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ABSTRACT

Safe and efficient robot operation in complex human environments can benefit
from good models of site-specific motion patterns. Maps of Dynamics (MoDs)
provide such models by encoding statistical motion patterns in a map, but ex-
isting representations use discrete spatial sampling and typically require costly
offline construction. We propose a continuous spatio-temporal MoD representa-
tion based on implicit neural functions that directly map coordinates to the pa-
rameters of a Semi-Wrapped Gaussian Mixture Model. This removes the need for
discretization and imputation for unevenly sampled regions, enabling smooth gen-
eralization across both space and time. Evaluated on a large public dataset with
long-term real-world people tracking data, our method achieves better accuracy of
motion representation and smoother velocity distributions in sparse regions while
still being computationally efficient, compared to available baselines. The pro-
posed approach demonstrates a powerful and efficient way of modeling complex
human motion patterns.

1 INTRODUCTION

Safe and efficient operation in complex, dynamic and densely crowded human environments is a crit-
ical prerequisite for deploying robots in various tasks to support people in their daily activities. Ex-
tending the environment model with human motion patterns using a map of dynamics (MoD) is one
way to achieve unobtrusive navigation, compliant with existing site-specific motion flows (Palmieri
et al., 2017; Swaminathan et al., 2022).

As illustrated in Fig. 1, incorporating MoDs into motion planning provides benefits in crowded
environments, since they encode information about the expected motion outside of the robot’s sensor
range, allowing for less reactive behavior. In the example shown in Fig. 1, the oncoming pedestrian
flow is initially outside the robot’s observation radius. Without MoD awareness, the robot chooses
a direct path to the goal but later becomes trapped in the oncoming crowd. In contrast, a planner
informed by MoDs can exploit prior knowledge of human motion patterns to generate a trajectory
that aligns with the expected flow, allowing the robot to reach the goal safely and efficiently. MoDs
can also be applied to long-term human motion prediction (Zhu et al., 2023). As shown in the right
of Fig. 1, MoDs help predict realistic trajectories that implicitly respect the complex topology of the
environment, such as navigating around corners or avoiding obstacles.

Several approaches have been proposed for constructing MoDs. Early methods modeled human mo-
tion on occupancy grid maps, treating dynamics as shifts in occupancy (Wang et al., 2015; 2016).
These approaches struggle with noisy or incomplete trajectory data. Later, velocity-based repre-
sentations have been introduced, most notably the CLiFF-map (Kucner et al., 2017), which models
local motion patterns with Gaussian mixture models, effectively captures multimodality in human
flows and has been successfully used in both robot navigation and prediction tasks. The methods
above are computed in batch, given a set of observations. Online learning methods have also been
explored to update motion models as new observations arrive (Zhu et al., 2025), allowing robots to
adapt to changing environments without costly retraining from scratch. Temporal MoDs have also
been explored, including STeF-maps (Molina et al., 2022), which apply frequency-based models to
encode periodic variations in the flow.

However, existing MoD representations require spatial discretization, with a manually selected map
resolution for point locations and interpolation to estimate motion at arbitrary positions. This dis-
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With MoD guidanceWithout MoD guidance

Observation
Ground truth
CLiFF-LHMP
Social LSTM
MID
TUTR

Figure 1: Indicative applications of Maps of dynamics (MoD) for motion planning and human
motion prediction. Left: Illustration of how MoDs can support socially aware motion planning. The
robot (red diamond) navigates toward the goal (green cross) in the presence of two opposing human
flows, with the underlying MoD shown as colored arrows. In this scenario, the oncoming pedestrian
flow moving in the opposing direction is initially outside the robot’s observation radius (grey dashed
circle). Without guidance from the MoD, the planner initially takes a direct path to the goal but
eventually becomes stuck and collides with the oncoming flow. In contrast, when informed by the
MoD, the robot aligns its trajectory with the motion patterns and reaches the goal efficiently and
safely. Right: Human motion prediction with a 60 s horizon. The red line represents the ground
truth trajectory and the green line represents the observed trajectory. With MoD guidance, CLiFF-
LHMP Zhu et al. (2023) makes more accurate and realistic predictions than deep learning methods.
While the trajectories predicted by Social LSTM (Alahi et al., 2016), TUTR (Shi et al., 2023) and
MID (Gu et al., 2022) often are unfeasible (e.g., crossing the walls), CLiFF-LHMP predictions
implicitly follow the topology of the environment.

cretization introduces information loss, reduces flexibility, and complicates tuning across different
environments.

