

000 001 002 003 004 005 GRAID: ENHANCING SPATIAL REASONING OF VLMS 006 THROUGH HIGH-FIDELITY DATA GENERATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032

ABSTRACT

011 Vision Language Models (VLMS) achieve strong performance on many vision-
012 language tasks but often struggle with spatial reasoning—a prerequisite for many
013 applications. Empirically, we find that a dataset produced by a current training
014 data generation pipeline has a 57.6% human validation rate. These rates stem from
015 current limitations: single-image 3D reconstruction introduces cascading model-
016 ing errors and requires wide answer tolerances, while caption-based methods re-
017 quire hyper-detailed annotations and suffer from generative hallucinations. We
018 present GRAID, built on the key insight that qualitative spatial relationships can
019 be reliably determined from 2D geometric primitives alone. By operating exclu-
020 sively on 2D bounding boxes from standard object detectors, GRAID avoids both
021 3D reconstruction errors and generative hallucinations, resulting in datasets that
022 are of higher quality than existing tools that produce similar datasets as validated
023 by human evaluations. We apply our framework to the BDD100k, NuImages,
024 and Waymo datasets, generating over 8.5 million high-quality VQA pairs creat-
025 ing questions spanning spatial relations, counting, ranking, and size comparisons.
026 We evaluate one of the datasets and find it achieves 91.16% human-validated ac-
027 curacy—compared to 57.6% on a dataset generated by recent work. Critically,
028 we demonstrate that when trained on GRAID data, models learn spatial reasoning
029 concepts that generalize: models fine-tuned on 6 question types improve on over
030 10 held-out types, with accuracy gains of 47.5% on BDD and 37.9% on NuImages
031 for Llama 3.2B 11B, and when trained on all questions types, achieve improve-
032 ments on several existing benchmarks such as BLINK. The GRAID framework
033 and datasets will be available publicly after the review period.

1 INTRODUCTION

044
045 Figure 1: Examples VQA pairs from the community implementation of SpatialVLM and Spatial-
046 RGPT, showing typical errors and issues in current synthetic data generation methods, and an ex-
047 ample from GRAID.

048 Vision Language Models (VLMS) have already shown promise in a wide variety of applications,
049 such as medical diagnosis Jin et al. (2024), biology (Maruf et al., 2025), and engineering design (Pi-
050 card et al., 2025). However, despite this promise, a key failure mode of VLMS is that they are
051 poor spatial reasoners, that is, they struggle to understand how objects are located in space and
052 the spatial relationships between them. For example, in medical image analysis, Jin et al. (2024)
053 found that VLMS were unable to recognize that skin lesions shown at different angles were the same
pathology. Similarly, in robotics, Wang et al. (2025) found that without integrating explicit spatial

relationships, VLMs were unable to produce high-level, executable robotic task plans. As a result, without spatial reasoning, VLMs cannot be reliably deployed in embodied domains such as robotics or non-embodied domains such as medical image analysis.

While many VLMs have been trained on internet-scale data, Deitke et al. (2024) found that commonly used datasets, such as COCO (Chen et al., 2015) and Localized Narratives (Pont-Tuset et al., 2020), only contain 11 and 37 words per description on average, despite averaging 7.7 objects Lin et al. (2015) and 10.8 nouns per image. In response, there have been several recent approaches focused on generating datasets to improve the spatial reasoning of VLMs. Chen et al. (2024a) proposed SpatialVLM to generate 2 billion visual question–answer (VQA) pairs in metric space, yet our human evaluation reveals that only 57.6% of questions are valid (Section 4), with errors stemming from compounded uncertainties in depth estimation, camera calibration, and scene geometry. Cheng et al. (2025) introduced SpatialRGPT, which similarly requires 3D representations but also architectural changes to the VLM. In addition, their region-based architecture requires region-based prompting, which eliminates localization as a learned skill. SpaRE (Ogezi & Shi, 2025) generates question–answer pairs using Large Language Models (LLMs) from hyper-detailed captions but is limited in scalability since it requires extensive human effort to create the captions and inherits hallucinations from the generative models.

We introduce GRAID (Generating Reasoning questions from Analysis of Images via Discriminative Artificial Intelligence), built on the key insight that *qualitative* spatial relationships can be reliably determined through 2D geometric analysis of bounding boxes, avoiding the metric errors and generative hallucinations commonly found in existing methods. GRAID requires only images and object detection outputs—no architectural changes, no hyper-detailed captions, and no 3D reconstruction. Table 1 offers a comparison of the differences between GRAID and prior methods. Table 1 offers a comparison of the differences between GRAID and prior methods. Our human study finds that over 91.16% of GRAID generated VQA pairs are valid as compared to under 58% of a dataset generated by a current method (Section 4). Consistent with recent benchmark findings (Ogezi & Shi, 2025), our human study implicates low-fidelity training data as the cause of a model underperforming its size class. We demonstrate GRAID at scale by applying it to Berkeley Deep Drive 100k (BDD) (Yu et al., 2020), NuImages (Caesar et al., 2019), and Waymo Open Perception (Ettinger et al., 2021), implementing 22 VQA templates spanning spatial relations, counting, ranking/extrema, localization, and size/aspect, thus generating over 8.5M pairs. To reduce compute requirements at this scale, we introduce SPARQ (Sieve Predicates And Realize Questions), a lightweight interface where question templates define predicates and apply. Shared predicates (e.g., `at_least_x_classes`) allow early rejection and yield up to 1400 \times speedups on the heaviest templates (Section 3.2, App. Table 3). *GRAID is domain-agnostic; we instantiate on driving datasets because they provide among the largest openly available, high-quality object detection annotations at scale, not due to any AV-specific assumption in the method. In addition, the 22 templates we implement are merely to demonstrate GRAID’s effectiveness as a framework; they are by no means the only VQA templates possible.*

In addition to the human study, we conduct a series of quantitative experiments to demonstrate the effectiveness of GRAID’s datasets. Our experiments range from showing cross GRAID dataset generalization (RQ1), to learning simple spatial primitives that combine and lead to enhanced performance on more complex problems (RQ2). Finally, we demonstrate that training on GRAID data leads to improved VQA performance over training on datasets generated by current methods (RQ3). We fine-tune and benchmark several VLM models across a variety of tasks in existing VQA benchmarks (A-OKVQA (Schwenk et al., 2022), RealWorldQA (xAi, 2024), BLINK (Fu et al., 2024), NaturalBench (Li et al., 2024a), and VSR (Liu et al., 2023)) that challenge VLMs in both indoor and outdoor scenes far beyond the driving scenes from our exemplar source datasets. Overall, GRAID tuned models consistently outperform their counterparts tuned on data from existing methods.

In summary, this paper makes the following contributions:

1. **GRAID:** a framework that uses only 2D geometry to generate qualitative spatial VQA data, avoiding errors from single-view 3D reconstruction and hallucinations from generative models.
2. **High quality dataset:** over 8.5M VQA pairs generated from three real-world datasets, with more than 91.16% human-verified validity, making it one of the largest high-quality spatial VQA resources to date (see Sec. 4).
3. **SPARQ:** a reusable predicate library and template interface that accelerates dataset generation by early rejection of infeasible candidates, yielding up to 1400 \times speedups on the most computationally expensive templates (see Sec. 3.2, App. Table 3).

108
 109 4. **Evaluation of generalization based on GRAID:** fine-tuning on GRAID data improves VLM
 110 performance on held-out question types and on non-template tasks as well as external bench-
 111 marks, outperforming models fine-tuned on existing synthetic datasets and demonstrating knowl-
 112 edge transfer beyond our question templates (see Sec. 5).

113
 114 Table 1: Comparison of spatial reasoning data generation frameworks

115 Feature	116 GRAID	117 SpatialVLM	118 SpatialRGPT	119 SpaRE
120 Can operate on images only	✓	✓	✓	✗
121 No VLM architecture changes needed	✓	✓	✗	✓
122 No lengthy captions required	✓	✓	✓	✗
123 Avoids single-view 3D reconstruction	✓	✗	✗	✓
124 Avoids LLM-based QA gen.	✓	✓	✓	✗
125 Open-source implementation by authors	✓	✗	✓	✗

126

2 RELATED WORK AND CHALLENGES

127 Whether analyzing MRI anatomical scans or planning robotic navigation, spatial reasoning is a pre-
 128 requisite for embodied and non-embodied VLM deployment. Recent investigations across medical
 129 imaging (Jin et al., 2024), robotics (Wang et al., 2025), and autonomous vehicles (Jiang et al., 2025)
 130 reveal a consistent pattern: VLMs leave much to be desired in spatial understanding. To better un-
 131 derstand these failures, recent works have investigated if VLMs can understand concepts such as
 132 physical domain understanding (Li et al., 2023), geometric understanding (Kosoy et al., 2025), and
 133 object states (Newman et al., 2024). These real-world concepts have also inspired many benchmarks
 134 like solving problems in the blink of an eye (Fu et al., 2024), naturally adversarial examples (Li et al.,
 135 2025b), physical world understanding for embodied agents (Chow et al., 2025), complex multi-step
 136 spatial concepts (Zhang et al., 2025b), and even games (Tang et al., 2025a; Lyu et al., 2025). The
 137 common finding is that VLMs leave much to be desired in terms of spatial understanding and how
 138 the physical world operates.

139 **3D Reconstruction** Hong et al. (2023) were among the first to teach spatial reasoning to VLMs by
 140 performing 3D scene reconstruction from multiple views then using a 3D feature extractor to con-
 141 nect to an LLM. While such methods worked, they required architectural changes and tons of data
 142 per scene. The authors did not specify how many images per scene were required but popular meth-
 143 ods at the time such as Nerfstudio (Tancik et al., 2023) would have required tens to a few hundred
 144 images from known camera poses per scene. Later works avoided the requirement of many images
 145 by instead constructing implicit scene graphs: predicting depth from RGB images and instance seg-
 146 mentation models refine masks of detected objects, to finally lift 2D images to a 3D point clouds and
 147 perform semantic grouping. However, these approaches come at the cost of compounding errors. Gu
 148 et al. (2024) introduces ConceptGraphs but are admittedly prone to LLM and VLM hallucinations
 149 in addition to missing small and thin objects which, “impacts downstream planning”. Chen et al.
 150 (2024a) introduce SpatialVLM and propose a wide acceptance metric of [50%, 200%] to account for
 151 inaccuracies of their quantitative (metric-based) questions. Despite the wide acceptance threshold,
 152 our human study reveals 57.6% of the answers generated by their community implementation are
 153 wrong (Section 4). Cheng et al. (2025) avoids many of these issues by generating their dataset from
 154 labeled 3D data, however, they propose a region-based VLM which requires architectural changes
 155 and eliminates localization as a core competency of the VLM, i.e., the user must select the object of
 156 interest rather than describe it and let the VLM find it.

