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Abstract

Each language has its own complex systems001
of word, phrase, and sentence construction,002
the guiding principles of which are often sum-003
marized in grammar descriptions for the con-004
sumption of linguists or language learners.005
However, manual creation of such descriptions006
is a fraught process, as creating descriptions007
which describe the language in “its own terms”008
without bias or error requires both a deep un-009
derstanding of the language at hand and lin-010
guistics as a whole. We propose an automatic011
framework AUTOLEX that aims to ease lin-012
guists’ discovery and extraction of concise de-013
scriptions of linguistic phenomena. Specifi-014
cally, we apply this framework to extract de-015
scriptions for three phenomena: morphologi-016
cal agreement, case marking, and word order,017
across several languages. We evaluate the de-018
scriptions with the help of language experts019
and propose a method for automated evalua-020
tion when human evaluation is infeasible.1021

1 Introduction022

Languages are amazingly diverse, consisting of dif-023

ferent systems for word formation (morphology),024

phrase construction (syntax), and meaning (seman-025

tics). These systems are governed by a set of guid-026

ing principles, referred to as grammar. Creating a027

human-readable description that highlights salient028

points of a language is one of the major endeavors029

undertaken by linguists. Such descriptions form an030

indispensable component of language documenta-031

tion efforts, particularly for endangered or threat-032

ened languages (Himmelmann, 1998; Hale et al.,033

1992; Moseley, 2010). Furthermore, if descriptions034

can be created in a machine-readable format they035

can be used for developing language technologies036

(Pratapa et al., 2021).037

1Code and data are released on https://github.com/
emnlp-autolex/autolex. Currently, the online web site
(https://emnlp-autolex.github.io/autolex) shows all
rules for some languages, we are working on adding the rest.

Linguists and researchers have undertaken initia- 038

tives to collect linguistic properties in a machine- 039

readable format across several languages, WALS 040

(Dryer and Haspelmath, 2013) being a standing ex- 041

ample. For instance, WALS can tell us that English 042

objects occur after verbs, or that Turkish pronouns 043

have symmetrical case. However, because WALS 044

presents these properties across many diverse lan- 045

guages, these properties are necessarily defined at 046

a coarse-grained level and cannot capture language- 047

specific nuances. WALS does not inform us of any 048

exceptions to its general rules (e.g. the cases when 049

English objects come before verbs), and there are 050

many aspects that are not even covered (e.g. when 051

a Turkish pronoun takes the accusative marker and 052

when the nominative). There are other challenges 053

to creating detailed descriptions, as for many of 054

the 6,500+ languages, there are few or no formally 055

trained linguists. Even in the ideal case where there 056

is such a linguist, there are a plethora of linguistic 057

phenomena to be covered, and it is hard to enumer- 058

ate every single one through introspection. 059

Thanks to the NLP advances, it is now possible 060

to automate some local aspects of linguistic analy- 061

sis such as POS tagging (Toutanvoa and Manning, 062

2000), dependency parsing (Kiperwasser and Gold- 063

berg, 2016) or morphological analysis (Malaviya 064

et al., 2018). Recent advances in transfer learning 065

have shown that this is possible to an extent, even 066

for under-resourced languages (Kondratyuk and 067

Straka, 2019). A small amount of prior work has 068

proposed methods for answering specific questions 069

about language, such as the analysis of word order 070

(Östling, 2015; Wang and Eisner, 2017) and mor- 071

phological agreement (Chaudhary et al., 2020), or 072

grammar extraction from inter-linear glosses (Ben- 073

der et al., 2002) (Table 2 in Appendix A compares 074

the questions answered by our and related work). 075

In this work, we propose AUTOLEX, an auto- 076

matic framework to aid linguistic exploration and 077

description, with the goal of helping linguists de- 078
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Figure 1: An overview of the AUTOLEX framework (with Adj-N order in Spanish as an example). The exam-
ple sentence translates to Four books were bought by the small girl. First, we formulate a linguistic question
(e.g. regarding Adj-N order) as a binary classification task (e.g. “whether the Adj comes before/after the N’). Next,
we perform syntactic analysis on the raw text, from which we extract syntactic, lexical, and semantic features to
construct the training data. Finally, we learn an interpretable model from which we extract concise rules.

