
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PRIMAL-DUAL GRAPH NEURAL NETWORKS FOR
GENERAL NP-HARD COMBINATORIAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural algorithmic reasoning (NAR) seeks to train neural networks, particularly
Graph Neural Networks (GNNs), to simulate and generalize traditional algorithms,
enabling them to perform structured reasoning on complex data. Previous re-
search has primarily focused on algorithms for polynomial-time-solvable problems.
However, many of the most critical problems in practice are NP-hard, exposing a
critical gap in NAR. In this work, we propose a general NAR framework to learn
algorithms for NP-hard problems, built on the classical primal-dual framework
for designing efficient approximation algorithms. We enhance this framework by
integrating optimal solutions to these NP-hard problems, enabling the model to
surpass the performance of the approximation algorithms it was initially trained
on. To the best of our knowledge, this is the first NAR method explicitly designed
to surpass the performance of the classical algorithm on which it is trained. We
evaluate our framework on several NP-hard problems, demonstrating its ability
to generalize to larger and out-of-distribution graph families. In addition, we
demonstrate the practical utility of the framework in two key applications: as a
warm start for commercial solvers to reduce search time, and as a tool to generate
embeddings that enhance predictive performance on real-world datasets. Our re-
sults highlight the scalability and effectiveness of the NAR framework for tackling
complex combinatorial optimization problems, advancing their utility beyond the
scope of traditional polynomial-time-solvable problems.

1 INTRODUCTION

The growing interest in teaching neural networks to reason algorithmically stems from the potential
to combine the power of deep learning with the structured logic of classical algorithms. Classical
algorithms offer step-by-step reasoning that guarantees correctness and interpretability, while neural
networks excel at learning directly from data and handling unstructured, real-world inputs. The
intersection of these fields has given rise to the emerging domain of Neural Algorithmic Reasoning
(NAR) (Veličković & Blundell, 2021). NAR aims to train neural networks to replicate the operations
of traditional algorithms, such as Bellman-Ford for the shortest-path problem. By embedding
algorithmic knowledge into models, NAR not only enhances generalization to unseen problem
instances, but also enables direct handling of real-world data, bypassing the need for extensive feature
engineering to adapt problems to abstract algorithmic formats. For instance, a model pre-trained with
Bellman-Ford knowledge can be applied to tackle real-world routing and transportation problems.
This flexibility allows models to integrate rich, domain-specific features—such as weather conditions
or network congestion—into their solutions.

Early research has shown promising results for NAR, particularly using Graph Neural Networks
(GNNs) (Xu et al., 2020; Veličković et al., 2020; Ibarz et al., 2022; Deac et al., 2021; Xhonneux et al.,
2021; Numeroso et al., 2023; Bevilacqua et al., 2023; Rodionov & Prokhorenkova, 2023). However,
much of the current work has focused on algorithms for polynomial-time-solvable problems, in
particular the 30 classic algorithms (e.g., sorting, search, graph) provided by the CLRS-30 benchmark
(Veličković et al., 2022). This creates a significant gap when applying NAR to real-world problems,
many of which are inherently NP-hard. This gap is critical, as the motivation behind NAR is to enable
the transfer of algorithmic knowledge to tackle complex, real-world datasets effectively.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

We propose Primal-Dual Graph Neural Networks (PDGNNs), a general NAR framework to learn
algorithms for NP-hard problems, significantly extending its applicability beyond the polynomial-
time-solvable regime. Our approach builds on the classical primal-dual framework (Goemans &
Williamson, 1996), a widely used technique for designing efficient approximation algorithms for
NP-hard problems. As we show, the iterative nature of primal-dual algorithms naturally aligns with
the message-passing operations of GNNs, making them an ideal foundation for our method. We
provide theoretical guarantees showing that PDGNN can exactly replicate the classical primal-dual
algorithm, establishing a strong theoretical basis for our framework.

Additionally, by incorporating supervision signals from optimal solutions of small problem instances,
we enable PDGNN to surpass the performance of traditional primal-dual methods.1 Unlike prior
works that focus solely on replicating algorithmic behavior, our framework is explicitly designed to
outperform the algorithm it is trained on.

We validate our framework on the minimum vertex cover, minimum set cover, and minimum hitting
set problems. Empirically, we show that models trained on small graphs generalize effectively,
outperforming approximation algorithms on larger instances and unseen graph families. Our results
show that GNNs can acquire algorithmic reasoning from approximation algorithms for NP-hard
problems, enabling robust generalization to unseen instances.

We further highlight the practical utility of PDGNN in two real-world scenarios. First, we use
PDGNN outputs to warm start a commercial integer programming solver, significantly reducing both
its search time and the size of its search trees. Second, we deploy the pretrained PDGNN on real-world
datasets where the vertex cover problem is closely related to a classification task, achieving improved
performance using the learned embeddings. These real-world applications underscore the significance
of extending NAR to the NP-hard domain, breaking the constraints of polynomial-time-solvable
problems and paving the way for solving more complex and impactful real-world challenges.

2 RELATED WORKS

Neural algorithmic reasoning (NAR) The algorithmic alignment framework proposed by Xu
et al. (2020) suggests that GNNs are particularly well-suited for learning dynamic programming
algorithms due to their shared aggregate-update mechanism. Additionally, Veličković et al. (2020)
demonstrates the effectiveness of GNNs in learning graph algorithms such as BFS and Bellman-Ford.
These foundational works have contributed to the development of NAR (Veličković & Blundell,
2021), which investigates the potential of neural networks, particularly GNNs, to simulate traditional
algorithms. However, much of the current work has focused on algorithms for polynomial-time-
solvable problems (Ibarz et al., 2022; Bevilacqua et al., 2023; Rodionov & Prokhorenkova, 2023),
in particular the 30 classic algorithms provided by the CLRS benchmark (Veličković et al., 2022),
leaving NP-hard problems largely unexplored in NAR. This reveals a major limitation in extending
NAR to real-world problems, where many challenges are inherently NP-hard. Overcoming this
limitation is essential, as NAR aims to transfer algorithmic knowledge to handle complex and
practical datasets effectively.

NAR for NP-hard problems The most closely related work attempting to extend NAR to NP-hard
problems is Georgiev et al. (2023c). Their approach involves pretraining a GNN on algorithms for
polynomial-time-solvable problems (e.g., Prim’s algorithm for MST) and using transfer learning to
address NP-hard problems (e.g., TSP). However, this method is not general, as it requires carefully
selecting a specific algorithm for pretraining and identifying a meaningful connection between the
polynomial-time problem and the target NP-hard problem. In contrast, our method is inherently
general, leveraging the primal-dual algorithm—a versatile framework applicable to a wide range of
NP-hard problems. Additionally, our approach directly learns an approximation algorithm tailored to
NP-hard problems, tackling unique challenges such as the lack of ground-truth labels.

Neural combinatorial optimization (NCO) While both our framework and NCO address NP-hard
problems, they differ fundamentally in motivation and goals. NCO focuses on efficiently finding

1Many classical primal-dual algorithms achieve tight worst-case approximation bounds under the Unique
Games Conjecture (e.g., Khot & Regev, 2008). While worst-case bounds cannot be exceeded, our empirical
results demonstrate improved performance in a beyond-worst-case setting.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

optimal or near-optimal solutions by leveraging neural networks to learn task-specific heuristics
or end-to-end optimization (Dai et al., 2018; Li et al., 2018; Joshi et al., 2019; Karalias & Loukas,
2021; Wang & Li, 2023). In contrast, NAR emphasizes designing neural architectures that replicate
the reasoning processes of classical algorithms, with a focus on generalizing algorithmic behavior
across diverse problem sizes and structures. Nonetheless, our framework also contributes to NCO,
addressing an underexplored aspect by proposing an algorithmically informed GNN that tackles
challenges of data efficiency and generalization. We discuss this connection in detail in Appendix H.

3 PROBLEM STATEMENT

We focus on studying three NP-hard problems: Minimum Vertex Cover, Minimum Set Cover, and
Minimum Hitting Set (Section 3.1). We then illustrate a general primal-dual approximation algorithm
using the minimum hitting set problem (Section 3.2).

3.1 NP-HARD PROBLEMS

Definition 1 (Minimum Vertex Cover). Let G = (V,E) be a graph where V are vertices and E
are edges, and each vertex v ∈ V has a non-negative weight wv ∈ R+. A vertex cover for G is a
subset C ⊆ V of the vertices such that for each edge (v, u) ∈ E, either v ∈ C, u ∈ C, or both. The
objective is to minimize the total vertex weight

∑
v∈C wv .

Definition 2 (Minimum Set Cover). Given a ground set U and a family of sets C ⊆ 2U with
non-negative weights wS ∈ R+ for all sets S ∈ C, a set cover is a subfamily C′ ⊆ C such that
∪S∈C′S = ∪S∈CS. The objective is to minimize the total weight

∑
S∈C′ wS .

Definition 3 (Minimum Hitting Set). Given a ground set E of elements e with non-negative weights
we ∈ R+ and a collection T of subsets T ⊆ E, a hitting set is a subset A ⊆ E such that A ∩ T ̸= ∅
for every T ∈ T . The objective is to minimize the total weight

∑
e∈A we.

The minimum vertex cover problem is a foundational NP-hard problem with wide-reaching applica-
tions. As we will describe formally in Section 3.2, its dual problem is the well-studied maximum
edge-packing problem. This primal-dual pair inspires a famous 2-approximation algorithm proposed
by Hochbaum (1982) and many follow-up works. The minimum set cover problem is a generalization
of vertex cover to hypergraphs, making it critical for understanding optimization over more complex
structures. Lastly, the hitting set is equivalent to the minimum set cover problem, but its formulation
more naturally extends to a wide range of combinatorial optimization problems, including vertex
cover, Steiner tree, feedback vertex set, and many more (Goemans & Williamson, 1996).

3.2 A GENERAL PRIMAL-DUAL APPROXIMATION ALGORITHM

We now illustrate a general primal-dual approximation algorithm using the hitting set problem. Due
to the problem’s generality, the algorithm applies to any problem representable by the hitting set and
can be generalized to other problems as well (Williamson & Shmoys, 2011). Many combinatorial
optimization problems are naturally expressed as integer programs (IPs), where variables are restricted
to integer values. The IP formulation of the minimum hitting set (MHS) is shown in Figure 1(a).

A common approach to designing approximation algorithms is to use the IP’s linear programming
(LP) relaxation. This technique relaxes the integer constraints and allows variables to take continuous
values, making the problem more tractable. Many of the best-known approximation algorithms
utilize LP relaxations to derive solutions that can be efficiently rounded to obtain integer solutions.
Furthermore, every LP formulation has a dual version. The primal-dual pair for MHS is shown in
Figure 1(b) and Figure 1(c). Figure 1(b) is the primal and Figure 1(c) is the dual. More generally, the
dual of an LP minx≥0{c⊤x : Ax ≥ b} is defined as maxy≥0{y⊤b : ATy ≤ c}. It is often useful
to incorporate the LP relaxation’s dual formulation to design better approximation algorithms. The
weak duality principal states that any feasible solution to the primal problem has a larger objective
value than any feasible solution to the dual problem. Moreover, the strong duality principle states
that if an LP has an optimal solution, then the optimal value of the primal problem is equal to the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Let xe ∈ {0, 1} for each element e ∈ E be the variables, where xe = 1 represents that
element e is included in the hitting set A, the IP formulation of MHS is shown in (a). Let xe ∈ R+

be the primal variables, the LP relaxation of MHS is shown in (b). Let yT ∈ R+ for each set T ∈ T
be the dual variables, the dual problem of the LP relaxation of MHS is shown in (c).

optimal value of its dual. Based on these principles, the primal-dual framework iteratively updates
both the primal and dual solutions, closing their gap and ensuring they improve in tandem.

