1, · · · , LH)∥2:

∥∇ℓ(x,θ)−∇ℓ(x,θ′)∥ ≤ L ∥θ − θ′∥ , ∀θ,θ′ ∈ RD,x ∈ RN ,∀k. (A1.2)

2. Local Gradient Characteristics: Given user k, Bk = {xi}Bi=1 ,xi ∼ Dk and local gradient
∇ℓ(x,θ) for x ∼ Dk, its estimator gk(θ) = gk(Bk,θ) (e.g. obtained by SGD) is an unbiased
estimator and have a bounded variance [12, 50, 54], thus:

EBk
[gk(θ) ] = ∇Lk(θ), and (A2.1)

EBk

[
∥gk(θ)−∇Lk(θ)∥2

]
≤ σ2

loc
, σ2

loc
≥ 0, ∀θ ∈ RD , ∀k. (A2.2)

3. Global Pseudo-Gradient Characteristics: The variance of global (pseudo-) gradient is assumed to
be bounded [52, 42] such that:

K∑

k=1

ωk ∥∇Lk(θ)−∇L (θ)∥2 ≤ σ2
glob

, σ
glob
≥ 0, ∀θ ∈ RD . (A3)
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To give a probabilistic interpretation of this assumption we can estimate the global loss gradient
∇L (θ) by sampling one user u ∼ Categorical(ω1, . . . , ωK) and using the following unbiased
estimator∇L̂ (u,θ) = ∇Lu(θ). Then,

E
u∼Categorical(ω1,...,ωK )

[
∇L̂ (u,θ)

]
=

K∑

k=1

P[u = k]∇Lk(θ) =

K∑

k=1

ωk∇Lk(θ) = ∇L (θ).

From the latter we get the variance of the estimator and extend it to the left-hand side of Equa-
tion A3. Thus, we can interpret this assumption as the variance of global (pseudo-) gradient.

E.2 DP Assumptions

To incorporate user-level DP into FL, we consider that every client is sampled i.i.d. with probability
q (qK = S) and then the client updates ∆

(t)
k are: (i) clipped such that their l2 norm is bounded,

i.e., ∥∆(t)
k ∥2 ≤ C at every central training step t and then (ii) perturbed via Gaussian mechanism,

such that final client updates under FL with DP are given by ∆
(t)
k +N

(
0, IC2σ2

DP
q∑K

i=1 ω2
i

)
, where

∆
(t)
k = η

loc
α
(t)
k G

(t)
k and α

(t)
k = C

max
(
C,∥η

loc
G

(t)
k ∥

) . For
∑K

k=1 ωk = 1, where ωk ∈ (0, 1), we can

extend Theorem 1 to the weighted loss case by defining sensitivity S = maxKk=1ωk/q per Lemma 1
from [46]. Having ωk = 1/K, we get exactly sensitivity definition S = 1/(qK) from Theorem 1.

E.3 Helpful Lemmas

Lemma 1. For any positive variables C,X, Y ∈ R+, we have

1

max (C,X )
− 1

max (C, Y )
≤ |X − Y |

C2
(2)

Proof. We can prove it by analyzing three independent cases:

(i) if C ≥ X and C ≥ Y we trivially have

1

max (C,X )
− 1

max (C, Y )
=

1

C
− 1

C
= 0 ≤ |X − Y |

C2
,

(ii) if C < X and C < Y we have

1

max (C,X )
− 1

max (C, Y )
=

1

X
− 1

Y
≤ |X − Y |

XY
≤ |X − Y |

C2
, and

(iii) if Y < C < X (equivalently the case Y > C > X ) we have

1

max (C,X )
− 1

max (C, Y )
=

1

X
− 1

C
≤ |X − C |

XC
≤ |X − Y |

C2
.

Thus, we can conclude ∀C,X, Y ∈ R+

1

max (C,X )
− 1

max (C, Y )
≤ |X − Y |

C2
.

Lemma 2. For X ∈ R and a constant C > 0,

(X − C )+ ≤
X2

2C
(3)

where (X − C )+ = max (0, X − C ).
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Proof. For X ≤ C, (X − C )+ ≤ 0, and inequality holds trivially. For X > C, we can use the
algebraic identity:

X2 ≥ 2C (X − C ) (4)

which can be rewritten as (X − C )+ ≤
X2

2C .

Lemma 3. For a random vector G ∈ Rd with bounded norm ∥G∥ ≤ U and a clipping constant
C > 0, define the clipped vector as GC ∈ Rd such that GC = G · C

max(C,E [∥G∥])
. Then the squared

distance between G and GC is upper bounded by

∥G −GC∥2 ≤
U4

4C2
. (5)

Proof. For E [∥G∥] ≤ C, we have

∥G −GC∥2 =

∥∥∥∥G −G · C

max (C,E [∥G∥])

∥∥∥∥
2

=

∥∥∥∥G −G · C
C

∥∥∥∥
2

= 0. (6)

For E [∥G∥] > C, we can use the algebraic identity:

∥G −GC∥2 =

∥∥∥∥G −G · C

max (C,E [∥G∥])

∥∥∥∥
2

=

∥∥∥∥G −G · C

E [∥G∥]

∥∥∥∥
2

=

(
1− C

E [∥G∥]

)2

· ∥G∥2 =

(
E [∥G∥]− C

E [∥G∥]

)2

· ∥G∥2

Lemma 2
≤ (E [∥G∥])4

4C2

∥G∥2

(E [∥G∥])2
≤ U4

4C2
. (7)

Thus, the trivial case in Equation 6 together with the inequality in Equation 7 results in the final
bound.

E.4 LAMB

The per-layer update rule of LAMB is given by:

θ
(t+1)
h ← θ

(t)
h − η

glob

ϕ
(
∥θ(t)

h ∥
)

∥u(t)
h + λθ

(t)
h ∥

(
u
(t)
h + λθ

(t)
h

)
whereλ ≥ 0,

[
u
(t)
h

]
i
=

[
m

(t)
h

]
i[√

v
(t)
h + ξ

]

i

, (8)

m
(t)
h = β1m

(t−1)
h + (1− β1)∆

(t)
h ,v

(t)
h = β2v

(t−1)
h + (1− β2)

[
∆

(t)
h

]2
, 0 ≤ β1, β2 ≤ 1. (9)

ϕ : R → R is a scaling function which is often defined as an identity in standard LAMB applications
[49, 88]. While ξ is a constant generally employed for numerical stability, [56] show that ξ = 0.01
leads to best results in FL, likely because it counteracts spurious pseudo-gradients early in the training.
Let’s define the trust ratio of LAMB:

r
(t)
h ≜

ϕ
(
∥θ(t)

h ∥
)

∥u(t)
h ∥

∈ R and
[
p
(t)
h

]
i
≜

r
(t)
h[√

v
(t)
h + ξ

]

i

. (10)

E.5 Adaptive Optimizers and Per-Layer Clipping: The Main Proof

Theorem 2. Assume A1.1, A2.1, A2.2, and A3, η
glob

L < 1 and κ =
[
1− 8(1− η

loc
T

loc
)2
]
> 0. If

the trust ratio from Eq. 10 in LAMB optimizer is controlled in the Algorithm 1 (global optimizer is
LAMB and local optimizer is SGD) such that r(t)h ≤ Rh and

∥∥∥1 − p
(t)
h

∥∥∥
∞
≤ Ph, β1 = 0 and λ = 0
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in LAMB optimizer, and clients are i.i.d. sampled with probability q = 1 (no sampling), then after
T steps of aggregation the performance of FL with DP, per-layer clipping and layer-wise gradient
normalization is characterized by the following upper bound:

κ

T

T−1∑

t=0

Et
loc

[∥∥∥∇L
(
θ(t)
)∥∥∥

2
]
≤ 2

[
L
(
θ(0)

)
−L (θ⋆)

]

η
glob

T
+ 16Hη2

loc
T 2

loc
σ2

glob
+ 32Hη2

loc
T 2

loc
σ2

loc

+
C2σ2

DP

ξ2

H∑

h=1

R2
hdh + 2η2

loc
T 2

loc

H∑

h=1

M2
h

[
16L2η2

loc
T 2

loc
+

1

C2
h

+ 4P 2
h

]

+ 4
η2
loc
T 2

loc

ξ2T

H∑

h=1

R2
hM

2
h

C2
h

T−1∑

t=0

[
E

k

[
Vart

loc

(∥∥∥G(t)
h,k

∥∥∥
)]

+ Var
k

(
Et

loc

[∥∥∥G(t)
h,k

∥∥∥
])]

.

where k ∼ Categorical(ω1, . . . , ωK) and Et
loc

[·] denotes the expectation over sampled mini-

batch B
(t

loc
)

k every local step t
loc

= 1, . . . , T
loc

from the client data: x
(t,t

loc
)

k ∼ Dk, x
(t,t

loc
)

k ∈
B

(t
loc

)

k , |B(t
loc

)

k | = Bk.

Proof. We assume β1 = 0 and regularization λ = 0. Then the update rule for LAMB as the global
optimizer at the FL server given by Equation 8 can be rewritten:

v
(t)
h = β2v

(t−1)
h + (1− β2)

[
∆

(t)
h

]2
, 0 ≤ β2 ≤ 1, (11)

[
u
(t)
h

]
i
=

[
∆

(t)
h

]
i[√

v
(t)
h + ξ

]

i

, (12)

θ
(t+1)
h ← θ

(t)
h − η

glob

ϕ
(
∥θ(t)

h ∥
)

∥u(t)
h ∥

u
(t)
h ,∀h. (13)

Given definition of the trust ratio in Equation 10, the update rule can be expressed as:

θ
(t+1)
h ← θ

(t)
h − η

glob
p
(t)
h ⊙∆

(t)
h . (14)

The aggregated clients updates, or pseudo-gradient, ∆(t)
h are given by (as q = 1):

∆
(t)
h =

K∑

k=1

ωk

(
∆

(t)
h,k + z

(t)
h,k

)
, (15)

where ∆(t)
h,k is the accumulated client update (see Algorithm 1) and z

(t)
h,k ∼ N

(
0, IhC

2σ2
DP

q∑K
i=1 ω2

i

)

is the random independent DP-noise added to client updates. For each client we perform T
loc

steps
of SGD optimization by i) sampling a mini-batch B

(t
loc

)

k every local step t
loc

= 1, . . . , T
loc

from the

client data: x
(t,t

loc
)

k ∼ Dk, x
(t,t

loc
)

k ∈ B
(t

loc
)

k , |B(t
loc

)

k | = Bk; ii) performing a gradient step with a
local step-size (learning rate) η

loc
> 0 having θ(t,0) = θ(t):

g
(t,t

loc
)

h,k

(
θ
(t,t

loc
)

h,k

)
=

1

Bk

∑

x
(t,t

loc
)

k ∈B
(t

loc
)

k

∇ℓh(x(t,t
loc

)

k ,θ
(t,t

loc
)

h,k ), (16)

θ
(t,t

loc
)

h,k = θ
(t,t

loc
−1)

h,k − η
loc
g
(t,t

loc
−1)

h,k

(
θ
(t,t

loc
−1)

h,k

)
, (17)

where g
(t,t

loc
)

h,k are unbiased estimators of clients’ gradients. Then for a given per-layer clipping
constant Ch > 0, the client updates and the corresponding clipping multipliers are defined as:

G
(t)
h,k = θ(t,0) − θ(t,T

loc
) = η

loc

T
loc
−1∑

t
loc

=0

g
(t,t

loc
)

h,k (18)
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∆
(t)
h,k = α

(t)
h,k G

(t)
h,k with α

(t)
h,k =

Ch

max
(
Ch,

∥∥∥G(t)
h,k

∥∥∥
) . (19)

With triangle inequality we can upper bound the norm of a random variable G
(t)
h,k given the-

orem assumption that ∇ℓh(x,θ) is L-Lipschitz smooth and thus ∥∇ℓh(x,θ)∥ ≤ Mh (e.g.
Mh = ∥∇ℓh(x0,θ0)∥+ Lmaxθ∈Θ||θ||, where Θ is a compact):

∥G(t)
h,k∥ ≤ η

loc

T
loc
−1∑

t
loc

=0

∥g(t,t
loc

)

h,k ∥ ≤ η
loc
T

loc
Mh. (20)

We next define the auxiliary terms in the context of clipping:

∆̃
(t)
h,k = α̃

(t)
h,kG

(t)
h,k with α̃

(t)
h,k =

Ch

max
(
Ch,Et

loc

[∥∥∥G(t)
h,k

∥∥∥
]) , (21)

∆
(t)

h,k = α
(t)
h G

(t)
h,k with α

(t)
h =

Ch

max
(
Ch,Et

loc
,k

[∥∥∥G(t)
h,k

∥∥∥
]) , (22)

Since gradient of loss function ℓ(x, θ) is L−Lipschitz smooth, we get the following for any two
points θ(t+1) and θ(t):

ℓ(x,θ(t+1)) ≤ ℓ(x,θ(t)) +
〈
∇ℓ(x,θ(t)),θ(t+1) − θ(t)

〉
+

L

2

∥∥∥θ(t+1) − θ(t)
∥∥∥
2

. (23)

By taking expectation over the client k data x ∼ Dk, for every client we can write down:

Lk(x,θ
(t+1)) ≤ Lk(x,θ

(t)) +
〈
∇Lk(x,θ

(t)),θ(t+1) − θ(t)
〉
+

L

2

∥∥∥θ(t+1) − θ(t)
∥∥∥
2

. (24)

By multiplying with ωk, summing all inequalities across clients, and using the update rule from
Equation 14, we can get:

L
(
θ(t+1)

)
≤ L

(
θ(t)
)
+
〈
∇L

(
θ(t)
)
,θ(t+1) − θ(t)

〉
+

L

2

∥∥∥θ(t+1) − θ(t)
∥∥∥
2

(25)

= L
(
θ(t)
)
− ηglob

〈
∇L

(
θ(t)
)
,p(t) ⊙∆(t)

〉
+

η2globL

2

∥∥∥p(t) ⊙∆(t)
∥∥∥
2

. (26)

Bounding loss E
t
loc

[
L
(
θ(t+1)

)]
with Zh term
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Now, let’s take the expectation over the mini-batches B
(t

loc
)

k sampling in the local SGD optimization
for both sides of inequality having random variables p(t)

h and ∆
(t)
h (for short notation we use Et

loc
[·]):

E
t
loc

[
L
(
θ(t+1)

)]
≤ L

(
θ(t)
)
− η

glob

H∑

h=1

E
t
loc

[〈
∇Lh

(
θ
(t)
h

)
,p

(t)
h ⊙∆

(t)
h

〉]

+
η2
glob

L

2

H∑

h=1

E
t
loc

[∥∥∥p(t)
h ⊙∆

(t)
h

∥∥∥
2
]

(i)
= L

(
θ(t)
)
−

η
glob

2

H∑

h=1

Et
loc

[∥∥∥∇Lh

(
θ
(t)
h

)∥∥∥
2
]
−

η
glob

2

H∑

h=1

Et
loc

[∥∥∥p(t)
h ⊙∆

(t)
h

∥∥∥
2
]

+
η
glob

2

H∑

h=1

E
t
loc

[∥∥∥∇Lh

(
θ
(t)
h

)
− p

(t)
h ⊙∆

(t)
h

∥∥∥
2
]

︸ ︷︷ ︸
Zh

+
η2
glob

L

2

H∑

h=1

E
t
loc

[∥∥∥p(t)
h ⊙∆

(t)
h

∥∥∥
2
]

≤ L
(
θ(t)
)
−

η
glob

2

∥∥∥∇L
(
θ(t)
)∥∥∥

2

−
η
glob

(1− η
glob

L)

2

H∑

h=1

E
t
loc

[∥∥∥p(t)
h ⊙∆

(t)
h

∥∥∥
2
]
+

η
glob

2

H∑

h=1

Zh

(ii)

≤ L
(
θ(t)
)
−

η
glob

2

∥∥∥∇L
(
θ(t)
)∥∥∥

2

+
η
glob

2

H∑

h=1

Et
loc

[∥∥∥∇Lh

(
θ
(t)
h

)
− p

(t)
h ⊙∆

(t)
h

∥∥∥
2
]

︸ ︷︷ ︸
Zh

.