velop fine-grained understanding of different lin-079

guistic phenomena. The framework allows the lin-080

guist to ask a question such as “what are the rules081

of object-verb order?”, or “when do pronouns take082

the accusative case in Turkish?”, and automatically083

acquire first-pass answers. AUTOLEX analyses084

the texts in the corresponding languages and finds085

answers such as in English “typical declarative con-086

structions show VO, but interrogative sentences can087

show OV”, or in Turkish “object pronouns take the088

accusative case.” Specifically, we follow a multi-089

step process, as shown in Figure 1. First, we de-090

fine the linguistic question as a classification task091

(e.g. “does the adjective come before the noun or092

not”; § 2). Second, we automatically extract syntac-093

tic, semantic, and surface-level features that may094

be predictive of the answer to this question (§ 3).095

Next, we construct the training data and train an096

interpretable classifier such as a decision tree to097

identify the underlying patterns that answer this098

question. Finally, we extract and visualize inter-099

pretable rules (§ 4). This methodology is inspired100

by previous work on discovering fine-grained dis-101

tinctions for individual phenomena (Wang and Eis-102

ner, 2017; Chaudhary et al., 2020), but is signifi-103

cantly more general in that we demonstrate its abil-104

ity to discover interesting features for word order,105

case marking, and morphological agreement.106

We experiment with 61 languages for which we107

design an automated evaluation protocol which in-108

forms us how successful our framework is in dis-109

covering valid grammar rules (§ 7.1). We further110

conduct a user study with linguists to evaluate how111

correct, readable, and novel the rules are perceived 112

to be (§ 7.2). Finally, we apply this framework to 113

a threatened language variety, Hmong Daw (mww), 114

and evaluate how well our framework extracts rules 115

under zero-resource conditions (§ 8). 116

2 Formalizing Linguistic Questions 117

The first step in applying AUTOLEX to answer a 118

question is to determine whether we can formu- 119

late it as a classification task, with training data 120

{〈x1, y1〉, 〈x2, y2〉 · · · , 〈xn, yn〉}, where xi ∈ X 121

are the input features and yi ∈ Y are the labels 122

indicating the linguistic phenomenon. Below, we 123

describe how we define Y for each phenomena, 124

and discuss how to construct X in the following 125

section. We use the UD schema (McDonald et al., 126

2013) for representing the syntax and morphology. 127

Case Marking (CM) is a system of “marking 128

syntactic dependents for the type of grammatical 129

relation (subject, object, etc.) they bear to their 130

heads” (Blake, 2009). Although there are differ- 131

ent theories on how to formalize CM, we com- 132

mit to the viewpoint that there are two types of 133

cases: abstract and morphological, where the for- 134

mer is a universal property and the latter is its overt 135

realization (Chomsky, 1993; Halle et al., 1993). 136

Thus, we formulate the explanation of CM as de- 137

termining when a word class (e.g. nouns) marks a 138

particular case (e.g. nominative, etc.). Formally, 139

for each POS tag t we learn a separate model, 140

where the input examples xi are the words hav- 141

ing POS tag t with the case feature marked (e.g. 142
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Case=Nominative). The model is trained to predict143