Algorithm 1 General primal-dual approximation algorithm (with uniform increase)

Input: Ground set E with weights w, family of subsets T ⊆ 2E

1: A← ∅; for all e ∈ E, re ← we

2: while ∃T : A ∩ T = ∅ do
3: V ← {T : A ∩ T = ∅}
4: repeat
5: for T ∈ V do δT ← mine∈T

{
re

|{T ′:e∈T ′}|

}
6: for e ∈ E \A do re ← re −

∑
T :e∈T δT

7: until ∃e /∈ A : re = 0
8: A← A ∪ {e : re = 0}

Output: A

Uniform increase:
(6.1): ∆← minT∈VδT
(6.2): for e ∈ E \A do

re ← re − |{T : e ∈ T}|∆

Based on the primal-dual framework, an α-approximation algorithm (Bar-Yehuda & Even, 1981;
Hochbaum, 1982; Goemans & Williamson, 1996; Khuller et al., 1994) for the general hitting set
problem was developed, where α is the maximal cardinality of the subsets. The pseudocode of the
algorithm is shown in Algorithm 1. Given a hitting set problem (T , E, w), the algorithm progresses
over a series of rounds. At each round, the algorithm increases some of the dual variables yT until a
constraint

∑
T :e∈T yT ≤ we becomes an equality, at which point the element e is added to the hitting

set A. Although the algorithm does not explicitly define the dual variables yT , it can be interpreted as
gradually increasing the dual variables by an amount δT in each round, as shown in Line 5. This is
implemented by defining a residual weight re = we −

∑
T :e∈T yT , which is defined in terms of the

step sizes δT in Line 6. Once re = 0 for some e ̸∈ A (i.e. the constraint becomes tight), e is added to
the hitting set A (Lines 7 and 8). This process is repeated until A is a valid hitting set (Line 2).

A general framework This algorithm can be reformulated to recover many classical (exact or
approximation) algorithms for problems that are special cases of the hitting set problem (Goemans
& Williamson, 1996). For example, vertex cover can be seen as a hitting set problem, where each
element e ∈ E corresponds to each vertex v ∈ V , and each subset T ∈ T corresponds to an edge
that connects two vertices. This allows a direct adaptation of Algorithm 1 to solve the vertex cover
problem. Moreover, Khuller et al. (1994) propose a sublinear-time vertex cover approximation
algorithm which is a simple generalization of Algorithm 1. They relax the dual constraint using a
parameter ϵ > 0, such that a vertex e is included in the cover if re ≤ ϵwe, instead of re = 0. This
results in a 2/(1 − ϵ)-approximation algorithm with a time complexity of O(ln2 |T | ln 1

ϵ). Since
set cover extends vertex cover to hypergraphs, this algorithm can be adapted into an r/(1 − ϵ)-
approximation algorithm for set cover, where r is the maximal cardinality of the sets. A more detailed
explanation of vertex cover and set cover, along with their algorithms, is provided in Appendix A.

Uniform increase of dual variables For some problems, it is beneficial to simultaneously increase
all dual variables δT at the same rate (Agrawal et al., 1995; Goemans & Williamson, 1995). An

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

example is the minimum spanning tree problem, which is a special case of the hitting set problem.
Kruskal’s algorithm (Kruskal, 1956) for the problem greedily selects the minimum-cost edge that
connects two distinct components. This corresponds to increasing the dual variables for all connected
components simultaneously, until there is an edge whose dual constraint becomes tight. The uniform
increase rule provides a more balanced approach to attend to all dual variables. To incorporate this
uniform increase rule, Line 6 of the algorithm is modified as highlighted in red. The optional addition
of the uniform increase rule allows the framework to adapt to a broader range of algorithms.

4 PRIMAL-DUAL GRAPH NEURAL NETWORKS (PDGNNS)

We now present our framework of using a GNN to simulate the general primal-dual approximation
algorithm, representing the primal-dual variables as two sides in a bipartite graph (Section 4.1). We
also show how the uniform increase rule can be incorporated with a virtual node that connects to all
dual nodes in the bipartite graph (Section 4.2). Furthermore, we explain how we use optimal solutions
from integer programming solvers as additional training signals (Section 4.3), and later show how it
allows the PDGNN to surpass the performance of the approximation algorithm via experiments.

4.1 ARCHITECTURE

We adopt the encoder-processor-decoder framework (Hamrick et al., 2018) from the neural algorithmic
reasoning blueprint (Veličković & Blundell, 2021) to simulate Algorithm 1 with hitting set as an
example. In this framework, the processor is typically a message-passing GNN (Gilmer et al., 2017)
that operates within a latent space. The encoder transforms the input data into this latent space, while
the decoder reconstructs the final output from it.

Figure 2: (a) Bipartite graph construction. (b) The architecture of PDGNN with the encoder, processor,
and decoder colored distinctively. ∆ is only used when the uniform increase rule is applied.

Bipartite graph construction Given a hitting set problem (T , E, w), we represent it as a bipartite
graph with elements e ∈ E (primal) on the left-hand side (LHS) and sets T ∈ T (dual) on the
right-hand side (RHS), as illustrated in Figure 2. An edge is created between an element e and a
set T if e ∈ T . Let N (e) denote the set of neighbors of node e. As outlined in Algorithm 1, the
algorithm incrementally adds elements e to the hitting set A. When an element is added, we remove
node e by masking it along with its neighboring sets T ∈ N (e), which are now hitted. Consequently,
the violation set V = {T | A ∩ T = ∅} consists of the remaining sets T still in the graph. Once A
becomes a valid hitting set, the violation set V is empty. Next, at each timestep t, let r(t)e denote the
residual weight of element e and d(t)e denote its current node degree. The initial residual weight r(0)e

is defined as its cost we, while the initial degree d(0)e is given by |{T : e ∈ T}|.

Encoder The architecture includes two MLP encoders, fr and fd, which encode the residual node
weight r(t)e and node degree d(t)e , respectively, for each element e ∈ E. These encoders transform all
features into a high-dimensional latent space for the processor:

h(t)
e = fr(r

(t−1)
e), h

(t)
de

= fd(d
(t−1)
e).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Processor The processor is a message-passing GNN applied to the bipartite graph. A general
message-passing framework (Gilmer et al., 2017) comprises a message function ψθ and an update
function ϕθ. The node feature h(t)

v of node v is transformed via h(t)
v = ϕθ(h

(t)
v ,
⊕

u∈N (v) ψθ(h
(t)
u)),

where ψθ and ϕθ are usually shallow MLPs, and
⊕

is a permutation invariant function, such as sum
or max. We now demonstrate how this message-passing framework is applied to the bipartite graph
to simulate the primal-dual approximation algorithm.

Step (1): This step corresponds to Line 5 of Algorithm 1, where increment δ(t)T for each set T ∈ V is
computed. Let h(t)

T be the hidden representation of δ(t)T . We aggregate messages from its connected
elements e ∈ N (T) using a message function ge with a min aggregation operation:

h
(t)
T = min

e∈N (T)
ge(h

(t)
e ,h

(t)
de
).

Step (2): This step corresponds to Line 6 of Algorithm 1, where residual weight r(t)e for each element
e ∈ E \ A is computed. Therefore, the dual variable update h

(t)
T is passed back to its connected

elements e using a sum aggregation and an update function gu:

h(t)
e = gu

h(t)
e ,

∑
T∈N (e)

h
(t)
T

 .

Decoder At each timestep t, Algorithm 1 computes three types of intermediate quantities: (1)
whether to include an element e in the hitting set, represented by x(t)e ∈ {0, 1}, (2) the residual
weights of an element r(t)e , and (3) the increment to the dual variable δ(t)T . We utilize separate MLP
decoders, qx, qr, and qδ , to compute each of these quantities:

x̂(t)e = qx(h
(t)
e), r̂(t)e = qr(h

(t)
e), δ̂

(t)
T = qδ(h

(t)
T).

Training Given the recurrent nature of our architecture, we apply noisy teacher forcing (Veličković
et al., 2022) with a probability of 0.5 to determine whether to use hints—ground-truth values for
intermediate quantities above—as inputs for the next timestep. Otherwise, the model’s prediction
from the previous timestep is passed on as the inputs. This approach allows the model to follow its
recurrent flow while reducing the risk of error propagation. For the node masks, however, teacher
forcing is always applied since intermediate targets x(t)e , r(t)e , and δ(t)T are only available for nodes that
have not yet been removed by Algorithm 1. The entire encoder-processor-decoder cycle is repeated
for a maximum of |E| timesteps or terminates early when the solution becomes a valid hitting set.
The loss function is defined as L(t)

algo = LBCE(x̂
(t)
e , x

(t)
e) + LMSE(r̂

(t)
e , r

(t)
e) + LMSE(δ̂

(t)
T , δ

(t)
T) and

averaged across timesteps. During test time, if the model output does not produce a valid hitting set,
a cleanup stage is employed, where we greedily add the element e with the highest re/de value to the
solution. We will discuss the frequency of cleanup in the experiments section.

4.2 UNIFORM INCREASE OF DUAL VARIABLES

The uniform increase rule requires global communication among all dual variables. To achieve this,
we introduce a virtual node z that connects to every set T ∈ T , as shown in Figure 2. Below, we
describe how Step (2) in the processor is adjusted to accommodate this modification.

• Step (2.1): The virtual node aggregates all messages from the dual variables h
(t)
T via a min

aggregation, corresponding to Line 6.1 in Algorithm 1 via h
(t)
z = minT∈T h

(t)
T .

• Step (2.2): The global information is passed back to dual variables with temporary h
′(t)
T = h

(t)
z ,

and then to the primal variables h(t)
e with an update function gu and a sum aggregation. This

corresponds to Line 6.2 in Algorithm 1 via h
(t)
e = gu(h

(t)
e ,
∑

T∈N (e) h
′(t)
T).

The intermediate quantity ∆(t) is also given by Algorithm 1. We use an additional decoder q∆ to
compute the prediction ∆̂(t) = q∆(h

(t)
z) and add LMSE(∆̂

(t),∆(t)) to the total loss L(t)
algo.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Theoretical justification Our model architecture is designed to closely align with the primal-dual
approximation algorithm. The following theorem shows that PDGNN can replicate the behavior of
Algorithm 1. A detailed proof is provided in in Appendix B.

Theorem 1. Given a hitting set problem (T , E, w), letA(T , E, w) be the solution produced by Algo-
rithm 1, which terminates after K timesteps. There exists a parameter configuration Θ for a PDGNN
model MΘ such that, at timestep K, the model output satisfies M(K)

Θ (T , E, w) = A(T , E, w).
Furthermore, let (x(t), r(t), δ(t),∆(t)) be the intermediate quantities computed by Algorithm 1 at
each timestep t. Then, the PDGNN model satisfiesM(t)

Θ (T , E, w) = (x(t), r(t), δ(t),∆(t)).

4.3 USE OF OPTIMAL SOLUTIONS FROM SOLVERS

The primal-dual algorithm is an approximation algorithm, while optimal solutions can be computed
on small instances using IP solvers. We use the default IP solver in scipy, which is based on HiGHS
(Schwendinger & Schumacher, 2023; Huangfu & Hall, 2018). These optimal solutions are used as
additional training signals to guide the model toward better outcomes. However, unlike the primal-
dual algorithm, which provides intermediate steps, IP solvers only produce the final optimal solution.
Therefore, the corresponding loss is defined as Loptm = LBCE(x̂

K
e , x

optm
e), where K is the final

timestep. The overall loss is then the sum of the intermediate losses from the primal-dual algorithm
and the optimal solution loss, given by L = 1

K

∑K
t=1 L(t)algo + Loptm. The motivation stems from

the fact that IP solvers are computationally expensive, especially for larger problem instances. By
training PDGNN using optimal solutions from IP solvers on smaller problem instances—allowing it
to exceed the performance of the approximation algorithm—we can leverage its generalization ability
to create a cost-efficient, high-performance model for much larger instances.