To address these challenges, in this work, instead of representing motion patterns on a discrete grid,
we propose a continuous map of dynamics using implicit neural representation. We learn a neural
function that maps spatio-temporal coordinates to parameters of a local motion distribution. Implicit
neural representations have emerged as powerful tools for encoding continuous functions, provid-
ing compact and differentiable models with strong generalization. Leveraging these properties, this
formulation allows the model to smoothly generalize across space and time, while maintaining mul-
timodality in places where flows tend to go in more than one direction since it produces a wrapped
Gaussian mixture model of expected motion given a query location and time.

We evaluate our approach on real-world datasets of human motion and show that continuous MoDs
not only improve representation accuracy but can also drastically reduce map construction time.
Our method yields smoother and more consistent velocity distributions, resulting in more accurate
representations of human motion patterns. In contrast to baseline approaches that rely on time-
consuming per-cell motion modeling, it computes nearly two orders of magnitude faster than CLiFF-
map Kucner et al. (2017). Unlike the faster but discretised representation of STeF-map Molina et al.
(2022), our method preserves non-discretised directions, yielding results closer in spirit to CLiFF.

In summary, the main contribution of this work is an entirely novel representation of flow-aware
maps of dynamics, named NeMo-map. In contrast to existing methods, NeMo allow continuous
spatio-temporal queries to generate location- and time-specific multimodal flow predictions. As
evidenced by our experimental validation on real-world human motion data, NeMo efficiently learns
a highly accurate statistical representation of motion in large-scale maps.

2 RELATED WORK

A map of dynamics (MoD) is a representation that augments the geometric map of an environment
with statistical information about observed motion patterns. Unlike static maps, MoDs incorporate
spatio-temporal flow information, allowing robots to reason about how humans typically move in a
given environment.
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MoDs can be built from various sources of input, such as trajectories (Bennewitz et al., 2005),
dynamics samples, or information about the flow of continuous media (e.g., air or water) (Bennetts
et al., 2017). Furthermore, these models can feature diverse underlying representations, including
evidence grids, histograms, graphs, or Gaussian mixtures.

There are several types of MoDs described in the literature, generally striving to provide an efficient
tool for storing and querying information about historical or expected changes in states within the
environment. Occupancy-based methods focus on mapping human dynamics on occupancy grid
maps, modeling motion as shifts in occupancy (Wang et al., 2015; 2016). Trajectory-based methods
extract human trajectories and group them into clusters, with each cluster representing a typical path
through the environment (Bennewitz et al., 2005). These approaches suffer from noisy or incom-
plete trajectories. To address this, Chen et al. (2016) formulate trajectory modeling as a dictionary
learning problem and use augmented semi-nonnegative sparse coding to find local motion patterns
characterized by partial trajectory segments.

MoDs can also be based on velocity observations. With velocity mapping, human dynamics can be
modeled through flow models. Kucner et al. (2017) presented a probabilistic framework for mapping
velocity observations, which is named Circular-Linear Flow Field map (CLiFF-map). CLiFF-map
represents local flow patterns as a multi-modal, continuous joint distribution of speed and orienta-
tion, as further described in Sec. 3. A benefit of CLiFF-map is that it can be built from incomplete
or spatially sparse velocity observations (de Almeida et al., 2024), without the need to store a long
history of data or deploy advanced tracking algorithms. CLiFF-maps are typically built offline, for
the reason of high computational costs associated with the building process. This constraint limits
their applicability in real environments.

p

Figure 2: Probability density of a Semi-Wrapped
Gaussian Mixture Model (SWGMM) with two
components, visualized on a cylinder. Orientation
θ is wrapped around the circular axis, while speed
ρ extends along the vertical axis. The represen-
tation allows joint modeling of angular (orienta-
tion) and linear (speed) variables, capturing mul-
timodality in motion patterns.