157 **Leveraging existing data** is a more popular approach in which recent works have proposed VLMs
 158 with enhanced spatial reasoning by explicitly training them on bounding boxes (Wang et al., 2023;
 159 Yang et al., 2023b; Peng et al., 2023; Rasheed et al., 2024; Zhang et al., 2025a). Additionally,
 160 some methods have trained on point data (You et al., 2023; Deitke et al., 2024) thus becoming
 161 less dependent on bounding boxes, which may encompass with unwanted objects in object-dense
 162 scenes. However, many of these approaches leverage COCO related datasets and as Deitke et al.
 163 (2024) discovered, the sparsity of words in such source datasets are too little to contain spatial
 164 reasoning data. This led to their key insight that significantly longer human annotations are required
 165 to explicitly express spatial relationships.

162 **3 GRAID**
 163

164 GRAID (Generating Reasoning questions from Analysis of Images via Discriminative Artificial In-
 165 telligence) is an extensible framework that generates large-scale Visual-Question-Answering (VQA)
 166 datasets. The datasets are of higher quality than existing tools that produce similar datasets because
 167 GRAID produces valid questions and correct answers far more frequently than existing method-
 168 logies as validated by human evaluations. GRAID does this by way of two components: Scene
 169 Understanding and SPARQ. We discuss each in turn.

170 **3.1 SCENE UNDERSTANDING**
 171

172 GRAID’s key insight into reducing hallucinations in both questions and answers, is to avoid performing
 173 single-image-view 3D reconstruction —the key feature in many existing works. Instead GRAID
 174 does nearly all of its analysis in the 2D image space. In particular, GRAID merely assumes the usage
 175 of object detection models which provide class names and bounding boxes of objects in an image.
 176 Modern object detection models have achieved sufficiently high accuracy on prior global challenges
 177 such as ImageNet, and are robust enough for practical deployment, with both governments and
 178 private entities deploying popular single-stage detectors like YOLO for diverse real-world applica-
 179 tions. Furthermore, there exists several widely accepted interpretability methods such as Saliency
 180 Maps (Li & Wong, 2024; Simonyan et al., 2014), Grad-CAM (Selvaraju et al., 2019), Grad-CAM++
 181 (Chattopadhyay et al., 2018), Score-CAM (Wang et al., 2020), SuperPixels (Hartley et al., 2021) and
 182 many more. This level of widespread deployment and tools for analysis, has yet to be achieved in
 183 the other components required to single-image-view 3D reconstruction which are not limited to but
 184 include models for depth perception, pose estimation, and plane estimation.

185 The problem of object detection can be formally described as follows: given an input image $I \in \mathbb{R}^{H \times W \times C}$ where H , W , and C denote the height, width, and number of channels, object detection
 186 models predict a set of up to N bounding boxes $\mathcal{B} = \{b_i\}_{i=1}^N$ and their corresponding class labels
 187 $\mathcal{Y} = \{y_i\}_{i=1}^N$.

188 GRAID supports several representations of bounding boxes but for convenience, we will refer to
 189 one where each bounding box, $b_i = (x_{\min}, y_{\min}, x_{\max}, y_{\max})$, where (x_{\min}, y_{\min}) and (x_{\max}, y_{\max})
 190 correspond to the top-left and bottom-right corners of the bounding box, respectively. Within each
 191 box, the model must also assign a class label $y_i \in \{1, \dots, C\}$ where C is the total number of class
 192 labels or object categories. This is typically formulated as a probability distribution over the label
 193 space, $p(y_i|I) = \text{softmax}(z_i)$ where $z_i \in \mathbb{R}^C$ are the raw logits from the discriminative model for
 194 class scores. Observe that C is a parameter of the underlying object detection datasets and models
 195 and can easily be changed by swapping models. For example, models trained on the COCO dataset
 196 (Lin et al., 2015) have $C = 80$, whereas models trained to compete ImageNet Large Scale Visual
 197 Recognition Challenge (Russakovsky et al., 2015) have $C = 1000$.

198 Rather than designing a general purpose object detector or assuming a single foundational model,
 199 we build GRAID to support three of the mostly widely used computer vision packages: Detectron2,
 200 MMDetection, and Ultralytics. We define a standard interface thus allowing user’s to either bring in
 201 labeled data or use their own prior trained object detection models. Note that, segmentation models
 202 can also be used as they often share the same backbone as an object detection model.

203 **3.2 SPARQ**
 204

205 Given an image and a list of detection objects, we can now construct questions and answers based
 206 on the relationships of those bounding boxes. However, for an image with many detected objects,
 207 checking spatial relationships between objects quickly becomes expensive as this is a quadratic op-
 208 eration which can require comparing every object to every other object. Thus to scalably generation
 209 millions of questions in under a few hours, we design SPARQ (Sieve Predicates And Realize Ques-
 210 tions).

211 **Predicates** are designed to be lightweight sanity checks before performing the full realization of a
 212 question which are more computationally expensive. For example, in the base question, `RightOf`,
 213 implemented as, *“Is there at least one {object_1} to the right of any {object_2}?”*, we can imme-
 214 diately check to see if there are at least two different object classes before checking spatial rela-
 215 tionships. We can also check to see if there exists at least one pair of objects whose classes are
 216 different and their bounding boxes do not intersect (i.e., their boxes’ $IoU = 0$). While these two

216

Algorithm 1: RIGHT-OF QUESTION REALIZER

217

Input: Image I of width W and height H ; detections \mathcal{D} (each with *label* and *bounding box*)

218

Output: List of (*question*, *answer*) pairs (possibly empty)

219

1. Group detections by class

220

– Build a map $\mathcal{C} : \text{label} \mapsto \text{list of boxes } b = (x_{\min}, y_{\min}, x_{\max}, y_{\max})$.

221

– If $|\text{keys}(\mathcal{C})| < 2$, return \emptyset .

222

2. Evaluate ordered class pairs

223

– Initialize QA $\leftarrow [\]$.

224

– For each ordered pair of distinct classes (c_1, c_2) :

225

– Set found $\leftarrow \text{False}$.

226

– For each $b_1 \in \mathcal{C}[c_1]$ and each $b_2 \in \mathcal{C}[c_2]$:

227

– Let $x_{\min}^{(1)} \leftarrow \text{left edge of } b_1$, and $x_{\max}^{(2)} \leftarrow \text{right edge of } b_2$.

228

– If $x_{\min}^{(1)} > x_{\max}^{(2)}$ (i.e., b_1 is strictly to the right of b_2):

229

– Compute IoU(b_1, b_2). If IoU(b_1, b_2) = 0 (non-overlapping):

230

– Append (“Is there at least one c_1 to the right of any c_2 ?", “Yes”) to QA.

231

– Set found $\leftarrow \text{True}$ and break out of the inner loops.

232

– If found = False, append (“Is there at least one c_1 to the right of any c_2 ?", “No”) to QA.

233

3. Return

234

– Return QA.

235

236

237

checks are simple, their savings are significant. When generating the graid-bdd100k dataset, we find that these two predicates complete, on average, in 5.17ms, while realizing the question takes 46.95ms—nine times slower. In other questions such as `LargestAppearance`, which uses just the former predicate, the savings are more pronounced: over 1407 \times . Furthermore, we find that predicates not only saving time, but they often result sufficient conditions for the questions to be realized. In `LargestAppearance`, the predicate completes on average in 0.02ms, and 78.8% of the time results in a question being realized. In the appendix, we provide a table of GRAID-BDD (without depth) dataset that reports average predicate timing, realization time, and the share of cases where predicate success implied realization success. For the other datasets, we refer the reader to each dataset’s respective README file after the review period.

Realize Questions. Once all predicates for a base question have succeeded, we *apply* the question—that is, we attempt to realize a question-answer pair for the image and its detected objects. One algorithm to solve the previously mentioned, `RightOf` question, is to first find the left most instance of every class of object in the image. Next, for each object found, we iterate over the remaining classes of object in the image and check for the following: 1) the bounding boxes of each potential pair should be non-overlapping, and 2) they should lie on similar planes. Observe that the second condition is necessary in the process of realizing a question as we could encounter a case where we find out that the question could be ambiguous (e.g. is an object truly the right of another if they are also on different heights?). In such instances, the questions *apply* method returns an empty list. Otherwise, when we locate a potential pair, we save them as a candidate pair until we have completed all objects in the image. The full algorithm of the `RightOf` question, is provided in Algorithm 1.

As evidence of GRAID’s effectiveness, we implement over 20 base questions and apply them to three source datasets to generate over 8.5M VQA pairs. We discuss the resulting data in the next section and refer the reader to Appendix A.1 for further details of these base questions including the class name, a brief description of its predicates, and a one-line explanation of the corresponding realization algorithm.

4 GRAID DATASETS

The autonomous vehicle (AV) domain provides an ideal testbed for evaluating GRAID due to its exceptional wealth of high-quality, comprehensively labeled datasets that naturally capture diverse real-world scenarios. We select three prominent AV datasets —Berkeley Deep Drive (BDD) 100k, NuImages, and Waymo Open Perception—that collectively offer extensive ground truth annotations

Figure 2: Hierarchical breakdown of 5.3M visual questions generated by GRAID using Berkeley Deep Drive as the source images. There are five cognitive categories: Spatial Relations (53.5%), Counting (26.7%), Ranking & Extremes (14.9%), Localization (2.6%), and Size & Aspect (1.3%). Question details including runtime, and predicate and apply methods can be found in the Appendix.

across varied driving conditions, geographical locations, and environmental factors. Additionally, the ground truth annotations in the AV space have been shown to have less human labeling errors Schubert et al. (2024) than more general datasets such as COCO. In the subsequent sections, we select to directly leverage these high-quality labels in GRAID’s generation rather than train our own object detectors so that we can evaluate GRAID’s effectiveness in isolation.

