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ABSTRACT

Neural Theorem Provers (NTPs) present a promising framework for neuro-
symbolic reasoning, combining end-to-end differentiability with the interpretabil-
ity of symbolic logic programming. However, optimizing NTPs remains a sig-
nificant challenge due to their complex objective landscape and gradient sparcity.
On the other hand, Knowledge Graph Embedding (KGE) methods offer smooth
optimization with well-defined learning objectives but often lack interpretability.
In this work, we propose several strategies to integrate the strengths of NTPs and
KGEs. By incorporating KGE objectives into the NTP framework, we demon-
strate substantial improvements in both accuracy and computational efficiency.

1 INTRODUCTION

Deep Learning (DL) methods have recently achieved tremendous progress in various tasks such
as language modeling (Touvron et all [2023; [Liu et all [2023) and content generation Rombach
et al.| (2022); |[Kerbl et al.| (2023). However, when compared with symbolic systems, they are still
limited by the long-lasting problems of the lack of interpretation, out-of-domain generalizability and
reasoning abilities.

To address the above challenges, the concept of Neuro-Symbolic Al (NeSy) has been proposed
to integrate DL and symbolic Al into one end-to-end differentiable system. A popular approach
for such integration is to embed discrete symbols into continuous vector space to enable end-to-
end differentiability (Rocktischel & Riedel,|2017; Minervini et al., |2019; Badreddine et al., [2022).
Neural Theorem Prover (Rocktaschel & Riedel, 2017) (NTP) is a representative of such approach.
It introduces the concept of soft unification during backward chaining process, where the unification
operation is on the learnt embedding space instead of between discrete symbols. Subsequent works
Greedy Neural Theorem Prover (GNTP) (Minervini et al.l [2019) and Conditional Theorem Prover
(CTP) (Minervini et al., [2020) implement top-k rule retrieval and rule reformulation to improve
NTP’s scalability and performance.

Although NTP has been shown to be effective on various datasets, it is known to be hard to opti-
mize (Rocktadschel & Riedel, 2017; [Minervini et al., 2019; [Maene & Raedt, [2023}; /de Jong & Shal
2019). Specifically, as NTPs adopt the fuzzy min-max semiring for unification score aggregation,
only a fraction of embedding parameters will receive gradient updates. The model optimization
is thus heavily dependent on the initialization, and can get stuck in local minima (de Jong & Shal
2019), resulting in under-explored and unregularized embedding space. DeepSoftLog (Maene &
Raedt, 2023)) addresses the above limitation by using differentiable probabilistic semiring instead
of fuzzy semiring, along with other proposed properties to smooth out the back-propagation pro-
cess. However, as it requires additional modules for knowledge compilation (Darwiche} [2011)) and
requires all possible proofs to be considered during training (as opposed to k-best approximation), it
is intrinsically hard to scale to larger datasets.

On the other hand, Knowledge Graph Embedding (KGE)s (Bordes et al) 2013} [Lin et al. 2015}
Yang et al., 2015}, [Trouillon et al., 2016; Dettmers et al., 2018} |Sun et al.l [2019) are state-of-the-art
(SOTA) methods for modeling Knowledge Graphs (KGs). KGEs learn mappings from symbols into
their corresponding vector representations by maximizing scores for positive triplets while mini-
mizing for the negatives, based on some predefined score functions. KGEs enjoy well-defined loss
functions, smooth optimization process, and have shown SOTA performances on KG tasks such as
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link prediction. However, as KGEs are purely sub-symbolic algorithms, they lack the interpretability
as compared to NTPs.

Motivated by the complementary properties of NTPs and KGEs, we conduct the first systematic
study for integrating KGEs into the NTP framework. The rest of the paper is arranged as follow: in
Sectionwe provide brief definition and introduction for NTPs and KGEs, and discuss the hardness
of training NTP from an embedding perspective 3.4} In Section 4] we explain four strategies for
integrating KGEs with NTPs, and conduct detailed experiments in Section [5 Finally, we provide
ablation studies to examine important components during the integration between KGEs and NTPs.
We wish our work can serve as a first step to future studies on such integration and to improve upon
existing differentiable provers.

Contribution:

1. We provide the first systematic study for integrating KGEs into NTPs and propose four
integration strategies, with two focusing on performance, and the other two on efficiency.

2. We show that the integration noticeably improve the baseline NTP by a large margin and
achieve SOTA results on multiple datasets. We also show that by leveraging the properties
of KGEs we could drastically improve the inference and evaluation efficiency.

3. We provide detailed ablations to examine the learnt embedding of NTPs and key factors
in the integration. Interestingly, we find NTPs can achieve superior results with pure KGE
objectives under several datasets, suggesting the synergy between the two distinct methods.

2 RELATED WORK

Differentiable Logic Programming algorithms can be roughly divided into two categories. (1)
Disentangled perception+reasoning (Manhaeve et al., 2018; |Huang et al., [2021; |Yang et al., [2023).
This line of works train a neural network to output a probability distribution over symbols, which is
then consumed by a differentiable logic solver. For example, DeepProbLog Manhaeve et al.| (2018])
guides a neural network with probabilistic circuits constructed by Sentential Decision Diagram (Dar-
wichel| 2011 (SDD). Scallop (Huang et al.,[2021) scales up DeepProbLog by only considering top-k
possible worlds. NeurASP (Yang et al., [2023)) adopts the same strategy, but replace SDD with a An-
swer Set Programming solver. Under this regime, the neural component is completely separated
from the reasoning module. (2)Soft logic programming (Cohen, 2016} Badreddine et al.| 2022}
Yang et al., |2017; |[Rocktaschel & Riedel, [2017). This line of works are a continuous relaxation on
top of logic programming, by learn a mapping from symbols and logic operations into latent embed-
dings and differentiable tensor operations. Logic Tensor Network (Badreddine et al., 2022) extends
First-Order Logic (FOL) with fuzzy semantics. NEURALLP (Yang et all [2017) is a rule-based
learning algorithm that extends TensorLog (Cohen, 2016) by learning to soft select and compose
rules. Besides, Neural Theorem Prover (Rocktischel & Riedell 2017)) learns latent embeddings for
symbols following backward chaining algorithm. Greedy Neural Theorem Prover (Minervini et al.,
2019) and Conditional Theorem Prover (Minervini et al.| 2020) improve the scalability of NTP by
incorporating top-k retrieval and soft rule reformulation.

Knowledge Graph Embedding (KGE) are SOTA methods for link prediction tasks over large-
scale KGs. TRANSE (Bordes et al.| 2013) and its extensions (Wang et al., [2014} |Xiao et al.| 2015)
are translation-based KGEs which minimize distance between subject and object, translated by the
predicate. On the other hand, RESCAL (Nickel et al., 2011), COMPLEX (Trouillon et al., 2016),
TUCKER (Balazevic et al.,[2019) etc. use multi-linear maps to combine subject, relation and object
for score calculation.