5 EXPERIMENTS

5.1 SYNTHETIC NP-HARD PROBLEMS

Dataset We evaluate PDGNN on three NP-hard problems as described in Section 3.1. The training
dataset includes 1000 random graphs of size 16: Barabási-Albert graphs for vertex cover and random
bipartite graphs for set cover and hitting set. Generalization is tested on 100 graphs of sizes 16, 32,
and 64, with each experiment repeated across 10 seeds.

Baselines PDGNN leverages both the intermediate steps of the algorithm and the optimal solutions
provided by IP solvers. To demonstrate its effectiveness, we compare PDGNN against two variants:
one without intermediate steps (No algo) and another without optimal solutions (No optm). Addition-
ally, PDGNN’s aggregation strategy is specifically tailored to align with the algorithm’s structure
(see Section 4.1). To validate this design, we test alternative aggregation methods, such as Mean and
Max pooling. Lastly, since PDGNN has a recurrent structure, we compare it to a powerful end-to-end
GNN trained on optimal solutions as a node classification task. For this, we use a 3-layer GIN model
(Xu et al., 2019) with jumping knowledge (Xu et al., 2018).

Results are summarized in Table 1. The objective is to minimize the total weight of the elements
in the solution. The ratio wpred/wappr represents the predicted solution weight relative to that of the
primal-dual approximation, where a ratio below 1.0 indicates superior model performance. Similarly,
wpred/woptm compares the predicted weights to the optimal solution, with a ratio closer to 1.0 being
ideal. Finally, the percentage of sets that remain uncovered or unhit by the predicted solutions (Unhit)
reflects how often the cleanup stage is required. All weights are calculated after the cleanup stage to
ensure the validity of the model’s predictions.

PDGNN is the most effective We find that combining losses from both intermediate steps of the
approximation algorithm and optimal solutions of IP solvers enables PDGNN to achieve the best
performance, yielding the lowest ratios across all test cases. Additionally, PDGNN’s performance
remains stable across different graph sizes, with a low percentage of uncovered sets, indicating strong
generalization to larger graphs. Comparisons with other baselines show that incorporating supervision
from optimal solutions improves the quality of final predictions, allowing PDGNN to outperform
the primal-dual algorithm it was designed to simulate. In contrast, training without intermediate

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Model performance across different graph sizes for Minimum Vertex Cover (MVC), Mini-
mum Set Cover (MSC), and Minimum Hitting Set (MHS).

Method
16 nodes 32 nodes 64 nodes Unhit

wpred / walgo wpred / woptm wpred / walgo wpred / woptm wpred / walgo wpred / woptm %

MVC

GIN 0.988 ± 0.009 1.154 ± 0.011 1.068 ± 0.068 1.218 ± 0.077 1.124 ± 0.106 1.279 ± 0.120 2.66
No algo 0.968 ± 0.038 1.129 ± 0.044 1.074 ± 0.039 1.224 ± 0.044 1.106 ± 0.031 1.259 ± 0.035 0.30
No optm 0.994 ± 0.004 1.160 ± 0.005 0.997 ± 0.005 1.137 ± 0.006 1.000 ± 0.008 1.138 ± 0.009 1.71

Mean 1.035 ± 0.026 1.208 ± 0.030 1.081 ± 0.032 1.233 ± 0.037 1.106 ± 0.044 1.259 ± 0.051 2.54
Max 0.972 ± 0.024 1.134 ± 0.028 1.001 ± 0.022 1.141 ± 0.025 1.000 ± 0.021 1.138 ± 0.023 1.87

PDGNN 0.945 ± 0.004 1.103 ± 0.004 0.958 ± 0.004 1.092 ± 0.005 0.967 ± 0.005 1.100 ± 0.005 0.79

MSC
No algo 1.077 ± 0.016 1.159 ± 0.017 1.142 ± 0.057 1.265 ± 0.063 3.544 ± 1.305 4.197 ± 1.544 3.98
No optm 1.007 ± 0.004 1.086 ± 0.005 1.018 ± 0.004 1.127 ± 0.005 1.025 ± 0.006 1.214 ± 0.007 0.00
PDGNN 0.997 ± 0.003 1.075 ± 0.004 0.996 ± 0.007 1.103 ± 0.008 1.003 ± 0.015 1.188 ± 0.018 0.14

MHS
No algo 1.075 ± 0.013 1.157 ± 0.014 1.120 ± 0.042 1.265 ± 0.047 3.704 ± 0.796 4.459 ± 0.957 5.62
No optm 0.998 ± 0.001 1.074 ± 0.001 0.997 ± 0.002 1.126 ± 0.002 0.991 ± 0.003 1.193 ± 0.004 0.00
PDGNN 0.995 ± 0.002 1.071 ± 0.002 0.987 ± 0.002 1.114 ± 0.002 0.982 ± 0.005 1.182 ± 0.007 0.00

steps leads to a significant drop in generalization on larger graphs, highlighting that the primal-dual
algorithm provides critical reasoning capabilities beyond merely learning optimal solution patterns.

A general NAR framework Our framework is effective across all three NP-hard problems, even
when scaling to larger graphs. For the vertex cover problem, we demonstrate its applicability to
graph-based problems. In the set cover problem, we extend the framework to hypergraphs using a
bipartite structure, highlighting its flexibility beyond traditional graph settings. Additionally, the
uniform increase rule proves effective for the hitting set problem, which serves as a general framework
for a broad range of optimization tasks. Furthermore, these results suggest that our approach may
achieve even better performance when trained on more challenging instances where the optimal
solutions significantly outperform those of approximation algorithms.

5.2 GENERALIZATION TO OOD GRAPH FAMILY

Dataset We evaluate the model’s generalization on out-of-distribution (OOD) graph families using
the vertex cover problem. The training set consists of 1000 Barabási-Albert (B-A) graphs with 16
nodes, while each test set contains 100 graphs from different families: Erdős–Rényi (E-R), Star,
Lobster, and 3-connected planar (3-Con) graphs. These graph types pose unique challenges for the
vertex cover problem due to their distinct structural properties. Results are averaged across 10 seeds.

Table 2: Model performance on OOD graph types for the minimum vertex cover problem.

Type
16 nodes 32 nodes 64 nodes Unhit

wpred / walgo wpred / woptm wpred / walgo wpred / woptm wpred / walgo wpred / woptm %
E-R 0.949 ± 0.005 1.084 ± 0.006 0.961 ± 0.004 1.098 ± 0.005 0.961 ± 0.005 1.088 ± 0.006 7.92
Star 0.948 ± 0.004 1.078 ± 0.004 0.958 ± 0.004 1.096 ± 0.005 0.962 ± 0.007 1.092 ± 0.008 7.16

Lobster 0.939 ± 0.004 1.090 ± 0.004 0.957 ± 0.003 1.093 ± 0.004 0.962 ± 0.007 1.095 ± 0.007 8.78
3-Con 0.945 ± 0.002 1.087 ± 0.002 0.959 ± 0.005 1.085 ± 0.005 0.955 ± 0.005 1.085 ± 0.006 7.76

Table 2 shows that PDGNN consistently outperforms the approximation algorithm across all graph
families and sizes, demonstrating strong generalization despite being trained only on Barabási-Albert
graphs of size 16. Notably, these graph types have vastly different optimal vertex cover sizes:
Erdős–Rényi graphs require an average of 80% of nodes, while Star graphs need only 15% (see in
Table 5). These results further highlight the robustness of our model.

5.3 COMMERCIAL OPTIMIZATION SOLVERS

One practical use case for PDGNN is to warm start large-scale commercial solvers, such as Gurobi
(Gurobi Optimization, LLC, 2024), by initializing variables with its predictions. The motivation
is that providing a starting point closer to the optimal solution can lead to faster solving times

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

and improved efficiency. We evaluate the vertex cover problem by comparing solutions from the
primal-dual algorithm and our model as warm starts for Gurobi against its default initialization. The
model, trained on 1000 B-A graphs of size 16, produces solutions on random B-A graphs of sizes
500, 600, and 750, with 100 graphs per size. Results are averaged over 5 seeds. We use the default
parameters for Gurobi, setting the thread count to 1 and imposing a time limit of 1 hour.

Metrics We report the number of wins in solving time and the total number of cases solved (Wins /
Solved), the 1-shifted geometric mean of solving times (Total time) as a standard metric (Gasse et al.,
2019a) (which includes cases when the time limit is hit but the optimal solution is not found), the
arithmetic mean of solving times only when solved to optimality (Opt. time) (Huang et al., 2024)
(which only takes the average of those cases where optimal solutions are found), and the number of
nodes explored in the branch-and-bound tree (B&B nodes). Additionally, we measure the average
computation time to generate the warm-start solutions using the primal-dual algorithm and the model
per graph (Comp. time). All times are reported in seconds.

Table 3: Performance of using solutions from a PDGNN trained on 16-node graphs and the primal-
dual approximation algorithm to warm start Gurobi.

#Nodes Method Wins / Solved Total time
(geometric)

Opt. time
(arithmetic) B&B nodes Comp.

time

500
None 15.0 / 100.0 4.33 ± 0.06 78.97 ± 2.24 3142.27 ± 290.00 -

Algorithm 33.4 / 100.0 4.25 ± 0.03 76.69 ± 1.54 3121.60 ± 85.61 0.20
PDGNN 51.6 / 100.0 4.15 ± 0.02 72.61 ± 2.13 3047.86 ± 185.67 0.02

600
None 20.4 / 98.0 11.63 ± 0.05 230.84 ± 19.59 7793.87 ± 301.70 -

Algorithm 31.4 / 98.0 11.57 ± 0.13 227.83 ± 19.32 7801.66 ± 288.23 0.30
PDGNN 46.4 / 98.0 11.34 ± 0.09 209.52 ± 14.15 7594.29 ± 198.16 0.03

750
None 13.6 / 80.8 15.87 ± 0.07 299.01 ± 23.53 9844.53 ± 182.05 -

Algorithm 25.6 / 80.8 15.74 ± 0.12 300.12 ± 22.89 9838.71 ± 151.04 0.39
PDGNN 42.4 / 80.8 15.69 ± 0.11 292.92 ± 18.61 9749.62 ± 136.19 0.03

Table 3 shows that PDGNN outperforms both the default initialization and the approximation
algorithm in all cases, achieving the fastest mean solving time and exploring fewer nodes in the
search tree. The improvement from using the model over the algorithm is greater than that of the
algorithm over no warm start. Additionally, the model’s inference time is nearly 10 times faster
than the approximation algorithm’s computation time. This demonstrates a practical use case: by
simulating an approximation algorithm and leveraging optimal solutions on small instances, the
model generates high-quality solutions for larger problems, reducing solving time and B&B tree size
for large-scale commercial solvers, such as Gurobi.

5.4 REAL-WORLD DATASETS

We present another use case for our model using real-world datasets. A key limitation of traditional
algorithms designed for specific problems is that they cannot be applied directly to real-world data
without preprocessing. For example, raw node features must typically undergo feature engineering
to estimate vertex weights, reducing the problem to a minimum-weight vertex cover before using
the algorithm. In contrast, PDGNN can bypass this step by incorporating a new feature encoder and
learning to estimate vertex weights directly from raw data. We demonstrate this advantage through
experiments on three real-world datasets: Airports (Brazil, Europe, USA) (Ribeiro et al., 2017; Jin
et al., 2019), WikipediaNetwork (Chameleon, Squirrel) (Rozemberczki et al., 2019; Pei et al., 2020),
and PPI (Zitnik & Leskovec, 2017). These datasets are chosen because their classification targets
relate to the notion of node influences, where vertex cover may provide valuable insights.