In total, we release six variants of GRAID generated datasets from the source datasets (see Table 2). Using BDD, we generate two variants: one without depth related questions yielding 18 classes of questions, and one with depth questions yielding 22 classes of questions. These depth questions are selected as a demonstration of GRAID’s extensibility as a framework. In prior works such as SpatialVLM and SpatialRGPT, depth models are used to ask quantitative metric-based questions. Due to the inaccuracy of these models, the former proposed accepting answers that were within 50% and 200% of the estimated depth. Unfortunately, our human evaluators found that in 250 questions generated by the open implementation of SpatialVLM, over half had incorrect ground-truth answers. This is one of the main motivations for why GRAID asks qualitative rather than quantitative questions, i.e., rather than asking how far an object is in terms of metric distance, it’s easier to answer which object is closer, hence the **Discriminative** in GRAID. To further account for inaccuracies in depth models, our depth questions, like nearly all of our questions, are configurable with thresholds than can be set based on a models’ confidence, a users’ intuition, or domain expertise. For example, in **Closer**, we define `margin_ratio` as the configurable parameter, where the question will only be realized if the ratio of the predicted distances between the objects is at least the `margin_ratio`. This eliminates questions that appear in existing datasets which should otherwise be deemed ambiguous.

Similarly, we release the same two variants using NuImages as the source images and Waymo Open Perception. However, in Waymo, rather than using the original images, we utilize a small subset. In the Waymo Open Perception dataset, there are a few hundred unique scenes. These scenes are actually videos across six cameras on a single vehicle and so many images are repeated with just a handful of objects changing location. Thus, in our Waymo variants we select one image from the front camera with a score that balances: (i) the number of detected objects and (ii) the ratio of the largest object area to the image area. We find this metric offers a good balance of generating more questions per image. Table 2 summarizes the various GRAID generated datasets.

HUMAN EVALUATION OF DATASET QUALITY

In order to characterize the differences between VQA datasets, we perform several kinds of human evaluations. First, we examine Huggingface to identify the most popular VQA datasets which involve spatial reasoning. At the time of submission, under the VQA dataset category, three (Li et al. (2025a); Chen et al. (2024b); Li et al. (2024b)) of the top 30 datasets ranked by downloads explicitly test for spatial reasoning. However, all three are strictly datasets and not frameworks that are capable

324
325
326 Table 2: GRAID Generated Datasets Overview
327
328
329
330
331
332
333

Source Dataset	Question Types	# QA Pairs	Train QA	Val QA	# Train/Val Images
BDD100k	With Depth	5.30M	4.63M	672k	69.9k / 9.9k
	Without Depth	3.82M	3.34M	485k	
NuImages	With Depth	3.29M	2.65M	641k	60.7k / 14.9k
	Without Depth	2.41M	1.94M	478k	
Waymo	With Depth	16.4k	13.1k	3.33k	798/202
	Without Depth	13.8k	10.9k	2.79k	

334
335
336 of generating additional data. In addition, all three utilize LLMs or VLMs in their dataset curation,
337 leading to the question: if a VLM could already see something, is it that hard to test? A few of the
338 remaining test for algebraic reasoning from images via tests like geometric challenges (e.g., read the
339 sides of a triangle and use Pythagorean’s theorem to solve for the missing side), however, the vast
340 majority test for document and chart understanding, or image captioning.

341 In the realm of VQA generation frameworks that explicitly test for spatial reasoning from just im-
342 ages, we find two candidates: SpatialRGPT and SpatialVLM. There are also works such as SpaRE
343 (Ogezi & Shi, 2025) which generate VQA questions given image and caption pairs. However ob-
344 serve that in Deitke et al. (2024), the authors identify that human annotations are required for better
345 image-caption pairs, as the average word count in captions for common pairs such as COCO is
346 merely 11 words. With such little details, methods like SpaRE leave room for LLMs to hallucinate
347 details of an object and scene.

348 Our human evaluators thus evaluated the OpenSpatialDataset, the only dataset produced by Spa-
349 tialRGPT, and OpenSpaces one of the more popularly used datasets generated by the community
350 implementation of SpatialVLM. VQA examples of each dataset are shown in Figure 1. Due to the
351 masked region queries, our evaluators were unable to ascertain the quality of the examples. In some
352 instances, it was possible to determine if the question and answer were correct as there were only
353 one or two regions, however, in many others, there tens of regions which often lacked semantic
354 meaning and so identifying the subject was not possible unless a region-based prompting technique
355 such as Set-of-Mark (Yang et al., 2023a) was used. Our evaluators were able to evaluate 50 im-
356 ages with 5 questions per image in OpenSpaces. An example is shown in Figure 1. The evaluators
357 noted that most questions were not grammatically correct. Despite their best attempts to understand
358 the question, they found $\frac{104}{250} = 41.6\%$ were not valid questions, and $\frac{144}{250} = 57.6\%$ of answers in
359 the dataset were incorrect. Finally, of the questions that were valid, 25.2% of them had halluci-
360 nated answers. Our human evaluations corroborate recent findings from Ogezi & Shi (2025), who
361 show that SpaceLLaVA, on average, performs the worst compared to other similarly-sized models
362 on spatial reasoning benchmarks. Our results suggest that the poor quality of the data generated by
363 the community implementation of SpatialVLM, which was used to train SpaceLLaVA, is a primary
364 contributor to this performance gap.

365 Finally, we turn to the evaluations of a GRAID generated dataset. We ask four humans to evaluate
366 317 VQA pairs from the GRAID-BDD dataset without depth questions. Each person is asked for
367 their name, which is used to compute a seed for randomly sampling the VQA pairs. As with the
368 two previous datasets, we asked our evaluators to determine if 1) a question was valid, and 2) if the
369 answer to the question is correct. Given that we are interested in the correctness of the question,
370 we offer each person the person to view the image with and without bounding boxes. Without
371 the boxes, they attempt an additional question to judge the difficulty of the questions on a Likert
372 scale of 1 to 5. With the boxes, they can determine if the answer in the dataset is indeed correct,
373 and if there are any labeling errors which led to a false answer. In total, our evaluators found 7
374 questions to be unclear, 2 questions to be invalid, and 5 labeling errors in the BDD dataset labels,
375 i.e., over 95.58% of GRAID generated questions were valid. In terms of answers, 12 were found
376 to be unclear and 8 were found to be invalid, hence over 93.69% of answers were valid. When
377 we examine the unique instances (i.e., do not double count the VQA pairs with both question and
378 answer concerns), we find that there are 28 unique instances and so in total less than 9% of the
379 VQA pairs they evaluated were found to be either invalid or confusing. Using their feedback, we
380 were able to address some of the ambiguities. The current public datasets have these corrections

378 and thus even higher validity. Lastly, our evaluators gave an average difficulty rating of 2.968, with
 379 a standard deviation of 1.146. 109 questions were marked as as a 2 or less, while 95 were marked
 380 as a 4 or higher. These results confirm that GRAID generated datasets are of the highest accuracy
 381 VQA datasets made by automated generation pipelines, and that the questions generated are of a
 382 wide variety of difficulty levels, i.e., the data avoids being uniformly easy or hard.
 383

384 5 VISION LANGUAGE MODEL EXPERIMENTS

385 We conduct a series of fine-tuning experiments to determine how well a VLM can learn spatial
 386 reasoning concepts from our data. For all experiments we use Meta Llama-3.2-Vision-Instruct-11B
 387 as the base model and fine tune using LoRA Hu et al. (2021) with a learning rate of 2^{-4} , AdamW8bit
 388 optimizer, and a linear learning rate scheduler. We ask the following research questions:
 389

390 **RQ1:** Does fine-tuning on spatial reasoning tasks enable cross-dataset generalization, demon-
 391 strating acquisition of transferable spatial concepts rather than dataset-specific overfitting?
 392

393 **RQ2:** Can training on fundamental spatial reasoning primitives improve performance on more
 394 complex spatial reasoning tasks not seen during training?
 395

396 **RQ3:** Does training on GRAID generated datasets improve performance on established bench-
 397 marks, further validating the quality of our semi-synthetically generated training data?
 398

399 **RQ1** We perform supervised fine-tuning on a limited sample of GRAID-BDD. We randomly select
 400 10% from the training split without stratified sampling by question type. Using LoRA with rank of
 401 16 and 200 training steps, we evaluate the model on two distinct test scenarios: (1) 1,000 held-out
 402 unstratified examples (Figure 2 provides the full distribution of questions of GRAID-BDD) from
 403 the same dataset (GRAID-BDD), and (2) 1,000 unstratified examples from an entirely different
 404 dataset (GRAID-NuImages). On the first, model performance improved dramatically from 31% to
 405 80.7% (**+49.7%**), already demonstrating improved spatial reasoning capabilities. In the second, the
 406 model achieved substantial gains from 38% to 67.1% (**+29.1%**) on the completely unseen GRAID-
 407 NuImages dataset—which contains entirely different cities, scenes, objects, and visual contexts.
 408 These cross-dataset results strongly indicate that the model acquired transferable spatial reasoning
 409 representations rather than merely memorizing dataset-specific patterns.
 410

411 **RQ2** To evaluate whether a model is truly learning spatial concepts, we select six questions to
 412 serve as our training set for supervised fine-tuning (SFT) of a Meta Llama 3.2 11B VLM: `LeftOf`,
 413 `RightOf`, `HowMany`, `AreMore`, `LargestAppearance`, and `IsObjectCentered` (full def-
 414 initions are provided in Appendix A.1). We use a LoRA with rank 32, batch size 2 with 4 gradient
 415 accumulation steps, 5 warmup steps, AdamW8bit optimizer with a linear schedule, weight decay of
 416 0.01, and train for 200 steps. Observe that these six questions yield over 18,000 VQA pairs using
 417 just GRAID-BDD (still less than half of the total training examples available), but our SFT process
 418 completes only a fraction of an epoch. At the end of our SFT, we evaluate the model on all question
 419 types in GRAID-BDD, and GRAID-NuImages, with the latter never seen in training. The results are
 420 shown in Figure 3. In nearly all questions and across both datasets, we observe wide performance
 421 increases despite only seeing six kinds of questions from only one of the datasets. These results
 422 are in agreement with findings by Tang et al. (2025b) who find that learning basic spatial concepts
 423 in simple simulated settings, leads to spatial reasoning in real world images. In both datasets, we
 424 observe a regression in `LessThanThresholdHowMany` and in GRAID-BDD, a slight regres-
 425 sion in the same question’s counterpart, `MoreThanThresholdHowMany`. Being that these two
 426 questions are some of the most common, we suspect that this is a symptom of overfitting.
 427