an output label (yi ∈ Y ), where Y is the label set144

of all observed case values for that language.145

Word Order (WO) describes the relative posi-146

tion of the syntactic elements (Dryer., 2007), and147

is one of the major axes of linguistic description148

appearing in grammar sketches or databases such149

as WALS. We consider the following five WALS150

relations R: subject-verb (82A), object-verb (83A),151

adjective-noun (87A), adposition-noun (85A) and152

numeral-noun (89A). In contrast to WALS, which153

only provides a single canonical order for the en-154

tire language, we pose the linguistic question as155

determining when does one word in such a rela-156

tion appear before or after the other. Formally,157

the pair of words involved in the syntactic relation158

〈wa
i , w

b
i 〉 ∈ r form the input example xi and the159

output label yi∈Y where Y ={before, after}.160

Agreement (AM) is the process where one word161

or morpheme selects a morphological form that162

agrees with that of another word/phrase in the sen-163

tence (Corbett, 2003). We follow a similar problem164

formulation as Chaudhary et al. (2020), which asks165

the question when is agreement required between a166

head (wh) and its dependent (wd) for a morpholog-167

ical attribute m. We focus on the morphological168

attributes M = {gender, person, number}, which169

more often show agreement than other attributes170

(Corbett, 2009), and train a separate model for each.171

The pair of head-dependent words which both mark172

the morphological property m form the input exam-173

ple xi and the output labels (yi) are binary denoting174

if agreement is observed or not between the pair.175

3 Feature Extraction176

Now that we have provided three examples of con-177

verting linguistic questions into classification tasks,178

we design features to help predict each question’s179

answer. We use linguistic knowledge to design180

features, but the feature extraction process itself is181

automatic. For a different question or language, a182

linguist can begin the process by using these initial183

features or even design new features as they deem184

fit. In step-2 of Figure 1, we demonstrate example185

features extracted from a Spanish sentence for train-186

ing the adjective-noun WO model. We refer to the187

words participating in an input xi as focus words.188

These include the words describing the relation it-189

self (e.g. the adjective cuatro and its noun libros)190

and also their respective heads and dependents.191

Syntactic Features Prior work (Blake, 2009; 192

Kittilä et al., 2011; Corbett, 2003) has discussed the 193

role of syntax and morphology being important for 194

determining the case and agreement. In Figure 1, 195

we show a subset of features extracted for some of 196

the focus words. For example, for the adjective, we 197

derive features from its POS tag (e.g. “is-adj”), all 198

of its morphological tags (e.g. “is-ordinal”) and the 199

dependency relation it is involved in (e.g. “deprel- 200

is-mod”). We extract similar features for the adjec- 201

tive’s head, which is libros (e.g. “head-is-noun”). 202

Lexical Features An influential family of lin- 203

guistic theories such as lexical functional gram- 204

mar (Kaplan et al., 1981), head-driven phrase struc- 205

ture grammar (Pollard and Sag, 1994), places most 206

of the explanatory weight for morphosyntax on 207

the lexicon – the properties of the head word (and 208

other words) drive the realization of the rest of the 209

phrase or sentence. Therefore, we add the lemma 210

for the focus words (e.g. “dep-lemma-is-cuatro, 211

head-lemma-is-libro”) as features. 212

Semantic Features There is a strong interaction 213

between semantics and sentence structure. Some 214

well-known examples are of animacy or seman- 215

tic class of a word determining CM (Dahl and 216

Fraurud, 1996) and WO (Thuilier et al., 2021) 217

for some languages. Continuous vectors (Mikolov 218

et al., 2013; Bojanowski et al., 2017a) have been 219

used to capture semantic (and syntactic) similarity 220

across words. However, most vectors are high- 221

dimensional and not easily interpretable, i.e. what 222

semantic/syntactic property each individual vec- 223

tor value represents is not obvious. Since our pri- 224

mary goal is to extract comprehensible descrip- 225

tions of linguistic phenomena, we first generate 226

sparse non-negative vectors using Subramanian 227

et al. (2018). For each dimension, we extract the 228

top-k words having a high positive value, result- 229

ing in features like dim-1={radio,nuclear}, dim- 230

2={hotel,restaurante}. This helps us interpret what 231

property each dimension is capturing, for exam- 232

ple, dim-1 refers to words about nuclear technol- 233

ogy, while dim-2 refers to accommodations. Now 234

that we can interpret what each feature (dimension) 235

corresponds to, we directly add these vector as 236

features. In Figure 1, a semantic feature (e.g. “dep- 237

word-is-like={ochenta,sesenta}”2) extracted for cu- 238

atro informs us that the adjective denotes a numeric 239

quantity. 240

2This translates to {eight, sixty}
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4 Learning and Extracting Rules241