Architecture and baselines We evaluate three base models: GCN (Kipf & Welling, 2017), GAT
(Veličković et al., 2018), and GraphSAGE (Hamilton et al., 2017), applying them to the node
classification datasets using standard procedures. Recall we follow the encoder-processor-decoder
framework from NAR. We then use the pretrained PDGNN from Section 5.1 on B-A graphs of size 16,
keeping only the processor and degree encoder. We trains a new encoder learns to map node features

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

into the shared latent space of the processor, enabling it to replicate vertex cover problem-solving
behavior. The pretrained components are frozen, and a single message-passing step is performed,
similar to Numeroso et al. (2023). PDGNN’s output embeddings are then concatenated with the
base model’s output embeddings before passing through a linear layer for final classification. We
compare PDGNN against two baselines: Node2Vec (Grover & Leskovec, 2016) and a degree encoder
to demonstrate that PDGNN captures more complex information beyond node degrees. Node2Vec is
applied only to transductive datasets. All experiments are repeated 10 times.

Table 4: Performance of embeddings generated using PDGNN, Node2Vec (N2V), and degree encoder
(Degree) with three base models. All results are reported in percentages.

Airports
(Accuracy)

WikipediaNetwork
(Accuracy)

PPI
(Micro-F1)

Brazil Europe USA Chameleon Squirrel PPI
GCN 58.89 ±17.72 63.87 ± 10.74 77.48 ± 2.28 62.57 ± 2.05 52.51 ± 1.26 58.55 ± 0.36

GCN+Degree 71.48 ± 15.53 70.37 ± 4.16 79.25 ± 2.16 63.22 ± 1.75 53.78 ± 1.59 59.21 ± 0.71

GCN+N2V 73.33 ± 5.44 74.75 ± 5.12 79.54 ± 2.19 64.04 ± 1.87 54.97 ± 1.52 -
GCN+PDGNN 81.11 ± 9.46 76.88 ± 5.10 82.82 ± 3.06 64.58 ± 2.17 53.53 ± 1.32 60.93 ± 0.92

GAT 60.13 ± 15.68 65.85 ± 9.68 80.59 ± 2.43 65.18 ± 1.95 53.48 ± 1.37 56.73 ± 0.87

GAT+Degree 66.30 ± 12.27 77.75 ± 4.10 82.82 ± 2.08 65.92 ± 2.18 55.03 ± 2.02 57.51 ± 1.31

GAT+N2V 75.56 ± 9.82 75.87 ± 5.03 82.65 ± 1.58 66.29 ± 2.09 55.06 ± 1.58 -
GAT+PDGNN 84.44 ± 8.89 81.25 ± 4.51 85.13 ± 1.79 67.13 ± 2.03 55.45 ± 1.67 60.57 ± 0.67

SAGE 44.82 ± 17.40 61.82 ± 10.38 78.07 ± 3.39 60.42 ± 1.85 41.20 ± 1.52 61.87 ± 0.46

SAGE+Degree 74.44 ± 12.74 75.50 ± 9.19 81.53 ± 2.18 60.59 ± 2.18 42.41 ± 1.99 61.67 ± 0.84

SAGE+N2V 80.00 ± 6.46 76.12 ± 3.75 83.15 ± 3.20 60.09 ± 2.25 42.88 ± 1.59 -
SAGE+PDGNN 85.56 ± 7.49 80.75 ± 2.38 83.28 ± 2.04 61.27 ± 1.63 42.79 ± 1.66 63.67 ± 1.09

Table 4 shows that PDGNN achieves the highest improvements in most datasets. Note that Node2Vec
has an additional advantage by directly training on the graphs to produce the embeddings. PDGNN’s
superior performance over the degree encoder also indicates that it captures more complex informa-
tion by integrating both learned node weights from features and degree information. We observe
that PDGNN is most effective in Airports and PPI, where node features are simpler. However,
WikipediaNetwork datasets show less benefit from our model, which may be caused by the high
dimensionality of node features (over 2000 dimensions). This significantly challenges the new
encoder to learn to map complex features into the shared latent space with the pretrained processor,
limiting its ability to generate meaningful vertex-cover embeddings. However, Numeroso et al. (2023)
addressed similar issues by pretraining the new encoder on a dataset designed to reconstruct the target
algorithm. Given the suitable datasets to have a similar pretraining setup, we believe PDGNN could
potentially overcome this bottleneck and improve its performance.

6 CONCLUSIONS

We propose a novel and general NAR framework to learn algorithms for NP-hard problems. Our ap-
proach leverages both the intermediate solutions generated by primal-dual approximation algorithms
and optimal solutions obtained from integer programming to train the model. While intermediate
supervision from the algorithm provides a foundation for reasoning, incorporating optimal solutions
enables the model to surpass the algorithm’s performance. Empirical results demonstrate that our
framework is effective and robust, showing strong generalization to larger graphs and OOD graph
families. Additionally, we present two practical applications: warm starting commercial solvers for
improved efficiency, and generating high-quality embeddings to enhance predictive performance on
real-world datasets. Future work can expand our framework by incorporating additional techniques
from Williamson & Shmoys (2011), which aid in designing more effective primal-dual approximation
algorithms and further broaden its applicability.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

Our code can be downloaded at https://anonymous.4open.science/r/pdgnn. We also
provide details of dataset generation in Appendix C, hardware and hyperparameter settings in
Appendix D, and additional details of the architecture in Appendix E.

REFERENCES

Ajit Agrawal, Philip Klein, and R. Ravi. When trees collide: An approximation algorithm for the gen-
eralized steiner problem on networks. SIAM Journal on Computing, 24(3):440–456, 1995. doi: 10.
1137/S0097539792236237. URL https://doi.org/10.1137/S0097539792236237.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

R Bar-Yehuda and S Even. A linear-time approximation algorithm for the weighted vertex cover
problem. Journal of Algorithms, 2(2):198–203, 1981. ISSN 0196-6774. doi: https://doi.org/
10.1016/0196-6774(81)90020-1. URL https://www.sciencedirect.com/science/
article/pii/0196677481900201.

Luca Beurer-Kellner, Martin Vechev, Laurent Vanbever, and Petar Veličković. Learn-
ing to configure computer networks with neural algorithmic reasoning. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems, volume 35, pp. 730–742. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/04cc90ec6868b97b7423dc38ced1e35c-Paper-Conference.pdf.

Beatrice Bevilacqua, Kyriacos Nikiforou, Borja Ibarz, Ioana Bica, Michela Paganini, Charles Blundell,
Jovana Mitrovic, and Petar Veličković. Neural algorithmic reasoning with causal regularisation.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 2272–2288. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/v202/bevilacqua23a.html.

Wilfried Bounsi, Borja Ibarz, Andrew Dudzik, Jessica B Hamrick, Larisa Markeeva, Alex Vitvitskyi,
Razvan Pascanu, and Petar Veličković. Transformers meet neural algorithmic reasoners. arXiv
preprint arXiv:2406.09308, 2024.

Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, and Petar Veličković.
Combinatorial optimization and reasoning with graph neural networks, 2022.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. The MIT Press, 2 edition, 2001.

Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning Combinatorial
Optimization Algorithms over Graphs, February 2018. URL http://arxiv.org/abs/1704.
01665. arXiv:1704.01665.

Andreea Deac, Pierre-Luc Bacon, and Jian Tang. Graph neural induction of value iteration, 2020.
URL https://arxiv.org/abs/2009.12604.

Andreea-Ioana Deac, Petar Veličković, Ognjen Milinkovic, Pierre-Luc Bacon, Jian Tang, and
Mladen Nikolic. Neural algorithmic reasoners are implicit planners. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neu-
ral Information Processing Systems, volume 34, pp. 15529–15542. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/82e9e7a12665240d13d0b928be28f230-Paper.pdf.

Andrew Joseph Dudzik, Tamara von Glehn, Razvan Pascanu, and Petar Veličković. Asyn-
chronous algorithmic alignment with cocycles. In Soledad Villar and Benjamin Chamberlain

11

https://anonymous.4open.science/r/pdgnn
https://doi.org/10.1137/S0097539792236237
https://www.sciencedirect.com/science/article/pii/0196677481900201
https://www.sciencedirect.com/science/article/pii/0196677481900201
https://proceedings.neurips.cc/paper_files/paper/2022/file/04cc90ec6868b97b7423dc38ced1e35c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/04cc90ec6868b97b7423dc38ced1e35c-Paper-Conference.pdf
https://proceedings.mlr.press/v202/bevilacqua23a.html
http://arxiv.org/abs/1704.01665
http://arxiv.org/abs/1704.01665
https://arxiv.org/abs/2009.12604
https://proceedings.neurips.cc/paper_files/paper/2021/file/82e9e7a12665240d13d0b928be28f230-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/82e9e7a12665240d13d0b928be28f230-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

(eds.), Proceedings of the Second Learning on Graphs Conference, volume 231 of Proceed-
ings of Machine Learning Research, pp. 3:1–3:17. PMLR, 27–30 Nov 2024. URL https:
//proceedings.mlr.press/v231/dudzik24a.html.

Valerie Engelmayer, Dobrik Georgiev Georgiev, and Petar Veličković. Parallel algorithms align
with neural execution. In The Second Learning on Graphs Conference, 2023. URL https:
//openreview.net/forum?id=IC6kpv87LB.

Benjamin Estermann, Luca A. Lanzendörfer, Yannick Niedermayr, and Roger Wattenhofer. Puzzles:
A benchmark for neural algorithmic reasoning, 2024. URL https://arxiv.org/abs/
2407.00401.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. Proceedings of the AAAI Conference on Artificial Intelligence, 35(8):7474–
7482, May 2021. doi: 10.1609/aaai.v35i8.16916. URL https://ojs.aaai.org/index.
php/AAAI/article/view/16916.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in neural information
processing systems, 32, 2019a.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact Com-
binatorial Optimization with Graph Convolutional Neural Networks, October 2019b. URL
http://arxiv.org/abs/1906.01629. arXiv:1906.01629.

Dobrik Georgiev and Pietro Liò. Neural bipartite matching, 2020. URL https://arxiv.org/
abs/2005.11304.

Dobrik Georgiev, Pietro Barbiero, Dmitry Kazhdan, Petar Veličković, and Pietro Lió. Algorithmic
concept-based explainable reasoning. Proceedings of the AAAI Conference on Artificial Intelligence,
36(6):6685–6693, Jun. 2022. doi: 10.1609/aaai.v36i6.20623. URL https://ojs.aaai.org/
index.php/AAAI/article/view/20623.

Dobrik Georgiev, Ramon Vinas, Sam Considine, Bianca Dumitrascu, and Pietro Lio. NARTI: Neural
Algorithmic Reasoning for Trajectory Inference. In The 2023 ICML Workshop on Computational
Biology, 2023a.

Dobrik Georgiev, Pietro Liò, and Davide Buffelli. The deep equilibrium algorithmic reasoner. arXiv
preprint arXiv:2402.06445, 2024.

Dobrik Georgiev Georgiev, Pietro Lio, Jakub Bachurski, Junhua Chen, Tunan Shi, and Lorenzo Giusti.
Beyond erdos-renyi: Generalization in algorithmic reasoning on graphs. In The Second Learning on
Graphs Conference, 2023b. URL https://openreview.net/forum?id=TTxQAkg9QG.

Dobrik Georgiev Georgiev, Danilo Numeroso, Davide Bacciu, and Pietro Lio. Neural algorithmic
reasoning for combinatorial optimisation. In The Second Learning on Graphs Conference, 2023c.
URL https://openreview.net/forum?id=N8awTT5ep7.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Michel X. Goemans and David P. Williamson. A general approximation technique for con-
strained forest problems. SIAM Journal on Computing, 24(2):296–317, 1995. doi: 10.1137/
S0097539793242618. URL https://doi.org/10.1137/S0097539793242618.