428 **RQ3** To evaluate whether GRAID can produce datasets that transfer to real-world spatial reasoning
 429 challenges of both indoor and outdoor scenes that extend far beyond driving scenes, we super-
 430 vise fine-tune (SFT) four instruction tuned VLMs, Meta Llama 3.2 11B (Grattafiori et al., 2024),
 431 Gemma 3 4B (Team et al., 2025), Qwen2.5 VL 3B (Bai et al., 2025b), and Qwen3 VL 8B (Bai
 432 et al., 2025a), on GRAID-BDD (full training details are provided in Appendix A.3). For compari-
 433 on purposes, we also perform the same SFT experiment using OpenSpaces, a dataset generated
 434 by the community implementation of SpatialVLM. We evaluate all SFT variants of all models on
 435 five established VQA benchmarks which contain a variety of indoor and outdoor scenes with vary-
 436 ing spatial reasoning complexity: BLINK (Fu et al., 2024), NaturalBench (Li et al., 2024a), A-
 437 OKVQA (Schwenk et al., 2022), RealWorldQA (xAi, 2024), and VSR (Liu et al., 2023). Rather
 438 than using GRAID’s built in VLM evaluator which supports multiple prompting (zero, few-shot,
 439

Figure 3: We fine-tune Llama 3.2 11B on only 6 questions from GRAID-BDD (hatched upper-left corner). Evaluations demonstrate a greater understanding across more difficult spatial reasoning questions in the GRAID-BDD validation set, generalization to a fifth topic not seen in training (**Size & Aspect**), and in all 19 question types never seen from GRAID-NuImages.

etc.) and decoding techniques (constrained, greedy, etc.), we instead follow others (Ogezi & Shi, 2025) and use VLMEvalKit (Duan et al., 2024), to ensure consistency with reported baselines. We use VLMEvalKit’s exact match grading.

The results in Table 4, 5, and 6 provide further evidence that data from GRAID is of high quality as it enables substantial performance gains on VQA benchmarks across various tasks. For example, with the Llama model, we observe a significant **32.5% improvement** on A-OKVQA and **15.94% overall improvement** on BLINK, with particularly impressive gains on core spatial reasoning tasks: **+41.13%** on Relative Depth, **+31.98%** on Visual Correspondence, and **+30.77%** on Spatial Relations. We also see significant gains with the Gemma and older Qwen models, and lesser gains in Qwen 3. Despite our training data containing mostly cars and only 10 of 143 BLINK Spatial Relations questions contain the word car, the results demonstrate that GRAID generated training data captures transferrable spatial reasoning concepts rather than dataset-specific nuances. The strong improvements across all benchmarks further support that the spatial reasoning primitives learned are not specific to driving scenes and indeed apply to all kinds of scenes both indoor and outdoor. Moreover, across all four backbones, models fine-tuned on GRAID data consistently outperform those fine-tuned on the SpatialVLM dataset and, unlike OpenSpaces SFT, far less frequently incur large regressions on non-spatial tasks. Finally, the absence of overfitting to strictly driving concepts is further validated by stable performance on NaturalBench—a benchmark designed with completely adversarial examples.

6 CONCLUSION

In this work, we present GRAID, a simple framework for generating high-fidelity spatial reasoning VQA data from real images using only 2D detector outputs and qualitative geometry. By explicitly avoiding single-view 3D reconstruction and caption-driven synthesis, GRAID reduces cascading geometric errors and generative hallucinations while remaining easy to adopt with any object detector. Instantiated with 22 templates on three large image corpora, GRAID yields one of the largest high-quality spatial VQA datasets to date—more than 8.5M VQA pairs with over 91.16% human-verified validity—significantly higher than prior works. Supervised fine-tuning on GRAID validates that models learn spatial concepts that *transfer* beyond our templates and datasets, with consistent gains on public evaluations. As the community improves other kinds of models such as segmentation, gaze target and pose estimation, GRAID is already prepared to support those kinds of models with future templates following the SPARQ predicate and question template library. By open sourcing GRAID, we hope to further accelerate improvements in spatial reasoning so that higher-level concepts such as spatio-physical reasoning (Han et al., 2025) could be better researched.

486 REFERENCES
487

488 Shuai Bai, Yuxuan Cai, Ruizhe Chen, Keqin Chen, Xionghui Chen, Zesen Cheng, Lianghao Deng,
489 Wei Ding, Chang Gao, Chunjiang Ge, Wenbin Ge, Zhifang Guo, Qidong Huang, Jie Huang, Fei
490 Huang, Binyuan Hui, Shutong Jiang, Zhaohai Li, Mingsheng Li, Mei Li, Kaixin Li, Zicheng Lin,
491 Junyang Lin, Xuejing Liu, Jiawei Liu, Chenglong Liu, Yang Liu, Dayiheng Liu, Shixuan Liu,
492 Dunjie Lu, Ruilin Luo, Chenxu Lv, Rui Men, Lingchen Meng, Xuancheng Ren, Xingzhang Ren,
493 Sibo Song, Yuchong Sun, Jun Tang, Jianhong Tu, Jianqiang Wan, Peng Wang, Pengfei Wang, Qi-
494 uyue Wang, Yuxuan Wang, Tianbao Xie, Yiheng Xu, Haiyang Xu, Jin Xu, Zhibo Yang, Mingkun
495 Yang, Jianxin Yang, An Yang, Bowen Yu, Fei Zhang, Hang Zhang, Xi Zhang, Bo Zheng, Hu-
496 men Zhong, Jingren Zhou, Fan Zhou, Jing Zhou, Yuanzhi Zhu, and Ke Zhu. Qwen3-vl technical
497 report, 2025a. URL <https://arxiv.org/abs/2511.21631>.

498 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
499 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
500 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
501 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025b.
502 URL <https://arxiv.org/abs/2502.13923>.

503 Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
504 Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
505 autonomous driving. *arXiv preprint arXiv:1903.11027*, 2019.

506 Aditya Chattpadhyay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasubramanian. Grad-
507 cam++: Generalized gradient-based visual explanations for deep convolutional networks. In *2018*
508 *IEEE Winter Conference on Applications of Computer Vision (WACV)*. IEEE, March 2018. doi:
509 [10.1109/wacv.2018.00097](https://doi.org/10.1109/wacv.2018.00097). URL <http://dx.doi.org/10.1109/WACV.2018.00097>.

510 Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Dorsa Sadigh, Leonidas Guibas, and Fei
511 Xia. Spatialvlm: Endowing vision-language models with spatial reasoning capabilities. In *2024*
512 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 14455–14465.
513 IEEE, June 2024a. doi: [10.1109/cvpr52733.2024.01370](https://doi.org/10.1109/cvpr52733.2024.01370). URL <http://dx.doi.org/10.1109/CVPR52733.2024.01370>.

514 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
515 Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
516 models? *arXiv preprint arXiv:2403.20330*, 2024b.

517 Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollar, and
518 C. Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server, 2015. URL
519 <https://arxiv.org/abs/1504.00325>.

520 An-Chieh Cheng, Hongxu Yin, Yang Fu, Qiushan Guo, Ruihan Yang, Jan Kautz, Xiaolong Wang,
521 and Sifei Liu. Spatialrgpt: grounded spatial reasoning in vision-language models. In *Proceedings*
522 *of the 38th International Conference on Neural Information Processing Systems, NIPS '24*, Red
523 Hook, NY, USA, 2025. Curran Associates Inc. ISBN 9798331314385.

524 Wei Chow, Jiageng Mao, Boyi Li, Daniel Seita, Vitor Guizilini, and Yue Wang. Physbench: Bench-
525 marking and enhancing vision-language models for physical world understanding, 2025. URL
526 <https://arxiv.org/abs/2501.16411>.

527 Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Moham-
528 madreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, Jiasen Lu, Taira Anderson, Erin
529 Bransom, Kiana Ehsani, Huong Ngo, YenSung Chen, Ajay Patel, Mark Yatskar, Chris Callison-
530 Burch, Andrew Head, Rose Hendrix, Favyen Bastani, Eli VanderBilt, Nathan Lambert, Yvonne
531 Chou, Arnavi Chheda, Jenna Sparks, Sam Skjonsberg, Michael Schmitz, Aaron Sarnat, Byron
532 Bischoff, Pete Walsh, Chris Newell, Piper Wolters, Tanmay Gupta, Kuo-Hao Zeng, Jon Bor-
533 chardt, Dirk Groeneveld, Crystal Nam, Sophie Lebrecht, Caitlin Wittlif, Carissa Schoenick, Oscar
534 Michel, Ranjay Krishna, Luca Weihs, Noah A. Smith, Hannaneh Hajishirzi, Ross Girshick, Ali
535 Farhadi, and Aniruddha Kembhavi. Molmo and pixmo: Open weights and open data for state-of-
536 the-art vision-language models, 2024. URL <https://arxiv.org/abs/2409.17146>.

540 Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong,
 541 Yuhang Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluat-
 542 ing large multi-modality models. In *Proceedings of the 32nd ACM International Conference on*
 543 *Multimedia*, pp. 11198–11201, 2024.

544 Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi Liu, Hang Zhao, Sabeek Pradhan, Yuning
 545 Chai, Ben Sapp, Charles Qi, Yin Zhou, Zoey Yang, Aurelien Chouard, Pei Sun, Jiquan Ngiam,
 546 Vijay Vasudevan, Alexander McCauley, Jonathon Shlens, and Dragomir Anguelov. Large scale
 547 interactive motion forecasting for autonomous driving : The waymo open motion dataset, 2021.
 548 URL <https://arxiv.org/abs/2104.10133>.

550 Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A.
 551 Smith, Wei-Chiu Ma, and Ranjay Krishna. Blink: Multimodal large language models can see but
 552 not perceive, 2024. URL <https://arxiv.org/abs/2404.12390>.