Path-based KG Algorithms explicitly learn the multi-hop paths over KGs. They can be applied
directly on top of KGEs by handling multi-hop relation paths as compositions over embedding
space such as in (Lin et al.}[2015), or can be formulated as path-searching algorithms, optimized by
Reinforcement Learning objectives such as in (Das et al.|[2018};|Zhu et al., 2023; |Lin et al., [2018)).
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3 BACKGROUND

3.1 NEURAL THEOREM PROVER

In this section we define the syntax and briefly introduce the SLD resolution and NTP algorithm.
We refer the reader to (Rocktdschel & Riedel, |2017) for a more in-depth explanation.

Syntax A term t can be either a constant c or a variable Xﬂ An atom is defined as a combination
of a predicate symbol and a list of terms. Rules are in the form of H :— B, where the head H is an
atom, and the body BB is a list of atoms connected by conjunctions. A rule with no free variables is
called a ground rule, and a ground rule with an empty body is called a fact. A substitution, denoted
as ¢ = {Xy/t1,...,Xn/tNn} , assigns variables X; to terms ¢;, and applying a substitution to an
atom replaces each occurrence of X; with the corresponding term ¢;. In this work, we only consider
atoms with binary predicates in the form of (s,r,0), where s, r and o denote subject, predicate
(relation) and object respectively.

Backward Chaining Given the goal, backward chaining works backward to find supporting facts
and rules from the Knowledge Base (KB). It can be seen as an iterative process of applying AND/OR:
the OR operation looks for all rules with matching head to perform unification. The AND module is
subsequently called to iteratively prove all atoms in the unified rule’s body, where the OR module is
again called recursively.

NTP and Soft Unification NTPs provide a continuous relaxation of backward chaining by intro-
ducing soft unification. It calculates a unification score v = ¢nrp(c;, ¢;) over the embeddings of
two symbols, where ¢y refers to the predefined similarity function, ¢; and ¢; denotes two constant
terms to be unified. In case of NTP, a Gaussian kernel is usually adopted for ¢yrp. The unification
score y at each proof state are then aggregated following the min/max fuzzy semiring, also known
as the Godel t-norm. Specifically, the AND module performs min aggregation as all sub-goals have
to be proved for the given rule, and OR perform max aggregation, since we only need one proof to be
true to prove the goal. During training, given a KG G, each fact (s,7,0) € G is corrupted to obtain
negative samples (s',7,0), (s,7,0’) and (s',r,0") & G. The learning objective is then defined as the
negative log likelihood of the aggregated unification score:

LNtPf = > —ylog(NTP§((s,7,0)) — (1 — y)log(1 — NTP§ ((s,7,0)) (1)
((s,ry0),y) € G

where NTPg denotes the NTP module with KG G, parameterized by 6.

3.2 KGsS AND EMBEDDING METHODS

A Knowledge Graph (KG) G is a directed multi-graph, represented as a collection of triplets (facts)
(s,m,0) C & xR x &, where £ and R denote the set of entities and relations in G. A KGE model
defines a function that maps triplets to scores ¢xge : € X R x £ — R. This score function ¢ggg
can be translation-based as in TRANSE (Bordes et al., [2013): ¢rranse(S,7,0) = —||s +r — 0],
or similarity-based using a multi-linear function (Trouillon et al., |2016; [Yang et al.| 2015). For in-
stance, COMPLEX (Trouillon et al.l 2016) defines the score function as ¢compLex = Re((s,7,0)),
where (-, -, -) denotes the tri-linear product, Re denotes the real part of the complex number, and ~
denotes the complex conjugate. KGEs are traditionally interpreted as energy-based models (EBMs),
where the score is interpreted as the negative energy of triplets, and are trained with contrastive ob-
jectives and negative log likelihood loss, similar to Ly1p. Besides treating KGEs as EBMs, existing
works (Joulin et al., [2017; [Lacroix et al., 2018} Ruffinelli et al., |2020) have shown that KGEs can
be effectively trained using cross-entropy loss to predict missing object over £, given subjects and
predicates, ¢.e. by maximizing:

logp(o | 8,7) = ¢xee(s,r,0) — log Z exp Pxae(s,r,0) (2)
o’'e&

"We focus on function-free First Order Logic, and therefore does not consider structured terms.
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Figure 1: Illustration of CTP algorithm with a transitive rule template and depth = 1. Given a goal (s, R, 0), it
first transforms the goal predicate to a list of predicates forming the proof path. Then it takes the known subject
s and predicate R; to predict the latent object z; with top-k retrieval; it then uses the predicted z; as the next
subject and predict z;41 to step through the proof path.

3.3 NTPs AS MEMORY-AUGMENTED PATH-BASED ALGORITHM

Inspired by Conditional Theorem Prover (CTP) (Minervini et al.|[2020) we can implement NTP as a
memory-augmented path-based algorithm. Instead of searching for all rules in the KB, CTP extends
NTP by learning a goal transformation module that directly transforms each goal predicate to a list
of predicates following pre-set rule templates (e.g. transitivity), thereby forming the proof paths.
Given a (sub)goal, the model steps through each atom formed by the transformed goal predicate
until it reaches the end of the path. The above procedure is instantiated recursively for each atom
(sub-goal) along the path until it reaches the depth limit. This formulation gives us more flexibility
for integrating KGE methods comparing to original NTP. In Figure [I| we show a simple example of
CTP with depth = 1 and one transitive rule template of length n. At each step, the process can be
viewed as sampling & plausible objects given the subject and predicate o ~ P(s, r), which shares
similar formulation as in formula 2l

3.4 HARDNESS IN TRAINING NTPS

Previous works (Rocktischel & Riedel, 2017; Maene & De Raedt, 2023 [de Jong & Shal [2019)
have primarily focused on analyzing and addressing the limitations of NTPs from the perspective of
unsmooth optimization, particularly in relation to the sparse gradient problem. However, attempts
to mitigate this issue often introduce additional computational overhead. For example, DeepSoft-
Log (Maene & De Raedt, [2023) tackles the sparse gradient problem in NTP training by employing
differentiable probabilistic semantics, combined with a knowledge compilation step for probabilistic
inference, and evaluates the entire proof tree (as opposed to using a top-k approximation) to ensure
accurate gradient calculation. While this approach yields improved accuracy and provides a more
interpretable probabilistic framework, it struggles to scale beyond small KBs.
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Figure 2: Distribution of pairwise similarity from CTP (blue) and CTP combined with KGE (orange).