When building flow models, temporal informa-
tion can also be incorporated. Molina et al.
(2022) apply the Frequency Map Enhance-
ment (FreMEn Krajnı́k et al. (2017)), which
is a model describing spatio-temporal dynam-
ics in the frequency domain, to build a time-
dependent probabilistic map to model peri-
odic changes in people flow called STeF-map.
The motion orientations in STeF-map are dis-
cretized. Another method of incorporating tem-
poral information is proposed by Zhi et al.
(2019). Their approach uses a kernel recur-
rent mixture density network to provide a multi-
modal probability distribution of movement di-
rections of a typical object in the environment
over time, though it models only orientation
and not the speed of human motion.

It is important to note that a map of dynamics
is not a trajectory prediction model. Whereas
trajectory predictors (e.g., LSTMs) aim to fore-
cast the future state of agents by propagating state information forward in time from an initial state,
our goal is fundamentally different. We seek to construct a spatio-temporal prior that encodes the
distribution of motion patterns in the environment itself. This prior can be queried directly at any
spatial coordinate and any time of day, providing motion statistics that can support downstream tasks
such as planning or long-term prediction, but it does not by itself generate trajectories for individual
agents.

3 METHODOLOGY

3.1 PROBABILISTIC MODELING OF HUMAN MOTION

Our spatio-temporal map of dynamics produces probability distributions over human motion veloc-
ities. A velocity v is defined by the pair of speed (a positive linear variable ρ ∈ R+) and orientation
(a circular variable θ ∈ [0, 2π)).

3
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Figure 3: Method overview. A spatio-temporal query (x, t) is mapped to parameters of a Semi-
Wrapped Gaussian Mixture Model (SWGMM). The spatial coordinate x is used to interpolate fea-
tures from a learnable spatial grid Gs, and the temporal coordinate t is encoded using a SIREN
network. The spatial features fs(x), temporal encoding ft(t), and raw coordinates are concatenated
and passed through an MLP, which outputs the parameters of a SWGMM, providing a continuous,
multimodal probabilistic representation of motion dynamics at the queried location and time.

To capture the statistical structure of such data, we model human motion patterns with a Semi-
Wrapped Gaussian Mixture Model (SWGMM), similar to the CLiFF-map representation (Kucner
et al., 2017). While a von Mises distribution would be effective for purely angular variables, is not
suitable when combining circular and linear components. Roy et al. (2012) proposed the von Mises-
Gaussian mixture model (VMGMM) to jointly represent one circular variable and linear variables.
However, their model assumes independence between the circular and linear dimensions, which
limits its ability in capturing real-world correlations. To overcome this, SWGMM (Roy et al., 2016)
jointly models circular-linear variables and allows correlations between them.

An SWGMM models velocity v = [ρ, θ]⊤ as a mixture of J Semi-Wrapped Normal Distributions
(SWNDs):

p(v | ξ) =
J∑

j=1

wjN SW
µj ,Σj

(v), (1)

where ξ = {ξj = (wj ,µj ,Σj)}Jj=1 denotes a finite set of components of the SWGMM. Each wj

is a mixing weight and satisfies 0 ≤ wj ≤ 1), µj the component mean, and Σj the covariance. An
SWND N SW

Σ,µ is formally defined as

N SW
Σ,µ(v) =

∑
k∈Z

Nµ,Σ

(
[ρ, θ]⊤ + 2π[0, k]⊤

)
, (2)

where k is a winding number. In practice, the PDF can be approximated adequately by taking
k ∈ {−1, 0, 1} (Mardia & Jupp, 2008).

The SWGMM density function over velocities can be visualized as a function on a cylinder, as shown
in Fig. 2. Orientation values θ are wrapped on the unit circle and the speed ρ runs along the length
of the cylinder. This formulation yields a flexible and interpretable probabilistic representation of
local human motion, capturing multimodality and correlations between orientation and speed.

3.2 LEARNING CONTINUOUS MOTION FIELDS

Previous MoD approaches, such as CLiFF-maps and STeF-maps, rely on discretizing the environ-
ment into cells and fitting local probability models. Discretization leads to information loss and
prevents querying at arbitrary locations. We address this by introducing a continuous map of dy-
namics parameterized by a neural implicit representation. The method overview is shown in Fig. 3.

In many real-world environments, human motion patterns exhibit strong daily periodicity, such as
morning and evening rush hours or lunchtime activity. Motivated by this structure, we model time
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as a periodic variable and condition the MoD on the time of day. This assumption allows the repre-
sentation to capture long-term temporal variations without requiring sequential rollouts, and enables
efficient queries of motion dynamics at arbitrary spatio-temporal coordinates (x, y, t).