(27)

where (i) uses−2 ⟨a, b⟩ = −∥a∥2−∥b∥2+∥a− b∥2 and (ii) uses the condition η
glob

L < 1. We can

next bound Zh using Equation 15, the auxiliary terms ∆̃(t)
h,k and ∆

(t)

h,k defined in Equations 21-22,

Zh = Et
loc

[∥∥∥∥∇Lh

(
θ
(t)
h

)

−
K∑

k=1

ωkG
(t)
h,k +

K∑

k=1

ωkG
(t)
h,k

−
K∑

k=1

ωkp
(t)
h ⊙∆

(t)
h,k −

K∑

k=1

ωkp
(t)
h ⊙ z

(t)
h,k

+

K∑

k=1

ωkp
(t)
h ⊙ ∆̃

(t)
h,k −

K∑

k=1

ωkp
(t)
h ⊙ ∆̃

(t)
h,k

+

K∑

k=1

ωkp
(t)
h ⊙∆

(t)

h,k −
K∑

k=1

ωkp
(t)
h ⊙∆

(t)

h,k

∥∥∥∥
2
]
. (28)

As a reminder, Jensen’s inequality for some yi ∈ RD gives us:
∥∥∥∥∥

K∑

k=1

ωiyk

∥∥∥∥∥

2

≤
K∑

i=1

ωi||yk||2 where
K∑

k=1

ωk = 1, 0 ≤ ωk ≤ 1. (29)

Helpful inequalities
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Using the triangle inequality first and then applying Hölder’s inequality, we get for yi ∈ RD

∥∥∥∥∥
K∑

k=1

yk

∥∥∥∥∥

2

≤
(

K∑

k=1

||yk||
)2

=

(
K∑

k=1

(||yk|| · 1)
)2

≤ K

K∑

k=1

||yk||2. (30)

Also, if y1 and y2 are independent random variables and E [y1] = 0 then:

E
[
||y1 + y2||2

]
= E

[
||y1||2 + ||y2||2 + 2 < y1,y2 >

]

= E
[
||y1||2

]
+ E

[
||y2||2

]
+ 2 < E [y1] ,E [y2] >

= E
[
||y1||2

]
+ E

[
||y2||2

]
. (31)

Let’s estimate for any random variable yh the following entity having that yh and p
(t)
h are not

independent variables:

E
t
loc

[∥∥∥p(t)
h ⊙ yh

∥∥∥
2
]
=

dh∑

i=1

E
t
loc

[[
p
(t)
h

]2
i
[yh]

2
i

]
≤ R2

h

ξ2

dh∑

i=1

E
t
loc

[yh]
2
i =

R2
h

ξ2
E

t
loc

[
∥yh∥2

]
.

(32)

Bounding term with DP noise in Zh

Having upper bound on the expectation Et
loc

[
p
(t)
h

]2
i
≤ R2

h

ξ2 and random independent DP noise

z
(t)
h,k ∼ N

(
0, IhC

2σ2
DP

1∑K
i=1 ω2

i

)
as q = 1 per theorem condition (thus p(t)

h and z
(t)
h,k are independent

variables), let’s get the upper bound first for:

Et
loc



∥∥∥∥∥

K∑

k=1

ωkp
(t)
h ⊙ z

(t)
h,k

∥∥∥∥∥

2

 = Et

loc



∥∥∥∥∥p

(t)
h ⊙

K∑

k=1

ωkz
(t)
h,k

∥∥∥∥∥

2

 =

dh∑

i=1

Et
loc



[
p
(t)
h

]2
i

[
K∑

k=1

ωkz
(t)
h,k

]2

i




=

dh∑

i=1

E
t
loc

[
p
(t)
h

]2
i
E

t
loc

[
K∑

k=1

ωkz
(t)
h,k

]2

i

≤ R2
h

ξ2
dhEt

loc

[
K∑

k=1

ωkz
(t)
h,k

]2

0

=
R2

h

ξ2
dhC

2σ2
DP

1
∑K

k=1 ω
2
k

K∑

k=1

ω2
k =

R2
h

ξ2
dhC

2σ2
DP

. (33)

Bounding Zh with Y1, Y2, Y3, Y4 terms

Given Equations 29, 33, 30 and 31 (we use the fact that DP noise z
(t)
h,k is zero-mean independent

variable), we can bound Zh in the following way:

Zh ≤ 4E
t
loc

[
K∑

k=1

ωk

∥∥∥∇Lh

(
θ
(t)
h

)
−G

(t)
h,k

∥∥∥
2
]

︸ ︷︷ ︸
Y1

+4

K∑

k=1

ωk Et
loc

[∥∥∥G(t)
h,k − p

(t)
h ⊙∆

(t)

h,k

∥∥∥
2
]

︸ ︷︷ ︸
Y2

+ 4

K∑

k=1

ωk Et
loc

[∥∥∥p(t)
h ⊙

(
∆

(t)
h,k − ∆̃

(t)
h,k

)∥∥∥
2
]

︸ ︷︷ ︸
Y3

+4

K∑

k=1

ωk Et
loc

[∥∥∥p(t)
h ⊙

(
∆̃

(t)
h,k −∆

(t)

h,k

)∥∥∥
2
]

︸ ︷︷ ︸
Y4

+
R2

h

ξ2
dhC

2σ2
DP. (34)

Bounding Y1 term
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Defining H
(t)
h,k = 1

T
loc

∑T
loc
−1

t
loc

=0 g
(t,t

loc
)

h,k and G
(t)
h,k = η

loc
T

loc
H

(t)
h,k:

Y1 = E
t
loc

[
K∑

k=1

ωk

∥∥∥∇Lh

(
θ
(t)
h

)
−G

(t)
h,k

∥∥∥
2
]

Eq. 29
≤

K∑

k=1

ωkEt
loc

[∥∥∥∇Lh

(
θ
(t)
h

)
− η

loc
T

loc
H

(t)
h,k

∥∥∥
2
]

=

K∑

k=1

ωkEt
loc

[∥∥∥∇Lh

(
θ
(t)
h

)
− η

loc
T

loc
∇Lh

(
θ
(t)
h

)
+ η

loc
T

loc
∇Lh

(
θ
(t)
h

)
− η

loc
T

loc
H

(t)
h,k

∥∥∥
2
]

Eq. 30
≤ 2

K∑

k=1

ωkEt
loc

[∥∥∥∇Lh

(
θ
(t)
h

)
− η

loc
T

loc
∇Lh

(
θ
(t)
h

)∥∥∥
2
]

+ 2

K∑

k=1

ωkEt
loc

[∥∥∥ηloc
T

loc
∇Lh

(
θ
(t)
h

)
− η

loc
T

loc
H

(t)
h,k

∥∥∥
2
]

= 2(1− η
loc
T

loc
)2E

t
loc

[∥∥∥∇Lh

(
θ
(t)
h

)∥∥∥
2
]
+ 2η2

loc
T 2

loc

K∑

k=1

ωkEt
loc

[∥∥∥∇Lh

(
θ
(t)
h

)
−H

(t)
h,k

∥∥∥
2
]

︸ ︷︷ ︸
X

,

(35)

where

X =

K∑

k=1

ωkEt
loc

[∥∥∥∇Lh

(
θ
(t)
h

)
−H

(t)
h,k

∥∥∥
2
]

=

K∑

k=1

ωkEt
loc

[∥∥∥∇Lh

(
θ
(t)
h

)
−∇Lh,k

(
θ
(t)
h

)
+∇Lh,k

(
θ
(t)
h

)
−H

(t)
h,k

∥∥∥
2
]

Eq. 30
≤ 2

K∑

k=1

ωkEt
loc

[∥∥∥∇Lh

(
θ
(t)
h

)
−∇Lh,k

(
θ
(t)
h

)∥∥∥
2
]
+ 2

K∑

k=1

ωkEt
loc

[∥∥∥∇Lh,k

(
θ
(t)
h

)
−H

(t)
h,k

∥∥∥
2
]

A3
≤ 2σ2

glob
+ 2

K∑

k=1

ωkEt
loc




∥∥∥∥∥∥
∇Lh,k

(
θ
(t)
h

)
− 1

T
loc

T
loc
−1∑

t
loc

=0

∇Lh,k

(
θ
(t,t

loc
)

h,k

)
+

1

T
loc

T
loc
−1∑

t
loc

=0

∇Lh,k

(
θ
(t,t

loc
)

h,k

)
−H

(t)
h,k

∥∥∥∥∥∥

2



Eq. 30
≤ 2σ2

glob
+ 4

K∑

k=1

ωkEt
loc




∥∥∥∥∥∥
∇Lh,k

(
θ
(t)
h

)
− 1

T
loc

T
loc
−1∑

t
loc

=0

∇Lh,k

(
θ
(t,t

loc
)

h,k

)
∥∥∥∥∥∥

2



+ 4

K∑

k=1

ωkEt
loc




∥∥∥∥∥∥
1

T
loc

T
loc
−1∑

t
loc

=0

∇Lh,k

(
θ
(t,t

loc
)

h,k

)
− 1

T
loc

T
loc
−1∑

t
loc

=0

g
(t,t

loc
)

h,k

∥∥∥∥∥∥

2



Eq. 29
≤ 2σ2

glob
+

4

T
loc

K∑

k=1

ωk

T
loc
−1∑

t
loc

=0

Et
loc

[∥∥∥∇Lh,k

(
θ
(t)
h

)
−∇Lh,k

(
θ
(t,t

loc
)

h,k

)∥∥∥
2
]

+
4

T
loc

K∑

k=1

ωk

T
loc
−1∑

t
loc

=0

E
t
loc

[∥∥∥∇Lh,k

(
θ
(t,t

loc
)

h,k

)
− g

(t,t
loc

)

h,k

∥∥∥
2
]

A2.2
≤ 2σ2

glob
+

4

T
loc

K∑

k=1

ωk

T
loc
−1∑

t
loc

=0

Et
loc

[∥∥∥∇Lh,k

(
θ
(t,0)
h,k

)
−∇Lh,k

(
θ
(t,t

loc
)

h,k

)∥∥∥
2
]
+ 4σ2

loc
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A1.1
≤ 2σ2

glob
+ 4σ2

loc
+

4L2

T
loc

K∑

k=1

ωk

T
loc
−1∑

t
loc

=0

E
t
loc

[∥∥∥θ(t,0)
h,k − θ

(t,t
loc

)

h,k

∥∥∥
2
]

Eq. 17
= 2σ2

glob
+ 4σ2

loc
+

4L2

T
loc

K∑

k=1

ωk

T
loc
−1∑

t
loc

=0

Et
loc




∥∥∥∥∥∥
η
loc

t
loc
−1∑

s=0

g
(t,s)
h,k

∥∥∥∥∥∥

2



︸ ︷︷ ︸
W

, (36)

where

W =

T
loc
−1∑

t
loc

=0

E
t
loc




∥∥∥∥∥∥
η
loc

t
loc
−1∑

s=0

g
(t,s)
h,k

∥∥∥∥∥∥

2



Eq. 30
≤ η2

loc

T
loc
−1∑

t
loc

=0

t
loc

t
loc
−1∑

s=0

Et
loc

[∥∥∥g(t,s)
h,k

∥∥∥
2
]

∥∇ℓh(x,θ)∥≤Mh

≤ η2
loc
M2

h

T
loc
−1∑

t
loc

=0

t2
loc
≤ η2

loc
M2

hT
3
loc
. (37)

Substituting it back in X, we get:

X ≤ 2σ2
glob

+ 4σ2
loc

+
4L2

T
loc

K∑

k=1

ωkη
2
loc
M2

hT
3
loc

= 2σ2
glob

+ 4σ2
loc

+ 4L2η2
loc
T 2

loc
M2

h , (38)

which we can substitute in Y1, thus getting the bound:

Y1 ≤ 2(1− η
loc
T

loc
)2Et

loc

[∥∥∥∇Lh

(
θ
(t)
h

)∥∥∥
2
]
+ 2η2

loc
T 2

loc

K∑

k=1

ωkEt
loc

[∥∥∥∇Lh

(
θ
(t)
h

)
−H

(t)
h,k

∥∥∥
2
]

︸ ︷︷ ︸
X

≤ 2(1− η
loc
T

loc
)2Et

loc

[∥∥∥∇Lh

(
θ
(t)
h

)∥∥∥
2
]
+ 2η2

loc
T 2

loc

[
2σ2

glob
+ 4σ2

loc
+ 4L2η2

loc
T 2

loc
M2

h

]

= 2(1− η
loc
T

loc
)2E

t
loc

[∥∥∥∇Lh

(
θ
(t)
h

)∥∥∥
2
]
+ 4η2

loc
T 2

loc
σ2

glob
+ 8η2

loc
T 2

loc
σ2

loc
+ 8L2η4

loc
T 4

loc
M2

h .

(39)

Bounding Y2 term

We next bound Y2 using G
(t)
h,k defined in Equation 18 and its bound defined in Equation 20:

Y2 = Et
loc

[∥∥∥G(t)
h,k − α

(t)
h G

(t)
h,k + α

(t)
h G

(t)
h,k − p

(t)
h ⊙∆

(t)

h,k

∥∥∥
2
]

Eq. 30
≤ 2E

t
loc

[∥∥∥G(t)
h,k − α

(t)
h G

(t)
h,k

∥∥∥
2
]

+ 2E
t
loc

[∥∥∥α(t)
h G

(t)
h,k − p

(t)
h ⊙∆

(t)

h,k

∥∥∥
2
]

Lemma 3 and Eq. 20
≤ η2

loc
T 2

loc
M2

h

2C2
h

+ 2Et
loc

[∥∥∥α(t)
h G

(t)
h,k − p

(t)
h ⊙∆

(t)

h,k

∥∥∥
2
]
. (40)
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Given the theorem’s
∥∥∥1 − p

(t)
h

∥∥∥
∞
≤ Ph assumption5, the latter term we can bound as:

Et
loc

[∥∥∥α(t)
h G

(t)
h,k − p

(t)
h ⊙∆

(t)

h,k

∥∥∥
2
]
= Et

loc

[∥∥∥
(
1 − p

(t)
h

)
⊙ α

(t)
h G

(t)
h,k

∥∥∥
2
]

similar to Eq. 32
≤ P 2

hEt
loc

[∥∥∥α(t)
h G

(t)
h,k

∥∥∥
2
]

Eq. 20
≤ P 2

hη
2
loc
T 2

loc
M2

h

∣∣∣α(t)
h

∣∣∣
2

≤ P 2
hη

2
loc
T 2

loc
M2

h . (41)

Substituting the latest bound back into Y2, we finally can write:

Y2 ≤
η2
loc
T 2

loc
M2

h

2C2
h

+ 2P 2
hη

2
loc
T 2

loc
M2

h . (42)

Bounding Y3 term

We can next bound Y3 as follows:

Y3 = E
t
loc

[∥∥∥p(t)
h ⊙

(
∆

(t)
h,k − ∆̃

(t)
h,k

)∥∥∥
2
]

Eq. 32
≤ R2

h

ξ2
E

t
loc

[∥∥∥∆(t)
h,k − ∆̃

(t)
h,k

∥∥∥
2
]

=
R2

h

ξ2
E

t
loc

[∥∥∥α(t)
h,k G

(t)
h,k − α̃

(t)
h,k G

(t)
h,k

∥∥∥
2
]
=

R2
h

ξ2
E

t
loc

[(
α
(t)
h,k − α̃

(t)
h,k

)2 ∥∥∥G(t)
h,k

∥∥∥
2
]

Eq. 20
≤ R2

h

ξ2
η2
loc
T 2

loc
M2

hEt
loc

[(
α
(t)
h,k − α̃

(t)
h,k

)2]
. (43)

Using α
(t)
h,k and α̃

(t)
h,k defined in Equations 19 and 21, we have the following:

(
α
(t)
h,k − α̃

(t)
h,k

)2
=


 Ch

max
(
Ch,

∥∥∥G(t)
h,k

∥∥∥
) − Ch

max
(
Ch,Et

loc

[∥∥∥G(t)
h,k

∥∥∥
])




2

Lemma 1
≤

(∥∥∥G(t)
h,k

∥∥∥ − E
t
loc

[∥∥∥G(t)
h,k

∥∥∥
])2

C2
h

. (44)

Consequently, Y3 can be bounded as

Y3 ≤
R2

h

ξ2
η2
loc
T 2

loc
M2

hEt
loc

[(
α
(t)
h,k − α̃

(t)
h,k

)2]

≤ R2
h

ξ2
η2
loc
T 2

loc
M2

h

E
t
loc

[(∥∥∥G(t)
h,k

∥∥∥ − E
t
loc

[∥∥∥G(t)
h,k

∥∥∥
])2]

C2
h

=
R2

h

ξ2
η2
loc
T 2

loc
M2

h

Var
t
loc

(∥∥∥G(t)
h,k

∥∥∥
)

C2
h

. (45)