553 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 554 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
 555 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
 556 renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
 557 Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
 558 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
 559 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
 560 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
 561 Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
 562 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
 563 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
 564 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
 565 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
 566 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 567 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Janya Lee, Jeremy Fu,
 568 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
 569 soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
 570 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
 571 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhota, Lauren
 572 Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
 573 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
 574 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
 575 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
 576 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
 577 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 578 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 579 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
 580 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
 581 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
 582 Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
 583 Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
 584 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
 585 Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
 586 Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
 587 haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
 588 Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei
 589 Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
 590 Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
 591 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
 592 Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
 593 Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
 Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenber, Alexei Baevski, Allie Feinstein,
 Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
 drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
 nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,

594 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
 595 hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
 596 Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
 597 talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
 598 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
 599 Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
 600 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
 601 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 602 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smo-
 603 thers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
 604 Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
 605 Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
 606 Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
 607 son Rudolph, Helen Suk, Henry Aspegen, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
 608 Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
 609 Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
 610 nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
 611 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
 612 jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
 613 Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
 614 Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
 615 Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
 616 Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
 617 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
 618 Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
 619 Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
 620 Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
 621 Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
 622 Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
 623 Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
 624 Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
 625 driguez, Rafi Ayub, Raghatham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
 626 Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
 627 Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
 628 Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
 629 maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
 630 Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
 631 Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
 632 field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
 633 Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
 634 Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
 635 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
 636 mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
 637 Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
 638 jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
 639 Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
 640 Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
 641 duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
 642 <https://arxiv.org/abs/2407.21783>.

643 Qiao Gu, Ali Kuwajerwala, Sacha Morin, Krishna Murthy Jatavallabhula, Bipasha Sen, Aditya
 644 Agarwal, Corban Rivera, William Paul, Kirsty Ellis, Rama Chellappa, Chuang Gan, Celso Miguel
 645 de Melo, Joshua B. Tenenbaum, Antonio Torralba, Florian Shkurti, and Liam Paull. Conceptgraphs:
 646 Open-vocabulary 3d scene graphs for perception and planning. In *2024 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 5021–5028, 2024. doi:
 647 10.1109/ICRA57147.2024.10610243.

648 Tiancheng Han, Yunfei Gao, Yong Li, Wuzhou Yu, Qiaosheng Zhang, and Wenqi Shao. From
 649 diagnosis to improvement: Probing spatio-physical reasoning in vision language models, 2025.
 650 URL <https://arxiv.org/abs/2508.10770>.

648 Thomas Hartley, Kirill Sidorov, Christopher Willis, and David Marshall. Swag: Superpixels
 649 weighted by average gradients for explanations of cnns. In *2021 IEEE Winter Conference on*
 650 *Applications of Computer Vision (WACV)*, pp. 423–432, 2021. doi: 10.1109/WACV48630.2021.
 651 00047.

652 Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang
 653 Gan. 3d-llm: Injecting the 3d world into large language models, 2023. URL <https://arxiv.org/abs/2307.12981>.

654 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 655 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL <https://arxiv.org/abs/2106.09685>.

656 Sicong Jiang, Zilin Huang, Kangan Qian, Ziang Luo, Tianze Zhu, Yang Zhong, Yihong Tang,
 657 Menglin Kong, Yunlong Wang, Siwen Jiao, Hao Ye, Zihao Sheng, Xin Zhao, Tuopu Wen, Zheng
 658 Fu, Sikai Chen, Kun Jiang, Diange Yang, Seongjin Choi, and Lijun Sun. A survey on vision-
 659 language-action models for autonomous driving, 2025. URL <https://arxiv.org/abs/2506.24044>.

660 Qiao Jin, Fangyuan Chen, Yiliang Zhou, Ziyang Xu, Justin M. Cheung, Robert Chen, Ronald M.
 661 Summers, Justin F. Rousseau, Peiyun Ni, Marc J. Landsman, Sally L. Baxter, Subhi J. Al'Aref,
 662 Yijia Li, Alexander Chen, Josef A. Brejt, Michael F. Chiang, Yifan Peng, and Zhiyong Lu. Hidden
 663 flaws behind expert-level accuracy of multimodal gpt-4 vision in medicine. *npj Digital Medicine*,
 664 7(1), July 2024. ISSN 2398-6352. doi: 10.1038/s41746-024-01185-7. URL <http://dx.doi.org/10.1038/s41746-024-01185-7>.

665 Eliza Kosoy, Annya Dahmani, Andrew Kyle Lampinen, Iulia Maria Comsa, Soojin Jeong, Ishita
 666 Dasgupta, and Kelsey R Allen. Decoupling the components of geometric understanding. In
 667 *Workshop on Reasoning and Planning for Large Language Models*, 2025. URL <https://openreview.net/forum?id=VSLCgwK5Az>.

668 Ang Li, Charles Wang, Kaiyu Yue, Zikui Cai, Ollie Liu, Deqing Fu, Peng Guo, Wang Bill Zhu,
 669 Vatsal Sharan, Robin Jia, Willie Neiswanger, Furong Huang, Tom Goldstein, and Micah Gold-
 670 blum. Zebra-cot: A dataset for interleaved vision language reasoning, 2025a. URL <https://arxiv.org/abs/2507.16746>.

671 Baiqi Li, Zhiqiu Lin, Wenxuan Peng, Jean de Dieu Nyandwi, Daniel Jiang, Zixian Ma, Simran
 672 Khanuja, Ranjay Krishna, Graham Neubig, and Deva Ramanan. Naturalbench: Evaluating
 673 vision-language models on natural adversarial samples. In *The Thirty-eight Conference*
 674 *on Neural Information Processing Systems Datasets and Benchmarks Track*, 2024a. URL
 675 <https://openreview.net/forum?id=Dx88A9Zgnv>.

676 Baiqi Li, Zhiqiu Lin, Wenxuan Peng, Jean de Dieu Nyandwi, Daniel Jiang, Zixian Ma, Simran
 677 Khanuja, Ranjay Krishna, Graham Neubig, and Deva Ramanan. Naturalbench: Evaluating vision-
 678 language models on natural adversarial samples, 2025b. URL <https://arxiv.org/abs/2410.14669>.

679 Kaia K.Y. Li and Nicole H. L. Wong. Topographical representation of saliency in the human visual
 680 and temporo-occipital cortex. *The Journal of Neuroscience*, 44(19):e0037242024, May 2024.
 681 ISSN 1529-2401. doi: 10.1523/jneurosci.0037-24.2024. URL <http://dx.doi.org/10.1523/JNEUROSCI.0037-24.2024>.

682 Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
 683 Ping Luo, Limin Wang, and Yu Qiao. Mvbench: A comprehensive multi-modal video under-
 684 standing benchmark, 2024b. URL <https://arxiv.org/abs/2311.17005>.

685 Lei Li, Jingjing Xu, Qingxiu Dong, Ce Zheng, Xu Sun, Lingpeng Kong, and Qi Liu. Can lan-
 686 guage models understand physical concepts? In Houda Bouamor, Juan Pino, and Kalika Bali
 687 (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
 688 cessing*, pp. 11843–11861, Singapore, December 2023. Association for Computational Linguis-
 689 tics. doi: 10.18653/v1/2023.emnlp-main.726. URL <https://aclanthology.org/2023.emnlp-main.726/>.

702 Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
 703 Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
 704 in context, 2015. URL <https://arxiv.org/abs/1405.0312>.

705 706 Fangyu Liu, Guy Emerson, and Nigel Collier. Visual spatial reasoning, 2023. URL <https://arxiv.org/abs/2205.00363>.

707 708 Zesen Lyu, Dandan Zhang, Wei Ye, Fangdi Li, Zhihang Jiang, and Yao Yang. Jigsaw-puzzles:
 709 From seeing to understanding to reasoning in vision-language models, 2025. URL <https://arxiv.org/abs/2505.20728>.

710 711 M. Maruf, Arka Daw, Kazi Sajeed Mehrab, Harish Babu Manogaran, Abhilash Neog, Medha
 712 Sawhney, Mridul Khurana, James P. Balhoff, Yasin Bakış, Bahadir Altintas, Matthew J Thompson,
 713 Elizabeth G Campolongo, Josef C. Uyeda, Hilmar Lapp, Henry L. Bart, Paula M. Mabee,
 714 Yu Su, Wei-Lun Chao, Charles Stewart, Tanya Berger-Wolf, Wasila Dahdul, and Anuj Karpatne.
 715 Vlm4bio: a benchmark dataset to evaluate pretrained vision-language models for trait discovery
 716 from biological images. In *Proceedings of the 38th International Conference on Neural Infor-*
 717 *mation Processing Systems, NIPS '24*, Red Hook, NY, USA, 2025. Curran Associates Inc. ISBN
 718 9798331314385.

719 720 Kaleb Newman, Shijie Wang, Yuan Zang, David Heffren, and Chen Sun. Do pre-trained vision-
 721 language models encode object states?, 2024. URL <https://arxiv.org/abs/2409.10488>.

722 723 Michael Ogezi and Freda Shi. Spare: Enhancing spatial reasoning in vision-language models with
 724 synthetic data, 2025. URL <https://arxiv.org/abs/2504.20648>.

725 726 Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu Wei.
 727 Kosmos-2: Grounding multimodal large language models to the world, 2023. URL <https://arxiv.org/abs/2306.14824>.

728 729 Cyril Picard, Kristen M. Edwards, Anna C. Doris, Brandon Man, Giorgio Giannone, Md Fer-
 730 dous Alam, and Faez Ahmed. From concept to manufacturing: evaluating vision-language
 731 models for engineering design. *Artificial Intelligence Review*, 58(9), July 2025. ISSN
 732 1573-7462. doi: 10.1007/s10462-025-11290-y. URL <http://dx.doi.org/10.1007/s10462-025-11290-y>.

733 734 Jordi Pont-Tuset, Jasper Uijlings, Soravit Changpinyo, Radu Soricu, and Vittorio Ferrari. *Con-*
 735 *necting Vision and Language with Localized Narratives*, pp. 647–664. Springer International
 736 Publishing, 2020. ISBN 9783030585587. doi: 10.1007/978-3-030-58558-7_38. URL http://dx.doi.org/10.1007/978-3-030-58558-7_38.

737 738 Hanoona Rasheed, Muhammad Maaz, Sahal Shaji Mullappilly, Abdelrahman Shaker, Salman Khan,
 739 Hisham Cholakkal, Rao M. Anwer, Erix Xing, Ming-Hsuan Yang, and Fahad S. Khan. Glamm:
 740 Pixel grounding large multimodal model, 2024. URL <https://arxiv.org/abs/2311.03356>.