Problem statement. Given a dataset D of N spatio-temporal motion samples:

D = {(xi, ti,vi)}Ni=1,

where xi ∈ R2 is the spatial coordinate, ti ∈ [0, 1] is the normalized time of a day, and vi = [ρi, θi]
⊤

is observed velocity, we learn a continuous function Φθ that maps a spatio-temporal coordinate (x, t)
to SWGMM parameters:

Φθ(x, t) =
{
wj(x, t), µj(x, t), Σj(x, t)

}J

j=1
, (3)

where J is the number of mixture components, weights wj ≥ 0 and
∑J

j=1 wj = 1. Each of the
j components models the joint velocity v = [ρ, θ]⊤ with a Semi-Wrapped Normal Distribution
N SW

Σ,µ. At inference time, querying Φθ at any coordinate yields the full set of SWGMM parameters,
resulting in a continuous probabilistic representation of motion dynamics. This formulation enables
the model to learn smooth, continuous motion fields while retaining the multimodal characteristic
of human motion.

Architecture. In our neural representation, we parameterize Φθ with a fully connected multilayer
perceptron (MLP), conditioned on both spatial and temporal features:

fs(x)︸ ︷︷ ︸
spatial features

∈ RCs , ft(t)︸︷︷︸
temporal encoding

∈ RCt .

For spatial features, a learnable grid Gs ∈ RH×W×Cs is queried at location x by bilinear interpola-
tion, producing fs(x). This captures local variations in motion patterns while remaining continuous
in space.

For temporal encoding, we encode t with SIREN, the sinusoidal representation network (Sitzmann
et al., 2020), which uses periodic activation functions throughout the network.

The MLP input concatenates the raw coordinates and the spatial and temporal features, z =
[x, t, fs(x), ft(t) ], and outputs SWGMM parameters. This feature-conditioned representation en-
ables the model to flexibly encode local variations in motion dynamics while maintaining global
smoothness across both space and time.

Likelihood and training. For a spatio-temporal coordinate (xi, ti), the velocity likelihood under
the predicted SWGMM is

p(vi | Φθ(xi, ti)) =

J∑
j=1

wj(xi, ti)N SW
µj(xi,ti),Σj(xi,ti)

(vi), (4)

where N SW denotes the semi-wrapped normal distribution that wraps the angular component (see
Eq. (2)). The model is trained by minimizing the negative log-likelihood of motion samples from
the dataset under the probability density function (PDF) produced by the model:

L(θ) = − 1

N

N∑
i=1

log p
(
vi | Φθ(xi, ti)

)
. (5)

4 RESULTS

4.1 DATASET

To evaluate spatio-temporal maps of dynamics that capture changes of human motion patterns over
time, it is essential to use datasets that span multiple days and reflect variations in human motion pat-
terns throughout the day. Our experiments were conducted using a real-world dataset, ATC (Brščić
et al., 2013), which provide sufficient multi-day coverage for evaluation. This dataset was collected
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Figure 4: Layout of the ATC dataset environment (Brščić et al., 2013), showing the main east
corridor and open areas annotated with semantic information such as entry and exit points, shops,
seating areas, and stairs.

in a shopping mall in Japan using multiple 3D range sensors, recording pedestrian trajectories be-
tween 9:00 and 21:00, over a total of 92 days. ATC covers a large indoor environment, with a total
area covered of approximately 900m2. Because of the large scale of the dataset, we use first four
days in the dataset (2012 Oct 24, 2012 Oct 28, 2012 Oct 31, and 2012 Nov 04) for experiments.
The data from October 24 is used for training, while the other three days are used for evaluation.
The observation rate is downsampled from over 10Hz to 1Hz. After downsampling, the training set
contains 717,875 recorded motion samples, and the test set contains 5,114,478 samples.