In contrast to previous works, we try to view the hardness in NTP training from the embedding
perspective. Unlike KGEs, which compute triplet scores based on interactions between entities and
predicates, NTPs derive embeddings solely from pairwise unification scores. This results in embed-
dings in NTPs being less structured. Furthermore, while KGEs typically sample a large number of
negative examples (e.g., 256) to learn the distribution of entities given a subject/object and relation:
(o ~P(s,r))or(s ~ P(r,o0)), NTPs generally sample only a single negative example per entity and
retrieve only the top-k facts from the KB for unification, where k < |£|. As a result, semantically
similar embeddings in NTPs may end up in vastly different regions of the embedding space if they
are never unified or do not receive gradient updates due to the fuzzy min/max operations. In Figure[Z]
we show the distribution of pairwise unification scores between entities, and we could observe the
pairwise score distribution for CTP (blue) is mostly close to 0, suggesting only a handful of embed-
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Modules | CTP | VARIANTS

step | i = topk9 (s, 7), k); 2 = Gli][—1] | CTPs: 2 = trans(s, 1) i = topk? (s, 7, 2), k)
SCOT€lyent | v = énre((s, 7, 2), G[4]) | CTP2: v = Agwre((s, 7, 2), G[i]) + (1 — A) e (s, 7, 2)
SCOT€final ‘ i = topk9 ((z,7,0), k); v = ¢xre((2, 1, 0), G[4]) ‘ CTPy4: ¥ = ¢xee(2, 7, 0)

loss ‘ L = Ly ‘ CTP;: L = Alxrp + (1 — X) Lxae

Table 1: Summary of the proposed four variants for integration. We consider four modules in CTP to inject
KGE:s: 1) step: Given (s, r) find 0; 2) scorejyen:: unification score along each proof path; 3) scorefna: unifi-
cation score calculation at the last proof step, and 4) loss: the final loss calculation. Column CTP shows the
original CTP algorithm, and Column VARIANT shows the modified algorithm by integrating KGEs with the
corresponding modules. The variant only differs from the original CTP for the corresponding module (for in-
stance, CTP; includes the KGE objective in the final loss function. This is the only difference between baseline
CTP and CTP;, and all other variants do not include the KGE objective in their loss function). G denotes the
KG, and G[:] refers to the i-th facts in the KG. trans denotes the translation function of KGEs, z refers to the
tail entity predicted by (s, ), and topk? denotes the top-k retrieval from G that returns the top-k indices i.

ded symbols have interactions with each other. This lack of interaction can lead to an unstructured
and suboptimal embedding space, negatively affecting the performance of NTPs.

Therefore, given the above challenge in training NTPs, in this work we explore different strategies
for leveraging the strengths of KGEs to regularize and enhance the embedding space of NTPs, given
the proven effectiveness of KGEs in learning structured representations.

4 METHOD

In this section we discuss the four variants we considered for integrating KGEs with NTPs. In
Table|l|we summarize how each variant are implemented on top of the original CTP framework.

KGE as an auxiliary loss model The most straightforward strategy for leveraging KGEs to sup-
port NTP training is to use KGE as an auxiliary model for loss calculation. The overall loss for
training NTPs then becomes:

L= )“CNTpg +(1=X) Z —ylog(KGEg((s,7,0)) — (1 — y) log(1 — KGEg((s, 7,0))
((s;m0),y) € G

where A is a hyper-parameter controlling the weight for the mixture. We denote this variant as
CTP;. Note that using KGE as an auxiliary loss term was briefly mentioned in the original NTP
paper (Rocktaschel & Riedel, 2017). However, it was not further examined nor was it used in the
subsequent works in GNTP and CTP.

KGE as an auxiliary score function Similar to CTP;, we again consider utilizing KGE score
function. But rather than appending it as a loss term at the very end, here we inject KGE score
function ¢ggg into NTPs as an auxiliary score ¢mized = Adnre + (1 — A)pxge. In this way, we
could provide additional regularization at each proof step, and force the model to learn interactions
between entities and predicates along the proof path. We refer to this variant as CTP,. Despite the
simplicity, we find this variant to bring the most consistent improvement across most experiments.

KGE for stepping through For translation-based KGEs such as TRANSE and ROTATE, the tail
object o can be efficiently calculated given (s,r). To leverage this translational property, we con-
sider replacing the topk retrieval with a translation-based operation to improve inference efficiency.
Specifically, given a (s, r) pair, we use translational KGE to obtain corresponding object and then
retrieve the closest k facts for score calculation. During inference we skip the retrieval and score
calculation. This variant, referred to as CTP3, is designed to improve the efficiency of NTPs. In
this case, for each proof path, CTP3 is very similar to the path-based KGE method PTRANSE (Lin
et al., |2015). However, they differ in that 1) PTRANSE follow KGE training strategy, and utilize
additional prior for spurious relations, while 2) CTP3 calculates unification scores along the proof
path, and uses the original NTP’s retrieval-based score calculation for each proof path.
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KGE for final score calculation We consider applying KGE at the final step at each proof path.
One drawback on NTPs’ efficiency is their evaluation speed. During evaluation of a link prediction
task, in order to rank all the entities in the KG, the model retrieves top-k facts for each combination
of the missing entity and the known predicate-object/subject pair, followed by the unification score
calculation between two tensors of shape (|€|, k, 3d) where k is the retrieved & facts, and d is the
embedding dimension. For example, WN18RR dataset contains 40,943 entities. With £k = 10 we
need to compute the pairwise distance with the Gaussian kernel between two matrices of shape
(40,943 x 10, 3d). This is done at the end of every proof path, leading to extremely slow evaluation
compared to KGEs. Therefore, we try to replace the last proof step with KGEs, while keeping the
previous steps with NTP. In this way, we wish to leverage the multi-hop reasoning ability of NTPs
while using KGEs for local ranking at the final step. We refer to this variant as CTPy.

While it is trivial to combine any variants together, we do not find performance gain by doing so.
Therefore we leave them separated for the sake of clarity.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Dataset We conduct experiments on popular link prediction datasets including Nations, UMLS
and Kinship (Kemp et al., 2006). Following GNTP (Minervini et al.l2019) we also experiment on
FB122 (Guo et al., [2016a) and WN18RR (Dettmers et al.l 2018). FB122 consists of two test split:
Test-I and Test-II, where Test-II contains the set of triplets that can be inferred via logic rules, and
Test-I denotes the other triplets. We follow the same evaluation protocol as in GNTP and CTP, and
report Mean Reciprocal Rank (MRR) and HITS @m under the filtered setting.

Baseline We compare our work with the previous NTPs: GNTP and CTP. Following GNTP, we
also compare with additional neuro-symbolic systems: NEURALLP (Yang et al., [2017) and MIN-
ERVA (Das et al., 2018) on Kinship, Nations and UMLS datasets. NEURALLP extends on TEN-
SORLOG (Cohen, [2016)) by also learning rules; MINERVA deploys REINFORCE algorithm. For
FB122 and WN18RR, we also compare against popular KGE methods COMPLEX and DISTMULT.

Implementation We conduct our experiments primarily on CTP (Minervini et al., 2020). Since
the original CTP did not evaluate on large-scale dataset FB122 and WN18RR, we perform hyper
parameter tuning to obtain the CTP baseline for these two datasets. By default, we use COMPLEX
for CTP,, CTP5 and CTP,4, and ROTATE for CTP; as we observe best overall performance under
these settings. During training, we obtain negative samples by corrupting subject, entity, and both,
each with n times, resulting in 3n negative samples generated for each triplet. These negative
samples will receive negative label y = 0, and the model is trained according to the NTP objective
(Eq.[T). For CTP; and CTP; we use A = 0.5 as the default weight for combining KGE and NTP.