Michel X. Goemans and David P. Williamson. The primal-dual method for approximation algorithms
and its application to network design problems, pp. 144–191. PWS Publishing Co., USA, 1996.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
855–864, 2016.

12

https://proceedings.mlr.press/v231/dudzik24a.html
https://proceedings.mlr.press/v231/dudzik24a.html
https://openreview.net/forum?id=IC6kpv87LB
https://openreview.net/forum?id=IC6kpv87LB
https://arxiv.org/abs/2407.00401
https://arxiv.org/abs/2407.00401
https://ojs.aaai.org/index.php/AAAI/article/view/16916
https://ojs.aaai.org/index.php/AAAI/article/view/16916
http://arxiv.org/abs/1906.01629
https://arxiv.org/abs/2005.11304
https://arxiv.org/abs/2005.11304
https://ojs.aaai.org/index.php/AAAI/article/view/20623
https://ojs.aaai.org/index.php/AAAI/article/view/20623
https://openreview.net/forum?id=TTxQAkg9QG
https://openreview.net/forum?id=N8awTT5ep7
https://doi.org/10.1137/S0097539793242618

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Jessica B Hamrick, Kelsey R Allen, Victor Bapst, Tina Zhu, Kevin R McKee, Joshua B Tenenbaum,
and Peter W Battaglia. Relational inductive bias for physical construction in humans and machines.
arXiv preprint arXiv:1806.01203, 2018.

Yu He, Petar Veličković, Pietro Lio, and Andreea Deac. Continuous neural algorithmic planners. In
Bastian Rieck and Razvan Pascanu (eds.), Proceedings of the First Learning on Graphs Conference,
volume 198 of Proceedings of Machine Learning Research, pp. 54:1–54:13. PMLR, 09–12 Dec
2022. URL https://proceedings.mlr.press/v198/he22a.html.

Dorit S. Hochbaum. Approximation algorithms for set covering and vertex cover problems. SIAM
Journal on Computing, 11(3):555–556, 1982.

Weimin Huang, Taoan Huang, Aaron M Ferber, and Bistra Dilkina. Distributional miplib: a multi-
domain library for advancing ml-guided milp methods, 2024. URL https://arxiv.org/
abs/2406.06954.

Q. Huangfu and J. A. J. Hall. Parallelizing the dual revised simplex method. Mathematical Program-
ming Computation, 10(1):119–142, 2018. doi: 10.1007/s12532-017-0130-5.

Borja Ibarz, Vitaly Kurin, George Papamakarios, Kyriacos Nikiforou, Mehdi Bennani, Róbert
Csordás, Andrew Dudzik, Matko Bošnjak, Alex Vitvitskyi, Yulia Rubanova, Andreea Deac,
Beatrice Bevilacqua, Yaroslav Ganin, Charles Blundell, and Petar Veličković. A generalist neural
algorithmic learner, 2022.

Rishabh Jain, Petar Veličković, and Pietro Liò. Neural priority queues for graph neural networks.
arXiv preprint arXiv:2307.09660, 2023.

Yilun Jin, Guojie Song, and Chuan Shi. Gralsp: Graph neural networks with local structural patterns,
2019. URL https://arxiv.org/abs/1911.07675.

Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An Efficient Graph Convolutional Network
Technique for the Travelling Salesman Problem, October 2019. URL http://arxiv.org/
abs/1906.01227. arXiv:1906.01227.

Chaitanya K. Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning the
Travelling Salesperson Problem Requires Rethinking Generalization, May 2022. URL http:
//arxiv.org/abs/2006.07054. arXiv:2006.07054.

Jonas Jürß, Dulhan Hansaja Jayalath, and Petar Veličković. Recursive algorithmic reasoning. In
Soledad Villar and Benjamin Chamberlain (eds.), Proceedings of the Second Learning on Graphs
Conference, volume 231 of Proceedings of Machine Learning Research, pp. 5:1–5:14. PMLR,
27–30 Nov 2024. URL https://proceedings.mlr.press/v231/jurss24a.html.

Nikolaos Karalias and Andreas Loukas. Erdos Goes Neural: an Unsupervised Learning Framework
for Combinatorial Optimization on Graphs, March 2021. URL http://arxiv.org/abs/
2006.10643. arXiv:2006.10643.

Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2- ε. Journal of
Computer and System Sciences, 74(3):335–349, 2008.

S. Khuller, U. Vishkin, and N. Young. A primal-dual parallel approximation technique applied to
weighted set and vertex covers. Journal of Algorithms, 17(2):280–289, September 1994. ISSN
0196-6774. doi: 10.1006/jagm.1994.1036. URL http://dx.doi.org/10.1006/jagm.
1994.1036.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=SJU4ayYgl.

13

https://www.gurobi.com
https://www.gurobi.com
https://proceedings.mlr.press/v198/he22a.html
https://arxiv.org/abs/2406.06954
https://arxiv.org/abs/2406.06954
https://arxiv.org/abs/1911.07675
http://arxiv.org/abs/1906.01227
http://arxiv.org/abs/1906.01227
http://arxiv.org/abs/2006.07054
http://arxiv.org/abs/2006.07054
https://proceedings.mlr.press/v231/jurss24a.html
http://arxiv.org/abs/2006.10643
http://arxiv.org/abs/2006.10643
http://dx.doi.org/10.1006/jagm.1994.1036
http://dx.doi.org/10.1006/jagm.1994.1036
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical society, 7(1):48–50, 1956.

Zeno Kujawa, John Poole, Dobrik Georgiev, Danilo Numeroso, and Pietro Liò. Neural algorithmic
reasoning with multiple correct solutions, 2024. URL https://arxiv.org/abs/2409.
06953.

Bingheng Li, Linxin Yang, Yupeng Chen, Senmiao Wang, Qian Chen, Haitao Mao, Yao Ma, Akang
Wang, Tian Ding, Jiliang Tang, and Ruoyu Sun. PDHG-Unrolled Learning-to-Optimize Method for
Large-Scale Linear Programming, June 2024. URL http://arxiv.org/abs/2406.01908.
arXiv:2406.01908.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial Optimization with Graph Convolutional
Networks and Guided Tree Search, October 2018. URL http://arxiv.org/abs/1810.
10659. arXiv:1810.10659.

Larisa Markeeva, Sean McLeish, Borja Ibarz, Wilfried Bounsi, Olga Kozlova, Alex Vitvitskyi, Charles
Blundell, Tom Goldstein, Avi Schwarzschild, and Petar Veličković. The clrs-text algorithmic
reasoning language benchmark. arXiv preprint arXiv:2406.04229, 2024.

Julian Minder, Florian Grötschla, Joël Mathys, and Roger Wattenhofer. SALSA-CLRS: A sparse and
scalable benchmark for algorithmic reasoning. In The Second Learning on Graphs Conference,
2023. URL https://openreview.net/forum?id=PRapGjDGFQ.

Vladimir V Mirjanic, Razvan Pascanu, and Petar Veličković. Latent space representations of
neural algorithmic reasoners. In The Second Learning on Graphs Conference, 2023. URL
https://openreview.net/forum?id=tRP0Ydz5nN.

Danilo Numeroso, Davide Bacciu, and Petar Veličković. Dual algorithmic reasoning. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=hhvkdRdWt1F.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=S1e2agrFvS.

Leonardo F.R. Ribeiro, Pedro H.P. Saverese, and Daniel R. Figueiredo. struc2vec: Learning node
representations from structural identity. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’17. ACM, August 2017. doi:
10.1145/3097983.3098061. URL http://dx.doi.org/10.1145/3097983.3098061.

Gleb Rodionov and Liudmila Prokhorenkova. Neural algorithmic reasoning without intermediate
supervision. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.),
Advances in Neural Information Processing Systems, volume 36, pp. 51663–51674. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/a2370db7c99791ad5d9f3ef48ad6d464-Paper-Conference.pdf.

Gleb Rodionov and Liudmila Prokhorenkova. Discrete neural algorithmic reasoning, 2024. URL
https://arxiv.org/abs/2402.11628.

Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan Günnemann,
and Michael M Bronstein. Edge directionality improves learning on heterophilic graphs. In
Learning on Graphs Conference, pp. 25–1. PMLR, 2024.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. CoRR,
abs/1909.13021, 2019. URL http://arxiv.org/abs/1909.13021.

Florian Schwendinger and Dirk Schumacher. highs: ’HiGHS’ Optimization Solver, 2023. URL
https://CRAN.R-project.org/package=highs. R package version 0.1-10.

Petar Veličković, Adrià Puigdomènech Badia, David Budden, Razvan Pascanu, Andrea Banino,
Misha Dashevskiy, Raia Hadsell, and Charles Blundell. The clrs algorithmic reasoning benchmark.
In International Conference on Machine Learning, pp. 22084–22102. PMLR, 2022.

14

https://arxiv.org/abs/2409.06953
https://arxiv.org/abs/2409.06953
http://arxiv.org/abs/2406.01908
http://arxiv.org/abs/1810.10659
http://arxiv.org/abs/1810.10659
https://openreview.net/forum?id=PRapGjDGFQ
https://openreview.net/forum?id=tRP0Ydz5nN
https://openreview.net/forum?id=hhvkdRdWt1F
https://openreview.net/forum?id=hhvkdRdWt1F
https://openreview.net/forum?id=S1e2agrFvS
http://dx.doi.org/10.1145/3097983.3098061
https://proceedings.neurips.cc/paper_files/paper/2023/file/a2370db7c99791ad5d9f3ef48ad6d464-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a2370db7c99791ad5d9f3ef48ad6d464-Paper-Conference.pdf
https://arxiv.org/abs/2402.11628
http://arxiv.org/abs/1909.13021
https://CRAN.R-project.org/package=highs

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Petar Veličković and Charles Blundell. Neural algorithmic reasoning. Patterns, 2(7):100273, July
2021. ISSN 2666-3899. doi: 10.1016/j.patter.2021.100273. URL http://dx.doi.org/10.
1016/j.patter.2021.100273.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural execution
of graph algorithms. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SkgKO0EtvS.

Haoyu Wang and Pan Li. Unsupervised Learning for Combinatorial Optimization Needs Meta-
Learning, January 2023. URL http://arxiv.org/abs/2301.03116. arXiv:2301.03116.

David P. Williamson and David B. Shmoys. The primal-dual method. In The Design of Approximation
Algorithms, chapter 7, pp. 161–194. Cambridge University Press, 2011.

Louis-Pascal Xhonneux, Andreea-Ioana Deac, Petar Veličković, and Jian Tang. How to transfer
algorithmic reasoning knowledge to learn new algorithms? Advances in Neural Information
Processing Systems, 34:19500–19512, 2021.

Sophie Xhonneux, Yu He, Andreea Deac, Jian Tang, and Gauthier Gidel. Deep equilibrium models
for algorithmic reasoning. In The Third Blogpost Track at ICLR 2024, 2024. URL https:
//openreview.net/forum?id=diagbK14G5.

Kaijia Xu and Petar Veličković. Recurrent aggregators in neural algorithmic reasoning. arXiv preprint
arXiv:2409.07154, 2024.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
conference on machine learning, pp. 5453–5462. PMLR, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken ichi Kawarabayashi, and Stefanie Jegelka.
What can neural networks reason about? In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=rJxbJeHFPS.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford
networks: A general graph neural network framework for link prediction. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, volume 34, pp. 29476–29490. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/f6a673f09493afcd8b129a0bcf1cd5bc-Paper.pdf.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tis-
sue networks. Bioinformatics, 33(14):i190–i198, July 2017. ISSN 1367-4811. doi: 10.
1093/bioinformatics/btx252. URL http://dx.doi.org/10.1093/bioinformatics/
btx252.