4.2 BASELINES

Circular-Linear Flow Field Map (CLiFF-map) CLiFF-map (Kucner et al., 2017) represents mo-
tion patterns by associating each discretized grid location with an SWGMM fitted from
local observations. The environment is divided into a set of grid locations, and each grid lo-
cation aggregates motion samples within a fixed radius. The SWGMM parameters at each
grid location are estimated via expectation-maximization (EM) (Dempster et al., 1977),
with the number and initial positions of mixture components determined using mean shift
clustering (Cheng, 1995). When training the CLiFF-map, the convergence precision is set
to 1e–5 for both mean shift and EM algorithms, with a maximum iteration count of 100.
The grid resolution is set to 1m. To evaluate different hours, we train separate CLiFF-maps
for each hour using the motion samples observed during that time.

Spatio-Temporal Flow Map (STeF-map) STeF-map (Molina et al., 2022) is a spatio-temporal
map of dynamics that models the likelihood of human motion directions using harmonic
functions. Each grid location maintains kstef temporal models, corresponding to kstef dis-
cretized orientations of people moving through that location over time. By modeling peri-
odic patterns, STeF-map captures long-term temporal variations in crowd movements and
can predict activities at specific times of day under the assumption of periodicity in the
environment. Following Molina et al. (2022), we set kstef = 8 in the experiments, and the
model orders for training STeF-map, i.e. the number of periodicities, is set to 2.

Online CLiFF-map Online CLiFF-map (Zhu et al. (2025)) extends the static CLiFF model by up-
dating the SWGMM parameters incrementally as new motion observations become avail-
able. Each grid location maintains an SWGMM, which is initialized upon first receiv-
ing observations and subsequently updated using the stochastic expectation-maximization
(sEM) algorithm (Cappé & Moulines (2009)). In sEM, the expectation step of the origi-
nal EM algorithm is replaced by a stochastic approximation step, while the maximization
step remains unchanged. Like the static CLiFF-map, Online CLiFF-map outputs SWGMM
parameters at each grid location, but supports continuous adaptation over time. In the ex-
periments, we follow a spatio-temporal setting by generating an online CLiFF-map for each
hour. Observations collected in an hour interval are treated as the new data batch for updat-
ing the SWGMMs, producing a temporally adaptive representation of motion dynamics.
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4.3 IMPLEMENTATION DETAILS

The output of the network Φθ parameterizes an SWGMM over speed and orientation. For J mix-
ture components, the network predicts 6J raw values per query coordinate. Each component j
is defined by: a mixture weight wj , obtained by applying a softmax over the raw weights; a
mean speed µj,s = max(0, µ̃j,s) and mean orientation µj,a = µ̃j,a mod 2π; variances σ2

j,s =

exp(clamp(ṽj,s,−10, 10)) and σ2
j,a = exp(clamp(ṽj,a,−10, 10)); and a correlation coefficient

ρj = 0.99 tanh(ρ̃j). Altogether, the network defines a valid SWGMM with parameters as in Eq. (3),
where µj =

(
µj,s, µj,a

)
and Σj is the covariance matrix with diagonal entries σ2

j,s, σ
2
j,a and cor-

relation ρj . In the experiments, J is set to 3 and coordinates are normalized to [−1, 1]. Spatial
input is processed by an MLP with hidden sizes [128, 64] and ReLU activations. Temporal input is
processed by a two-layer SIREN (sine activations with ω

(1)
0 = 30 in the first layer and ω

(h)
0 = 1 in

the hidden layer). The two streams are fused via FiLM modulation (Perez et al., 2018). The fused
representation is passed to a linear head producing 6J outputs. Models are trained using the Adam
optimizer with learning rate 10−3 for 100 epochs. An ablation of alternative temporal encodings is
provided in Sec. 4.6.

4.4 QUANTITATIVE RESULTS

To quantitatively evaluate the accuracy of modeling human motion patterns (MoD quality), we use
the negative log-likelihood (NLL). An MoD represents human motion as a probability distribu-
tion over velocity conditioned on a spatio-temporal coordinate (x, y, t), implemented as either an
SWGMM (our method and CLiFF-maps) or a histogram (STeF-map). To evaluate representation
accuracy, we use test data consisting of observed human motions in the same environment. For each
test sample (x, y, t), we query the MoD to obtain the predicted distribution and compute the likeli-
hood of the observed motion under this distribution. A higher likelihood indicates that the predicted
distribution better aligns with the observed data. We report NLL for numerical stability and easy
comparison, so lower NLL values correspond to more accurate motion representations, i.e., higher
quality MoDs.