Training Data To construct the training data242

Dp
train for each task p, we start with the raw text243

D of the language in question and perform syn-244

tactic analysis, producing POS tags, lemmas, mor-245

phological analysis and dependency trees for each246

sentence. Using this analysis, we then identify the247

focus word(s) and extract features, forming the in-248

put example (xi = {x0i , x1i , · · · , xki }).249

Model Training Given that the learned model250

must be interpretable to linguists using the system,251

we opt to use decision trees (Quinlan, 1986), which252

split the data into leaves, where each leaf corre-253

sponds to a portion of the input examples following254

common syntactic/semantic/lexical patterns.255

Rule Extraction Each leaf in the decision tree is256

assigned a label based on the distribution of exam-257

ples within that leaf. For instance, if a leaf of the258

adjective-noun WO decision tree has 60% of ex-259

amples with adjectives before their nouns, the leaf260

is labeled as before. However, a majority-based261

threshold alone is insufficient as it does not ac-262

count for leaves with very few examples, which263

may be based on spurious correlations or nonsensi-264

cal feature divisions. Instead, we use a statistical265

threshold for leaf labeling, inspired by Chaudhary266

et al. (2020), performing a chi-squared test to first267

determine which leaves differ significantly from268

the base distribution. For this, we first define the269

null H0 and test H1 hypotheses. For instance, for270

WO we can define that a leaf:271

H0 : takes either before/after label272

H1 : takes the label dominant under that leaf273

We can design such H0 as the words participating274

in the relation can either be before or after the other.275

To apply the chi-squared test, we compute the ex-276

pected probability distribution for H0 considering a277

uniform distribution.We then compute the p-value278

and leaves which are not statistically significant are279

assigned the label of cannot decide, which informs280

a user that the model was uncertain about the label281

(details in Appendix B). Leaves that pass this test282

are then assigned the majority label and correspond283

to a rule that will be shown to linguists, where the284

“rule” is described by the syntactic/semantic/lexical285

features on the branch that lead to that leaf.286

Rule Visualization For each rule, we extract il-287

lustrative examples from the underlying corpus and288

visualize them in an interface (Figure 2). We se- 289

lect such examples that are both short and consist 290

of diverse word forms to illustrate the rule usage 291

in different contexts. Along with examples which 292

follow a rule, we also show examples which do 293

not follow the rule, giving a softer, more nuanced 294

view of the data (details in Appendix B). Specifi- 295

cally, to not overwhelm the user, we only present 296

10 examples for each type. 297

5 Automated Evaluation Protocol 298

In the next two sections, we devise protocols for 299

evaluation of the extracted rules using both auto- 300

matic metrics (for rapid evaluation that can be ap- 301

plied widely across languages), and evaluation by 302

human language experts (as our gold-standard eval- 303

uation). We first describe below the process of 304

automatic evaluation per linguistic phenomenon. 305

Case Marking As noted earlier, we use the UD 306

scheme for deriving the training data. Under this 307

scheme, not every word is labeled with case, re- 308

stricting our training and evaluation to be only on 309

such labeled examples. For such words, we con- 310

sider case to be a universal property i.e. each word 311

marks a particular case value and, we evaluate 312

whether our model can correctly predict that value. 313

Thus, we measure the accuracy on a test example 314

〈xi, yi〉 ∈ Dt
test, comparing the models prediction 315

ŷi with the observed case value yi. We compare our 316

model against a frequency-based baseline which 317

assigns the most frequent case value in the training 318

data to all input examples. 319

Word Order Similar to CM, we can assume that 320

every input example has a word order value, for 321

example subjects will occur either before or af- 322

ter the verbs. Therefore, for an input example, 323

we consider the observed order to be the ground 324

truth and compute the accuracy by comparing it 325

with the model’s prediction. We compare against 326

a frequency-baseline where the most frequent WO 327

value is assigned to all input examples. 328

Comparing the model’s prediction with the ob- 329

served order is reasonable for languages which 330

have a dominant WO. There are a considerable 331

set of languages which have a freer WO. WALS 332

labels such relations as “no dominant order” (e.g. 333

subject-verb order for Modern Greek). For such 334

cases, considering accuracy alone might be insuffi- 335

cient as there is no ground truth. Therefore, we also 336
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Figure 2: A rule extracted for Spanish adjective-noun word order.