A ADDITIONAL DETAILS OF VERTEX COVER AND SET COVER

A.1 PRIMAL-DUAL PAIR: VERTEX COVER AND EDGE PACKING

Given a graph G = (V,E), where V are vertices and E are edges, each vertex v ∈ V has a
non-negative weight w : V → R+.
Definition 4 (Minimum vertex cover). A vertex-cover for G is a subset C ⊆ V of the vertices such
that for each edge (v, u) ∈ E, either v ∈ C, u ∈ C, or both. The objective is to minimize the total
vertex weight

∑
v∈C w(v).

15

http://dx.doi.org/10.1016/j.patter.2021.100273
http://dx.doi.org/10.1016/j.patter.2021.100273
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=SkgKO0EtvS
http://arxiv.org/abs/2301.03116
https://openreview.net/forum?id=diagbK14G5
https://openreview.net/forum?id=diagbK14G5
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=rJxbJeHFPS
https://proceedings.neurips.cc/paper_files/paper/2021/file/f6a673f09493afcd8b129a0bcf1cd5bc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f6a673f09493afcd8b129a0bcf1cd5bc-Paper.pdf
http://dx.doi.org/10.1093/bioinformatics/btx252
http://dx.doi.org/10.1093/bioinformatics/btx252

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Definition 5 (Maximum edge packing). An edge-packing is an assignment p : E → R+ of non-
negative weights to the edges e ∈ E, such that for any vertex v ∈ V , the total weight

∑
e:v∈e p(e)

assigned to the edges e that are incident to v is at most w(v). The objective is to maximize the total
edge weight

∑
e∈E p(e).

The edge packing problem is the dual of the LP relaxation of the vertex cover problem, which also has
many practical implications, such as resource allocation. Because of this relationship, the primal-dual
pair becomes key problems for studying approximation algorithms and the primal-dual framework.
Let xv ∈ {0, 1} indicate whether each vertex v ∈ V is in the cover, and ye ∈ R+ be the non-negative
weight assigned to each edge e ∈ E. The two problems can be formulated as:

Min
∑
v∈V

w(v)xv

sub. to xu + xv ≥ 1, ∀e = (u, v) ∈ E
xv ∈ {0, 1}, ∀v ∈ V

Max
∑
e∈E

ye

sub. to
∑
e:v∈e

ye ≤ w(v), ∀v ∈ V

ye ≥ 0, ∀e ∈ E.

A.2 PSEUDOCODE OF MVC ALGORITHM

A 2/(1−ϵ)-approximation algorithm for the minimum vertex cover (MVC) problem was proposed by
Khuller et al. (1994). It can be interpreted as an instantiation of the general primal-dual approximation
algorithm without uniform increase (Algorithm 1). In the following, we give the original algorithm
as illustrated in the original paper (Khuller et al., 1994).

Intuitively, the algorithm maintains a packing p and partial cover Cp = {v ∈ V : p(E(v)) ≥
(1−ϵ)w(v)}, and gradually increases the edge weights p(e) as much as possible. When the constraint
on the residual vertex weight is met, a vertex v is removed and added to the cover Cp. The process
iterates until p is ϵ-maximal and Cp is a cover. Let Ep(v) be the set of remaining edges incident to
vertex v, dp(v) = |Ep(v)| be the degree, and wp(v) = w(v)− p(E(v)) be the residual weight. The
following is a pseudocode of the algorithm as described in Khuller et al. (1994).

Algorithm 2 COVER(G = (V,E), w, ϵ)

1: for v ∈ V do
2: wp(v)← w(v);Ep(v)← E(v); dp(v)← |E(v)|
3: while edges remain do
4: for each remaining edge (u, v) do
5: δ((u, v))← min(wp(u)/dp(u), wp(v)/dp(v))

6: for each remaining vertex v do
7: wp(v)← wp(v)−

∑
e∈Ep(v)

δ(e)

8: if wp(v) ≤ ϵ w(v) then
9: delete v and its incident edges; update Ep(·) and dp(·)

return the set of deleted vertices

A.3 PRIMAL-DUAL PAIR: SET COVER AND ELEMENT PACKING

The minimum set cover (MSC) problem is a generalization of MVC to hypergraphs. Similar to the
edge packing, the element packing is the dual of the LP relaxation of the set cover problem.
Definition 6 (Minimum Set Cover). Given a universe U and a family of sets C ⊆ 2U with non-
negative weights w : C → R+, a set cover is a subfamily C′ ⊆ C such that ∪S∈C′S = ∪S∈CS. The
objective is to minimize the total weight

∑
S∈C′ w(S).

Definition 7 (Maximum Element Packing). An element-packing is an assignment p : U → R+ of
non-negative weights to the elements e ∈ U , such that for any set S ∈ C, the total weight

∑
e∈S p(e)

is at most w(S). The objective is to maximize the total element weight
∑

e∈U p(e).

Let xS ∈ {0, 1} indicate whether each set S ∈ C is in the cover C′, and ye ∈ R+ be the non-negative
weight assigned to each element e ∈ U . The two problems can be formulated as:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Min
∑
S∈C

w(S)xS

sub. to
∑

S:e∈S

xS ≥ 1, ∀e ∈ U

xS ∈ {0, 1}, ∀S ∈ C

Max
∑
e∈U

ye

sub. to
∑
e∈S

ye ≤ w(S), ∀S ∈ C

ye ≥ 0, ∀e ∈ U .

A.4 PSEUDOCODE OF MSC ALGORITHM

The above algorithm can be extended for set cover as an r/(1− ϵ)-approximation algorithm, where r
is the maximal cardinality of sets. The following pseudocode is the adapted approximation algorithm
to solve vertex cover on a hypergraph.

Algorithm 3 COVER(G = (V,E), w, ϵ)

1: for v ∈ V do
2: wp(v)← w(v);Ep(v)← E(v); dp(v)← |E(v)|
3: while edges remain do
4: for each remaining edge e do
5: δ(e)← minv∈e(wp(v)/dp(v))

6: for each remaining vertex v do
7: wp(v)← wp(v)−

∑
e∈Ep(v)

δ(e)

8: if wp(v) ≤ ϵ w(v) then
9: delete v and its incident edges; update Ep(·) and dp(·)

return the set of deleted vertices

B PROOF OF THEOREM 1

Theorem 1. Given a hitting set problem (T , E, w), letA(T , E, w) be the solution produced by Algo-
rithm 1, which terminates after K timesteps. There exists a parameter configuration Θ for a PDGNN
model MΘ such that, at timestep K, the model output satisfies M(K)

Θ (T , E, w) = A(T , E, w).
Furthermore, let (x(t), r(t), δ(t),∆(t)) be the intermediate quantities computed by Algorithm 1 at
each timestep t. Then, the PDGNN model satisfiesM(t)

Θ (T , E, w) = (x(t), r(t), δ(t),∆(t)).

Proof Given a hitting set problem (T , E, w), we construct a bipartite graph B as explained in
Section 4.1. Let B(t) denote the bipartite graph at timestep t, then B(0) = B. If we remove a node e
and its incident edges from the graph when an element e is included in the hitting set at timestep t, an
action denoted by x(t)e = 1, then the bipartite graph B(t) changes accordingly. Therefore, the degrees
of primal nodes d(t) can be computed via d(t) = f(T , E,maxt′∈[0,...,t](x

(t′))) for some function f ,
where the max function is applied element-wise. WLOG, let n denote the hidden dimension. We can
now prove the theorem using mathematical induction.

1. Base case (t = 0): This is true because the inputsM(0)
Θ (T , E, w) = (0, {we : e ∈ E},0, 0) =

(x(0), r(0), δ(0),∆(0)).

2. Induction step (t > 0): To formulate the strong induction hypothesis, let (x(t′), r(t
′), δ(t

′),∆(t′))
be the intermediate quantites computed by Algorithm 1 for each timestep t′ ∈ [0, ..., t − 1],
assume M(t′)

Θ (T , E, w) = (x(t′), r(t
′), δ(t

′),∆(t′)). We now prove that M(t)
Θ (T , E, w) =

(x(t), r(t), δ(t),∆(t)).

The inputs for the tth step of our recurrent model are the outputs from the (t − 1)th step.
By the induction hypothesis, the model output r̂(t−1) = r(t−1). Furthermore, since d(t) =

f(T , E,maxt′∈[0,...,t](x
(t)′)) for some function f , and the model outputs satisfy x̂(t)′ = x(t)′

for all t′ ∈ [0, ..., t− 1] via the strong induction hypothesis, we have d̂(t−1) = d(t−1). We take the
natural logarithmic form of r(t−1) and d(t−1) as inputs to the encoders.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Both encoders fr and fd are MLPs. We define the weight of fr as Wfr = [1, 0, ..., 0] ∈ Rn×1. We
define the weight of fd as Wfd = [1, 0, ..., 0] ∈ Rn×1. Therefore,

h(t)
e = fr(r

(t−1)
e) =Wfr ln r

(t−1)
e = [ln r(t−1)

e , 0, ..., 0] ∈ Rn×1

h
(t)
de

= fd(d
(t−1)
e) =Wfd ln d

(t−1)
e = [ln d(t−1)

e , 0, ..., 0] ∈ Rn×1

The first step performs message-passing from the primal node representations h(t)
e to the dual nodes

h
(t)
T via h

(t)
T = mine∈N (T) ge(h

(t)
e ,h

(t)
de
). Let ge be an MLP with ELU activation, then we set

Wge = [1, 0, ..., 0,−1, 0, ..., 0]⊤ ∈ R1×2n, bge = [1] ∈ R1, and W ′
ge = [1, 0, ..., 0] ∈ Rn×1 thus:

ge(h
′(t)
e) =W ′

ge

(
ELU

(
Wge [h

(t)
e ∥h

(t)
de
]
)
+ bge

)
=W ′

ge

(
ELU

(
[1, 0, ..., 0,−1, 0, ..., 0]⊤[ln r(t−1)

e , 0, ..., 0, ln d(t−1)
e , 0, ..., 0]

)
+ 1
)

=W ′
ge

(
ELU

(
ln r(t−1)

e − ln d(t−1)
e

)
+ 1
)

=W ′
ge

(
ELU

(
ln
r
(t−1)
e

d
(t−1)
e

)
+ 1

)

Since ELU(x) = ex − 1 if x ≤ 0, and ln
r(t−1)
e

d
(t−1)
e

≤ 0,

ge(h
′(t)
e) =W ′

ge

(
exp

(
ln
r
(t−1)
e

d
(t−1)
e

)
− 1 + 1

)

= [1, 0, ..., 0]
r
(t−1)
e

d
(t−1)
e

= [
r
(t−1)
e

d
(t−1)
e

, 0, ..., 0] ∈ Rn×1

Therefore, the hidden representation h
(t)
T for each set T ∈ T , is:

h
(t)
T = min

e∈N (T)
ge(h

′(t)
e)

= min
e∈N (T)

[
r
(t−1)
e

d
(t−1)
e

, 0, ..., 0]

= [min
e∈N (T)

r
(t−1)
e

d
(t−1)
e

, 0, ..., 0]

= [δ
(t)
T , 0, ..., 0] ∈ Rn×1 (From Line 5 of Algorithm 1)

The next step performs message-passing from the dual node representations h(t)
T and then updates

the primal representations h(t)
e via h

(t)
e = gu(h

(t)
e ,
∑

T∈N (e) h
(t)
T). We use ELU activation function

on the previously computed h
(t)
e and a bias br = [1, 0, ..., 0] ∈ Rn×1. Since ln r

(t−1)
e ≤ 0, we have:

h(t)
e = ELU

(
h(t)
e

)
+ br

= ELU
(
[ln r(t−1)

e , 0, ..., 0]
)
+ [1, 0, ..., 0]

= [exp (ln r(t−1)
e)− 1 + 1, 0, ..., 0]