741 742 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
 743 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
 744 Fei. Imagenet large scale visual recognition challenge, 2015. URL <https://arxiv.org/abs/1409.0575>.

745 746 Marius Schubert, Tobias Riedlinger, Karsten Kahl, Daniel Kröll, Sebastian Schoenen, Siniša Šegvić,
 747 and Matthias Rottmann. Identifying label errors in object detection datasets by loss inspection. In
 748 *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*,
 749 pp. 4582–4591, January 2024.

750 751 Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mot-
 752 taghi. A-okvqa: A benchmark for visual question answering using world knowledge. In *Com-*
 753 *puter Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022,*
 754 *Proceedings, Part VIII*, pp. 146–162, Berlin, Heidelberg, 2022. Springer-Verlag. ISBN 978-
 755 3-031-20073-1. doi: 10.1007/978-3-031-20074-8_9. URL https://doi.org/10.1007/978-3-031-20074-8_9.

756 Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 757 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based lo-
 758 calization. *International Journal of Computer Vision*, 128(2):336–359, October 2019. ISSN
 759 1573-1405. doi: 10.1007/s11263-019-01228-7. URL <http://dx.doi.org/10.1007/s11263-019-01228-7>.

761 Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
 762 Visualising image classification models and saliency maps, 2014. URL <https://arxiv.org/abs/1312.6034>.

764 Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Justin Kerr, Terrance Wang,
 765 Alexander Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David McAllister, and
 766 Angjoo Kanazawa. Nerfstudio: A modular framework for neural radiance field development.
 767 In *ACM SIGGRAPH 2023 Conference Proceedings*, SIGGRAPH ’23, 2023.

769 Kexian Tang, Junyao Gao, Yanhong Zeng, Haodong Duan, Yanan Sun, Zhening Xing, Wenran Liu,
 770 Kaifeng Lyu, and Kai Chen. Lego-puzzles: How good are mllms at multi-step spatial reasoning?,
 771 2025a. URL <https://arxiv.org/abs/2503.19990>.

772 Yihong Tang, Ao Qu, Zhaokai Wang, Dingyi Zhuang, Zhaofeng Wu, Wei Ma, Shenhao Wang,
 773 Yunhan Zheng, Zhan Zhao, and Jinhua Zhao. Sparkle: Mastering basic spatial capabilities
 774 in vision language models elicits generalization to spatial reasoning, 2025b. URL <https://arxiv.org/abs/2410.16162>.

776 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 777 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
 778 Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Cas-
 779 bon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xi-
 780 aohai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Cole-
 781 man, Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry,
 782 Jan-Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi,
 783 Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe
 784 Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedekemeyer, Alaa
 785 Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András
 786 György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia
 787 Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,
 788 Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel
 789 Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivaku-
 790 mar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eu-
 791 gene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna
 792 Klimczak-Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian
 793 Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wi-
 794 eting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh,
 795 Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine,
 796 Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael
 797 Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Ni-
 798 lay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Ruben-
 799 stein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya
 800 Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu,
 801 Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti
 802 Sheth, Siim Pöder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi
 803 Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry,
 804 Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein
 805 Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat
 806 Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas
 807 Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Bar-
 808 rral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam
 809 Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
 Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry Lepikhin, Sebastian Borgeaud, Olivier
 Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot.
 Gemma 3 technical report, 2025. URL <https://arxiv.org/abs/2503.19786>.

810 Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian Zhang, Sirui Ding, Piotr Mardziel, and
 811 Xia Hu. Score-cam: Score-weighted visual explanations for convolutional neural networks. In
 812 *2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)*.
 813 IEEE, June 2020. doi: 10.1109/cvprw50498.2020.00020. URL <http://dx.doi.org/10.1109/CVPRW50498.2020.00020>.

814

815 Peng Wang, Minh Huy Pham, Zhihao Guo, and Wei Zhou. A spatial relationship aware dataset for
 816 robotics, 2025. URL <https://arxiv.org/abs/2506.12525>.

817

818 Wenhui Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu, Xizhou Zhu, Gang Zeng, Ping Luo, Tong
 819 Lu, Jie Zhou, Yu Qiao, and Jifeng Dai. Visionlm: Large language model is also an open-ended
 820 decoder for vision-centric tasks, 2023. URL <https://arxiv.org/abs/2305.11175>.

821

822 xAi. Grok-1.5 Vision Preview — xAI — x.ai. <https://x.ai/news/grok-1.5v>, 2024.
 823 [Accessed 24-09-2025].

824

825 Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
 826 prompting unleashes extraordinary visual grounding in gpt-4v, 2023a. URL <https://arxiv.org/abs/2310.11441>.

827

828 Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng
 829 Liu, Ce Liu, Michael Zeng, and Lijuan Wang. Mm-react: Prompting chatgpt for multimodal
 830 reasoning and action, 2023b. URL <https://arxiv.org/abs/2303.11381>.

831

832 Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du, Bowen Zhang, Zirui Wang, Liangliang Cao,
 833 Shih-Fu Chang, and Yinfei Yang. Ferret: Refer and ground anything anywhere at any granularity,
 834 2023. URL <https://arxiv.org/abs/2310.07704>.

835

836 Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht Madha-
 837 van, and Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous multitask learning,
 838 2020. URL <https://arxiv.org/abs/1805.04687>.

839

840 Shilong Zhang, Peize Sun, Shoufa Chen, Min Xiao, Wenqi Shao, Wenwei Zhang, Yu Liu, Kai Chen,
 841 and Ping Luo. Gpt4roi: Instruction tuning large language model on region-of-interest, 2025a.
 842 URL <https://arxiv.org/abs/2307.03601>.

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **A APPENDIX**865 **A.1 QUESTIONS IMPLEMENTATION**866 **IsObjectCentered**867 **Base Question:** “Divide the image into thirds. In which third does the {object_1} primarily appear?
868 Respond with the letter only: A) left third, B) middle third, C) right third.”869 **Predicate:** Requires at least one object class to appear exactly once.870 **Apply:** For each single-instance class, assigns A/B/C based on the bbox relative to thirds with a
871 buffer; skips ambiguous or spanning cases.872 **WidthVsHeight**873 **Base Question:** “Is the width of the {object_1} appear to be larger than the height?”874 **Predicate:** Requires at least one object class to appear exactly once.875 **Apply:** For single-instance (optionally restricted) classes, compares width vs height; skips near-
876 square within a threshold; returns Yes/No (supports an alternate reversed phrasing).877 **LeftMost**878 **Base Question:** “What is the leftmost object in the image?”879 **Predicate:** At least one object class appears exactly once.880 **Apply:** Finds the leftmost detection fully on the left half and separated from the second-leftmost by
881 a margin; otherwise skips.882 **RightMost**883 **Base Question:** “What is the rightmost object in the image?”884 **Predicate:** At least one object class appears exactly once.885 **Apply:** Finds the rightmost detection fully on the right half and separated from the second-rightmost
886 by a margin; otherwise skips.887 **LargestAppearance**888 **Base Question:** “If you were to draw a tight box around each object in the image, which type of
889 object would have the biggest box?”890 **Predicate:** Requires at least two different object classes.891 **Apply:** Compares detection areas; returns the largest class only if its area exceeds the second by a
892 margin.893 **RankLargestK(k)**894 **Base Question:** “Rank the {k} kinds of objects that appear the largest (by pixel area) in the image
895 from largest to smallest. Provide your answer as a comma-separated list of object names only.”896 **Predicate:** Requires at least {k} different object classes.897 **Apply:** Ranks classes by max single-instance area; asks only if each consecutive pair has a sufficient
898 multiplicative gap.899 **MostAppearance**900 **Base Question:** “What kind of object appears the most frequently in the image?”901 **Predicate:** Requires at least two different object classes.902 **Apply:** Counts detections per class; returns the top class only if it exceeds the second by a margin.903 **LeastAppearance**904 **Base Question:** “What kind of object appears the least frequently in the image?”905 **Predicate:** Requires at least two different object classes.906 **Apply:** Counts detections per class; returns the least frequent class only if it is sufficiently below
907 the second-least.908 **LeftOf**909 **Base Question:** “Is there at least one {object_1} to the left of any {object_2}?”910 **Predicate:** Requires at least two classes and non-overlapping detections.911 **Apply:** Answers Yes if any non-overlapping pair has {object_1}’s right edge strictly left of
912 {object_2}’s left edge; otherwise No.913 **RightOf**914 **Base Question:** “Is there at least one {object_1} to the right of any {object_2}?”915 **Predicate:** Requires at least two classes and non-overlapping detections.