Bounding Y4 term

We can finally bound Y4 as follows:

Y4 = E
t
loc

[∥∥∥p(t)
h ⊙

(
∆̃

(t)
h,k −∆

(t)

h,k

)∥∥∥
2
]

Eq. 32
≤ R2

h

ξ2
E

t
loc

[∥∥∥∆̃(t)
h,k −∆

(t)

h,k

∥∥∥
2
]

=
R2

h

ξ2
E

t
loc

[∥∥∥α̃(t)
h,k G

(t)
h,k − α

(t)
h,k G

(t)
h,k

∥∥∥
2
]
=

R2
h

ξ2
E

t
loc

[(
α̃
(t)
h,k − α

(t)
h,k

)2 ∥∥∥G(t)
h,k

∥∥∥
2
]

Eq. 20
≤ R2

h

ξ2
η2
loc
T 2

loc
M2

hEt
loc

[(
α̃
(t)
h,k − α

(t)
h,k

)2]
. (46)

5This assumption is reasonable given LAMB optimizer bounds its trust ratio.
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Similarly, using α̃
(t)
h,k and α

(t)
h,k defined in Equations 21 and 22 we have the following:

(
α̃
(t)
h,k − α

(t)
h,k

)2
=


 Ch

max
(
Ch,Et

loc

[∥∥∥G(t)
h,k

∥∥∥
]) − Ch

max
(
Ch,Et

loc
,k

[∥∥∥G(t)
h,k

∥∥∥
])




2

Lemma 1
≤

(
E

t
loc

[∥∥∥G(t)
h,k

∥∥∥
]
− E

t
loc

,k

[∥∥∥G(t)
h,k

∥∥∥
])2

C2
h

. (47)

We can thus bound Y4 as

Y4 ≤
R2

h

ξ2
η2
loc
t2
loc
M2

hEt
loc

[(
α̃
(t)
h,k − α

(t)
h,k

)2]

≤ R2
h

ξ2
η2
loc
T 2

loc
M2

h

(
Et

loc

[∥∥∥G(t)
h,k

∥∥∥
]
− E

t
loc

,k

[∥∥∥G(t)
h,k

∥∥∥
])2

C2
h

. (48)

Final bound on Zh term

Substituting Y1, Y2, Y3, and Y4 back in Zh and having k ∼ Categorical(ω1, . . . , ωK), we get:

Zh ≤ 8(1− η
loc
T

loc
)2E

t
loc

[∥∥∥∇Lh

(
θ
(t)
h

)∥∥∥
2
]
+ 16η2

loc
T 2

loc
σ2

glob
+ 32η2

loc
T 2

loc
σ2

loc
+ 32L2η4

loc
T 4

loc
M2

h

+
2η2

loc
T 2

loc
M2

h

C2
h

+ 8P 2
hη

2
loc
T 2

loc
M2

h

+ 4
R2

h

ξ2
η2
loc
T 2

loc
M2

h

∑K
k=1 ωkVart

loc

(∥∥∥G(t)
h,k

∥∥∥
)

C2
h

+ 4
R2

h

ξ2
η2
loc
T 2

loc
M2

h

∑K
k=1 ωk

(
E

t
loc

[∥∥∥G(t)
h,k

∥∥∥
]
− E

t
loc

,k

[∥∥∥G(t)
h,k

∥∥∥
])2

C2
h

+
R2

h

ξ2
dhC

2σ2
DP

= 8(1− η
loc
T

loc
)2Et

loc

[∥∥∥∇Lh

(
θ
(t)
h

)∥∥∥
2
]
+ 16η2

loc
T 2

loc
σ2

glob
+ 32η2

loc
T 2

loc
σ2

loc

+ η2
loc
T 2

loc
M2

h

[
32L2η2

loc
T 2

loc
+

2

C2
h

+ 8P 2
h

]

+ 4
R2

h

ξ2
η2
loc
T 2

loc
M2

h

C2
h

[
E

k

[
Vart

loc

(∥∥∥G(t)
h,k

∥∥∥
)]

+ Var
k

(
Et

loc

[∥∥∥G(t)
h,k

∥∥∥
])]

+
R2

h

ξ2
dhC

2σ2
DP.

(49)

Final bound on loss Et
loc

[
L
(
θ(t+1)

)]

We can thus rewrite Equation 27 having κ =
[
1− 8(1− η

loc
T

loc
)2
]

as

E
t
loc

[
L
(
θ(t+1)

)]
≤ L

(
θ(t)
)
−

κη
glob

2
E

t
loc

[∥∥∥∇L
(
θ(t)
)∥∥∥

2
]

+ 8Hη
glob

η2
loc
T 2

loc
σ2

glob
+ 16Hη

glob
η2
loc
T 2

loc
σ2

loc

+ η
glob

η2
loc
T 2

loc

H∑

h=1

M2
h

[
16L2η2

loc
T 2

loc
+

1

C2
h

+ 4P 2
h

]

+ 2
η
glob

η2
loc
T 2

loc

ξ2

H∑

h=1

R2
hM

2
h

C2
h

[
E

k

[
Vart

loc

(∥∥∥G(t)
h,k

∥∥∥
)]

+ Var
k

(
Et

loc

[∥∥∥G(t)
h,k

∥∥∥
])]

+
η
glob

C2σ2
DP

2ξ2

H∑

h=1

R2
hdh. (50)
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Rearranging and taking an average over all aggregation steps t = 0, . . . , T − 1 and having θ⋆ such
that L (θ⋆) ≤ Et

loc
[L (θt)], we finally get:

κ

T

T−1∑

t=0

E
t
loc

[∥∥∥∇L
(
θ(t)
)∥∥∥

2
]
≤ 2

[
L
(
θ(0)

)
−L (θ⋆)

]

η
glob

T
+ 16Hη2

loc
T 2

loc
σ2

glob
+ 32Hη2

loc
T 2

loc
σ2

loc

+
C2σ2

DP

ξ2

H∑

h=1

R2
hdh + 2η2

loc
T 2

loc

H∑

h=1

M2
h

[
16L2η2

loc
T 2

loc
+

1

C2
h

+ 4P 2
h

]

+ 4
η2
loc
T 2

loc

ξ2T

H∑

h=1

R2
hM

2
h

C2
h

T−1∑

t=0

[
E

k

[
Vart

loc

(∥∥∥G(t)
h,k

∥∥∥
)]

+ Var
k

(
Et

loc

[∥∥∥G(t)
h,k

∥∥∥
])]

(51)

Per Theorem 1 in [8] and Lemma 1 and Theorem 1 from [46] to guarantee (ε, δ)-privacy z2 ≥
const q

2T log 1/δ
ε2 , while σDP = z · S = z · maxKi=1ωi/q. Then to get the final bound with (ε, δ)-

privacy guarantee, we must select σ2
DP

= const
maxK

i=1(ωi)
2T ln 1

δ

ε2 .

Remark: For simplicity we assumed that β1 = 0 and regularizer λ = 0 in the LAMB optimizer.
However, the proof can be extended to the cases with β1 > 0 and λ > 0.

E.6 Finite-Time Convergence Rates

Corollary 1. Assume A1.1, A2.1, A2.2, and A3, η
glob

L < 1 and κ =
[
1− 8(1− η

loc
T

loc
)2
]
> 0. If

the trust ratio from Eq. 10 in LAMB optimizer is controlled in the Algorithm 1 (global optimizer
is LAMB and local optimizer is SGD) such that r(t)h ≤ Rh and

∥∥∥1 − p
(t)
h

∥∥∥
∞
≤ Ph, β1 = 0 and

λ = 0 in the LAMB optimizer, clients are i.i.d. sampled with probability q = 1 (no sampling), and
η
glob

= Θ
(

1
L
√
T

)
and η

loc
= Θ

(
1

L
√
TlocT

)
, then Algorithm 1 converges to a stationary point of the

global loss function with the convergence bound characterized as:

κ

T

T−1∑

t=0

E
t
loc

[∥∥∥∇L
(
θ(t)
)∥∥∥

2
]
≤ O

(
1√
T

)

︸ ︷︷ ︸
optimization

+O

(
Tlocσ

2
glob

T

)

︸ ︷︷ ︸
global update noise

+O

(
Tlocσ

2
loc

T

)

︸ ︷︷ ︸
local update noise

+ O

(
C2σ2

DP

H∑

h=1

R2
hdh

)

︸ ︷︷ ︸
differential privacy noise

+O

(
Tloc

T

H∑

h=1

M2
h

C2
h

)

︸ ︷︷ ︸
clipping bias

+O

(
Tloc

T

H∑

h=1

R2
hM

2
h

C2
h

[
Ψ

intra

h +Ψ
inter

h

])

︸ ︷︷ ︸
intra and inter-client update variance

,

(52)

where Ψ
intra

h = E
t,k

[
Vart

loc

(∥∥∥G(t)
h,k

∥∥∥
)]

and Ψ
inter

h = Et

[
Var

k

(
Et

loc

[∥∥∥G(t)
h,k

∥∥∥
])]

, k ∼

Categorical(ω1, . . . , ωK) and Et
loc

[·] denotes the expectation over sampled mini-batch B
(t

loc
)

k every

local step t
loc

= 1, . . . , T
loc

from the client data: x
(t,t

loc
)

k ∼ Dk, x
(t,t

loc
)

k ∈ B
(t

loc
)

k , |B(t
loc

)

k | = Bk.

Proof. Using Theorem 2, we have

κ

T

T−1∑

t=0

E
t
loc

[∥∥∥∇L
(
θ(t)
)∥∥∥

2
]
≤ 2

[
L
(
θ(0)

)
−L (θ⋆)

]

η
glob

T
+ 16Hη2

loc
T 2

loc
σ2

glob
+ 32Hη2

loc
T2

loc
σ2

loc

+
C2σ2

DP

ξ2

H∑

h=1

R2
hdh + 2η2

loc
T 2

loc

H∑

h=1

M2
h

[
16L2η2

loc
T 2

loc
+

1

C2
h

+ 4P 2
h

]
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+ 4
η2
loc
T 2

loc

ξ2T

H∑

h=1

R2
hM

2
h

C2
h

T−1∑

t=0

[
E

k

[
Var

t
loc

(∥∥∥G(t)
h,k

∥∥∥
)]

+ Var
k

(
E

t
loc

[∥∥∥G(t)
h,k

∥∥∥
])]

.

(53)

Choosing η
glob

= 1/
√
T and η

loc
= 1/

√
T

loc
T , we get η

glob
T =

√
T and η2

loc
T 2

loc
/T = Tloc/T

2.
Substituting these in the above bound we get

κ

T

T−1∑

t=0

E
t
loc

[∥∥∥∇L
(
θ(t)
)∥∥∥

2
]
≤ 2

[
L
(
θ(0)

)
−L (θ⋆)

]
√
T

+ 16H
Tloc

T
σ2

glob
+ 32H

Tloc

T
σ2

loc

+
C2σ2

DP

ξ2

H∑

h=1

R2
hdh + 2

Tloc

T

H∑

h=1

M2
h

[
16L2Tloc

T
+

1

C2
h

+ 4P 2
h

]

+
4

ξ2
Tloc

T 2

H∑

h=1

R2
hM

2
h

C2
h

T−1∑

t=0

[
E

k

[
Var

t
loc

(∥∥∥G(t)
h,k

∥∥∥
)]

+ Var
k

(
E

t
loc

[∥∥∥G(t)
h,k

∥∥∥
])]

.

(54)

Above can be rewritten as using the big-O and definition of Ψ
intra

h and Ψ
inter

h as

κ

T

T−1∑

t=0

Et
loc

[∥∥∥∇L
(
θ(t)
)∥∥∥

2
]
≤ O

(
1√
T

)
+ O

(
Tlocσ

2
glob

T

)
+ O

(
Tlocσ

2
loc

T

)

+ O

(
C2σ2

DP

H∑

h=1

R2
hdh

)
+ O

(
Tloc

T

H∑

h=1

M2
h

C2
h

)
+ O

(
Tloc

T

H∑

h=1

R2
hM

2
h

C2
h

[
Ψ

intra

h +Ψ
inter

h

])
.

(55)

E.7 Recovering Prior Bounds

Sublinear Convergence. Similar to prior works in FL [42, 16, 60, 12, 89, 57, 11] we highlight
that Algorithm 1 follows the best known convergence rate of O

(
1/
√
T
)

for non-convex setting.
Furthermore, in this section we provide a sketch for recovering the approximate bound for other
terms as seen in prior work:

Federated Averaging [1, 12]. Similar to analysis in [42] (see Remark 1 about Theorem 1 & 2 in
[42]), setting η

glob
= 1 does not recover the bound in Federated Averaging. However, starting with

the final convergence bound of Theorem 2:

κ

T

T−1∑

t=0

Et
loc

[∥∥∥∇L
(
θ(t)
)∥∥∥

2
]
≤ 2

[
L
(
θ(0)

)
−L (θ⋆)

]

η
glob

T
+ 16Hη2

loc
T 2

loc
σ2

glob
+ 32Hη2

loc
T 2

loc
σ2

loc

+
C2σ2

DP

ξ2

H∑

h=1

R2
hdh + 2η2

loc
T 2

loc

H∑

h=1

M2
h

[
16L2η2

loc
T 2

loc
+

1

C2
h

+ 4P 2
h

]

+ 4
η2
loc
T 2

loc

ξ2T

H∑

h=1

R2
hM

2
h

C2
h

T−1∑

t=0

[
E

k

[
Vart

loc

(∥∥∥G(t)
h,k

∥∥∥
)]

+ Var
k

(
Et

loc

[∥∥∥G(t)
h,k

∥∥∥
])]

(56)
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and substituting η
glob

= 1/
√
T , η

loc
= 1/(T

loc

√
T ), σ2

DP
= 0 and Ch →∞, we get,

κ

T

T−1∑

t=0

E
t
loc

[∥∥∥∇L
(
θ(t)
)∥∥∥

2
]
≤ 2

[
L
(
θ(0)

)
−L (θ⋆)

]

(1/
√
T )T

+ 16H
1

T 2
loc

T 2
loc

T
σ2

glob

+ 32H
1

T 2
loc

T 2
loc

T
σ2

loc
+ 2

1

T 2
loc

T 2
loc

T

H∑

h=1

M2
h

[
16L2 1

TT 2
loc

T 2
loc

+ 4P 2
h

]

=
2
[
L
(
θ(0)

)
−L (θ⋆)

]
√
T

+
16Hσ2

glob

T
+

32Hσ2
loc

T
+

2

T

H∑

h=1

M2
h

[
16L2/T + 4P 2

h

]
.

(57)

Above can be rewritten as using the big-O as:

κ

T

T−1∑

t=0

Et
loc

[∥∥∥∇L
(
θ(t)
)∥∥∥

2
]
≤ O

(
L
(
θ(0)

)
−L (θ⋆)√
T

+
σ2

glob

T
+

σ2
loc

T
+

1

T

)
. (58)

Similar to Theorem 1 in [12], the above bound convergences at a rate of O
(
1/
√
T
)

and O (1/T ) for

optimization term and the update noises σ2
glob

and σ2
loc

. Similar convergence rates are also seen in
other works [53, 16].

Adaptive Federated Optimization [42]. Starting with the final convergence bound of Theorem 2:

κ

T

T−1∑

t=0

E
t
loc

[∥∥∥∇L
(
θ(t)
)∥∥∥

2
]
≤ 2

[
L
(
θ(0)

)
−L (θ⋆)

]

η
glob

T
+ 16Hη2

loc
T 2

loc
σ2

glob
+ 32Hη2

loc
T 2

loc
σ2

loc

+ C2σ
2
DP

ξ2

H∑

h=1

R2
hdh + 2η2

loc
T 2

loc

H∑

h=1

M2
h

[
16L2η2

loc
T 2

loc
+

1

C2
h

+ 4P 2
h

]

+ 4
η2
loc
T 2

loc

ξ2T

H∑

h=1

R2
hM

2
h

C2
h

T−1∑

t=0

[
E

k

[
Var

t
loc

(∥∥∥G(t)
h,k

∥∥∥
)]

+ Var
k

(
E

t
loc

[∥∥∥G(t)
h,k

∥∥∥
])]

(59)

and substituting η
glob

= 1/
√
T , η

loc
= 1/

(
T 3/4T

loc

)
, σ2

DP
= 0 and Ch →∞, we get:

κ

T

T−1∑

t=0

E
t
loc

[∥∥∥∇L
(
θ(t)
)∥∥∥

2
]
≤ 2

[
L
(
θ(0)

)
−L (θ⋆)

]

(1/
√
T )T

+ 16H
T 2

loc

T 2
loc
T 3/2

σ2
glob

+ 32H
T 2

loc

T 2
loc
T 3/2

σ2
loc

+ 2
T 2

loc

T 2
loc
T 3/2

H∑

h=1

M2
h

[
16L2 T 2

loc

T 2
loc
T 3/2

+ 4P 2
h

]

=
2
[
L
(
θ(0)

)
−L (θ⋆)

]
√
T

+
16Hσ2

glob

T 3/2
+

32Hσ2
loc

T 3/2
+

2

T 3/2

H∑

h=1

M2
h

[
16L2T−3/2 + 4P 2

h

]
.