report the entropy over the predicted distribution:337

Hr
wo = −

∑
k=before, after

pk log pk338

pk =

∑
〈xr

i ,yi〉∈D
r
test
1

{
1 ŷi = k
0 otherwise

|Dr
test|

339

For languages with no dominant order, the model340

should be uncertain about the predicted order and341

we expect the model’s entropy to be high. The342

accuracy computed against the observed order is343

still useful, as despite there being “no dominant344

order”, speakers tend to prefer one order over the345

other. A high accuracy would entail that the model346

was successful in capturing this “preferred order.”347

Agreement We use the automated rule metric348

(ARM) proposed by Chaudhary et al. (2020) which349

computes accuracy by comparing the ground truth350

label to the predicted label. The ground truth label351

of an example is decided using a predefined thresh-352

old on the leaf to which the example belongs. ARM353

does not use the observed agreement between the354

head and its dependent as ground truth because an355

observed agreement might not necessarily mean356

required agreement. We compare with Chaudhary357

et al. (2020), which uses simple syntactic features358

such as POS of the head, the dependent and, the359

dependency relation between them.360

6 Human Expert Evaluation Protocol361

Since our primary objective is to extract rules362

which are human-readable and of assistance to the363

linguists, we enlist the help of language experts364

to evaluate the rules on three parameters: correct-365

ness, prior knowledge, feature correctness. Before366

starting with the actual evaluation, we first ask the367

expert to provide answers regarding the linguistic 368

questions we are evaluating. For example, we ask 369

questions such as “when are subjects after verbs in 370

Greek”, and they are required to provide a brief an- 371

swer (e.g. “for questions or when giving emphasis 372

to a subject”). We then direct them to our interface 373

where we show the extracted features and a few il- 374

lustrative examples for the rule, then ask questions 375

regarding each of the three parameters (as shown 376

in Figure 6 in the Appendix). 377

Regarding correctness, the expert is asked to an- 378

notate whether the illustrative examples, shown for 379

that rule, are governed by some underlying gram- 380

mar rule. If so, they are then required to judge 381

how precise it is. Consider some rules extracted 382

for Spanish adjective-noun order in Table 1. Look- 383

ing at the examples and features for the Type-1 384

rule, it is evident that this rule precisely defines 385

the linguistic distinction.3 Some rules, although 386

valid, may be too general (Type-3) or too specific 387

(Type-4). Finally, a rule may not correspond to any 388

underlying grammar rule, like the Type-5 where 389

the model simply discovered a spurious correlation 390

in the data. For prior knowledge, if an extracted 391

rule was indeed a valid grammar rule, then we ask 392

the expert whether they were aware of such a rule. 393

This will inform us how useful our framework is in 394

discovering rules which a) align with the expert’s 395

prior knowledge and, b) are novel i.e. rules which 396

the expert were not aware of apriori. Finally, for 397

feature correctness, we ask whether the features 398

selected by the model accurately describe said rule. 399

For the Type-1 rule, the answer would be yes. But 400

for rules like Type-2, the features are not informa- 401

tive even though the corresponding examples do 402

3https://www.thoughtco.com/
ordinal-numbers-in-spanish-3079591
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Type Rule Features Examples Label

Type-1
Adj is a Ordinal

También se utilizaba en las primeras grabaciones y arreglos jazzísticos.

BeforeIt was also used in early jazz recordings and arrangements.

(valid) Las primeras 24 horas son cruciales.
The first 24 hours are crucial.

Type-2 Adj belongs to group: Matisyahu piensa editar pronto un nuevo disco grabado en estudio.

BeforeMatisyahu plans to release a new studio-recorded album soon.

(valid, not informative) con,como,no,más,lo Es una experiencia nueva estar desempleado.
It’s a new experience being unemployed

Type-3
Adj is NOT Ordinal

Además de una gran variedad de aplicaciones

AfterIn addition to a great variety of applications.

(valid, too general) Una unión solemnizada en un país extranjero
An union solemnized in a foreign country

Type-4
Adj’s lemma is numeroso

En África hay numerosas lenguas tonales

BeforeIn Africa there are numerous tonal languages

(valid, too specific) Ellas poseen varios libros
They own several books

Type-5
Adj’s head noun is a conjunct

Las consecuencias de cualquier (colapso) de divisa e inflación masiva .

AfterThe consequences expected from any currency collapse and massive inflation.

(invalid) (Realizan) trabajos de alta calidad , muy buenos profesionales
They do high quality work, very good professionals

Table 1: Types of rules discovered by the model for Spanish adjective-noun word order. Adjectives are highlighted
and the nouns they modify are underlined. Illustrative examples under each rule are also shown with their English
translation in italics. Label denotes the predicted order.