Table 1 reports the accuracy results. Our method achieves the lowest NLL (0.775± 2.052), outper-
forming all baselines. Online CLiFF-map, CLiFF-map, and STeF-map exhibit significantly higher
NLLs, with paired t-tests showing p < 0.001 under the null hypothesis that baseline NLL is less
than or equal to ours. The reductions relative to our method are respectively +0.752 (online CLiFF),
+1.189 (CLiFF), and +4.801 (STeF), all with 95% confidence intervals.

Compared with STeF-maps, methods based on SWGMM, such as ours and CLiFF-map, offer two
key advantages. They jointly model speed and orientation, whereas STeF-maps do not include
speed information. In addition, SWGMMs represent orientation continuously rather than through a
discretized 8-bin histogram as in STeF-map. These aspects lead to a more accurate representation
of human motion and contribute to the improved performance.

Limitations of CLiFF-maps are from discretizing the environment into grid cells, with each cell
storing a locally fitted SWGMM. This grid-based design limits spatial resolution and introduces
discontinuities at cell boundaries in both space and time. In particular, dividing time into hourly
intervals is a coarse approximation that can produce abrupt changes, since human motion patterns
do not necessarily shift at exact hour boundaries. In contrast, our method models the MoD as a
continuous neural implicit representation. This enables smooth generalization across space and time,
supports queries at arbitrary spatio-temporal coordinates, and provides a compact representation that
avoids the memory overhead of storing distributions for every grid cell.

We also compare the map building time of the baselines against our approach as shown in Table 2.
For the baselines, the training time corresponds to convergence on all grid cells, while for our method
it corresponds to the neural network training time. Our method trains in 19 minutes, substantially
faster than CLiFF-map (over 30 hours) while achieving higher accuracy. These results highlight the
practicality of continuous MoDs for real-time applications, combining both accuracy and efficiency.
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Table 1: Accuracy evaluation on the ATC dataset using average negative log-likelihood (NLL),
where lower values indicate better accuracy. We report mean ± standard deviation, together with
the reduction in NLL relative to our method and the corresponding 95% confidence interval (CI).

Method NLL↓ NLL reduction (vs Ours) 95% CI

Ours 0.775 ± 2.052 – –
Online CLiFF-map 1.527 ± 4.156 +0.752 [0.749, 0.755]
CLiFF-map 1.964 ± 4.953 +1.189 [1.185, 1.192]
STeF-map 5.576 ± 9.314 +4.801 [4.794, 4.809]

Table 2: Training and inference times for map building on the ATC dataset. Lower values indicate
faster performance. Experiments were conducted on a desktop computer equipped with an Intel
i9-12900K CPU and an NVIDIA GeForce RTX 3060 GPU running Ubuntu 20.04.

Method Train time (minute)↓ Inference time (second)↓
Ours 19.26 1.363× 10−6

Online CLiFF-map 23.859 1.914× 10−3

CLiFF-map 1831 1.914× 10−3

STeF-map 0.815 5.665× 10−5

4.5 QUALITATIVE RESULTS

Examples of NeMo-map are shown in Fig. 5. The model is queried at regular spatial intervals
at three different times of day, at locations where human motion appears in the training dataset.
Across the day, the map adapts smoothly to changes in human motion patterns. For example, in
the east corridor (right side of the ATC map), the flow is directed left/upwards in the morning,
shifts direction at noon, where pedestrians keep left when facing oncoming flows, and turns into
right/downwards in the evening. (These patterns are most clearly seen when displaying only the
SWGMM mixture component with the largest weight, in the bottom row, but please note that the
map maintains a representation of the full multimodal distribution at all times.) The generated flow
fields capture such temporal variations and implicitly align with the environment’s topology, even
though no explicit map was provided during training. For instance, speeds decrease near resting
benches, motion flows pass through exits, and flows follow the corridors.

4.6 ABLATION STUDY

We perform an ablation study on alternative methods for temporal encoding. In our method, we
use a SIREN network to process the temporal input. For comparison, we evaluate two alternative
mappings of time t into a temporal feature vector ft(t):

• Temporal grid. A learnable grid Gt ∈ RK×Ct that captures daily periodicity, where K
is the number of discretized time bins (set to 24). The grid feature corresponding to each
time bin is concatenated with the spatial feature and passed through an MLP with hidden
sizes [128, 64] and ReLU activations.