(60)

Above can be rewritten as using the big-O as:

κ

T

T−1∑

t=0

E
t
loc

[∥∥∥∇L
(
θ(t)
)∥∥∥

2
]
≤ O

(
L
(
θ(0)

)
−L (θ⋆)√
T

+
σ2

glob

T 3/2
+

σ2
loc

T 3/2
+

1

T 3/2

)
. (61)

Similar to Corollary 1 & 2 in [42], the above bound converges at a rate of O
(
1/
√
T
)

and O
(
1/T 3/2

)

for optimization term and the global update noise σ2
glob

respectively. However, it follows a faster

convergence rate of O
(
1/T 3/2

)
for the local update noise σ2

loc
compared to a rate of O

(
1/
√
T
)

in [42].
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Understanding Gradient Clipping in Private SGD [60]. Starting with the final convergence
bound of Theorem 2:

κ

T

T−1∑

t=0

Et
loc

[∥∥∥∇L
(
θ(t)
)∥∥∥

2
]
≤ 2

[
L
(
θ(0)

)
−L (θ⋆)

]

η
glob

T
+ 16Hη2

loc
T 2

loc
σ2

glob
+ 32Hη2

loc
T 2

loc
σ2

loc

+
C2σ2

DP

ξ2

H∑

h=1

R2
hdh + 2η2

loc
T 2

loc

H∑

h=1

M2
h

[
16L2η2

loc
T 2

loc
+

1

C2
h

+ 4P 2
h

]

+ 4
η2
loc
T 2

loc

ξ2T

H∑

h=1

R2
hM

2
h

C2
h

T−1∑

t=0

[
E

k

[
Vart

loc

(∥∥∥G(t)
h,k

∥∥∥
)]

+ Var
k

(
Et

loc

[∥∥∥G(t)
h,k

∥∥∥
])]

(62)

and substituting η
glob

= 1/
√
T , η

loc
= 1/(

√
TT

loc
), σ2

DP
= O

(
maxK

i=1(ωi)
2T ln 1

δ

ε2

)
(per Theorem 1

in [8] and Lemma 1 and Theorem 1 from [46] to guarantee (ε, δ)-privacy z2 ≥ const q
2T log 1/δ

ε2 ,
while σDP = z · S = z ·maxKi=1ωi/q), Rh = 1, Ch = C√

H
, and D =

∑H
h=1 dh, we get,

κ

T

T−1∑

t=0

E
t
loc

[∥∥∥∇L
(
θ(t)
)∥∥∥

2
]
≤ 2

[
L
(
θ(0)

)
−L (θ⋆)

]

(1/
√
T )T

+ 16H
1

T 2
loc

T 2
loc

T
σ2

glob

+ 32H
1

T 2
loc

T 2
loc

T
σ2

loc
+

1

ξ2
O

(
C2maxKi=1(ωi)

2T ln 1
δ

ε2

) H∑

h=1

dh

+ 2
1

T 2
loc

T 2
loc

T

H∑

h=1

M2
h

[
16L2 1

TT 2
loc

T 2
loc

+
H

C2
+ 4P 2

h

]

+ 4
T 2

loc

ξ2T 2

1

T 2
loc

H∑

h=1

HR2
hM

2
h

C2

T−1∑

t=0

[
E

k

[
Var

t
loc

(∥∥∥G(t)
h,k

∥∥∥
)]

+ Var
k

(
E

t
loc

[∥∥∥G(t)
h,k

∥∥∥
])]

=
2
[
L
(
θ(0)

)
−L (θ⋆)

]
√
T

+
16Hσ2

glob

T
+

32Hσ2
loc

T
+ O

(
DC2maxKi=1(ωi)

2T ln 1
δ

ξ2ε2

)

+
2

T

H∑

h=1

M2
h

[
16

L2

T
+

H

C2
+ 4P 2

h

]

+
4

ξ2T 2

H∑

h=1

HR2
hM

2
h

C2

T−1∑

t=0

[
E

k

[
Var

t
loc

(∥∥∥G(t)
h,k

∥∥∥
)]

+ Var
k

(
E

t
loc

[∥∥∥G(t)
h,k

∥∥∥
])]

. (63)

Using the big-O, above can be rewritten as

κ

T

T−1∑

t=0

Et
loc

[∥∥∥∇L
(
θ(t)
)∥∥∥

2
]

≤ O

(
L
(
θ(0)

)
−L (θ⋆)√
T

+
σ2

glob

T
+

σ2
loc

T
+

DC2maxKi=1(ωi)
2T ln 1

δ

ε2
+

1

T
+

1

C2T

)
. (64)

By setting C = T−1/4, a similar convergence bound can be recovered up to a constant from
Theorem 3.1 in [60] by choosing ηg = 1/T 1/4, ηl = 1/(T 1/4Q), C = ηlQ (Q being analogous
to T

loc
in our work), and P = 1 (P is analogous to q, i.e., client sampling proportion in our work)

and ωi = 1/K, though our bound has better rate of convergence for global and local update noise
O (1/T ) compared to O

(
1/
√
T
)

in [60].

Inverse Relationship to Clipping Constant. While [60] analyzes clipping it does not highlight an
inverse relationship with clipping constant C as seen in our work. Similar inverse relationships have
also been highlighted in central optimizer analysis [58].
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E.8 Adaptive Optimizers and Per-Layer Clipping: Theorem Under Limited Participation

Estimator with Bounded Sensitivity for FL with DP

It is common in several FL works [12, 51, 52, 16] to use weighted averaging of client updates
given by:

∆
(t)
h =



|Kt|∑
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ωki



−1 |Kt|∑
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ωki

(
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(t)
h,ki

+ z
(t)
h,ki

)
, (65)

where Kt is a set of sampled users, ωs =
|Ds|∑K

k=1|Dk|
and |Ds| represents the cardinality of the data on

client s. As discussed in prior work on moments accountant for DP [46], this estimator does not have
a bounded sensitivity, thus ineligible for guaranteed DP privacy. The unbounded sensitivity can be
intuitively seen via the case where all the sampled clients Kt have low number of data points thus

leading to an explosion of the term
(∑|Kt|

i=1 ωki

)−1
. Because of this, our analysis uses the unbiased

sampling estimator from [46] which can be expressed as
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, (66)

where q = S/K, users are sampled i.i.d. with probability q from the population K and γ
(t)
k ∼

Bernoulli(q) with E
[
γ
(t)
k

]
= q. It can be seen that the “unbiasedness” of the estimator results from

the fact:
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Also, while our algorithm and analysis use this general form of unbiased sampling estimator in
Equation 66, our simulation experiments use uniform averaging with ωk = 1/K.

Theorem 3. Assume A1.1, A2.1, A2.2, and A3, η
glob

L < 1 and κ =
[
1− 10(1− η

loc
T

loc
)2
]
> 0.

If the trust ratio from Eq. 10 in LAMB optimizer is controlled in the Algorithm 1 (global optimizer
is LAMB and local optimizer is SGD) such that r(t)h ≤ Rh and

∥∥∥1 − p
(t)
h

∥∥∥
∞
≤ Ph, β1 = 0 and

λ = 0 in LAMB optimizer, and clients are i.i.d. sampled with probability q, then after T steps of
aggregation the performance of FL with DP, per-layer clipping and layer-wise gradient normalization
is characterized by the following upper bound:
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where k ∼ Categorical(ω1, . . . , ωK) and E
t
loc

[·] denotes the expectation over sampled mini-

batch B
(t

loc
)

k every local step t
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= 1, . . . , T
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k | = Bk.

Proof. Using the unbiased sampling estimator from Equation 66 we start by bounding Zh.

Bounding Zh Under Client Sampling

38



Under client sampling we have the aggregated clients updates ∆(t)
h in Equation 15 defined as:

∆
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where q << 1 in usual scenario and γ
(t)
k ∼ Bernoulli(q). The definition of ∆(t)

h in Equation 69 thus
affects the bound on Zh (from Equation 28) as follows:
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Bounding Term with DP Noise in Zh Under Client Sampling
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Bounding Zh with Y1, Y2, Y3, Y4 and W Terms Under Client Sampling

39



Given Equations 29, 33, 30 and 31 (we use the fact that DP noise z
(t)
h,k is zero-mean independent

variable), we can bound Zh in the following way:
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Reusing bounds for Y1, Y2, Y3, Y4 from the proof of Theorem 2 and having κ =[
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Another Estimator for Limited Participation

In prior work [46] it was shown that another estimator can be used for weighted averaging of client
updates under client sampling:

∆
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This estimator is not unbiased compared to the one we use in Algorithm 1 and [46] gives the
differential privacy guarantees for it too. To obtain the convergence bound for this estimator similar
to Theorems 2 and 3 we can use the fact that (qmin ≤ q)
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Having this bound we can repeat the same steps as we did for the unbiased estimator from Algorithm 1
and get similar asymptotic bound as in Theorem 3 but with change of q to qmin and different sensitivity
bound for DP noise.

F Empirical Analysis: Data and Central Models Training

Data We perform all experiments using two datasets of audio-transcription pairs: LibriSpeech [61]
and Common Voice v13.0 [62]. These two datasets are read speech but differ in other properties,
like data diversity, noise conditions, speaker variation, and speaker distribution. We not only present
results with English locale in LibriSpeech and Common Voice v13.0 but also complement them with
results on French and German locale from Common Voice v13.0. For LibriSpeech data, the original
16kHz sampling rate is maintained, while for Common Voice we downsampled every audio to 16kHz
sampling rate.

Every split of LS and CV has a separate set of speakers as well as every validation and test sets have
entirely different speakers from the train. Validation data are used to tune all hyper-parameters and to
select the best models based on the word error rate (WER), while the test sets are used only for final
evaluation. Statistics on the number of speakers and the number of minutes per speaker are given in
Figure 1 for both LS and CV datasets and their subsets. The statistics show that CV data are much
more heterogeneous than LS as highlighted by [20]. CV data thus enable a more realistic scenario for
testing FL and FL with DP. The most realistic scenario for FL uses a small central dataset to train a
seed model (e.g. LS-100), and a larger dataset from a different distribution for FL (e.g. CV-en-train).
All training subsets used in the empirical analysis and their statistics are listed in Table 2.

Token Set [82] showed that for data from different domains, character tokens are more suited than
word-pieces. Since in this paper we consider settings with data from different domains, the token set
used in all our experiments is composed of English characters (a-z), augmented with a word boundary
token, hyphen and apostrophe, resulting in a total of 29 characters. For French and German, common
non-English characters are included as well.
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Table 2: Speaker statistics for LibriSpeech (LS) and Common Voice (CV) train sets and their subsets.

Subset # hours # speakers # minutes per speaker

mean std min max

LS-100 100.6 251 24.1 2.7 5.5 25.2
LS-360 363.6 921 23.7 3.2 1.9 25.3
LS-500 496.9 1,166 25.6 5.9 3.0 30.3
LS-860 860.5 2,087 24.7 5.1 1.9 30.3
LS-960 961.1 2,338 24.7 4.9 1.9 30.3

CV-en-train 1593.7 34,753 2.8 32.7 0.02 5,049.6
CV-en-train-10 149.5 3,475 2.6 17.3 0.03 755.1
CV-en-train-90 1444.2 31,278 2.8 34.0 0.02 5,049.6
CV-en-train-05 79.5 1,737 2.7 15.8 0.03 508.3
CV-en-train-95 1514.2 33,016 2.7 33.4 0.02 5,049.6

CV-fr-train 727.9 6,856 6.4 57.2 0.04 3081.2
CV-fr-train-10 47.6 685 4.2 13.6 0.07 235.1
CV-fr-train-90 680.3 6,171 6.6 60.2 0.04 3081.2

CV-de-train 852.8 7,127 7.2 89.2 0.03 6249.9
CV-de-train-10 52.2 712 4.4 11.4 0.04 120.8
CV-de-train-90 800.6 6,415 7.5 94.0 0.03 6249.9

Data preprocessing For CV English, transcriptions are normalized similarly as for LS by (i) lower
casing; (ii) removing punctuation while preserving hyphen; and (iii) converting non-English characters
into English ones with unidecode6 package. For CV French and German, we do not remove non-
English characters and we retain single quotes.

Model We start our experimentation with the state-of-the-art model on LS-100 from [63]: (i) 1D
convolution to perform striding (kernel of 7 with stride of 3); (ii) a transformer encoder with 36
layers, post-LayerNorm, 4 attention heads, an embedding dimension of 768, an MLP dimension of
3072, a dropout and layer drop [90] of 0.3; and (iii) a linear layer to map to the target vocabulary.
The resulting model has 255M trainable parameters. We focus only on a CTC model as it contains
only the encoder part, is simpler to train in practice compared to Seq2Seq or Transducer models, and
is less likely to over-fit to the language model [25].

Positional Embedding To reduce model training time by a factor of approximately 2-3 and to
reduce the memory footprint, we use CAPE positional embedding [91] instead of relative positional
embedding [92]; both models perform similarly.

SpecAugment SpecAugment [64] is activated from the very first step of training. Two frequency
masks with frequency mask parameter F = 30, ten time masks with maximum time-mask ratio
p = 0.1 and time mask parameter T = 50 are used; time warping is not used.

Training We train models on 8 GPUs (A100 80GB), and use a dynamic batch size of ∼ 240s audio
per GPU. For all central models training, we use LARS optimizer with the learning rate of 0.5 (for
models fine-tuned from seed models trained on CV-*-train-10 we use 0.2) without a warmup period.
Training is done for up to 300k-600k steps until full convergence with step-wise (by 2x) learning rate
decay every 50k steps started at 40k-330k depending on the model.

G Empirical Analysis: Federated Learning without Differential Privacy

G.1 Hyper-parameters

All dropout and layer drop are fixed to 0.3 We train each client with a dynamic batch size of total
120s of audio (CV) or 360s of audio (LS). In Figures 2 and 3 we use the same LR and LR decay
schedule for all seed models regardless of the cohort size or the data used to train a seed model.
Optimal hyper-parameters (e.g. LR) are likely to depend on the quality of the seed model and cohort
size. Thus, the results could likely be further improved by tuning the LR and its decay schedule for

6https://pypi.org/project/Unidecode.
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Table 3: Results (WER %) on LS. All runs use exponential decay for central LR starting at iteration
1,000, decay rate 0.6, and transition steps 500 (w/o seed model) or 250 (w/ seed model). Local
learning rate is 0.4 (w/o seed model) or 0.2 (w/ seed model). Central learning rate is 0.006 (w/o seed
model) or 0.003 (w/ seed model). The number of central steps is T = 2k and the number of local
epochs is 10.

Data seed: None; train: LS-960 seed: LS-100; train: LS-860 seed: CV-en; train: LS-960

seed 8 16 32 64 central seed 8 16 32 64 central seed 8 16 32 64 central

dev-clean 100.0 6.6 4.8 4.0 3.3 2.7 6.2 3.3 3.1 2.9 2.7 2.7 16.5 4.0 3.6 3.3 2.9 3.1
test-clean 100.0 6.7 5.1 4.2 3.4 2.8 6.7 3.4 3.2 3.0 2.9 2.9 15.5 4.3 3.8 3.5 3.2 3.2
dev-other 100.0 17.2 13.5 11.1 8.8 6.7 19.2 9.4 8.5 8.1 7.7 6.9 25.2 10.5 9.6 8.8 8.1 7.5
test-other 100.0 17.5 13.7 11.1 8.8 6.8 19.5 9.0 8.3 7.6 7.1 6.8 25.9 10.3 9.4 8.6 7.8 7.2

Table 4: Results (WER %) on CV. We use exponential decay for central LR starting at t = 1,000
(w/o seed model) or t = 750 (w/ seed model), decay rate 0.6, and transition steps 500 (w/o seed
model) or 750 (w/ seed model) with T = 2k total central steps and 10 local epochs. Local (central)
LR is 0.4 (0.006) (w/o seed model) or 0.2 (0.002) (w/ seed model).