918 **Apply:** Answers Yes if any non-overlapping pair has $\{\text{object_1}\}$ strictly to the right of $\{\text{object_2}\}$;
 919 otherwise No.
 920
 921 **HowMany**
 922 **Base Question:** “How many $\{\text{object_1}\}$ (s) are there in this image?”
 923 **Predicate:** At least one object class present.
 924 **Apply:** Counts instances per class and returns (class, count) pairs.
 925
 926 **AreMore**
 927 **Base Question:** “Are there more $\{\text{object_1}\}$ (s) than $\{\text{object_2}\}$ (s)?”
 928 **Predicate:** Requires at least two object classes.
 929 **Apply:** Pairwise compares counts; asks only when the larger exceeds the smaller by a margin;
 930 returns Yes/No accordingly.
 931
 932 **WhichMore**
 933 **Base Question:** “What appears the most in this image: $\{\text{object_1}\}$ s, $\{\text{object_2}\}$ s, or $\{\text{object_3}\}$ s?”
 934 **Predicate:** Requires at least two object classes.
 935 **Apply:** Evaluates all 3-class combinations and returns the winner only when it exceeds the runner-
 936 up by a margin.
 937
 938 **Quadrants** (N , M)
 939 **Base Question:** “Divide the image into a grid of $\{N\}$ rows x $\{M\}$ columns. Number the cells from
 940 left to right, then top to bottom, starting with 1. In what cell does the $\{\text{object_1}\}$ appear?”
 941 **Predicate:** Requires a single-instance object detection.
 942 **Apply:** Returns the 1-indexed cell if the bbox fits wholly inside one cell with margins (supports up
 943 to 12 cells); otherwise skips.
 944
 945 **LeftMostWidthVsHeight**
 946 **Base Question:** “Does the leftmost object in the image appear to be wider than it is tall?”
 947 **Predicate:** At least one object class appears exactly once.
 948 **Apply:** Uses the leftmost single-instance fully on the left half; requires separation from the second-
 949 leftmost and no overlap; compares aspect ratio with a threshold; returns Yes/No (also supports
 950 reversed phrasing).
 951
 952 **RightMostWidthVsHeight**
 953 **Base Question:** “Does the rightmost object in the image appear to be wider than it is tall?”
 954 **Predicate:** At least one object class appears exactly once.
 955 **Apply:** Uses the rightmost single-instance fully on the right half; requires separation from the
 956 second-rightmost and no overlap; compares aspect ratio with a threshold; returns Yes/No (also sup-
 957 ports reversed phrasing).
 958
 959 **MoreThanThresholdHowMany**
 960 **Base Question:** “Are there $\{\text{target}\}$ or more $\{\text{object_1}\}$ (s) in this image? Respond Yes/No.”
 961 **Predicate:** At least one object class present.
 962 **Apply:** For each class with count $N > 0$, asks two targets (below and above N) to yield one Yes
 963 and one No, using a multiplicative threshold.
 964
 965 **LessThanThresholdHowMany**
 966 **Base Question:** “Are there less than $\{\text{target}\}$ $\{\text{object_1}\}$ (s) in this image? Respond Yes/No.”
 967 **Predicate:** At least one object class present.
 968 **Apply:** For each class with count $N > 0$, asks two targets (above and below N) to yield one Yes
 969 and one No; special-cases target 1 as a presence question.
 970
 971 **MultiChoiceHowMany**
 972 **Base Question:** “How many $\{\text{object_1}\}$ (s) are in the image? Choose one: A) $\{\text{range_a}\}$, B)
 973 $\{\text{range_b}\}$, C) $\{\text{range_c}\}$, D) Unsure / Not Visible. Respond with the letter only.”
 974 **Predicate:** At least one object class present.
 975 **Apply:** For classes with $N \geq 4$, builds contiguous low/mid/high buckets (variance-adjusted), shuf-
 976 fles them across A/B/C, and returns the correct letter; D is provided as a fallback option.
 977
 978 **ObjectsInRow**
 979 **Base Question:** “Are there any objects arranged in a row?”
 980 **Predicate:** At least 3 detections.

972 **Apply:** Slides windows of 3+ centers, fits a line, and returns Yes if normalized vertical residual
 973 variance is below a threshold; otherwise No.
 974
 975 **ObjectsInLine**
 976 **Base Question:** “Which objects appear to be arranged in a row? A) {option_a}, B) {option_b}, C)
 977 {option_c}, D) No clear row arrangement. Respond with the letter only.”
 978 **Predicate:** At least 3 detections.
 979 **Apply:** Finds the best low-variance row of 3+ detections via linear regression; builds two distractors
 980 and returns the letter of the correct option.
 981
 981 **MostClusteredObjects**
 982 **Base Question:** “Which group of objects appears most tightly clustered? A) {option_a}, B)
 983 {option_b}, C) {option_c}, D) No clear clusters. Respond with the letter only.”
 984 **Predicate:** Requires at least 9 detections.
 985 **Apply:** Runs DBSCAN on centers with eps proportional to image diagonal; selects the most com-
 986 pact cluster, constructs distractors, and returns the correct letter.
 987
 987 **Closer**
 988 **Base Question:** “Is there at least one {object_1} that appears closer to the camera than any
 989 {object_2}?”
 990 **Predicate:** Requires at least two classes and non-overlapping detections.
 991 **Apply:** Uses SAM masks and a monocular depth map to compare non-overlapping pairs; answers
 992 Yes if any {object_1} is estimated in front of a {object_2} by a margin; otherwise No.
 993
 993 **Farther**
 994 **Base Question:** “Is there at least one {object_1} that appears farther from the camera than any
 995 {object_2}?”
 996 **Predicate:** Requires at least two classes and non-overlapping detections.
 997 **Apply:** As above but checks if {object_2} is in front; answers Yes when a {object_1} is farther than
 998 a {object_2} by a margin; otherwise No.
 999
 999 **DepthRanking (k)**
 1000 **Base Question:** “Rank the {k} kinds of objects that appear the closest to the camera in the image
 1001 from closest to farthest. Provide your answer as a comma-separated list of object names only.”
 1002 **Predicate:** Requires at least {k} different object classes.
 1003 **Apply:** Uses SAM masks and a depth map to estimate per-class closest depth; returns the top- k
 1004 order only if each consecutive pair differs by a sufficient margin.
 1005
 1005 A.2 GRAID-BDD WITHOUT DEPTH REALIZATION STATISTICS
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Table 3: Performance and Hit Rate Metrics for Different Question Types

Question Type	is_applicable Avg (ms)	apply Avg (ms)	Predicate → QA Hit Rate	Empty cases
Divide the image into thirds. In which third does the {object_1} primarily appear? Respond with the letter only: A) left third, B) middle third, C) right third.	0.03	1.82	71.7%	11535
Is the width of the {object_1} appear to be larger than the height?	0.02	2.66	16.7%	34017
Divide the image into a grid of {N} rows x {M} columns. Number the cells from left to right, then top to bottom, starting with 1. In what cell does the {object_1} appear?	0.02	12.28	42.5%	93933
If you were to draw a tight box around each object in the image, which type of object would have the biggest box?	0.02	69.74	78.8%	15593
Rank the {k} kinds of objects that appear the largest (by pixel area) in the image from largest to smallest. Provide your answer as a comma-separated list of object names only.	0.03	72.25	87.0%	16663
What kind of object appears the most frequently in the image?	0.02	0.01	87.5%	9182
What kind of object appears the least frequently in the image?	0.01	0.01	72.6%	20133
Is there at least one {object_1} to the left of any {object_2}?	16.86	228.16	100.0%	0
Is there at least one {object_1} to the right of any {object_2}?	16.09	206.98	100.0%	0
What is the leftmost object in the image?	0.03	10.13	18.0%	33486
What is the rightmost object in the image?	0.02	10.05	20.3%	32526
How many {object_1}(s) are there in this image?	0.02	0.02	100.0%	0
Are there more {object_1}(s) than {object_2}(s) in this image?	0.01	0.02	97.7%	1708
What appears the most in this image: {object_1}s, {object_2}s, or {object_3}s?	0.01	0.02	69.5%	22432
Does the leftmost object in the image appear to be wider than it is tall?	0.01	7.41	9.0%	37131
Does the rightmost object in the image appear to be wider than it is tall?	0.02	6.61	6.6%	38108
Are there more than {target} {object_1}(s) in this image? Respond Yes/No.	0.02	0.02	100.0%	0
Are there less than {target} {object_1}(s) in this image? Respond Yes/No.	0.01	0.02	100.0%	0
How many {object_1}(s) are in the image? Choose one: A) {range_a}, B) {range_b}, C) {range_c}, D) Unsure / Not Visible. Respond with the letter only.	0.01	0.15	94.3%	4504

Notes:

- `is_applicable` checks if a question type can be applied to an image
- `apply` realizes the actual question-answer pairs
- `Predicate → QA Hit Rate` = Percentage of applicable cases that generated at least one QA pair
- `Empty cases` = Number of times predicates passed but `apply` realized no QA pairs

1080
1081

A.3 RESEARCH QUESTION 3 TRAINING DETAILS

1082
1083
1084
1085
1086

Here we discuss the details of our SFT using the GRAID-BDD dataset. We identify the rarest kind of question in GRAID-BDD, then randomly select that many questions from each question type yielding 51,546 training examples. We fit a LoRA of rank 32, with a batch size of 2 and 4 gradient accumulation steps. We train with a learning rate of 2^{-4} for 200 steps, with 5 warm up steps, with a linear schedule, weight decay of 0.01, and use the AdamW8bit optimizer.

1087
1088
1089
1090
1091

Table 4: Performance comparison between the baseline model (Meta Llama 3.2 11B Vision Instruct), the same model fine-tuned on the OpenSpaces dataset produced by the community implementation of SpatialVLM, and the same model fine-tuned using only the GRAID-BDD dataset. All benchmarks are evaluated with VLMEvalKit using its exact match protocol.

1092
1093
1094
1095
1096

Dataset	Llama 3.2	Llama+OpenSpaces	Llama+GRAID
A-OKVQA	64.02%	55.37% (-8.65)	83.67% (+19.65)
RealWorldQA	36.73%	21.31% (-15.42)	59.48% (+22.75)
NaturalBench			
<i>Q_Acc</i>	48.97%	15.21% (-33.76)	50.29% (+1.32)
<i>I_Acc</i>	52.82%	15.79% (-37.03)	53.36% (+0.54)
<i>Acc</i>	73.40%	49.25% (-24.15)	74.28% (+0.88)
<i>G_Acc</i>	23.42%	3.63% (-19.79)	25.42% (+2.00)
BLINK			
<i>Overall</i>	25.72%	25.46% (-0.26)	42.13% (+16.41)
<i>Art Style</i>	47.86%	20.51% (-27.35)	47.01% (-0.85%)
<i>Counting</i>	25.00%	13.33% (-11.67)	52.50% (+25.50)
<i>Forensic Detection</i>	25.76%	26.52% (+0.76)	26.51% (+0.75%)
<i>Functional Correspondence</i>	3.08%	16.92% (+13.84)	24.61% (+21.53)
<i>IQ Test</i>	6.67%	25.33% (+18.66)	18.00% (+11.33)
<i>Jigsaw</i>	52.00%	27.33% (-24.67)	52.67% (+0.67)
<i>Multi-view Reasoning</i>	35.34%	18.05% (-17.29)	44.36% (+9.02)
<i>Object Localization</i>	61.48%	25.41% (-36.07)	63.11% (+1.63)
<i>Relative Depth</i>	10.48%	50.00% (+39.52)	52.42% (+41.94)
<i>Relative Reflectance</i>	0.75%	24.63% (+23.88)	31.34% (+30.59)
<i>Semantic Correspondence</i>	12.23%	23.02% (+10.79)	35.97% (+23.74)
<i>Spatial Relation</i>	36.36%	18.88% (-17.48)	72.02% (+35.66)
<i>Visual Correspondence</i>	5.23%	25.00% (+19.77)	29.06% (+23.83)
<i>Visual Similarity</i>	46.67%	41.48% (-5.19)	47.41% (+0.74)
VSR-zeroshot			
<i>Precision</i>	57.35%	54.44% (-2.91)	52.50% (-4.85)
<i>Recall</i>	95.55%	21.46% (-74.09)	98.57% (+3.02)
<i>Accuracy</i>	61.13%	41.98% (-19.15)	53.36% (-7.77)
<i>F1</i>	71.68%	30.79% (-40.89)	69.00% (-2.68)

1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149

Table 5: Performance comparison between the baseline model (Gemma 3 4B IT), the same model fine-tuned on the OpenSpaces dataset produced by the community implementation of SpatialVLM, and and same model fine-tuned using only the GRAID-BDD dataset. All benchmarks are evaluated with VLMEvalKit using its exact match protocol.