= [r(t−1)
e , 0, ..., 0] ∈ Rn×1

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

The update function gu is also an MLP. We define its weights to beWgu = [1, 0, ..., 0,−1, 0, ..., 0]⊤ ∈
R1×2n. Then, the hidden dimension h

(t)
e for each element e ∈ E becomes:

h(t)
e = gu

h(t)
e ,

∑
T∈N (e)

h
(t)
T


=Wgu

h(t)
e ∥

∑
T∈N (e)

h
(t)
T


= [1, 0, ..., 0,−1, 0, ..., 0]⊤[r(t−1)

e , 0, ..., 0,
∑

T∈N (e)

δ
(t)
T , 0, ..., 0]

= [r(t−1)
e −

∑
T∈N (e)

δ
(t)
T , 0, ..., 0]

= [r(t)e , 0, ..., 0] ∈ Rn×1 (From Line 6 of Algorithm 1)

Alternatively, if the uniform increase rule is incorporated, we have an additional virtual node z that
connects to all dual variables. Its hidden representation h

(t)
z is computed as:

h(t)
z = min

T∈T
h
(t)
T

= min
T∈T

[δ
(t)
T , 0, ..., 0]

= [min
T∈T

δ
(t)
T , 0, ..., 0]

= [∆(t), 0, ..., 0] ∈ Rn×1 (From Line 6.1 of Algorithm 1)

Then let h′
T
(t) = h

(t)
z , the primal variable updates becomes:

h(t)
e = gu

h(t)
e ,

∑
T∈N (e)

h
′(t)
T


=Wgu

h(t)
e ∥

∑
T∈N (e)

h
′(t)
T


= [1, 0, ..., 0,−1, 0, ..., 0]⊤[r(t−1)

e , 0, ..., 0,
∑

T∈N (e)

∆(t), 0, ..., 0]

= [r(t−1)
e − d(t−1)

e ∆(t), 0, ..., 0]

= [r(t)e , 0, ..., 0] ∈ Rn×1 (From Line 6.2 of Algorithm 1)

For the decoders qx, qr, qδ (and q∆ if uniform increase is used), they map hidden representations h(t)
e ,

h
(t)
T (and h

(t)
z if uniform increase is used) to predictions for the intermediate quantities computed

by the algorithm. We define Wqx = Wqr = Wqδ = Wq∆ = [1, 0, ..., 0]⊤ ∈ R1×n. For x(t)e , it is a
binary classification task, where x(t)e = 1 if r(t)e = 0 to add the element e to the hitting set. Define
o : R→ {0, 1}, where

o(x) =

{
1, if x ≤ 0

0, else

We note that although we use a sigmoid function in our architecture, the sigmoid function can
approximate o(x) to arbitrary precision by adjusting its temperature. Therefore, we have

x̂(t)e = o(qx(h
(t)
e))

= o
(
Wqx(h

(t)
e

)
19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

= o
(
[1, 0, ..., 0]⊤[r(t)e , 0, ..., 0]

)
= o

(
r(t)e

)
= x(t)e (Definition of x(t)e)

For the other three intermediate quantities:

r̂(t)e = qr(h
(t)
e)

=Wqr (h
(t)
e)

= [1, 0, ..., 0]⊤[r(t)e , 0, ..., 0]

= r(t)e

δ̂
(t)
T = qδ(h

(t)
T)

=Wqδ(h
(t)
T)

= [1, 0, ..., 0]⊤[δ
(t)
T , 0, ..., 0]

= δ
(t)
T

∆̂(t) = qδ(h
(t)
z)

=Wq∆(h
(t)
z)

= [1, 0, ..., 0]⊤[∆(t), 0, ..., 0]

= ∆(t)

Therefore, Θ(t)
dual(T , E, w) = (x(t), r(t), δ(t),∆(t)) and the induction step is completed.

C DATASETS

C.1 SYNTHETIC DATASETS

We provide the details of the graph distributions used to generate random graphs for both training
and testing.

Bipartite graph To generate random bipartite graphs, given the number of nodes in the bipartite
graph, the number of nodes on the two sides is randomly chosen, with at least two nodes on each side.
Two nodes from each side are connected with a probability of 0.2. Node weights for primal variables
are uniformly sampled from [0, 1]. We ensure that each bipartite graph is connected.

Barabási-Albert (B-A) graph Barabási-Albert graphs for both training and testing are randomly
generated using networkx.barabasi_albert_graph. The number of edges to attach from a
new node to existing nodes is randomly chosen from [1, 10]. Node weights for primal variables are
uniformly sampled from [0, 1].

Erdős–Rényi (E-R) graph We use networkx.erdos_renyi_graph to generate random
Erdős–Rényi graphs with edge probability uniformly sampled from [0.2, 0.8].

Star graph Star graphs are generated by randomly partitioning the nodes into 1 to 5 sets. Within
each node set, a star graph is generated with a center node connected to all other nodes. Random
edges between the star graphs are then added to ensure the graph is connected.

Lobster graph To generate a lobster graph, the number of nodes on the “backbone” m is randomly
sampled from [1, n− 1], where n is the total number of nodes in the graph. Then, another k nodes
are added to the backbone nodes to start “branches”, where 1 ≤ k ≤ (n−m). Finally, the remaining
nodes (if any left from n−m− k) are randomly attached to the branches.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

3-Connected (3-Con) Planar graph A 3-regular graph is randomly generated with
networkx.random_regular_graph, and then checked to see if it is 3-connected and pla-
nar. The process is repeated until a valid 3-connected planar graph is found, or if it reaches the limit
of 100 attempts.

Table 5: Percentage of nodes being in the optimal vertex cover for different graph families.

B-A E-R Star Lobster 3-Con
16 nodes 43% 71% 23% 40% 61%
32 nodes 49% 80% 15% 41% 60%
64 nodes 45% 88% 8% 41% 59%

For vertex cover and set cover, we use Algorithm 2 and Algorithm 3 (Khuller et al., 1994) to
generate intermediate supervisions, which are instantiations of Algorithm 1 with improved efficiency,
as explained in Section 3.2. For hitting set, we use Algorithm 1 with the uniform increase rule.
Furthermore, the optimal solutions are generated with the default IP solver in scipy, which is based
on HiGHS (Schwendinger & Schumacher, 2023; Huangfu & Hall, 2018).

C.2 GUROBI DATASETS

Random B-A graphs are generated following the same distribution described above. For test-
ing, we generate B-A graphs with 500, 600, and 750 nodes. We use the trained model to
perform inference on the testing set and retrieve vertex cover solutions. We also use Algo-
rithm 2 (Khuller et al., 1994) to compute solutions with ϵ = 0.1. The comparison of the
solutions from the model and the algorithm is shown in Table 6. The two sets of solutions
are then used to initialize variables for warm starting the Gurobi solver. We also compare
them with the default initialization (i.e. no warm start) of Gurobi. We use the default pa-
rameter settings of Gurobi, setting thread count to 1 (model.setParam(’Threads’, 1)),
time limit to 3600s (model.setParam(’TimeLimit’, 3600)), and random seed
(model.setParam(’Seed’, seed)). Each experiment is repeated with 5 seeds.

Table 6: The ratio of total weights of the solutions generated by the model compared with those
generated by the algorithm (wpred/walgo). Comparison with the optimal solutions is not included due
to the large size of graphs. We also report the percentage of uncovered edges from the solutions
generated by the model (i.e. how often the cleanup stage is required).

500 nodes 600 nodes 750 nodes
wpred/walgo 0.972 0.970 0.970

Uncovered edges 0% 0% 0%

C.3 REAL-WORLD DATASETS

Airports The Airports datasets (Ribeiro et al., 2017) consist of three airport networks from Brazil
(131 nodes, 1038 edges), Europe (399 nodes, 5995 edges), and the USA (1190 nodes, 13599 edges).
The nodes represent airports, and the edges represent commercial flight routes. The node features are
one-hot encoded node identifiers, as described in Jin et al. (2019). The task is to predict the activity
level of each airport, measured by the total number of landings plus takeoffs, or the total number of
people arriving plus departing. It is a classification task with 4 labels, with label 1 assigned to the
25% least active airports, and so on, according to the quartiles of the activity distribution. We create
10 random train/val/test splits for the transductive task with a ratio of 60%/20%/20%.

WikipediaNetwork We use the preprocessed WikipediaNetwork datasets (Pei et al., 2020) from
the original datasets (Rozemberczki et al., 2019). It consists of two datasets, Chameleon (2277 nodes,
36101 edges, 2325 features) and Squirrel (5201 nodes, 217073 edges, 2089 features). The nodes are
web pages and edges represent hyperlinks between them. The task is to predict the average monthly
traffic of the web page, which is categorized into five classes for prediction. We use the 10 provided
train/val/test splits from Pei et al. (2020) with ratio 60%/20%/20% for this transductive task.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

PPI The PPI dataset (Zitnik & Leskovec, 2017) consists of 20 protein-protein interaction networks.
On average, each graph has 2245.3 nodes and 61318.4 edges. Each node has 50 features (such as
positional gene sets, motif gene sets, immunological signatures) with 121 labels taken from the
gene ontology sets. This inductive dataset provides splits for train/val/test sets. Each experiment is
repeated with 10 seeds.

D HYPERPARAMETERS

All GPU experiments were performed on Nvidia Quadro RTX 8000 with 48GB memory. The Gurobi
experiments were conducted on Intel Xeon E7-8890x with 144 cores and 12TB memory.

Synthetic and Gurobi experiments For training, we use the Adam optimizer with an initial
learning rate of 1e-3 and weight decay of 1e-4, coupled with the ReduceLROnPlateau scheduler with
default settings. Additionally, we use a batch size of 32, a hidden dimension of 32, and a maximum
of 100 epochs. For testing, we use the trained model with the lowest validation loss.

Real-world dataset experiments We use the same optimizer and scheduler settings as in the
synthetic experiments. Additionally, we also apply early stopping with a patience of 10 epochs based
on validation loss and set the scheduler with a patience of 20 epochs. All embeddings have a fixed
dimension of 32. For testing, we use the model with the lowest validation loss. The base models are
used with max jumping knowledge (Xu et al., 2018) and L2 normalization after each layer (Rossi
et al., 2024). We conduct hyperparameter search for each base model on Airports datasets (Brazil,
Europe, USA), then use the setting for all embedding methods. Due to the high computational costs of
WikipediaNetwork (Chameleon, Squirrel) and PPI datasets, hyperparameter search is only done with
GCN. We use the default TPE hyperparameter search algorithm from optuna (Akiba et al., 2019)
with a median pruner. The searchable parameters are lr=[0.01, 0.001, 0.0005], hid_dim=[32, 64, 128],
dropout=[0.1, 0.3, 0.5], and num_layer=[1, 3, 5]. For training Node2Vec (Grover & Leskovec, 2016),
we use walk_length=20, context_size=10, walks_per_node=10, with 100 epochs.

Table 7: Additional hyperparameters for real-world dataset experiments.