Seed Data Eval. seed cohort size WER central

WER 8 16 32 64 128 256 WER

None CV-en dev 100.0 62.9 51.9 41.3 32.9 27.2 21.3 15.1
test 100.0 66.7 56.5 46.3 38.0 31.9 25.7 18.2

CV-en-05 CV-en-95 dev 31.3 26.6 24.3 22.7 21.2 19.8 18.2 15.2
test 36.4 31.6 28.9 27.0 25.4 23.8 22.1 18.3

CV-en-10 CV-en-90 dev 23.0 20.3 18.9 17.7 16.7 15.7 14.8 14.5
test 27.9 24.4 22.8 21.5 20.1 19.1 18.0 17.6

LS-100 CV-en dev 54.7 24.5 22.2 20.1 18.4 16.8 15.6 14.7
test 61.2 28.8 26.3 23.9 22.0 20.2 18.9 17.8

LS-960 CV-en dev 27.0 19.7 18.1 16.9 15.6 14.5 13.7 14.1
test 31.5 23.5 21.6 20.2 18.8 17.6 16.6 17.2

Table 5: Impact of randomizing the distribution of data across users for LS measured by WER (%).
Parameter settings are described in Table 3. While the original train data are non-IID, IID (columns
with ”IID”) versions of LS-960 and LS-860 are created by choosing a user id uniformly and randomly
from the set of user ids for each data point in the corresponding dataset.

Data seed: None; train: LS-960 seed: LS-100; train: LS-860 seed: CV-en; train: LS-960

seed 8 8-IID 16 16-IID central seed 8 8-IID 16 16-IID central seed 8 8-IID 16 16-IID central

dev-clean 100.0 6.6 5.9 4.8 4.5 2.7 6.2 3.3 3.3 3.1 3.0 2.7 16.5 4.0 3.9 3.6 3.5 3.1
test-clean 100.0 6.7 6.0 5.1 4.7 6.7 2.8 3.4 3.3 3.2 3.1 2.9 15.5 4.3 4.1 3.8 3.7 3.2
dev-other 100.0 17.2 14.0 13.5 11.2 6.7 19.1 9.4 8.1 8.5 7.4 6.9 25.2 10.5 9.5 9.6 8.8 7.5
test-other 100.0 17.5 14.0 13.7 10.9 6.8 19.5 9.0 7.9 8.3 7.2 6.8 25.9 10.3 9.3 9.4 8.4 7.2

each cohort size and seed model separately. Furthermore, we can improve models by longer training
exceeding 2k central steps as shown in ablations in Appendix G.8, Table 14.

G.2 Detailed Results for English

Table 3 details the results for LS from Figure 2 and Table 4 details the results for CV from Figure 3.
Table 5 details the results for randomized LS dataset (IID) from Figure 4 (left and middle). Table 6
details the results for randomized CV dataset (IID) from Figure 4 (right).

G.3 Impact of Model Architecture on FL Performance in ASR

Table 7 compares several model architectures for the trivial FL scenario with cohort size 1 and 64k
central iterations on LS-100. Cohort size of 1 is impractical but it eliminates the impact of federated
averaging. The learning rates and learning rate decay schedules are tuned for each architecture.
During preliminary FL experiments we have observed that pre-LayerNorm models often perform
better than post-LayerNorm ones. It is of note that without a linear central learning rate warmup, we
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Table 6: Impact of randomizing the distribution of data across users for CV measured by WER
(%). Parameter settings are described in Table 4. While the original train data are non-IID, the IID
(columns with ”IID”) version of CV-en-train is created by choosing a user id uniformly and randomly
from the set of user ids for each data point in the corresponding dataset.

Seed Data Eval. seed cohort size WER central

WER 16 16-IID 32 32-IID WER

None CV-en dev 100.0 51.9 50.2 41.3 40.9 15.1
test 100.0 56.5 55.0 46.3 45.8 18.2

LS-100 CV-en dev 54.7 22.2 21.1 20.1 19.1 14.7
test 61.2 26.3 25.0 23.9 22.7 17.8

Table 7: Comparison (WER, %) between pre-LayerNorm and post-LayerNorm architectures in
transformer for trivial FL scenario with cohort size S = 1 and central steps T = 64k on LS-100.
pre-LayerNorm models perform best and their training is robust with respect to hyper-parameters
such as the learning schedule. Central models are trained according to Appendix F. FL models use
exponential learning rate decay, LAMB as central and SGD as local optimizers.

Model Warmup dev-clean dev-other test-clean test-other

Central pre-LayerNorm 0 5.9 18.9 6.4 19.2
FL pre-LayerNorm 0 5.6 17.7 5.9 17.9

Central post-LayerNorm 0 8.1 25.0 8.6 25.6
FL post-LayerNorm 1000 5.9 17.5 6.3 18.0

Table 8: Comparison (WER, %) of various server optimizers on LS-960 with and without a seed
model. For LAMB, the results and parameters are the same as those in Table 3 (note that these are
sub-optimal because for simplicity we use the same learning rate and learning rate decay schedule
for each configuration regardless of the cohort size and all runs with seed models use the same
configuration). For all other optimizers, the central learning rate and the learning rate decay schedule
are tuned separately for each combination of cohort size and seed model.

Seed Data Cohort Central dev-clean test-clean dev-other test-other

size optimizer LR T = 0 T = 2k T = 0 T = 2k T = 0 T = 2k T = 0 T = 2k

None LS-960 8
LAMB 0.006 100.0 6.6 100.0 6.7 100.0 17.2 100.0 17.5
LARS 0.7 100.0 13.7 100.0 14.1 100.0 30.9 100.0 31.6
Adam 0.001 100.0 14.1 100.0 14.6 100.0 30.4 100.0 31.0

None LS-960 16
LAMB 0.006 100.0 4.8 100.0 5.1 100.0 13.5 100.0 13.7
LARS 0.7 100.0 10.5 100.0 11.0 100.0 25.9 100.0 25.9
Adam – - - - - - - - -

CV-en LS-960 8
LAMB 0.003 16.5 4.0 15.5 4.3 25.2 10.5 25.9 10.3
LARS 1.2 16.5 4.2 15.5 4.4 25.2 10.6 25.9 10.6
Adam 0.012 16.5 4.3 15.5 4.3 25.2 10.7 25.9 10.5

were unable to train reasonable FL models with post-LayerNorm. Our experiments showed that FL
models with pre-LayerNorm are easier to train, they do not require a central learning rate warmup,
and they are generally more robust with respect to hyper-parameters. These observations are similar
to prior works on transformers central training [55, 31]. That is why we use the pre-LayerNorm
configuration for all experiments in the paper. It is interesting that for this trivial FL scenario FL
models outperforms centrally trained models. However, when we switch to larger LS-960 dataset,
this does not hold anymore.

G.4 Impact of Server Optimizer on FL Performance in ASR

Table 8 compares the LAMB optimizer [49] used as the central optimizer in all FL runs presented
so far with Adam [93] and LARS [65] on several configurations for LS-960 dataset. The results on
LS-960 indicate that LAMB performs significantly better than LARS and Adam without a seed model,
and it performs slightly better than LARS and Adam with a seed model. Adam performs slightly
better than LARS.
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Table 9: Comparison (WER, %) of various optimizers on CV-en with and wihout seed models. For
LAMB, the results and parameters are the same as those in Table 4 (note that these are sub-optimal
because for simplicity we use the same learning rate and learning rate decay schedule for each
configuration regardless of the cohort size and all runs with seed models use the same configuration).
For all other optimizers, the central learning rate and the learning rate decay schedule are tuned
separately for each combination of cohort size and seed model.

Seed Data Cohort Central dev test

size optimizer LR T = 0 T = 2k T = 0 T = 2k

None CV-en 8

LAMB 0.006 100.0 62.9 100.0 66.7
LARS 3.4 100.0 70.4 100.0 73.8
Adam 0.0005 100.0 68.9 100.0 72.2

AdaGrad 0.003 100.0 84.3 100.0 86.2
SGD 2.8 100.0 83.8 100.0 86.0

None CV-en 16

LAMB 0.006 100.0 51.9 100.0 56.5
LARS 2.6 100.0 57.6 100.0 62.0
Adam 0.0005 100.0 57.7 100.0 62.1

AdaGrad 0.002 100.0 82.1 100.0 84.5
SGD 3.0 100.0 84.5 100.0 86.6

CV-en-10 CV-en-90 8

LAMB 0.002 23.0 19.4 27.9 23.5
LARS 0.3 23.0 18.7 27.9 22.6
Adam 0.004 23.0 18.9 27.9 22.9

AdaGrad 0.016 23.0 19.4 27.9 23.6
SGD 1.6 23.0 20.9 27.9 25.4

CV-en-10 CV-en-90 16

LAMB 0.002 23.0 18.3 27.9 22.1
LARS 0.4 23.0 18.0 27.9 21.8
Adam 0.006 23.0 18.3 27.9 22.1

AdaGrad 0.015 23.0 19.1 27.9 23.2
SGD 1.6 23.0 20.8 27.9 25.2

CV-en-10 CV-en-90 32
LAMB 0.002 23.0 17.3 27.9 21.0
LARS 0.6 23.0 17.3 27.9 20.9
Adam 0.006 23.0 17.5 27.9 21.1

CV-en-10 CV-en-90 64
LAMB 0.002 23.0 16.7 27.9 20.1
LARS 0.5 23.0 16.6 27.9 20.1
Adam 0.008 23.0 16.4 27.9 20.0

Table 9 compares LAMB with Adam, AdaGrad [94], LARS, and SGD [66] on several configurations
for CV-en dataset. The results on CV show that without seed models, LAMB performs significantly
better than all other optimizers but with seed models, LAMB is sometimes outperformed slightly by
LARS and Adam. SGD, AdaGrad and Adam are outperformed by LAMB and LARS in almost all
scenarios.

During hyper-parameter tuning, some adaptive optimizers (e.g., Adam) often became unstable and
the training diverged, especially without a well performing seed model. Furthermore, the optimal
parameters of these optimizers oftentimes vary significantly between, e.g., the cohort sizes, indicating
that they are less robust than LAMB in our setting.

The robustness of LAMB across all scenarios and its stability are the main reasons for choosing
LAMB as the central optimizer for most of the experiments in the paper. However, the results in
Table 9 suggest that some of the models could be further improved with more hyper-parameters
tuning and choosing the best optimizer for each case. Also, [56] showed that tuning other optimizer
parameters, e.g. ε in Adam, can significantly improve FL model training for ASR. However, in this
paper we restrict ourselves to tuning only the learning rate and learning rate schedule; the remaining
parameters were set to their default values from optax library7.

We have not completed an extensive evaluation of other optimizers for local training to keep it
efficient (no state, no additional memory, no extra computations): SGD as a local optimizer is robust
and efficient in our experiments. However, preliminary experiments show that LARS and LAMB are
well suited candidates for replacing SGD as the local optimizer and will likely outperform SGD.

For completeness, here we provide more details on optimizer tuning. For both LS-960 and CV-en-
train without a seed model, we tuned the central LR for LAMB between 0.001 and 0.009, and the

7https://optax.readthedocs.io/en/latest/
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Table 10: Results (WER, %) on CV for English, French and German. Configurations are identical to
those in Figure 3 and Table 4 regardless of the language.

Seed Data Eval. seed cohort size WER central

WER 8 16 32 64 128 WER

None CV-en dev 100.0 62.9 51.9 41.3 32.9 27.2 15.1
test 100.0 66.7 56.5 46.3 38.0 31.9 18.2

None CV-fr dev 100.0 34.7 25.4 18.8 15.0 12.6 10.7
test 100.0 38.7 29.1 21.6 17.5 14.8 12.2

None CV-de dev 100.0 30.1 22.8 16.1 11.7 9.5 7.7
test 100.0 32.8 25.5 18.3 13.4 10.9 8.8

CV-en-10 CV-en-90 dev 23.0 20.3 18.9 17.7 16.7 15.7 14.5
test 27.9 24.4 22.8 21.5 20.1 19.1 17.6

CV-fr-10 CV-fr-90 dev 24.0 15.6 14.3 13.2 12.0 11.2 10.8
test 27.5 18.1 16.6 15.3 14.0 13.1 12.6

CV-de-10 CV-de-90 dev 18.6 12.8 11.4 10.2 9.1 8.1 8.1
test 21.2 14.7 13.1 11.7 10.5 9.3 9.2

local LR for SGD from 0.2 to 0.6. We have done the same for one selected seed model for each
dataset. Additionally, we tried several learning rate schedules, including constant rate, step decay, and
exponential decay on several configurations. After the initial experiments, we chose one configuration
for each dataset (LS, CV) without a seed model and one configuration for each dataset (LS, CV)
with a seed model, and we ran the remaining experiments with the chosen configurations. The initial
tuning was done on smaller cohort sizes. For other optimizers discussed in this section, we tuned the
key parameters until a locally optimal value was found for central LR for each presented experiment,
and we considered 4 variations of the exponential decay rate for each LR value.

G.5 Detailed Results for CV French and German

Table 10 shows the results of FL on CV for French and German languages, and for comparison it
provides the corresponding results on CV for English. To demonstrate that the settings used for
English language were robust, we did not tune any parameters for French and German, and simply
used the exact same configuration that was used in the corresponding training on English language.

The results show that even though French and German have considerably smaller datasets, the
training is apparently considerably easier and WERs are significantly smaller than for English
whether or not a seed model is used. This is likely due to the degree of consistency between the
orthography and phonology as was discussed for example in [95, 96, 97, 98]; German and French
have stronger orthography-to-phonology consistency than English. Furthermore, the results for
French are considerably better than those presented by [20]. As French and German data are smaller,
for the same cohort size and central steps we do more epochs over data for French and German than
for English CV. Thus, FL training can match the central training with smaller cohort size for both
French and German compared to English. It is of note that French and German turn out to be easier
also for FL with DP as shown in Appendix H.6, Table 18.

G.6 Impact of SpecAugment

In all experiments so far, we used SpecAugment [64] activated from the very first step of training as
was also common in most prior works. Table 11 shows the results with and without SpecAugment for
several configurations analyzed in this paper on LS data. These results confirm that SpecAugment
improves WER in all the cases.

However, Table 12 shows that SpecAugment appears to have a negative impact on the trained models
for CV (English), especially for FL training without a seed model and small cohort sizes. This is
surprising as prior works reported only improved results with SpecAugment for transformer models.
These results also reveal another difference between benchmarks on LS and on CV.

It is possible that the results with SpecAugment on CV would improve if SpecAugment was turned on
later in the training and its parameters were tuned for each scenario separately. Nonetheless, since in
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Table 11: Results (WER, %) on LS with and without SpecAugment [64]. Configurations are identical
to those in Figure 2 and Table 3 except the SpecAugment schedule as noted in the table.

Seed Data SpecAugment Cohort dev-clean test-clean dev-other test-other

size T = 0 T = 2k T = 0 T = 2k T = 0 T = 2k T = 0 T = 2k

None LS-960 ✓ 8 100.0 6.6 100.0 6.7 100.0 17.2 100.0 17.5
None LS-960 ✗ 8 100.0 6.6 100.0 6.8 100.0 19.3 100.0 19.4

None LS-960 ✓ 16 100.0 4.8 100.0 5.1 100.0 13.5 100.0 13.7
None LS-960 ✗ 16 100.0 5.4 100.0 5.5 100.0 16.5 100.0 16.5

LS-100 LS-860 ✓ 8 6.2 3.3 6.7 3.4 19.1 9.4 19.5 9.0
LS-100 LS-860 ✗ 8 6.2 3.3 6.7 3.3 19.2 10.2 19.5 9.8

LS-100 LS-860 ✓ 16 6.2 3.1 6.7 3.2 19.1 8.5 19.5 8.3
LS-100 LS-860 ✗ 16 6.2 3.2 6.7 3.2 19.1 9.9 19.5 9.5

CV-en LS-960 ✓ 8 16.6 4.0 15.5 4.3 25.2 10.5 25.9 10.3
CV-en LS-960 ✗ 8 16.6 3.8 15.5 4.1 25.2 11.5 25.9 11.2

CV-en LS-960 ✓ 16 16.6 3.6 15.5 3.8 25.2 9.6 25.9 9.4
CV-en LS-960 ✗ 16 16.6 3.5 15.5 3.8 25.2 10.9 25.9 10.6

Table 12: Results (WER, %) on CV with and without SpecAugment [64]. Configurations are identical
to those in Figure 3 and Table 4 except the SpecAugment schedule as noted in the table.