5.2 RESULTS

Nations, Kinship and UMLS In Tabld2] we show link prediction results on Kinship, Nation and
UMLS datasets. We can observe that CTP; consistently outperforms CTP by a large margin, and
achieve SOTA results on Nations and UMLS datasets. For instance, on Nation and UMLS datasets,
CTP; achieve 0.788 MRR and 0.851 MRR respectively, as comparing to 0.709 MRR and 0.80 MRR
for CTP. On the other hand, CTP; achieves best results on the Kinship dataset with 0.75 MRR and
surpasses baseline CTP on UMLS dataset, but lags behind on the Nations dataset.

FB122 and WN18RR In Figure [3| we show validation MRR during training on FB122 dataset
for baseline CTP (blue), CTPy with COMPLEX (green) and DISTMULT (orange). We can observe
that both CTP; converges quickly in the first 20 epochs, with CTP,-COMPLEX slightly higher than
CTP2-DISTMULT, and both have much higher accuracy than the baseline CTP. In Table E] and
Table ] we show link prediction results on the FB122 and WN18RR dataset. In FB122 dataset we
can again observe that CTP5 noticeably improve baseline CTP. Under all the models without access
to the ground-truth rules, CTP, achieves best results under Test-II and Test-ALL splits with 0.681
MRR, 0.04 higher than the 2nd highest. Notably, while CTP; outperforms the CTP baseline on
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Datasets ~ Metrics CTP; CTP, CTP3 CTPy NTP GNTP CTP  NEURALLP MINERVA

MRR 075 071 051 0.59 0.35 0.719 0.71 0.62 0.72
Kinship HITS@1 61.59 57.49 49.18 4892 24 58.6 56.5 47.5 60.5
HITS@3 85.01 82.44 7147 67.94 37 815 826 70.7 81.2
HITS@10 9595 95.61 92.84 90.13 57 958 953 91.2 92.4
MRR 063 079 053 0.55 0.61 0.658 0.71 - -
Nations HITS@1 4436 68.93 31.84 34.26 45 493 56.2 - -
HITS@3 77.64 85.62 51.92 52.84 73 78.1 813 - -
HITS@10 98.86 99.70 83.06 79.48 87 985 995 - -
MRR 082 0.85 0.65 0.76 0.80 0.84 0.81 0.78 0.82
UMLS HITS@1 69.90 75.20 54.62 62.75 79 732 694 64.3 72.8
HITS@3 93.19 94.64 77.40 84.37 88 941 89.8 86.9 90
HITS@10 98.71 98.21 92.58 92.18 95 98.6 953 96.2 96.8

Table 2: Link prediction results on Kinship, Nations and UMLS datasets. HITS@m are reported as %.

Test-1 Test-11 Test-ALL
H@3 H@5 H@10 MRR H@3 H@5 H@10 MRR H@3 H@5 H@10 MRR

KALEp 384 447 522 032 797 84.1
KALE; 363 4030 4490 033  98.0 99.0
ASRp 373 410 459 033  99.2 99.30
KBLRN - - - - - -

With
Rules

89.6 0.68 61.2 664 728 0.52
99.2 0.948 70.7 73.1 752 0.67
994 0.984 71.7 736 757 0.67

- - 74.0 77.0 79.7 0.70

TransE 36.0 415 48.1 0.29 71.5 828
DistMult 36.0 403 453 0.31 92.3 938
ComplEx 37.0 41.3 46.2 0.33 914 919
GNTP 28.6 312 358 0.28 942 958
CTP 31.2 3477 39.51 0.30 96.1 97.0

88.4 0.63 58.9 64.20 70.2 0.48
94.7 0.874 674 702 729 0.63
92.4 0.887 673 69.5 0.72 0.64
96.0 0.92 61.5 632 645 0.61
97.9 094 64.5 65.1 683 0.63

Without
Rules

CTP: 306 33.1 37.8 0.29 95.0 959
CTP:2 344 382 431 032 99.1 99.2
CTP3 253 302 342 0.25 93.7 945
CTP4 302 327 37.1 0.28 945 954

96.6 0.89 604 613 629 0.56
994 0.98 69.9 71.32 73.0 0.68
94.8 0.83 594 60.8 622 0.53
95.9 0.85 61.1 646 674 0.61

Table 3: Link prediction result on FB122 dataset. Following GNTP (Minervini et al.,|2019) we report accu-
racy on Test-I, Test-II and Test-ALL. H@m are reported as %. KALEp and KALE; denote KALE-Pre and
KALE-Joint from (Guo et al., 2016b). ASRp denotes ASR-DistMult from (Minervini et al., |2017). All the
aforementioned models have access to the ground-truth logic rules, while other models in the table do not.

Kinship and UMLS datasets, we observe its performance to degrade on FB122 and WN18RR. An
explanation could be that KGE models as EBMs generally require large amount of negative samples
especially with large datasets. Therefore, given small amount of negatives, CTP; could work well
on small datasets like Kinship and UMLS, but cannot scale to larger KBs like FB122 or WN18RR.

In all the experiments, we observe CTP, constantly
outperform baseline CTP and other CTP variants in
most but one dataset (Kinship), where CTP; achieves
0.75 MRR. This is because the length of proof paths
in Kinship is always < 1, and therefore CTP5 has lit-
tle effect. We conjecture that the advantage of CTP,
over CTP; is because it is injected into the NTP frame-
work and regularize each latent subject predicted by the
model along the proof path. Therefore it can be more
effective at regularizing the embedding space compar-
ing to appending the loss outside the proving process
as in CTP;. Moreover, as KGEs are usually trained
with large numbers of negatives, directly adding KGE
to the loss term of NTP may not be ideal. On the other
hand, we observe performance degrades with CTP3 and
CTP,4. This is, however, expected. CTP3 uses the

Validation Accuracy (MRR) training on FB122
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Figure 3: Validation MRR on FB122 dataset
with baseline CTP and CTP5 with DISTMULT
and COMPLEX as integrated KGEs.
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Metrics CTP; CTP; CTP3 CTPy GNTP CTP CoMPLEX DISTMULT NEURALLP MINERVA

MRR 0.361 0.425 0.326 0304 0381 0.364 0415 0.463 0.463 0.448
H@1 35.11 40.86 31.46 29.58 37.12 36.16 38.2 41.0 37.6 41.3
H@3 36.05 43.50 33.57 3342 3854 36.72 43.3 441 46.8 45.6
H@10 37.82 4837 36.79 3574 39.52 38.15 48.0 65.7 65.7 51.3

Table 4: Link prediction results on WN18RR. H@m is reported as %.

translational property of TransE and RotatE to calculate the latent subject, which is equivalent to
top-1 retrieval and can heavily suffer from spurious relation, as mentioned in|Lin et al.[(2015).

Boosting NTP speed with KGE Despite having lower accuracy, CTP3 and CTP, can significantly
improve the efficiency of inference and evaluation of NTP, especially on large-scale dataset. In
Figure ] we show per-sample inference and evaluation time under baseline CTP, CTP3 and CTPy.
For inference, CTP3 requires 2x and 7x less time compared to CTP on FB122 and WN18RR
dataset, while CTP,4 reduces even further by 28 x and 92 x. For evaluation, CTP3 requires 2 less
time than CTP on both datasets, while CTP,4 reduces 942 x and 1452 x on FB122 and WN18RR.