• Fourier features. The time input t is mapped into a periodic embedding using Fourier
features Tancik et al. (2020); Mildenhall et al. (2020). For F frequencies, we construct

ft(t) =
[
sin(2n2πt), cos(2n2πt)

]F−1

n=0
.

This representation enables the model to capture time-dependent variations at multiple res-
olutions. The implementation is identical to the temporal grid variant, except the time grid
is replaced by Fourier features with F = 4, yielding an 8-dimensional temporal embedding.

Table 3 summarizes the results of the ablation study on temporal encoding. Replacing SIREN with
a temporal grid or Fourier features results in higher NLL, confirming the advantage of using SIREN
for modeling continuous temporal dynamics. Among the alternatives, Fourier features outperform
the temporal grid, but both remain less accurate than SIREN. The reductions in NLL relative to

8
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Figure 5: NeMo-map in the ATC dataset, for 09:00 (left), 11:00 (middle) and 18:00 (right), showing
changes of motion patterns throughout the day. Predicted Semi-Wrapped Gaussian Mixture Models
(SWGMMs) are visualized. At each location, arrow color encodes orientation and arrow length
encodes speed. The top row shows multimodality by rendering all SWGMM components with
transparency proportional to their weights, while the bottom row more clearly shows the dominant
flow, only displaying the mixture component with the largest weight.

our method are 0.082 for the temporal grid and 0.063 for Fourier features, with 95% confidence
intervals.

Table 3: Comparing alternative time encodings for NeMo-map, again using the ATC dataset and
comparing average negative log-likelihood (NLL) where lower indicates better accuracy. We report
mean ± standard deviation, together with the reduction in NLL relative to our method and the
corresponding 95% confidence interval (CI). All models are trained using the Adam optimizer with
learning rate 10−3 for 100 epochs.

Method NLL↓ NLL reduction (vs Ours) 95% CI

Ours 0.775 ± 2.052 – –
Temporal grid 0.857 ± 2.113 +0.082 [0.081, 0.083]
Fourier features 0.838 ± 2.105 +0.063 [0.062, 0.064]

5 CONCLUSIONS

We introduced the first-of-its-kind continuous spatio-temporal map of dynamics representation
NeMo-map, a novel formulation of MoDs using implicit neural representations. In contrast to prior
discretized methods such as CLiFF-map and STeF-map, our approach parametrizes a continuous
neural function, which outputs the parameters of a Semi-Wrapped Gaussian Mixture Model at arbi-
trary spatio-temporal coordinates. The model enables smooth generalization across space and time,
and provides a compact representation that avoids storing per-cell distributions.

Through experiments on the large-scale ATC dataset, we demonstrated that NeMo-map achieves
subsantially higher accuracy (lower negative log-likelihood) than existing MoD baselines, while
reducing map building time. Qualitative results further show that the learned flow fields capture
multimodality, temporal variations, and environment topology without requiring explicit maps. Ab-
lation studies confirmed the advantage of using SIREN-based temporal encoding over discrete or
Fourier alternatives.

In summary, the results highlight continuous MoDs as a practical and scalable tool for modeling hu-
man motion dynamics. By combining accuracy, efficiency, and flexibility, the representation offers a
powerful prior for downstream tasks such as socially aware navigation, long-term motion prediction,
and localization in dynamic environments. In future work, we plan to extend this formulation with
online update mechanisms to adapt continuously to evolving crowd behaviors, further bridging the
gap toward long-term real-world deployment.

9
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6 ETHICS STATEMENT

The dataset used for training are publicly available and fully anonymized, representing persons
only as 2D positions without identifiers or visual data. Maps of dynamics further aggregate these
trajectories into statistical motion patterns, so no personal information are retained.

7 REPRODUCIBILITY STATEMENT

For reproducibility, we provide the full training and evaluation code together with detailed instruc-
tions in the supplementary material. The package includes our main model as well as the variants
used in the ablation study. Evaluation results with per-sample NLL values are also attached. In
addition, we provide scripts for generating and visualizing maps of dynamics (MoDs), as shown in
Fig. 5.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Parts of this manuscript were edited with the assistance of LLMs to improve grammar and clarity.
All scientific content was written and verified by the authors.
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