Seed Data SpecAugment Cohort dev test

size T = 0 T = 2k T = 0 T = 2k

None CV-en ✓ 8 100.0 62.9 100.0 66.7
None CV-en ✗ 8 100.0 52.3 100.0 57.5

None CV-en ✓ 16 100.0 51.9 100.0 56.5
None CV-en ✗ 16 100.0 42.2 100.0 47.9

None CV-en ✓ 32 100.0 41.3 100.0 46.3
None CV-en ✗ 32 100.0 33.8 100.0 39.3

CV-en-10 CV-en-90 ✓ 8 23.0 20.3 27.9 24.4
CV-en-10 CV-en-90 ✗ 8 23.0 19.9 27.9 24.3

CV-en-10 CV-en-90 ✓ 16 23.0 18.9 27.9 22.8
CV-en-10 CV-en-90 ✗ 16 23.0 18.3 27.9 22.4

CV-en-10 CV-en-90 ✓ 32 23.0 17.7 27.9 21.5
CV-en-10 CV-en-90 ✗ 32 23.0 17.1 27.9 21.2

LS-100 CV-en ✓ 8 54.7 24.5 61.2 28.8
LS-100 CV-en ✗ 8 54.7 23.3 61.2 27.9

LS-100 CV-en ✓ 16 54.7 22.2 61.2 26.3
LS-100 CV-en ✗ 16 54.7 21.0 61.2 25.4

LS-100 CV-en ✓ 32 54.7 20.1 61.2 23.9
LS-100 CV-en ✗ 32 54.7 19.0 61.2 23.0

LS-960 CV-en ✓ 8 27.0 19.7 31.5 23.5
LS-960 CV-en ✗ 8 27.0 19.5 31.5 23.5

LS-960 CV-en ✓ 16 27.0 18.1 31.5 21.6
LS-960 CV-en ✗ 16 27.0 17.8 31.5 21.6

LS-960 CV-en ✓ 32 27.0 16.9 31.5 20.2
LS-960 CV-en ✗ 32 27.0 16.4 31.5 20.2

most scenarios SpecAugment either improved models or the differences were marginal, for simplicity,
we use SpecAugment in all experiments in this paper.

G.7 Performance of FedProx in FL for ASR

[11] proposed FedProx to alleviate the impact of heterogeneous data on FL performance. Since the
results presented earlier in Tables 5 and 6 suggested that heterogeneous data pose a challenge for FL
also in our training, we also evaluate the impact of FedProx on model quality in ASR. For each config-
uration, we use FedProx with the regularization weight µ ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0}
and chose the best result, as suggested by [11].

Table 13 presents the results of using FedProx in several scenarios on LS and CV datasets presented
earlier in Tables 3 and 4. The results show FedProx improves model performance (WER is decreased)
in 8 out of 10 training configurations tested, although in most cases the improvement is marginal.
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Table 13: Results (WER, %) of FedProx on selected configurations on LS (top) and CV (English)
(bottom) datasets. All parameters except for FedProx µ are identical to those in Tables 3 and 4.
Parameter µ ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0} is tuned separately for every case and the
best result is provided for each base configuration.

Seed Data fedprox µ
Cohort dev-clean test-clean dev-other test-other

size T = 0 T = 2k T = 0 T = 2k T = 0 T = 2k T = 0 T = 2k

None LS-960 0 8 100.0 6.6 100.0 6.7 100.0 17.2 100.0 17.5
None LS-960 0.1 8 100.0 6.4 100.0 6.7 100.0 17.5 100.0 17.5

None LS-960 0 16 100.0 4.8 100.0 5.1 100.0 13.5 100.0 13.7
None LS-960 0.1 16 100.0 4.9 100.0 5.1 100.0 13.4 100.0 13.5

LS-100 LS-860 0 8 6.2 3.3 6.7 3.4 19.1 9.4 19.5 9.0
LS-100 LS-860 0.0001 8 6.2 3.3 6.7 3.5 19.1 9.3 19.5 9.0

LS-100 LS-860 0 16 6.2 3.1 6.7 3.2 19.1 8.5 19.5 8.3
LS-100 LS-860 1.0 16 6.2 3.0 6.7 3.2 19.1 8.6 19.5 8.3

Seed Data fedprox µ
Cohort Central dev test

size LR T = 0 T = 2k T = 0 T = 2k

None CV-en 0 8 0.006 100.0 62.9 100.0 66.7
None CV-en 0.01 8 0.006 100.0 63.4 100.0 67.4

None CV-en 0 16 0.006 100.0 51.9 100.0 56.5
None CV-en 0.0001 16 0.006 100.0 51.0 100.0 55.8

None CV-en 0 32 0.006 100.0 41.3 100.0 46.3
None CV-en 0.0001 32 0.006 100.0 40.0 100.0 44.9

LS-100 CV-en 0 8 0.002 54.7 24.5 61.2 28.8
LS-100 CV-en 0.1 8 0.002 54.7 24.3 61.2 28.7

LS-100 CV-en 0 16 0.002 54.7 22.2 61.2 26.3
LS-100 CV-en 1e-05 16 0.002 54.7 22.0 61.2 26.3

LS-100 CV-en 0 32 0.002 54.7 20.1 61.2 23.9
LS-100 CV-en 0.1 32 0.002 54.7 20.1 61.2 23.9

In one of the remaining cases there is no change and only in one case the results with FedProx are
considerably worse than without it.

It is surprising how the optimal value of the key FedProx parameter µ changes considerably between
the various scenarios. This suggests that it would make sense to evaluate adaptive µ as suggested
by [11]. We leave the use of adaptive µ and the investigation of how FedProx may improve FL
training robustness (e.g. with respect to the number of local epochs or steps) for future work.

We also tried limiting the number of batches processed on each client [12] and normalizing users’
deltas sent to the server [13] but neither approach improved the results. See Table 6 in Appendix H.2
for the results on limiting the number of batches (steps) processed for each client.

G.8 Extending the Number of Central FL Iterations

Table 14 shows that even though most FL models were stopped after 2k central steps, letting these
models to train longer would further improve performance. However, due to the communication
complexity for each central step, it is best to use a moderate number of central steps and maximize
utility of the training by optimizing the parameters for local, on-device training, cohort sizes, and
other key FL parameters.

G.9 Impact of Under-Trained Seed Models

Table 15 shows that choosing a better seed model improves performance across the board. Further-
more, the results presented previously in Table 4 show that using a seed model trained on more data
improves FL performance, even if the data used to train seed models are from a different domain.
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Table 14: Results (WER, %) on selected FL configurations on CV obtained after T = 4k central
steps and their comparison to those obtained after T = 2k central steps. All parameters are identical
to those in Table 4.

Seed Data Cohort dev test

size T = 0 T = 2k T = 4k T = 0 T = 2k T = 4k

None CV-en 16 100.0 51.9 43.3 100.0 56.5 48.3
None CV-en 32 100.0 41.3 34.0 100.0 46.3 38.9
None CV-en 64 100.0 32.9 27.3 100.0 38.0 32.0

CV-en-10 CV-en-90 16 23.0 18.9 17.8 27.9 22.8 21.4
CV-en-10 CV-en-90 32 23.0 17.7 16.9 27.9 21.5 20.4
CV-en-10 CV-en-90 64 23.0 16.7 16.0 27.9 20.1 19.4

LS-100 CV-en 16 54.7 22.2 19.9 61.2 26.3 23.7
LS-100 CV-en 32 54.7 20.1 18.2 61.2 23.9 21.8
LS-100 CV-en 64 54.7 18.4 16.8 61.2 22.0 20.2

Table 15: Impact of under-trained seed models on WER of the final model for CV dataset with LS-100
seed and cohort size of 32. The under-trained seed models are obtained from the first 70 steps of the
baseline central training used to generate the actual seed model. The parameters for the experiments
without seed models and the one with the high quality seed model are the same as in Table 4. The
parameters for the seeds of lower quality are the same as those without a seed model.

Seed dev test

T = 0 T = 2k T = 0 T = 2k

None 100.0 39.9 100.0 44.7
LS-100 (30 steps) 98.9 37.7 100.0 42.8
LS-100 (50 steps) 83.2 32.8 87.8 37.8
LS-100 (70 steps) 75.9 33.3 81.1 38.2
LS-100 (full) 54.7 20.1 61.2 23.9

Table 16: Results (WER %) on CV for different cohort sizes. We use exponential decay for central
LR starting at t = 750, decay rate 0.6, and transition steps 750 with T = 2k total central steps. Local
(central) LR is 0.2 (0.002). All models are trained with the same hyper-parameters, only the cohort
size is varied. for left half of Table with cohort size from 8 to 256 we use 10 local epochs, while for
the right half of the Table we use 10 local steps to scale efficiently on GPU to 256-5120 cohort sizes.
Central models are trained either with the batch discussed in Section F or with 3x batch size, shown
in brackets (all other hyper-parameters are the same as in Section F).

Seed Data Eval. seed cohort size WER central

WER 8 16 32 64 128 256 256 512 1024 2048 3072 4096 5120 WER

LS-100 CV-en dev 54.7 24.5 22.2 20.1 18.4 16.8 15.6 15.6 16.8 15.7 14.9 14.5 14.3 14.1 14.7 (12.7)
test 61.2 28.8 26.3 23.9 22.0 20.2 18.9 18.6 20.0 18.9 17.8 17.4 17.2 16.9 17.8 (15.6)

LS-960 CV-en dev 27.0 19.7 18.1 16.9 15.6 14.5 13.7 18.0 14.6 13.9 13.6 13.0 12.8 12.7 14.1 (12.0)
test 31.5 23.5 21.6 20.2 18.8 17.6 16.6 21.5 17.6 16.7 16.3 15.7 15.5 15.4 17.2 (14.8)

G.10 Scaling to Larger Cohorts

We further scale the cohort size to check limitations on the cohort size and scaling of FL: for efficient
GPU utilization we switch from 10 local epochs to 10 local steps for cohort sizes of 256 to 5120,
while keeping all other hyper-parameters the same. Results are shown in Table 16: FL scales to
larger cohort sizes lowering further WER. There is also observed degradation by switching from
local epochs to local steps especially for a stronger seed model, likely due to overfitting to the seed
model’s data, which are out-of-domain data with respect to the FL data.
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H Empirical Analysis: Federated Learning with Differential Privacy

H.1 Differential Privacy Noise Discussion

There are different equivalent formulations how the noise can be added to the clients’ deltas to
introduce DP, which can cause confusion about the noise scale, and how the moments accountant is
applied. Having Algorithm 1, step 12 can be defined as follows:

1. Noise is added on the client level: ∆t = 1/q
∑

k∈Kt ωk

[
∆t

k +N(0, IC2σ2
client)

]
. We use this

definition with σclient = σ ·
√

q∑K
k=1 ω2

k

. It was also used by [55].

2. Noise is added on the server level after averaging clients’ deltas: ∆t = 1/q
[∑

k∈Kt ωk∆
t
k

]
+

N(0, IC2σ2
avg). This is the definition used by [46].

3. Noise is added on the server level after summation but before normalization to the number of
clients (used by [8]): ∆t = 1/(qK)

[(∑
k∈Kt Kωk∆

t
k

)
+N(0, IC2σ2

sum)
]
.

Different variants of noise are connected with each other via σsum = σavg · qK = σavg · S
and σclient = σavg ·

√
q∑K

k=1 ω2
k

. Then we can compute that σDP = σavg in this notation from

Algorithm 1.

Throughout the paper we use ωk = 1
K and the moments accountant implementation from opacus [99]

which works with σsum noise definition. To re-scale noise added to each client in order to be consistent
with opacus, we re-scale it by multiplying by the cohort size S. Thus, we get Theorem 1 where z
is defined as z = σsum and, finally, we get the bound on σDP via Theorem 1 from [8] which gives
bound on z2 ≥ const q

2T log 1/δ
ε2 in our notation. In all experiments with FL with DP, we use the same

privacy budget for every training step.

H.2 Large Cohort Training Implementation

Our initial FL implementation processed the clients in each cohort sequentially, potentially paralleliz-
ing the training for each client using multiple GPUs. For each client, we train a local model for a
given number of epochs. However, this approach does not scale well to training with large cohorts,
e.g. 1,024, which were necessary for experiments with FL with DP.

That is why we implemented another version where every client is trained on 1 GPU and we train the
models for several clients in parallel utilizing all available GPUs (e.g. with 32 GPUs we can process
32 clients in parallel). To do that efficiently with highly imbalanced data like CV where some clients
have much more data than others, we restrict the training on every client to a pre-defined number of
training steps (batches processed) instead of epochs. Switching from a fixed number of epochs to
a fixed number of training steps per client was previously reported to improve performance in the
presence of data heterogeneity [12].

Since we always use dynamic batching for efficient implementation and the average number of
minutes of audio per client in CV is 2.5, FL training with 10 local epochs and total dynamic batch
of 2 minutes per client can be approximated with 10 local steps and the same batch size. This
configuration is used in all FL with DP experiments.

Unlike reported by [12], we did not observe improved performance after switching to the number
of local steps but instead observed degradation in performance: see Figure 6 for the results on one
configuration of CV with LS-100 seed model. However, it is of note that the differences will likely
get smaller with larger cohort sizes. From results in Figure 6, we expect that more local compute
that would be feasible in a real deployment, should lead to better results than what we get in our
experiments for FL with DP.

H.3 Empirical Analysis

For FL training with the large cohort size of 1,024, the client delta norms are already bounded due to
the local clipping (see Algorithm 1, line 10) done in each step of the local training for every client
(see Figure 7). Local clipping is a necessary part of the training because otherwise the local training
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Figure 6: Comparison of WER for FL training between local number of steps (solid) and local number
of epochs (dashed). Training is done on CV-en-train with a seed model pre-trained centrally on
LS-100. The cohort size is S = 64, total number of central steps is T = 2k, and all other parameters
are set the same as in the corresponding configuration in Figure 3.
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Figure 7: Client’s delta norm averaged per clients throughout FL training with the cohort size of
S = 1, 024 on CV-en-train from a seed model trained on LS-100. We use exponential decay for
central LR starting at t = 750, decay rate 0.6, and transition steps 750 with T = 2k total central steps
and 10 local steps. Local (central) LR is 0.2 (0.002).
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Figure 8: Central training from scratch on CV-en-train and its per layer gradients norm: (top) averaged
across training steps and (bottom) showed per layer along the training. The model is trained with
LARS optimizer and the learning rate of 0.5. The norms of the per-layer gradients are balanced
differently compared to models trained with FL or with FL and DP in Figure 10, e.g., LayerNorm
gradients do not dominate over MLP and attention gradients.

of the transformer model would not converge [31, 30]. This is similar to the standard recipe for the
central training of transformer models.

As discussed in Section 4.3, we varied the clipping bound C for clients’ deltas and did not observe any
impact of it on the final performance even when C = 10−8. We also did not observe the difference
between training with the full precision (float32) or training with the reduced precision (bloat16).
The LAMB optimizer’s ξ = 10−6, thus it was a leading term in the denominator during optimization
when clipping C < 10−6.

51



0 10 20 30
Transformer Block Index

0

20

40

60

80

Pe
rL

ay
er

G
ra

d
N

or
m

ln1.bias
ln1.scale

0 10 20 30
Transformer Block Index

0

5

10

15

20
ln2.bias
ln2.scale

0 10 20 30
Transformer Block Index

0.00

0.25

0.50

0.75

1.00
w1.weight
w2.weight

0 10 20 30
Transformer Block Index

0.0

0.5

1.0

1.5 wqkv.weight
wf.weight

0 10000 20000 30000
Training step

101

102

Pe
rL

ay
er

G
ra

d
N

or
m

ln1.bias
ln1.scale

0 10000 20000 30000
Training step

10−2

10−1

100

101

ln2.bias
ln1.scale

0 10000 20000 30000
Training step

10−1

w1.weight
w2.weight

0 10000 20000 30000
Training step

10−3

10−2

10−1

100

wqkv.weight
w2.weight

Figure 9: Central training on CV-en-train from the LS-100 seed model and its per layer gradients norm:
(top) averaged across training steps and (bottom) showed per layer along the training. The model is
trained with LARS optimizer and the learning rate of 0.5. The norms of the per-layer gradients are
balanced similarly to models trained with FL or with FL and DP in Figure 10: LayerNorm gradients
do dominate over MLP and attention gradients.
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Figure 10: Client delta norms computed per layer in the model. We average the statistics across
all clients and central steps, and plot the mean and standard deviation. The model is trained with
(first row) global clients’ deltas clipping C = 10−2 and σDP = 0, (second row) global clients’
deltas clipping C = 10−6 and σDP = 0, (third row) per-layer clients’ deltas clipping (Definition 3,
“uniform”) C = 10−3 and σDP = 0, and (fourth row) per-layer clients’ deltas clipping (Definition 3,
“uniform”) C = 10−2 and σDP = 3 · 10−6. The rest of the training configuration is the same as in
Figure 5. A transformer block consists of attention parameters (wqkv and wf), MLP (w1 and w2),
LayerNorm applied to input of attention (ln1) or MLP (ln2). The statistics are consistent with the
training with global clipping (Algorithm 1) in Figure 5.
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We assume that the seed model is trained centrally without DP8 (e.g. LS-100) after which FL with
DP is run on CV-en-train by initializing FL model with the seed model. When we add DP noise to
the training alongside with the clipping of clients’ deltas, we also did not observe any difference
in the training dynamic and final performance (WER) as long as CσDP remained constant (e.g.,
halving the clipping bound C and halving the noise σDP would produce a nearly identical model).
We hypothesise that this is the outcome of (i) above observation that clipping does not affect training;
and (ii) using LAMB as a central optimizer, which performs LARS per-layer scaling, and scales both
the noise as well as the signal in the same way.