Brazil Europe USA Chameleon Squirrel PPI

GCN
lr=0.0005 lr=0.001 lr=0.001 lr=0.001 lr=0.001 lr=0.01
hid_dim=32 hid_dim=32 hid_dim=64 hid_dim=128 hid_dim=128 hid_dim=32
dropout=0.5 dropout=0.1 dropout=0.3 dropout=0.3 dropout=0.3 dropout=0.1
num_layer=3 num_layer=3 num_layer=3 num_layer=3 num_layer=3 num_layer=3

GAT
lr=0.001 lr=0.001 lr=0.001 as above as above as above
hid_dim=32 hid_dim=32 hid_dim=32
dropout=0.3 dropout=0.1 dropout=0.1
num_layer=3 num_layer=3 num_layer=3

SAGE
lr=0.0005 lr=0.0005 lr=0.001 as above as above as above
hid_dim=32 hid_dim=32 hid_dim=64
dropout=0.5 dropout=0.3 dropout=0.1
num_layer=1 num_layer=1 num_layer=3

E ADDITIONAL ARCHITECTURAL DETAILS

In practice, due to the potentially high degree variance, we apply log transformation on the node
degree d(t)e before encoding it with fd for better generalization, i.e. h(t)

de
= fd(ln(d

(t−1)
e + 1)). Then,

for decoding x̂(t)e = qx(h
(t)
e), which represents whether to include element e to the solution, we

apply a sigmoid activation function to convert logits to probabilities. For minimum vertex cover and
minimum set cover, since multiple elements can be included into the solution at each timestep, we
set a threshold of 0.5 to decide whether to include the element. For minimum hitting set, since the
uniform increase rule is used, only one element is included into the solution at each timestep, we
choose the element with the highest probability to include in the hitting set. Lastly, we add dropouts

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

in between processor layers with probability of 0.2 for Gurobi and real-world experiments. This
helps the model to generalize to much larger graphs at a slight cost of approximation ratios.

F LIMITATION AND FUTURE WORK

Our framework can be adapted to solve a wide range of combinatorial optimization problems that
can be represented using the hitting set formulation. The hitting set provides a flexible structure for
modeling various combinatorial problems by selecting a subset of elements that “hits” or “covers”
all required constraints, represented as sets. This formulation is versatile because it can capture
diverse constraints (e.g., nodes, edges, paths, cycles), making it applicable to numerous optimization
problems. As discussed in Section 3.2 , Algorithm 1 can be reformulated to recover many classical
(exact or approximation) algorithms for problems that are special cases of the hitting set, covering
both polynomial-time solvable and NP-hard problems. Some of these special cases are illustrated
in Goemans & Williamson (1996) and Williamson & Shmoys (2011), including shortest s-t path,
minimum spanning tree, vertex cover, set cover, minimum-cost arborescence, feedback vertex set,
generalized Steiner tree, minimum knapsack and facility location problems.

We note that not all problems can be directly represented by the hitting set formulation. As a
minimization problem, the hitting set does not naturally align with maximization objectives, making
the primal-dual approximation algorithm less straightforward to apply. However, the primal-dual
framework can still be extended to maximization problems by carefully reformulating the primal-dual
pair, where the dual is a minimization problem, and adapting Algorithm 1. Then, similarly, the
algorithm starts with a feasible dual solution and iteratively updates both primal and dual variables
to reduce the gap between them. Therefore, PDGNN, with its bipartite graph structure, can still be
extended to handle maximization problems with appropriate adjustments to Algorithm 1.

Furthermore, while Algorithm 1 provides a general framework for designing primal-dual approxima-
tion algorithms, it can be further strengthened by incorporating techniques to enhance the algorithmic
performance. One such technique is the uniform increase rule, which we have shown how it can be
integrated into our framework. Future work can incorporate other advanced techniques, such as those
outlined in Williamson & Shmoys (2011), to further extend our framework’s ability to accommodate
a broader range of primal-dual approximation algorithms with improved worst-case guarantees.

Lastly, our method may not explicitly preserve the worst-case approximation guarantees of the
primal-dual algorithm in practice. Instead, our model focuses on learning solutions that perform
better for the training distribution and generalize well to new instances. While this does not mean that
the worst-case guarantees are secured, it is important to note that such cases are often less common in
real-world scenarios. One of the core strengths of NAR lies in leveraging a pretrained GNN with
embedded algorithmic knowledge to tackle real-world datasets. Thus, we believe it is valuable to train
models to produce high-quality solutions for common cases, even if they do not preserve worst-case
guarantees. This aligns with the overarching goals of NAR.

G RELATED WORKS ON NEURAL ALGORITHMIC REASONING

Lastly, we provide a more comprehensive review of existing works on Neural Algorithmic Reasoning
(NAR) and highlight our contributions in this context.

Neural algorithmic reasoning The algorithmic alignment framework proposed by Xu et al. (2020)
suggests that GNNs are particularly well-suited for learning dynamic programming algorithms due
to their shared aggregate-update mechanism. Additionally, Veličković et al. (2020) demonstrates
the effectiveness of GNNs in learning graph algorithms such as BFS and Bellman-Ford. These
foundational works have contributed to the development of neural algorithmic reasoning (Veličković
& Blundell, 2021), which investigates the potential of neural networks, particularly GNNs, to simulate
traditional algorithmic processes. This research direction has since inspired several follow-up studies,
including efforts to instantiate the framework for specific algorithms (Deac et al., 2020; Georgiev
& Liò, 2020; Zhu et al., 2021), applications to real-world use cases (Deac et al., 2021; He et al.,
2022; Beurer-Kellner et al., 2022; Georgiev et al., 2023a; Numeroso et al., 2023; Estermann et al.,
2024), architectural improvements (Georgiev et al., 2022; Bevilacqua et al., 2023; Rodionov &
Prokhorenkova, 2023; Jain et al., 2023; Engelmayer et al., 2023; Mirjanic et al., 2023; Georgiev et al.,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

2023b; Dudzik et al., 2024; Jürß et al., 2024; Xhonneux et al., 2024; Georgiev et al., 2024; Rodionov
& Prokhorenkova, 2024; Xu & Veličković, 2024; Kujawa et al., 2024), and integration with large
language models (Bounsi et al., 2024). Our work advances NAR by introducing a general framework
designed to tackle combinatorial optimization problems, particularly NP-hard ones, with the objective
of simulating and outperforming primal-dual approximation algorithms.

Combinatorial optimization with GNNs The CLRS benchmark (Veličković et al., 2022) and
its extensions (Minder et al., 2023; Markeeva et al., 2024) are widely recognized for evaluating
GNNs on 30 algorithms from the CLRS textbook (Cormen et al., 2001) and more. However, these
algorithms are limited to polynomial-time problems, leaving the more challenging NP-hard problems
largely unexplored in neural algorithmic reasoning. A comprehensive review by Cappart et al. (2022)
summarizes the current progress of using GNNs for combinatorial optimization. The most relevant
work (Georgiev et al., 2023c) trains GNNs on algorithms for polynomial-time-solvable problems
and test them on NP-hard problems, demonstrating the value of algorithmic knowledge over non-
algorithmically informed models. In contrast, our approach bridges this gap by extending GNNs to
tackle NP-hard problems through the use of primal-dual approximation algorithms. Furthermore,
we integrate optimal solutions from integer programming, which guides the model toward better
outcomes during training. To the best of our knowledge, our method is the first of its kind to surpass
the performance of the algorithms it was originally trained on.

Multi-task learning for NAR Early work by Veličković et al. (2020) demonstrated that BFS and
Bellman-Ford are best learned jointly, and subsequent studies have highlighted broader benefits
of multi-task learning when GNNs are trained on multiple algorithms simultaneously (Xhonneux
et al., 2021; Ibarz et al., 2022). Building on this, Numeroso et al. (2023) leveraged the primal-dual
principle from linear programming to successfully learn the Ford-Fulkerson algorithm using the
max-flow min-cut theorem. However, their approach was tailored specifically for Ford-Fulkerson
and did not generalize to other primal-dual scenarios or address NP-hard problems. To overcome
these limitations, our work introduces a general framework that employs the primal-dual principle
to enable GNNs to benefit from multi-task learning across a broad range of optimization problems,
particularly those expressible as instances of the general hitting set problem.

H CONNECTION WITH NEURAL COMBINATORIAL OPTIMIZATION (NCO)

While NCO is not the primary focus of our work, our method also contributes to an underexplord
area of NCO. Specifically, we propose an algorithmically informed GNN that effectively addresses
critical challenges of data efficiency and generalization.

Most GNN-based supervised learning methods for NCO learn task-specific heuristics or optimize
solutions in an end-to-end manner (Joshi et al., 2019; Li et al., 2018; Gasse et al., 2019b; Fu et al.,
2021). These end-to-end approaches rely exclusively on supervision signals derived from optimal
solutions, which are computationally expensive to obtain for hard instances. Furthermore, dependence
on such labels can limit generalization (Joshi et al., 2022). In contrast, our method trains on synthetic
data obtained efficiently from a polynomial-time approximation algorithm. The embedding of
algorithmic knowledge also demonstrates strong generalization. The addition of optimal solutions are
derived from small problem instances, enabling our model to outperform the approximation algorithm
and generalize effectively to larger problem sizes.

Our approach represents a previously underexplored area of NCO research with GNNs, offering a
general and effective framework. Unlike end-to-end methods, we leverage intermediate supervision
signals from polynomial-time approximation algorithms, which can be generated efficiently, to
address key bottlenecks in data efficiency and generalization. Additionally, we fill the gap in
autoregressive methods for NCO using GNNs by aligning our architecture with the primal-dual
method, enabling the GNN to simulate a single algorithmic step in an efficient and structured manner.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

I DUALITY IN LINEAR PROGRAMMING

Duality in linear programming has been utilized in training neural networks to tackle combinatorial
optimization problems. Also for NAR, Numeroso et al. (2023) studied the polynomial-time-solvable
max-flow problem. They trained a GNN to imitate Ford-Fulkerson, an algorithm built on the
connections between the max-flow problem and its linear programming dual, the min-cut problem.
Thus, both our paper and the paper by Numeroso et al. (2023) leverage the notion of duality, which
is a essential tool in algorithm design. Numeroso et al.’s architecture was specialized for the Ford-
Fulkerson algorithm and is not applicable to other problems (such as the NP-hard problems we
focus on). We require a completely different approach because although Ford-Fulkerson and the
primal-dual method for NP-hard problems are based on duality, one is not a special case of the other;
they are fundamentally different algorithms. We present a general framework applicable to several
different NP-hard problems.

Furthermore, Li et al. (2024) introduces a Learning-to-Optimize method to mimic Primal-Dual Hybrid
Gradient method for solving large-scale LPs. While they focus on developing efficient solvers for
LPs, we aim to simulate the primal-dual approximation algorithm for NP-hard problems using GNNs.
Although both approaches reference the primal-dual framework, this similarity is superficial. The
primal-dual terminology is widely used in optimization, but our work applies it to study algorithmic
reasoning. For example, the primal-dual approximation algorithm can be instantiated to many
traditional algorithms, such as Kruskal’s algorithm for MST. Furthermore, unlike Li et al. (2024),
our method relies on intermediate supervision from the primal-dual algorithm to guide reasoning,
ensuring that the model learns to mimic algorithmic steps. Additionally, we incorporate optimal
solutions into the training process to improve solution quality, allowing our model to outperform the
primal-dual algorithm it is trained on. Moreover, the architectures differ significantly: our method
employs a recurrent application of a GNN to iteratively solve problems, while Li et al. (2024) does
not use GNNs or recurrent modeling. These distinctions highlight that our focus is not on solving
LPs but on leveraging NAR to generalize algorithmic reasoning for NP-hard problems.

25

	Introduction
	Related works
	Problem Statement
	NP-Hard Problems
	A general primal-dual approximation algorithm

	Primal-Dual Graph Neural Networks (PDGNNs)
	Architecture
	Uniform increase of dual variables
	Use of optimal solutions from solvers

	Experiments
	Synthetic NP-hard problems
	Generalization to OOD graph family
	Commercial optimization solvers
	Real-world datasets

	Conclusions
	Additional details of vertex cover and set cover
	Primal-dual pair: vertex cover and edge packing
	Pseudocode of MVC algorithm
	Primal-dual pair: Set cover and element packing
	Pseudocode of MSC Algorithm

	Proof of Theorem 1
	Datasets
	Synthetic datasets
	Gurobi datasets
	Real-world datasets

	Hyperparameters
	Additional architectural details
	Limitation and future work
	Related works on neural algorithmic reasoning
	Connection with Neural Combinatorial Optimization (NCO)
	Duality in linear programming