5.3 ABLATION STUDIES

Effect of using different KGEs In Ta-
ble E] we show the performance of CTPq,

Inference Time per Sample Evaluation Time per Sample
CTP; and CTP, using different KGE meth- 5 FB122 , FB122
ods: ComplEx, DistMult, TransE and Ro- g1~ L WN18RR
tatE, and CTP3 with TransE and RotatE. g 10-1
With CTP; and CTP,, we can observe that 510_4 -
the two similarity-based KGEs, COMPLEX ~ §
DISTMULT generally yields the best per- 1073

formance, whereas translation-based KGE cre CTPs CTPq cre CTPs CTPq
TransE and RotatE often lag back by a large Figure 4: Second/sample on FB122 and WN18RR dataset
margin_ For instance, CTP; achieves 0.81 ona NVIDIA V100 GPU with batch size = 512.

MRR on UMLS with COMPLEX, but only

0.67 MRR under ROTATE. In general, we observe that CTP5 is mostly invariant to the choice of
KGE methods, followed by CTP;, whereas CTP3 and CTP,’s performance can vary largely with
different KGE methods. This is expected, as CTP; and CTP; are using KGE score functions as a
regularization term, whereas CTP3 and CTP, are making prediction directly based on KGE:s.

Regularized Embedding space In Figure [5| we show the ¢-SNE visualization of the embedding
space of original CTP and CTP3-COMPLEX. For both methods, we could observe a few points
being close to each other, suggesting the model are able to learn that they are unifiable. However,
we can clearly observe CTP,-COMPLEX also exhibits better global structures, whereas for CTP
there only exists extremely local (pairwise) pattern. On the other hand, as shown in Figure[2] while
baseline CTP (left, blue) exhibits extremely sparse connections between entities with unification
score all gathered around 0, CTP combined with KGE objectives (right, orange) shows a much
smoother score distribution, suggesting a much denser connectivity.

Kinship Nations UMLS

Figure 5: ¢-SNE visualization of embeddings for CTP (blue) and CTP; (orange) with perplexity = 5.

Effect of weight \ for combining KGE and NTPs We find that the weight A controlling the
combination of NTP and KGE loss/score function as in CTP; and CTP; plays an important rule
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KGE UMLS Kinship FB122 Test-ALL
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@3 H@5 H@10
CTP - 0.80 694 89.8 953 0.70 56.56 82.64 0.95 0.63 645 651 683

DistMult ~ 0.78 67.4 87.4 932 0.71 585 812 0.94 0.54 59.31 62.23 63.14
ComplEx 0.81 68.9 93.1 98.7 0.74 61.6 85.0 9594 0.56 604 613 629

CTP, TransE 0.74 61.1 839 96.0 043 323 475 64.15 051 57.42 60.04 62.43
RotatE 0.67 53.1 775 926 0.61 46.6 689 9152 050 57.34 61.47 62.85

DistMult  0.84 745 93.1 983 0.71 59.0 799 935 0.68 69.35 72.1 73.4

CTP ComplEx 0.85 752 946 982 0.72 57.0 823 953 0.68 69.9 713 73.0
2 TransE 0.83 72.1 933 970 0.71 587 80.6 939 0.64 641 674 682
RotatE 0.82 70.6 934 98.1 0.71 59.2 80.6 93.8 0.64 65.1 682 69.8

CTP TransE 048 36.6 574 782 049 403 68.12 90.54 031 28.8 357 444
8 RotatE 0.65 54.6 774 925 054 45.2 7147 92.84 0.53 594 60.8 62.2
DistMult  0.72 57.1 782 89.0 0.61 49.7 69.52 91.7 0.62 62.4 6432 66.8

CTP, ComplEx  0.76 62.7 843 92.1 059 489 679 90.1 0.61 61.1 64.6 674

TransE 0.58 503 724 90.1 053 44.6 6321 90.5 048 553 57.8 59.0
RotatE 0.61 495 742 918 050 439 637 892 060 614 64.0 67.0

Table 5: Link prediction results on UMLS, Kinship and FB122 dataset with different KGE models. Bold
denotes the highest score for each variant under different KGE methods.

UMLS KINSHIP — CTP1

0.85
0.80 07

0.75 0.6

Mnn

0.6 0.40

0.35

0.4

A
Figure 6: MRR with different weight A for combining NTP and KGE objectives.

on their performance. Therefore, we repeat experiments with different A on the tested datasets,
and show the results in Figure [f] We can observe that performance of CTP; tends to fluctuate
when A changes, while CTP5 is more invariant. Specifically, on UMLS and Kinship dataset, the
performance of CTP; increases with smaller \; on the other hand, on FB122 and WN18RR the
performance of CTP; increases with larger A. Besides, for CTP; we find the training loss tends
to be much more stable with smaller \ as shown in Figure [2] which is as expected as the non-
differentiable operations in CTP is smoothed out by the differentiable KGE loss calculation.

Training Loss - Nations cTP WN18RR
—— CTP;-0.0
1.2
3.0 CTP1-0.2
1.0 —— CTP,-0.4
2.5 ’ —— CTP,-0.6

CTP,-0.8

0.8

2.0
0.6

L5 0.4

0 200 400 0 200 400 CTP;-ComplEx ComplEx

Figure 7: Training loss on Nations with CTP (left, Figure 8: ¢-SNE visualization of entity embeddings
blue) and CTP2-COMPLEX (right) with different \. from CTP2-COMPLEX (left) and COMPLEX (right).

Interestingly, we find that both CTP; and CTP;, maintain decent performance when A = 0, suggest-
ing both model perform well even when the loss/score is fully substituted by the KGE loss/score.
For example, CTP; achieves SOTA performance of 0.87 MRR on UMLS when A = 0.1, and 0.85
with A = 0. The exception here is CTP; on FB122 and WN18RR dataset, where its performance
decreases noticeably when A = 0. One possible explanation is due to the missing KGE-specific
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. CTP, CTP,
no Memics  CTP y g \_05 A=08 A=0A=05 r=08 CIiFs CTPs
MRR 0.64 040 056 059 064 068 065 053 032

1 HIT@3 64.50 46.24 6040  62.43 0.65 6943 6583 59.40  34.80
HIT@10 68.30 50.07 6290  63.75 67.50 73.01 68.76 6220 41.52

MRR 0.61 0.43 0.59 0.57 063  0.65 0.49 0.55 0.45
16 HIT@3 62.50 47.62 60.17  59.49 64.25 67.03 50.03 60.84 48.90
HIT@10 65.71 5143 6249 61.84 65.79 69.25  53.81 61.53  41.09

MRR 0.56 043 058 0.48 063 0.62 0.46 0.54 0.59
32 HIT@3 57.26 50.86 5894  49.72 64.70 6450  49.31 59.58  60.46
HIT@10 59.94 53.67 60.12 51.88 66.02 67.62  53.18 63.84 62.62

MRR - ; - - - - - - 0.61
128 HIT@3 - - - - - ; ; - 6L10
HIT@10 - . - - - - - - 6740

Table 6: Test results on FB122 dataset with different number of negative samples n — we corrupt subject,
entity, and both together, each with n times, resulting in 3n total negative samples generated. Bold denotes
column-wise best results. Due to the computational limit, we only evaluate CTP4 when n = 128.

training procedure such as large number of sampling, along with careful hyper-parameter tuning,
the model does not learn meaningful representations with larger and more complex datasets. This
can be seen in Figure [§} while the embeddings learnt by pure KGE procedure (right) form clear
clusters, the one obtained by CTP; (left) do not exhibit any structural pattern.