As discussed in Section 4.3, we observe clients’ deltas imbalance across different layers of the
transformer model (see Figure 5). The first layers (1-10 transformer blocks) have higher delta norms
than the last layers (20-36 transformer blocks) for LayerNorm in MLP part and attention final linear
projection. This is the opposite behaviour than observed in the deep models, e.g. by [100]. Also,
LayerNorms in general have an order of magnitude larger clients’ deltas norms than those for MLP
and attention. We checked if FL is the source of this deltas imbalance by looking into central training.
Central training from scratch on CV-en-train, Figure 8, has per layer gradients that behave differently
from the clients’ deltas in FL or FL with DP training. However, when we compare central training on
CV-en-train from the same LS-100 seed model, we will see that per layer gradients behave similarly
to the clients’ deltas in FL or FL with DP training (see Figure 9).

The smallest delta norms are still non-zero and are order of 10−4 for LayerNorm (ln2) and 10−6

for attention (wf) which are re-scaled later by LAMB central optimizer to have the same gradient
magnitude across layers. This also highlights necessity of using adaptive optimizers on the server
side because otherwise a part of the network will not be trained at all. A similar behavior to the one
from Figure 5 can be observed (i) with or without DP noise; and (ii) with global clipping or per-layer
clipping of clients’ deltas (see Figure 10).

H.4 Detailed Results

Comparison for both loss and word error rate (WER) for different values of DP noise and global vs
“uniform” per-layer clipping is given in Figure 11, and comparison between “uniform” and “dim”
per-layer clipping is given in Figure 12. Training dynamic is shown in Figure 13 for global clipping
and in Figure 14 for per-layer clipping. For the per-layer clipping setting we can increase DP noise till
σDP = 100 · 10−6 and get similar performance as with global clipping but DP noise σDP = 3 · 10−6.
The former is preferable as it has better (ε, δ)-DP guarantees, detailed results of which are shown in
Table 17.

H.5 Per-Layer Clipping Analysis

To understand which part of the transformer is most affected by DP noise, we train a model by adding
DP noise only to a particular group of parameters for both global clipping and per-layer “uniform”
clipping (see Figure 15): in this case DP guarantees do not hold, however we do this for the sake of
analysis. We can see that adding DP noise to the parameters of MLP layers drastically reduces model
performance, while adding it to other parameters changes WER of the model only marginally. This
holds for both types of clipping we apply on clients’ deltas.

As per-layer clipping “dim” performed the best in our experiments (see Table 1), we analyse the
effect of DP noise for this configuration in depth in Figure 16. First, the results are consistent with
Figure 15 in that MLP layers are the most susceptible parts of the transformer, e.g. even if we add DP
noise to all layers except MLP ones, we see only small degradation in model performance (middle
plot in Figure 15). Second, if we add DP noise with σDP to all layers but MLP layers get DP noise
with σDP/2, we see a significant improvement in the model performance (right plot in Figure 15).
The latter suggests that we could redistribute the clipping budget across layers to further alleviate the
effect of DP noise during training.

Further experiments with per-layer clipping as Ci = C
√

αidi∑H
h=1 αhdh

where di is the dimension of

the i-th layer, i = 1, . . . ,H , and αi = 1 for all layers except MLP and αi = β for all MLP layers
with β ∈ {1.5, 2, 3, 10} did not improve results.

8We presume that these data are either public or do not require privacy protection.
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Figure 11: Loss (top) and word error rate (WER) measured on CV-en-dev (middle) and CV-en-test
(bottom) sets for different values of DP noise σDP (scale is set to 10−6). We apply clipping of 10−2
either globally (left, Algorithm 1) or per-layer (right, Definition 3, “uniform”) with T = 2k central
steps and L =1,024 cohort size. The rest of the training configuration is the same as in Figure 7. The
seed model is trained on LS-100.
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Figure 12: Loss (left) and word error rate (WER) measured on CV-en-dev (middle) and CV-en-test
(right) sets for different values of DP noise σDP (scale is set to 10−6). We apply clipping of 10−2
per-layer (Definition 3, “uniform” and “dim”) with T = 2k central steps and S =1,024 cohort size.
The rest of the training configuration is the same as in Figure 7. The seed model is trained on LS-100.
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Figure 13: Training dynamic of models from Figure 11 with different DP noise σDP (scale is set to
10−6), global clipping of 10−2 and T = 2k central steps. The seed model is trained on LS-100: (top,
left) client gradients norm during local training (averaged across clients in the cohort); (top, middle)
client’s delta norm before clipping; (top, right) client’s delta norm after clipping; (bottom, left) server
gradients norm before DP noise is added per clients’ deltas; (bottom, middle) server gradients norm
after DP noise is added per clients’ deltas.
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Figure 14: Training dynamic of models from Figure 12 with different DP noise σDP (scale is set to
10−6), per-layer clipping of 10−2 (Definition 3, “dim”) and T = 2k central steps. The seed model is
trained on LS-100: (top, left) client gradients norm during local training (averaged across clients in
the cohort); (top, middle) client’s delta norm before clipping; (top, right) client’s delta norm after
clipping; (bottom, left) server gradients norm before DP noise is added per clients’ deltas; (bottom,
middle) server gradients norm after DP noise is added per clients’ deltas.
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Figure 15: WER of models trained on CV-en-train and evaluated on CV-en-dev for different values
of DP noise σDP (scale is set to 10−6). We add either DP noise to all parameters in the model
(σDP = 10), or no DP noise (σDP = 0), or DP noise to the specific group of parameters: to attention
(σDP,wqkv = 10), to MLP (σDP,w1,w2 = 10), to LayerNorms (σDP,ln = 10), to attention final
projection (σDP,wf = 10). We apply clipping of 10−2 either globally (left, Algorithm 1) or per-layer
(right, Definition 3, “uniform”) with T = 2k central steps and S =1,024 cohort size. The rest of the
training configuration is the same as in Figure 7. The seed model is trained on LS-100.
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Figure 16: WER of models trained on CV-en-train and evaluated on CV-en-dev for different values of
DP noise σDP (scale is set to 10−6). We apply per-layer clipping of 10−2 (Definition 3, “dim”) with
T = 2k central steps and S =1,024 cohort size. The rest of the training configuration is the same
as in Figure 7. The seed model is trained on LS-100. We add either DP noise to all parameters in
the model (σDP = 10), or no DP noise (σDP = 0). We also add DP noise (left) to the specific group
of parameters only; (middle) to all parameters except the specific group of parameters; (right) to all
parameters but the DP noise with σDP/2 = 5 to the specific group of parameters.

H.6 Federated Learning with Differential Privacy for French and German

We run out of the box experiments for FL with DP for French and German CV data using the same
configuration as for English (training parameters are given in Figure 7). Seed models are trained
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Table 17: Extended results of Table 1 for FL with DP and a model pre-trained on LS-100 (∼100h)
used as central data and afterwards fine-tuned on CV-en-train (∼1.6k hours) used as clients data. We
report added noise N(0, IC2σ2

DPqK) per client and CV dev and test WERs (%) for two clipping
variants with clipping bound C: global and per layer “uniform” (“dim”). Total number of users
K, expected number of users sampled per central step S = qK, and the number of central steps T
are given. We set δ = 10−9 and report ε for which (ε, δ)-DP holds for a given S and K using the
moments accountant of [8]. For scaling S and K where it is practically intractable to run model
training (marked “-”), we extrapolate (ε, δ)-DP assuming training dynamic remains unchanged thus
similar WER will be obtained. Central training gives 14.7%/17.8% WER on dev/test. ε should be
below 10 to be practically useful (marked with blue).

z σDP(·10−6) C S K q = S/K T ε order global clipping per-layer clipping

dev WER (%) test WER (%) dev WER (%) test WER (%)

- - - 0 34,753 0 0 0 - 54.7 61.2 54.7 61.2

0.1024 100.0 0.01 1,024 34,753 0.0295 2,006 3.3·104 1.1 - - 29.6 33.9
1.024 100.0 0.01 10,240 347,530 0.0295 2,006 1.3·101 4.0 - - - -
5.12 100.0 0.01 51,200 1,737,650 0.0295 2,006 1.6·100 25 - - - -

0.0512 50.0 0.01 1,024 34,753 0.0295 2,006 3.5·105 1.1 - - 27.1 (26.4) 31.3 (30.6)
0.512 50.0 0.01 10,240 347,530 0.0295 2,006 7.2·101 1.5 - - - -
2.56 50.0 0.01 51,200 1,737,650 0.0295 2,006 3.5·100 10.0 - - - -

0.03072 30.0 0.01 1,024 34,753 0.0295 2,006 1.1·106 1.1 - - 25.2 (24.2) 29.3 (28.2)
0.3072 30.0 0.01 10,240 347,530 0.0295 2,006 3.7·102 1.1 - - - -
1.536 30.0 0.01 51,200 1,737,650 0.0295 2,006 6.5·100 7.0 - - - -

0.02048 20.0 0.01 1,024 34,753 0.0295 2,006 2.6·106 1.1 - - 23.7 (22.6) 27.6 (26.5)
1.024 20.0 0.01 51,200 1,737,650 0.0295 2,006 1.3·100 4.0 - - - -
2.048 20.0 0.01 102,400 3,475,300 0.0295 2,006 4.5·100 9.0 - - - -

0.01024 10.0 0.01 1,024 34,753 0.0295 2,006 1.1·107 1.1 30.7 35.2 21.3 (20.1) 25.0 (23.7)
0.512 10.0 0.01 51,200 1,737,650 0.0295 2,006 7.2·101 1.5 - - - -
0.512 10.0 0.01 51,200 17,376,500 0.00295 2,034 1.3·101 3.0 - - - -
1.024 10.0 0.01 102,400 3,475,300 0.0295 2,006 1.3·101 4.0 - - - -
2.048 10.0 0.01 204,800 6,950,600 0.0295 2,006 4.5·100 9.0 - - - -
2.048 10.0 0.01 204,800 69,506,000 0.00295 2,006 7.5·10−1 25.0 - - - -

0.00512 5.0 0.01 1,024 34,753 0.0295 2,006 4.2·107 1.1 - - 19.2 22.7
0.512 5.0 0.01 102,400 3,475,300 0.0295 2,006 7.2·101 1.5 - - - -
1.024 5.0 0.01 204,800 6,950,600 0.0295 2,006 1.3·101 4.0 - - - -
1.024 5.0 0.01 204,800 69,506,000 0.00295 2,034 2.1·100 10.0 - - - -
1.024 5.0 0.01 204,800 695,060,000 0.000295 3,390 1.2·100 15.0 - - - -

0.003072 3.0 0.01 1,024 34,753 0.0295 2,006 1.2·108 1.1 27.0 31.1 17.9 (17.1) 21.2 (20.4)
0.3072 3.0 0.01 102,400 3,475,300 0.0295 2,006 3.7·102 1.1 - - - -
0.6144 3.0 0.01 204,800 6,950,600 0.0295 2,006 4.2·101 2.0 - - - -
0.6144 3.0 0.01 204,800 69,506,000 0.00295 2,034 7.2·100 3.0 - - - -
0.6144 3.0 0.01 204,800 695,060,000 0.000295 3,390 3.7·100 6.0 - - - -

0.0018432 1.8 0.01 1,024 34,753 0.0295 2,006 4.5·108 1.5 25.8 29.2 17.0 20.2
0.18432 1.8 0.01 102,400 3,475,300 0.0295 2,006 2.3·104 1.5 - - - -
0.36864 1.8 0.01 204,800 6,950,600 0.0295 2,006 2.7·102 1.5 - - - -
0.36864 1.8 0.01 204,800 69,506,000 0.00295 2,034 4.5·101 1.5 - - - -
0.36864 1.8 0.01 204,800 695,060,000 0.000295 3,390 1.6·101 2.5 - - - -

0.001024 1.0 0.01 1,024 34,753 0.0295 2,006 1.1·109 1.1 22.9 26.7 16.2 (16.0) 19.5 (19.3)
0.1024 1.0 0.01 102,400 3,475,300 0.0295 2,006 3.2·104 1.1 - - - -
0.2048 1.0 0.01 204,800 6,950,600 0.0295 2,006 1.1·103 1.1 - - - -
0.2048 1.0 0.01 204,800 69,506,000 0.00295 2,034 2.7·102 1.1 - - - -
0.2048 1.0 0.01 204,800 695,060,000 0.000295 3,390 9.4·101 1.3 - - - -

0.0006144 0.625 0.01 1,024 34,753 0.0295 2,006 4.0·109 1.5 21.3 25.0 16.1 19.3
0.06144 0.625 0.01 102,400 3,475,300 0.0295 2,006 3.8·105 1.5 - - - -
0.12288 0.625 0.01 204,800 6,950,600 0.0295 2,006 7.9·104 1.5 - - - -

- 0 0.001 1,024 34,753 0.0295 2,000 inf - 15.7 18.9 15.9 19.1
- 0 0.01 1,024 34,753 0.0295 2,000 inf - 15.7 18.9 15.9 19.1
- 0 0.1 1,024 34,753 0.0295 2,000 inf - 15.7 18.9 15.7 19.0
- 0 1.0 1,024 34,753 0.0295 2,000 inf - 15.7 18.9 15.7 18.9

on CV-fr-train-10 and CV-de-train-10, while CV-fr-train-90 and CV-de-train-90 are used for further
FL with DP training. We get similar results as for English, see Table 18. With the same DP noise
σDP = 3 · 10−6, we are able to closely match the model trained without DP noise (σDP = 0) with
only a small WER degradation: (i) for French from 15.2% to 16.0% WER while guaranteeing (5.5,
10−9)-DP, and (ii) for German from 11.0% to 12.0% WER while guaranteeing (5.4, 10−9)-DP;
assuming the training effectiveness remains the same if we extrapolate to ∼50M clients with the
cohort size of ∼250k. Moreover, we can also increase DP noise to σDP = 10−5, getting 17.9% WER
with (1.9, 10−9)-DP for French and 13.9% WER with (1.8, 10−9)-DP for German by scaling only to
∼16M clients with the cohort size of ∼250k, assuming the training effectiveness remains the same.
The latter is a realistic scenario for mid/low resource languages.