Dataset	Gemma 3	Gemma+OpenSpaces	Gemma+GRAID
A-OKVQA	1.57%	53.01% (+51.44)	76.07% (+74.50)
RealWorldQA	13.33%	34.90% (+21.57)	49.02% (+35.69)
NaturalBench			
<i>Q_Acc</i>	42.76%	19.74% (-23.02)	33.76% (-8.00)
<i>LAcc</i>	47.03%	19.97% (-27.06)	36.32% (-10.71)
<i>Acc</i>	70.05%	48.74% (-21.31)	63.13% (-6.92)
<i>G_Acc</i>	17.95%	3.84% (-14.11)	10.68% (-7.27)
BLINK			
<i>Overall</i>	4.21%	29.72% (+25.51)	38.72% (+34.51)
<i>Art Style</i>	35.90%	48.72% (+12.82)	50.43% (+14.53)
<i>Counting</i>	10.00%	14.17% (+4.17)	29.17% (+19.17)
<i>Forensic Detection</i>	13.64%	13.64% (0.0)	29.55% (+15.91)
<i>Functional Correspondence</i>	0.00%	15.38% (+15.38)	17.69% (+17.69)
<i>IQ Test</i>	0.67%	14.00% (+13.33)	21.33% (+20.66)
<i>Jigsaw</i>	3.33%	42.67% (+39.34)	54.67% (+51.34)
<i>Multi-view Reasoning</i>	0.75%	36.09% (+35.34)	39.10% (+38.35)
<i>Object Localization</i>	0.00%	22.13% (+22.13)	48.36% (+48.36)
<i>Relative Depth</i>	0.00%	52.42% (+52.42)	51.61% (+51.61)
<i>Relative Reflectance</i>	0.00%	34.33% (+34.33)	28.36% (+28.36)
<i>Semantic Correspondence</i>	0.72%	20.14% (+19.42)	31.65% (+30.93)
<i>Spatial Relation</i>	0.00%	48.25% (+48.25)	58.74% (+58.74)
<i>Visual Correspondence</i>	0.00%	20.93% (+20.93)	33.72% (+33.72)
<i>Visual Similarity</i>	0.00%	36.30% (+36.30)	49.63% (+49.63)
VSR-zeroshot			
<i>Precision</i>	54.74%	55.56% (+0.82)	54.15% (-0.49)
<i>Recall</i>	93.64%	27.82% (-65.82)	78.86% (-14.78)
<i>Accuracy</i>	56.87%	48.85% (-8.02)	54.75% (-2.12)
<i>F1</i>	69.00%	37.00% (-32.00)	64.00% (-5.00)

1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 Table 6: Performance comparison between the baseline models, the same model fine-tuned on
 1189 OpenSpaces, and the same model fine-tuned on the GRAID-BDD dataset. All benchmarks are
 1190 evaluated using VLMEvalKit and its exact match protocol. Results are shown for four model
 1191 families: Llama-3.2-11B-Vision-Instruct, Gemma-3-4B-IT, Qwen2.5-VL-3B-Instruct, and Qwen3-VL-
 1192 8B-Instruct. Each cell four values corresponding to these model families in order.

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	Dataset	Base	OpenSpaces-SFT	GRAID-SFT
A-OKVQA		64.02% / 1.57% / 85.32% / 86.72%	55.37% / 53.01% / 57.03% / 77.38%	83.67% / 76.07% / 81.92% / 87.34%
RealWorldQA		36.73% / 13.33% / 65.50% / 72.03%	21.31% / 34.90% / 39.74% / 53.59%	59.48% / 49.02% / 61.44% / 71.76%
NaturalBench				
<i>Q_Acc</i>		48.97% / 42.76% / 51.39% / 61.89%	15.21% / 19.74% / 21.34% / 39.42%	50.29% / 33.76% / 47.45% / 58.97%
<i>LAcc</i>		52.82% / 47.03% / 55.23% / 63.87%	15.79% / 19.97% / 21.74% / 41.16%	53.36% / 36.32% / 50.37% / 61.08%
<i>Acc</i>		73.40% / 70.05% / 74.46% / 80.09%	49.25% / 48.74% / 52.39% / 65.76%	74.28% / 63.13% / 71.21% / 78.50%
<i>G_Acc</i>		23.42% / 17.95% / 25.63% / 37.37%	3.63% / 3.84% / 5.42% / 15.74%	25.42% / 10.68% / 23.05% / 35.05%
BLINK				
<i>Overall</i>		25.72% / 4.21% / 49.18% / 56.71%	25.46% / 29.72% / 37.30% / 42.98%	42.14% / 38.72% / 44.45% / 62.28%
<i>Art Style</i>		47.86% / 35.90% / 56.41% / 43.59%	20.51% / 48.72% / 46.15% / 50.43%	47.01% / 50.43% / 56.41% / 72.65%
<i>Counting</i>		25.00% / 10.00% / 68.33% / 65.00%	13.33% / 14.17% / 48.33% / 45.83%	52.50% / 29.17% / 61.67% / 64.17%
<i>Forensic Detection</i>		25.76% / 13.64% / 32.57% / 89.39%	26.52% / 13.64% / 21.21% / 28.03%	26.52% / 29.55% / 20.45% / 75.76%
<i>Functional Correspondence</i>		3.08% / 0.00% / 23.84% / 3.08%	16.92% / 15.38% / 18.46% / 28.46%	24.62% / 17.69% / 29.23% / 36.15%
<i>IQ Test</i>		6.67% / 0.67% / 26.00% / 0.00%	25.33% / 14.00% / 27.33% / 28.00%	18.00% / 21.33% / 18.67% / 26.67%
<i>Jigsaw</i>		52.00% / 3.33% / 50.00% / 69.33%	27.33% / 42.67% / 54.00% / 39.33%	52.67% / 54.67% / 48.67% / 62.67%
<i>Multi-view Reasoning</i>		35.34% / 0.75% / 48.12% / 54.14%	18.05% / 36.09% / 46.62% / 45.86%	44.36% / 39.10% / 46.62% / 50.38%
<i>Object Localization</i>		61.48% / 0.00% / 54.91% / 68.03%	25.41% / 22.13% / 35.25% / 59.02%	63.11% / 48.36% / 50.00% / 67.21%
<i>Relative Depth</i>		10.48% / 0.00% / 70.96% / 87.90%	50.00% / 52.42% / 57.26% / 51.61%	52.42% / 51.61% / 60.48% / 86.29%
<i>Relative Reflectance</i>		0.75% / 0.00% / 39.55% / 32.84%	24.63% / 34.33% / 32.84% / 38.06%	31.34% / 28.36% / 40.30% / 33.58%
<i>Semantic Correspondence</i>		12.23% / 0.72% / 31.65% / 17.99%	23.02% / 20.14% / 24.46% / 29.50%	35.97% / 31.65% / 29.50% / 47.48%
<i>Spatial Relation</i>		36.36% / 0.00% / 83.21% / 86.01%	18.88% / 48.25% / 48.25% / 54.55%	72.03% / 58.74% / 75.52% / 82.52%
<i>Visual Correspondence</i>		5.23% / 0.00% / 40.11% / 86.63%	25.00% / 20.93% / 20.93% / 49.42%	29.07% / 33.72% / 36.05% / 84.30%
<i>Visual Similarity</i>		46.67% / 0.00% / 70.37% / 87.41%	41.48% / 36.30% / 47.41% / 56.30%	47.41% / 49.63% / 56.30% / 82.22%
VSR-zeroshot				
<i>Precision</i>		57.35% / 54.74% / 78.08% / 88.58%	54.44% / 55.56% / 55.66% / 65.44%	52.50% / 54.15% / 68.34% / 80.35%
<i>Recall</i>		95.55% / 93.64% / 80.44% / 85.06%	21.46% / 27.82% / 18.76% / 31.00%	98.57% / 78.86% / 84.42% / 88.39%
<i>Accuracy</i>		61.13% / 56.87% / 78.31% / 86.67%	41.98% / 48.85% / 50.33% / 56.06%	53.36% / 54.75% / 71.85% / 82.90%
<i>F1</i>		71.68% / 69.09% / 79.24% / 86.78%	30.79% / 37.08% / 28.06% / 42.07%	69.00% / 64.21% / 75.53% / 84.18%

Figure 4: After supervised fine-tuning on the GRAID-BDD dataset, we can see improvements in the model’s ability to answer questions on the held-out questions of GRAID-BDD, and a dataset with a different distribution of scenes, GRAID-NuImages.

A.4 VLM TRAINING ABLATIONS

In all our supervised fine-tuning experiments, we use `unsløth` to training our LoRA adapters. In this section, we discuss ablations on the various components we can have LoRA adapters for: vision layers, language layers, attention modules, and mlp modules. In each of the experiments, we enable SFT of all components except one at a time. All experiments use a rank of 16, batch size of 2, 4 gradient accumulation steps, 5 warmup steps, 200 steps, a learning rate of 2^{-4} , a linear scheduler, AdamW8bit optimizer, and 0.01 weight decay. In the charts below, we see that the training loss curves for all experiments except one are identical: disallowing the fine-tuning of the language layers. In this setting, we are unable to train the model as well as in the others, and the gradient norm remains relatively high. These results hint that the vision layers of a VLM can use some improvement, however, the vast majority of spatial reasoning is still occurring the language space of the model, and not its vision encoder.

Table 7: Evaluation of ablated models on GRAID-BDD and GRAID-NuImages datasets

	G-BDD	G-NuImg
No ViT	74.84%	64.21%
No Lang	50.11%	45.58%
No Attn	74.95%	62.21%
No MLP	74.84%	63.26%