Training NTPs with more negatives Given the above observation, we wish to see if the problem
could be solved by training with more negatives, with results summarized in Table[6] Interestingly,
instead of receiving better accuracy, we observe a drastic performance drop on CTP, CTP; when
A = 0.8 and CTP; with A = 0.5 and A = 0.8. For example, the MRR of CTP; with A = 0.8 drops
from 0.59 to 0.48 when number of negatives is increased from 1 to 32, and the MRR for CTP, with
A = 0.8 drops from 0.65 to 0.46. Reversely, when A\ = 0, CTP;’s MRR increases from 0.40 to
0.438 as number of negatives increases. This implies increasing the number of negatives helps when
A is low, i.e. when the KGE loss is contributing more to the gradient updates. However, even when
A = 0 for CTP, recovering a pure KGE optimization process, the accuracy with n = 32 is still far
less than when A = 0.5 and all other variants. This suggests that, while we show previously on small
datasets that training with pure KGE objectives can offer a strong baseline for NTP inference, this
phenomenon does not scale to larger and more complex datasets as in this case. A closer analysis on
this scalability issue is required, which we will leave for future works. On the other hand, we notice
drastic increase in accuracy with CTP, from 0.32 MRR to 0.61 with n increases from 1 to 128.

6 CONCLUSION

In this paper we propose to leverage KGE methods to improve NTP performance by enhancing
NTP’s embedding space to be better structured and regularized. We explore four variants CTPy -
CTPy for integrating KGEs into the NTP, and find that by injecting KGEs into NTP’s score calcula-
tion (CTP3) we can improve upon the baseline NTP by a large margin and achieve SOTA results on
multiple datasets. We also show that we could drastically improve NTP’s inference and evaluation
performance by substituting computationally intensive NTP components with lightweight KGE op-
erations. Finally, we conduct detailed ablations and analysis on key components of the integration.

Limitation We also recognize limitations and directions for future work. First, while we show
noticeable performance gain by integrating KGEs into NTPs, we also demonstrate in our ablations
sections [5.3] and [5.3] that KGEs do not naturally reconcile with NTPs, where further analysis is
required to examine the synergy between the two methods. Second, the efficiency of NTPs are still
a concern. Although in CTP3 and CTP,4 we reduce the inference and evaluation time drastically,
it however comes with performance degradation, and is still lagging behind KGE methods. This
hinders the usage of NTPs in real-world scenarios.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael Spranger. Logic tensor
networks. Artificial Intelligence, 303:103649, February 2022. ISSN 0004-3702. doi: 10.1016/.
artint.2021.103649. URL http://dx.doi.org/10.1016/j.artint.2021.1036409.

Ivana Balazevic, Carl Allen, and Timothy Hospedales. Tucker: Tensor factorization for knowl-
edge graph completion. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-1IJCNLP). Association for Computational Linguistics, 2019. doi:
10.18653/v1/d19-1522. URL http://dx.doi.org/10.18653/v1/D19-1522|

Kurt Bollacker, Robert Cook, and Patrick Tufts. Freebase: a shared database of structured general

human knowledge. In Proceedings of the 22nd National Conference on Artificial Intelligence -
Volume 2, AAAT'07, pp. 1962-1963. AAAI Press, 2007. ISBN 9781577353232.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In Proceedings of the 26th In-
ternational Conference on Neural Information Processing Systems - Volume 2, NIPS’13, pp.
2787-2795, Red Hook, NY, USA, 2013. Curran Associates Inc.

William W. Cohen. Tensorlog: A differentiable deductive database, 2016. URL https:
//arxiv.org/abs/1605.06523.

Adnan Darwiche. Sdd: a new canonical representation of propositional knowledge bases. In Pro-
ceedings of the Twenty-Second International Joint Conference on Artificial Intelligence - Volume
Volume Two, IICAT’11, pp. 819-826. AAAI Press, 2011. ISBN 9781577355144

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay Kr-
ishnamurthy, Alex Smola, and Andrew McCallum. Go for a walk and arrive at the answer:
Reasoning over paths in knowledge bases using reinforcement learning, 2018. URL https:
//arxiv.org/abs/1711.05851.

Michiel de Jong and Fei Sha. Neural theorem provers do not learn rules without exploration, 2019.
URLhttps://arxiv.org/abs/1906.06805.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings, 2018. URL https://arxiv.org/abs/1707.01476.

Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. Jointly embedding knowledge graphs
and logical rules. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pp. 192-202, Austin, Texas,
November 2016a. Association for Computational Linguistics. doi: 10.18653/v1/D16-1019. URL
https://aclanthology.org/D16-1019.

Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. Jointly embedding knowledge graphs
and logical rules. In Conference on Empirical Methods in Natural Language Processing, 2016b.
URLhttps://api.semanticscholar.org/CorpusID:7958862.

Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel, Mayur Naik, Le Song, and Xujie Si. Scallop:
From probabilistic deductive databases to scalable differentiable reasoning. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing
Systems, 2021. URL https://openreview.net/forum?id=ngdcAlt1Dvj.

Armand Joulin, Edouard Grave, Piotr Bojanowski, Maximilian Nickel, and Tomas Mikolov. Fast
linear model for knowledge graph embeddings, 2017. URL https://arxiv.org/abs/
1710.10881.

Charles Kemp, Joshua B. Tenenbaum, Thomas L. Griffiths, Takeshi Yamada, and Naonori Ueda.
Learning systems of concepts with an infinite relational model. In Proceedings of the 21st Na-
tional Conference on Artificial Intelligence - Volume 1, AAAT 06, pp. 381-388. AAAI Press,
2006. ISBN 9781577352815.

11


http://dx.doi.org/10.1016/j.artint.2021.103649
http://dx.doi.org/10.18653/v1/D19-1522
https://arxiv.org/abs/1605.06523
https://arxiv.org/abs/1605.06523
https://arxiv.org/abs/1711.05851
https://arxiv.org/abs/1711.05851
https://arxiv.org/abs/1906.06805
https://arxiv.org/abs/1707.01476
https://aclanthology.org/D16-1019
https://api.semanticscholar.org/CorpusID:7958862
https://openreview.net/forum?id=ngdcA1tlDvj
https://arxiv.org/abs/1710.10881
https://arxiv.org/abs/1710.10881

Under review as a conference paper at ICLR 2025

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering, 2023. URL https://arxiv.org/abs/2308.
04079.

Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor decomposition for
knowledge base completion, 2018. URL https://arxiv.org/abs/1806.07297.

Xi Victoria Lin, Richard Socher, and Caiming Xiong. Multi-hop knowledge graph reasoning with
reward shaping, 2018. URL https://arxiv.org/abs/1808.10568

Yankai Lin, Zhiyuan Liu, Huanbo Luan, Maosong Sun, Siwei Rao, and Song Liu. Modeling relation
paths for representation learning of knowledge bases, 2015. URL https://arxiv.org/
abs/1506.00379.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023. URL
https://arxiv.org/abs/2304.08485.

Jaron Maene and Luc De Raedt. Soft-unification in deep probabilistic logic. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

Jaron Maene and Luc De Raedt. Soft-unification in deep probabilistic logic. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL |https://openreview.
net/forum?id=s86M8naPSv.

Robin Manhaeve, Sebastijan Dumancié, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Deepproblog: Neural probabilistic logic programming, 2018. URL https://arxiv.org/
abs/1805.10872.

George A. Miller. Wordnet: a lexical database for english. Commun. ACM, 38(11):39—41, November
1995. ISSN 0001-0782. doi: 10.1145/219717.219748. URL https://doi.org/10.1145/
219717.219748.

Pasquale Minervini, Thomas Demeester, Tim Rocktdschel, and Sebastian Riedel. Adversarial
sets for regularising neural link predictors, 2017. URL https://arxiv.org/abs/1707.
0759¢6.

Pasquale Minervini, Matko BoSnjak, Tim Rocktischel, Sebastian Riedel, and Edward Grefenstette.
Differentiable reasoning on large knowledge bases and natural language, 2019. URL https:
//arxiv.org/abs/1912.10824,

Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp, Edward Grefenstette, and Tim Rocktischel.
Learning reasoning strategies in end-to-end differentiable proving, 2020. URL https://
arxiv.org/abs/2007.06477.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective learning
on multi-relational data. In Proceedings of the 28th International Conference on International
Conference on Machine Learning, ICML’ 11, pp. 809-816, Madison, WI, USA, 2011. Omnipress.
ISBN 9781450306195.

Tim Rocktéschel and Sebastian Riedel. End-to-end differentiable proving. In Advances in Neu-
ral Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pp. 3791-3803, 2017. URL http:
//papers.nips.cc/paper/6969-end-to-end-differentiable-proving.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models, 2022. URL https://arxiv.org/
abs/2112.10752.

Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. You can teach an old dog new tricks! on
training knowledge graph embeddings. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=BkxSml1BFvr.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by
relational rotation in complex space, 2019. URL https://arxiv.org/abs/1902.10197.

12


https://arxiv.org/abs/2308.04079
https://arxiv.org/abs/2308.04079
https://arxiv.org/abs/1806.07297
https://arxiv.org/abs/1808.10568
https://arxiv.org/abs/1506.00379
https://arxiv.org/abs/1506.00379
https://arxiv.org/abs/2304.08485
https://openreview.net/forum?id=s86M8naPSv
https://openreview.net/forum?id=s86M8naPSv
https://arxiv.org/abs/1805.10872
https://arxiv.org/abs/1805.10872
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://arxiv.org/abs/1707.07596
https://arxiv.org/abs/1707.07596
https://arxiv.org/abs/1912.10824
https://arxiv.org/abs/1912.10824
https://arxiv.org/abs/2007.06477
https://arxiv.org/abs/2007.06477
http://papers.nips.cc/paper/6969-end-to-end-differentiable-proving
http://papers.nips.cc/paper/6969-end-to-end-differentiable-proving
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://openreview.net/forum?id=BkxSmlBFvr
https://arxiv.org/abs/1902.10197

Under review as a conference paper at ICLR 2025

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume Bouchard. Com-
plex embeddings for simple link prediction, 2016. URL https://arxiv.org/abs/1606.
06357.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intel-
ligence, AAAT’ 14, pp. 1112-1119. AAAI Press, 2014.

Han Xiao, Minlie Huang, Yu Hao, and Xiaoyan Zhu. Transa: An adaptive approach for knowledge
graph embedding, 2015. URL https://arxiv.org/abs/1509.05490!

Bishan Yang, Wen tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases, 2015. URL https://arxiv.org/
abs/1412.6575.

Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable learning of logical rules for knowl-
edge base reasoning, 2017. URL |https://arxiv.org/abs/1702.08367,

Zhun Yang, Adam Ishay, and Joohyung Lee. Neurasp: Embracing neural networks into answer set
programming, 2023. URL https://arxiv.org/abs/2307.07700!

Zhaocheng Zhu, Xinyu Yuan, Mikhail Galkin, Sophie Xhonneux, Ming Zhang, Maxime Gazeau,
and Jian Tang. A*net: A scalable path-based reasoning approach for knowledge graphs, 2023.
URL https://arxiv.org/abs/2206.04798.

13


https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1606.06357
https://arxiv.org/abs/1606.06357
https://arxiv.org/abs/1509.05490
https://arxiv.org/abs/1412.6575
https://arxiv.org/abs/1412.6575
https://arxiv.org/abs/1702.08367
https://arxiv.org/abs/2307.07700
https://arxiv.org/abs/2206.04798

Under review as a conference paper at ICLR 2025

Dataset €] |R| #Train # Validation # Test
Kinship (Kemp et al.,[2006) 104 25 8544 1068 1074
Nations (Kemp et al.,|2006) 14 55 1592 199 201
UMLS (Kemp et al., 2006) 135 46 5,216 652 661
FB122 (Guo et al.,[2016a) 9738 122 91,638 9595 11243

WNI18RR (Dettmers et al., [2018)) 40,943 11 86,835 3,034 3,134

Table 7: Dataset statistics Statistics of datasets used in this work. Columns: number of entities
(|€]), number of predicates (|R|), number of training, validation, and test samples.

7 APPENDIX

7.1 DATASET INFORMATION

We conduct experiments on three small-scale link prediction datasets: Kinship, Nations and
UMLS (Kemp et al., 20006), as well as two large-scale Knowledge Graph (KG) datasets: FB122 (Guo
et al.Ll2016a) and WN18RR (Dettmers et al.,[2018). FB122 is a subset of Freebase (Bollacker et al.,
2007) containing facts of people, location and sports. Its test set is splitted into two subsets, Test-I
and Test-1I, where Test-I contains all triplets that cannot be derived by deductive logic inference,
and Test-II denotes all the rest triplets. WN18RR is derived from WordNet (WN18) (Miller, |1993)),
where test triplets that can be obtained by inverting triplets in the training set are removed. In Table[7]
we summarize the statistics of these datasets.