For both French and German we observe that per-layer clipping is not as effective as for English
and we get only marginal improvements over global clipping. We have checked that the seed model
quality and the seed model being out-of-domain are the not the sources of this discrepancy in results
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Table 18: Results for FL with DP and a model pre-trained on CV-fr-train-10/CV-de-train-10 (∼50h)
used as central data and afterwards fine-tuned on (top/bottom) CV-fr-train-90/CV-de-train-90 (∼700-
800 hours) used as clients data. We report added noise N(0, IC2σ2

DPqK) per client and CV dev and
test WERs (%) for two clipping variants with clipping bound C: global and per layer “dim”. Total
number of users K, expected number of users sampled per central step S = qK, and the number
of central steps T are given. We set δ = 10−9 and report ε for which (ε, δ)-DP holds for a given S
and K using the moments accountant of [8]. For scaling S and K where it is practically intractable
to run model training (marked “-”), we extrapolate (ε, δ)-DP assuming training dynamic remains
unchanged thus similar WER will be obtained. Central training gives 10.8%/12.6% WER for French
and 8.1%/9.2% WER for German on dev/test. ε should be below 10 to be practically useful (marked
with blue).

z σDP(·10−6) C S K q = S/K T ε order global clipping per-layer clipping “dim”

dev WER (%) test WER (%) dev WER (%) test WER (%)

- - - 0 6,171 0 0 0 - 24.0 27.5 24.0 27.5

0.01024 10.0 0.01 1,024 6,171 0.1660 2,002 1.1·107 1.3 - - 15.6 17.9
2.56 10.0 0.01 256,000 1,542,750 0.1660 2,002 2.4·101 3.0 - - - -
2.56 10.0 0.01 256,000 15,427,500 0.0166 2,013 1.9·100 20.0 - - - -

0.003072 3.0 0.01 1,024 6,171 0.1660 2,002 1.2·108 1.1 14.1 16.2 13.9 16.0
0.768 3.0 0.01 256,000 1,542,750 0.1660 2,002 1.8·102 3.0 - - - -
0.768 3.0 0.01 256,000 15,427,500 0.0166 2,013 1.4·101 3.0 - - - -
0.768 3.0 0.01 256,000 46,282,500 0.00553 1,991 5.5·100 5.0 - - - -

- 0 0.01 1,024 6,171 0.1660 2,000 inf - 13.2 15.2 13.2 15.2

- - - 0 6,415 0 0 0 - 18.6 21.2 18.6 21.2

0.01024 10.0 0.01 1,024 6,415 0.1596 2,002 1.1·107 1.1 - - 12.3 13.9
2.56 10.0 0.01 256,000 1,603,750 0.1596 2,002 2.3·101 3.0 - - - -
2.56 10.0 0.01 256,000 16,037,500 0.01596 2,016 1.8·100 20.0 - - - -

0.003072 3.0 0.01 1,024 6,415 0.1596 2,002 1.2·108 1.1 10.7 12.1 10.5 12.0
0.768 3.0 0.01 256,000 1,603,750 0.1596 2,002 1.7·102 1.5 - - - -
0.768 3.0 0.01 256,000 16,037,500 0.01596 2,016 1.4·101 4.0 - - - -
0.768 3.0 0.01 256,000 48,112,500 0.00532 2,068 5.4·100 5.0 - - - -

- 0 0.01 1,024 6,415 0.1596 2,000 inf - 9.7 11.0 9.7 11.0

Table 19: Ablation for FL with DP and a model pre-trained either on LS-960/CV-en-train-10 used as
central data and afterwards fine-tuned on (top/bottom) CV-en-train/CV-en-train-90. We report added
noise N(0, IC2σ2

DPqK) per client and CV dev and test WERs (%) for two clipping variants with
clipping bound C: global and per layer “dim”. Total number of users K, expected number of users
sampled per central step S = qK, and the number of central steps T are given. Central training gives
14.1%/17.2% WER for training from LS-960 seed and 14.5%/17.6% for training from CV-en-train-10
seed on dev/test. All the remaining parameters are the same as in Table 17.

Seed Data σDP(·10−6) C S K q = S/K T
global clipping per-layer clipping “dim”

dev WER (%) test WER (%) dev WER (%) test WER (%)

LS-960 - - - 0 34,753 0 0 27.0 31.5 27.0 31.5
LS-960 CV-en-train 30 0.01 256 34,753 0.0074 2000 22.5 26.1 18.7 22.2

CV-10 - - - 0 34,753 0 0 23.0 27.9 23.0 27.9
CV-10 CV-en-train-90 30 0.01 256 31,278 0.0082 2000 20.8 25.1 18.7 22.6

between languages: if we change the seed model for English to a better out-of-domain LS-960 seed
or to a better in-domain CV-en-train-10 seed, we still observe a drastic improvement from per-layer
clipping compared to global clipping (see Tables 19 and 20, and Figure 17).

First, there is a discrepancy in gradients balance across layers for the central model training for
English, French and German with CV-*-train-10 seed models. The training of the English model
has the issue we discussed above that LayerNorms dominate the attention and MLP, which translates
to the similar behavior for FL and FL with DP training. However, French and German models do
not have the same imbalance issue as English and, moreover, similar behavior holds for the central
training, FL and FL with DP for French and German (see Figures 18, 20, 19 and 21). We attribute the
later to the properties of the languages as discussed in Appendix G.5.

One factor that we cannot exclude from the above analysis is the user sampling q = S/K, which is
significantly higher for French and German (16%) than for English (< 1%) due to a smaller number
of speakers in the French and German datasets. Further investigation is needed to evaluate larger
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Table 20: Results for FL with DP and a model pre-trained on LS-960 (∼1000h) used as central data
and afterwards fine-tuned on CV-en-train (∼1.6k hours) used as clients data. We report added noise
N(0, IC2σ2

DPqK) per client and CV dev and test WERs (%) for two clipping variants with clipping
bound C: global and per layer “dim”. Total number of users K, expected number of users sampled
per central step S = qK, and the number of central steps T are given. We set δ = 10−9 and report ε
for which (ε, δ)-DP holds for a given S and K using the moments accountant of [8]. For scaling S
and K where it is practically intractable to run model training (marked “-”), we extrapolate (ε, δ)-DP
assuming training dynamic remains unchanged thus similar WER will be obtained. Central training
gives 14.1%/17.2% WER on dev/test. ε should be below 10 to be practically useful (marked with
blue).

z σDP(·10−6) C S K q = S/K T ε order global clipping per-layer clipping

dev WER (%) test WER (%) dev WER (%) test WER (%)

- - - 0 34,753 0 0 0 - 27.0 31.5 27.0 31.5

0.03072 30.0 0.01 1,024 34,753 0.0295 2,006 1.1·106 1.1 22.5 26.1 18.7 22.2
0.3072 30.0 0.01 10,240 347,530 0.0295 2,006 3.7·102 1.1 - - - -
1.536 30.0 0.01 51,200 1,737,650 0.0295 2,006 6.5·100 7.0 - - - -

0.01024 10.0 0.01 1,024 34,753 0.0295 2,006 1.1·107 1.1 20.5 24.1 16.5 19.7
0.512 10.0 0.01 51,200 1,737,650 0.0295 2,006 7.2·101 1.5 - - - -
0.512 10.0 0.01 51,200 17,376,500 0.00295 2,034 1.3·101 3.0 - - - -
1.024 10.0 0.01 102,400 3,475,300 0.0295 2,006 1.3·101 4.0 - - - -
2.048 10.0 0.01 204,800 6,950,600 0.0295 2,006 4.5·100 9.0 - - - -
2.048 10.0 0.01 204,800 69,506,000 0.00295 2,006 7.5·10−1 25.0 - - - -

0.003072 3.0 0.01 1,024 34,753 0.0295 2,006 1.2·108 1.1 18.1 21.6 14.9 17.8
0.3072 3.0 0.01 102,400 3,475,300 0.0295 2,006 3.7·102 1.1 - - - -
0.6144 3.0 0.01 204,800 6,950,600 0.0295 2,006 4.2·101 2.0 - - - -
0.6144 3.0 0.01 204,800 69,506,000 0.00295 2,034 7.2·100 3.0 - - - -
0.6144 3.0 0.01 204,800 695,060,000 0.000295 3,390 3.7·100 6.0 - - - -

- 0 0.01 1,024 34,753 0.0295 2,000 inf - 13.9 16.7 14.0 16.8
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Figure 17: (first and second rows) Central training on CV-en-train from the LS-960 seed model and
(third and fourth rows) Central training on CV-en-train-90 from the CV-en-train-10 seed model and
their per layer gradients norm: (first, third rows) averaged across training steps and (second, fourth)
showed per layer along the training. The model is trained with LARS optimizer and the learning rate
of 0.5/0.2. LayerNorm gradients do dominate over MLP and attention gradients.
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Figure 18: Central training on CV-fr-train-90 from the CV-fr-train-10 seed model and its per layer
gradients norm: (top) averaged across training steps and (bottom) showed per layer along the training.
The model is trained with LARS optimizer and the learning rate of 0.2. The norms of the per-
layer gradients are balanced similarly to models trained with FL or with FL and DP in Figure 19:
LayerNorm gradients do not dominate over MLP and attention gradients.
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Figure 19: Client delta norms computed per layer in the French model trained on CV-fr-train-90 from
a seed CV-fr-train-10 model. We average the statistics across all clients and central steps, and plot
the mean and standard deviation. The model is trained with (first row) global clients’ deltas clipping
C = 10−2 and σDP = 0, (second row) global clients’ deltas clipping C = 10−2 and σDP = 3 · 10−6,
(third row) per-layer clients’ deltas clipping (Definition 3, “dim”) C = 10−2 and σDP = 3 · 10−6.
The rest of the training configuration is the same as in Figure 5. A transformer block consists of
attention parameters (wqkv and wf), MLP (w1 and w2), LayerNorm applied to input of attention
(ln1) or MLP (ln2).

datasets with a larger number of speakers for French and German (as we need a large cohort size to
alleviate the impact of DP noise), and to probe other languages.

[101] also used per-layer clipping but for NLP domain and observed the difference in the gradient
norms of different transformer layers. However, per-layer clipping did not outperform the global
clipping for training with DP (there was no FL component) in many settings. We would like to
highlight the main differences with our study for ASR domain: i) our architecture is encoder-
based model trained with a sequence loss (CTC), while [101] use decoder-based (causal) model
trained with cross-entropy loss; ii) Tables 3 and 4 of [101] show that per-layer clipping significantly
improves results for GLUE tasks, thus it is task dependent; iii) [101] fine-tune pre-trained model for
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Figure 20: Central training on CV-de-train-90 from the CV-de-train-10 seed model and its per
layer gradients norm: (top) averaged across training steps and (bottom) showed per layer along the
training. The model is trained with LARS optimizer and the learning rate of 0.2. The norms of the
per-layer gradients are balanced similarly to models trained with FL or with FL and DP in Figure 21:
LayerNorm gradients do not dominate over MLP and attention gradients.
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Figure 21: Client delta norms computed per layer in the German model trained on CV-de-train-90
from a seed CV-de-train-10 model. We average the statistics across all clients and central steps, and
plot the mean and standard deviation. The model is trained with (first row) global clients’ deltas
clipping C = 10−2 and σDP = 0, (second row) global clients’ deltas clipping C = 10−2 and
σDP = 3 · 10−6, (third row) per-layer clients’ deltas clipping (Definition 3, “dim”) C = 10−2 and
σDP = 3 · 10−6. The rest of the training configuration is the same as in Figure 5. A transformer
block consists of attention parameters (wqkv and wf), MLP (w1 and w2), LayerNorm applied to
input of attention (ln1) or MLP (ln2).

a downstream task with another objective (this can affect the contribution of different parts of the
model) while in ASR we keep it the same. Moreover, our theoretical results (Theorem 2) show that
per-layer clipping can help to improve convergence in case of higher level of heterogeneity.

H.7 Per-Layer Clipping for Different Model Sizes

We further evaluate effectiveness of the per-layer clipping for different model sizes. We take the
baseline model we used before with 36 layers, 768 embedding and 3072 MLP dimension (244M
parameters), set its layer drop to 0.1 and consider the following models: narrow with 114M parameters
(reduce embedding to 512 and MLP dimension to 2048), wide with 450M parameters (increase
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Figure 22: Client delta norms computed per layer in the narrow (row 1), shallow (row 2), baseline
(row 3), wide (row 4) and deep (row 5) models trained on CV from a seed LS-100 model. We average
the statistics across all clients and central steps, and plot the mean and standard deviation. All models
are trained with global clients’ deltas clipping C = 10−2 and σDP = 10 · 10−6. A transformer block
consists of attention parameters (wqkv and wf), MLP (w1 and w2), LayerNorm applied to input of
attention (ln1) or MLP (ln2).

embedding to 1024 and MLP dimension to 4096), shallow with 114M parameters (reduce only
number of layers to 16) and deep with 510M parameters (increase depth to 72 layers). All models are
trained with the same hyperparameters as the baseline model – we only change the model architecture
as discussed (with layer drop set 0.1 for all models including the baseline). There are few takeaways
and observations from the results (all comparisons are provided on test set), shown in Table 21:

1. Per-layer clipping consistently outperforms global clipping for different model sizes.

2. For per-layer clipping, as model size increases, the model performance in FL with DP degrades
more compared to FL. This holds for both increasing model size via width and depth. Degrada-
tion for increasing model width is smaller compared to model depth. These results are in line
with our theoretical results.

3. For global clipping, as model size increases, the model performance in FL with DP degrades
more compared to FL. This holds for both increasing model size via width and depth. However,
for larger model size (wide and deep) we see significant performance improvement – we
hypothesize that it is due to the lower gradient imbalance between layer normalization and FC
layers, see Figures 22 and 23 for global and per-layer clipping. Model sizes > 500M we leave
for the future exploration and highlight the need to study larger models considering model size
limitations and aforementioned results in the current work.
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Figure 23: Client delta norms computed per layer in the narrow (row 1), shallow (row 2), baseline
(row 3), wide (row 4) and deep (row 5) models trained on CV from a seed LS-100 model. We
average the statistics across all clients and central steps, and plot the mean and standard deviation.
All models are trained with per-layer (Definition 3, “uniform”) clients’ deltas clipping C = 10−2 and
σDP = 10 · 10−6. A transformer block consists of attention parameters (wqkv and wf), MLP (w1
and w2), LayerNorm applied to input of attention (ln1) or MLP (ln2).

Table 21: Ablation for FL and FL with DP with a model pre-trained on LS-100 used as central data
and afterwards fine-tuned CV-en-train. We report added noise N(0, IC2σ2

DPqK) per client and CV
dev and test WERs (%) for two clipping variants with clipping bound C = 0.01: global and per
layer “uniform”. Total number of users K = 34, 753, expected number of users sampled per central
step S = qK = 1024, and the number of central steps T = 2000 are given. We also show relative
degradation in performance for test set if we switch from FL to FL+DP for a specific configuration.

Model σDP(·10−6) global clipping per-layer clipping “uniform”

dev WER (%) test WER (%) rel. % ↓ dev WER (%) test WER (%) rel. %

narrow 0 15.2 18.2 - - - -
10 27.5 31.7 74.2 19.5 23.2 27.5

baseline 0 14.7 17.6 - - - -
10 29.9 34.6 96.6 19.7 23.3 32.4

wide 0 13.7 16.6 - - - -
10 20.8 24.7 48.8 20.0 23.7 42.8

shallow 0 16.3 19.8 - - - -
10 30.6 35.1 77.3 20.9 24.8 25.3

baseline 0 14.7 17.6 - - - -
10 29.9 34.6 96.6 19.7 23.3 32.4

deep 0 14.2 17.2 - - - -
10 21.7 25.7 49.4 22.4 26.4 53.5
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I Compute Resources

In Table 22 we show the summary of used compute of the main training configurations for benchmarks
of FL and FL with DP for transparency and setting proper expectations for the community.

Table 22: Compute for the main expeirments we run for FL and FL with DP. For all experiments we
use LAMB as the central optimizer and SGD as the local optimizer.

Seed Data Model Client Total Batch Size Cohort Size S Local Central Steps T # GPUs A100 80GB Runtime (h) Total GPU (h)

CV-en-train LS-960 FL 6min 8 10 epochs 2000 2 53 106
CV-en-train LS-960 FL 6min 16 10 epochs 2000 2 103 206
CV-en-train LS-960 FL 6min 32 10 epochs 2000 2 191 382
CV-en-train LS-960 FL 6min 64 10 epochs 2000 4 278 1,112

LS-960 CV-en-train FL 2min 16 10 epochs 2000 2 42 84
LS-960 CV-en-train FL 2min 32 10 epochs 2000 2 62 124
LS-960 CV-en-train FL 2min 64 10 epochs 2000 2 98 196
LS-960 CV-en-train FL 2min 128 10 epochs 2000 2 169 338
LS-960 CV-en-train FL 2min 256 10 epochs 2000 4 304 1,216

LS-100 CV-en-train FL 2min 1,024 10 steps 2000 32 34 1,088
LS-100 CV-en-train FL + DP 2min 1,024 10 steps 2000 32 35 1,120
LS-100 CV-en-train FL + DP 2min 256 10 steps 2000 16 18 288

CV-de-train-10 CV-de-train-90 FL 2min 1,024 10 steps 2000 16 66 1,056
CV-de-train-10 CV-de-train-90 FL + DP 2min 1,024 10 steps 2000 16 67 1,072

CV-fr-train-10 CV-fr-train-90 FL 2min 1,024 10 steps 2000 16 60 960
CV-fr-train-10 CV-fr-train-90 FL + DP 2min 1,024 10 steps 2000 16 61 976
CV-fr-train-10 CV-fr-train-90 FL + DP 2min 1,024 10 steps 2000 64 18 1,152
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