7.2 EXPERIMENTAL SETTINGS

Rule templates CTP defines a number of rule templates for the model to explore. The template is
defined as number of steps — how many steps to hop from the head to the tail entity, and whether
it is a reverse relation, indicated by 7, ¢.e. stepping from tail to head entity. For example, rule = 0
means the model will try to directly unify the goal with facts in the KB. rule = 2 means two
steps from the head to the tail entity, e.g. R(s, 0) :— R1(s, z), R2(z,0). rule = 1R means a reverse
relation: R(s,o0) :— Ry (o, s). For Kinship, Nations and UMLS we follow the setting in CTP with
Kinship={0, 1, 1r}, Nations={0, 2, 1r}, and UMLS={0, 2}. For FB122 and WN18RR we both use
{0,1,2,1r}.

Training For hyper-parameters we follow CTP (Minervini et al., 2020) on Kinship and UMLS
datasets for all the experiments. Specifically, we use embedding_size=50, top-k=4, batch_size=8,
learning_rate=0.1, trained 100 epochs with Adagrad optimizer. For each triplets we sample 3 nega-
tive sample per entity (a total of 9 negative samples per triplet). For Nations we use batch_size=256
with AdamW optimizer for the CTPy variant, and the same as CTP for the rest of models. For
FB122 and WN18RR we mostly follow the setting from GNTP (Minervini et al., 2019), with em-
bedding_size=100, top-k=10, and 1 negative sample per entity. We use Adagrad optimizer and train
100 epochs.

For baseline CTP we find freezing the model entities in the first 25 epochs work well, while for all
our CTP variants we receive better results by not freezing the model from the beginning. We also
explore different score aggregation operations for aggregating scores along one proof path (AND
operation). For baseline CTP and CTP; we find the original min generally work well, while mean
and multiplication work better for CTPs, CTP3 and CTP,. besides, we considered using cosine
similarity as the scoring metric, with using addition instead of concatenation for obtaining the em-
bedding for the whole triplets. However, we do not observe it to perform better than using the
Gaussian kernel.

Incorporating KGE objectives To ensure KGE score lies within 0 and 1 we add a Sigmoid function
to its negative score function. To avoid small negative scores being pushed to zeros after Sigmoid,
we first subtract the mean from the negative scores.
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Kinship ‘ Nations UMLS ‘ FB122 ‘ WNI18RR
associated _with(X,Y):-
term21(X,Y):- treaties(X,Y):- p :Zz:;ﬁg;)) contains(X,Y) :- hypernym(X,Y):-
term24(Y,Z) treaties(Y,X) ()ccufr in(X 7Y)'— ’ capital(Y, X) hypernym(Y,X)
term4(X,Y):- aidenemy(X,Y):- i‘sgue ir;(X-Y) language_spoken(X, Y):- verb_group(X,Y):-
term4(Y,Z) militaryactions(Y,X) r o ) f’(Y ’Z) official_language(X,Y) verb_group(Y,X)
term9(X,Y):- lostterritory(X,Y):- interfazzzzbt;zx Y’)‘- place_lived(X,Y):- has_part(X,Y) :-
terml1(Y,Z) timesincewar(Y,X) Y o place_of birth(X,Y) part_of (Y,X)

result_of (X,Y),
result_of (Y,Z)

Table 8: Visualization of learnt rules under each dataset with CTP5

7.3  VISUALIZATION OF LEARNT RULES

In Table[§]we show visualization results generated under each dataset under CTP2. We can see it suc-
cessfully learns logical rules such as place_lived(X,Y):- place_of -birth(X,Y), interconnects(X,Y):-
result_of (X,Y), result_of (Y,Z), and contains(X,Y) :- capital(Y, X).

7.4 PSEUDO-CODE IMPLEMENTATION

Neural Theorem Prover implements backward chaining algorithm by recursively instantiating
AND/OR modules, where OR is called to prove each goal by unifying with each rule head in the
KB. Then, the AND module is called to prove the rule body, where for each atom in the body the
OR is recursively called, until the algorithm reaches depth limit d. The pseudo-code for NTP can be
found in[dl

7.5 CONDITIONAL THEOREM PROVER

Conditional Theorem Prover extends upon NTP by incorporating a trainable neural module for
predicting plausible rules given goals. The pseudo-code for CTP can be found in[2]
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Algorithm 1: Python pseudo-code for NTP with top-k retrieval following implementation
from (Minervini et al.l 2019)

KB: the Knowledge Base.

#
# S: proof state

# - score: unification score
# - subs: substitution set

#
#

sim: similarity function for unification (Gaussian kernel)
topk: a function that performs top-k retrieval

def (goal, S, k):

S_list = []
for rule in KB:

head, body = rule
topk_ind = topk(goal, KB)

if d < max_depth and no_cycle(S.subs, rule):

S_head = unify(head, goal, S, topk_ind)
S_head = kmax(goal, S_head)
S_body = and(body, S, d)

S_list.append (S_body)

return proof_ states
def (goal, S):

S_list = []

if len(goal) ==
S_list = [S]

elif d < max_depth:

goal, sub_goals = goal
new_goal = substitute(goal, subs)

for S_new in or(new_goal, S, d+l):
S_list.append (and(sub_goals, S_new))

return S_list
def (atom, goal, S, topk_ind):

grounded_atom, grounded_goal = [], []
for (atom_term, goal_term) in zip(atom, goal):

if is_variable (atom_term) :
if atom_term not in S.subs: S.subs.update({atom_term: goal_term}
elif is_variable(goal_term):
if is_grounded(atom_term) and goal_term not in S.subs:
S.subs.update ({goal_term: atom_term}

elif is_grounded(atom_term) and is_grounded(goal_term):
grounded_atom.append (atom_term)
grounded_goal.append (goal_term)

score = sim(grounded_goal, grounded_atom[topk_ind])
S.score = min(S.score, score)

return S
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Algorithm 2: Simplified Python pseudo-code for CTP following (Minervini et al.,[2020)

# KB: the Knowledge Base.

# sim: similarity function for unification (Gaussian kernel)
# topk: a function that performs top-k retrieval

# max_depth: maximum recursive depth

def (s, r, o, max_depth):

if max_depth == 0:

return unify(s, r, o)
else:

score = None

for d in range(max_depth) :

level _score = None
for rule_path in rule_templates:

path_score = None
for step_ind, rule_transform in rule_path:

if is_inverse_relation:

latent_score, s = step(o, r, s, max_depth - 1)
else:

latent_score, s = step(s, r, o, max_depth - 1)

if path_score is None:
path_score = latent_score

else:
# min aggregation -- all proofs need to be hold.
path_score = min(path_score, latent_score)

if step_ind == len(rule_path):
# choose the max over the topk branches
path_score, _ = max(path_score, dim=-1)
if level_score is None:
level_score = path_score
else:
# max aggregation -- only one proof path needs to be hold.
level_score = max(level_score, path_score)

if score is None:
score = level_score

else:
# max aggregation —— only one proof path needs to be hold.
score = max(score, level_score)

def (s, r,o=None) :

if o is not None:

topk_ind = topk([s, r, ol)
else:

topk_ind = topk([s, r])

o = KB[topk_ind] [-1]

score = sim([s, r, o], KB[topk_ind])
return score, o
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