follow a common pattern.403

7 Gold-standard Analysis Experiments404

In this section, we present results to demonstrate405

that our framework can discover the conditions406

which govern the different linguistic phenomena.407

Specifically, we experiment with gold-standard syn-408

tactic analysis derived from SUD treebanks, and409

run experiments to answer questions about word410

order, agreement, and case marking (§ 7.1). Fur-411

thermore, we manually verify a subset of these ex-412

tracted rules (§ 7.2). Experimenting with languages413

that have been already studied and have annotated414

treebanks is crucial for verifying the efficacy of our415

approach before applying it to other true low- or416

zero-resource languages. Under this setting we not417

only have clean and expert-annotated data, but we418

can also quickly compare the effect of data size419

on the system performance as different languages420

have treebanks of varying size.421

Data and Model We use the Syntactic Univer-422

sal Dependencies v2.5 (SUD) (Gerdes et al., 2019)423

treebanks which are based on the Universal De-424

pendencies (UD) (Nivre et al., 2016, 2018) project,425

the difference being that the former allows func-426

tion words to be syntactic heads (as opposed to427

UD’s preference for content words), which is more428

conducive to our goal of learning grammar rules.429

We experiment with treebanks for 61 languages,430

which are publicly available with annotations for431

POS tags, lemmas, dependency parses, and mor-432

phological analysis. We use the standard SUD 433

train, validation and test splits. Syntactic and lexi- 434

cal features are directly extracted from these gold 435

syntactic analyses. Semantic features are derived 436

from continuous word vectors: we start with 300- 437

dim pre-trained fasttext word vectors (Bojanowski 438

et al., 2017b) which are transformed into sparse 439

vectors using Subramanian et al. (2018)4. Last, we 440

use the XGBoost (Chen and Guestrin, 2016) library 441

to learn the decision tree. Further details on the 442

model setup are discussed in Appendix C. 443

7.1 Automated Evaluation Results 444

We train models using syntactic features for all lan- 445

guages covered by SUD, wherever the linguistic 446

question is applicable. We find that our models out- 447

perform the respective baselines by an (avg.) accu- 448

racy of +7.3 for word order, +28.1 for case marking, 449

and +4.0 ARM for agreement.5 We also report the 450

result breakdown under three resource settings, low, 451

mid, and high, where low-resource refers to the 452

treebanks with <500 sentences, mid-resource has 453

500−5000 sentences and high-resource has >5000 454

sentences. Across all three linguistic phenomena, 455

the (avg.) model gains over the baseline are +3.19 456

for the low-resource, +10.7 for the mid-resource 457

4https://github.com/harsh19/SPINE
5We also experimented with Random forests (RF), as sug-

gested by anonymous reviewers, but found the decision trees
(DT) to be slightly underperforming ((avg.) -0.12 acc). But
given that it is straightforward to extract interpretable rules
from DT, which is our primary goal, as compared to RF, we
use the former for all experiments, details in Appendix D.
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Figure 3: Comparing the effect of different features on
the word order and case marking.

and +12.8 for the high-resource. The larger the458

treebank size, the larger the improvement of our459

model’s performance over the baseline. Even in460

low-resource settings, a gain over the baseline sug-461

gests that our approach is extracting valid rules,462

which is encouraging for language documentation463

efforts. We present the result breakdown of indi-464

vidual relations in Appendix (Table 3).465

As motivated in § 3, the conditions which govern466

a linguistic phenomenon vary considerably across467

languages, which is also reflected in our model’s468

performance. For example, the model trained on469

syntactic features alone is sufficient to reach a high470

accuracy (avg.94.2%) for predicting the adjective-471

noun order in Germanic languages. But for Ro-472

mance languages, using only syntactic features473

leads to much lower performance (avg.74.6%). We474

experiment with different features and report re-475

sults for a subset of languages in Figure 3. Observe476

that for Spanish adjective-noun order adding lexi-477

cal features improves the performance significantly478

(+11.57) over syntactic features, and semantic fea-479

tures provide an additional gain of +4.48. Studying480

the languages marked as having “no dominant or-481

der” in WALS, we find our model does show a482

higher entropy. SUD contains 8 such languages483

for subject-verb order, and our model produces an484

(avg.) entropy of 1.09, as opposed to (avg.) 0.75485

entropy for all other languages. For noun case486

marking in Greek, syntactic features already bring487

the model performance to 94%. For Turkish, the ad-488

dition of semantic features raises the model perfor-489

mance by +9.38. The model now precisely captures490

that nouns for locations like ev, oda, kapı, dünya6491

typically take the locative case. This is in-line with492

Bamyacı and von Heusinger (2016) which outlines493

the importance of animacy in Turkish differential494

case marking.495

To confirm that these discovered conditions gen-496

eralize to the language as a whole and not the497

6house, room, door, world

specific dataset on which it was trained, we train 498

a model on one treebank of a language and apply 499

the trained model directly on the test portions of 500

other treebanks of the same language. There are 501

30 languages in the SUD which fit this require- 502

ment. Figure 4 in the Appendix demonstrates one 503

such setting for understanding the word order pat- 504

terns across different French corpora, where the 505

models have been trained on the largest treebank 506

(fr-gsd). For subject-verb order, all treebanks ex- 507

cept the fr-fqb show similar high test performance 508

( >90% acc.). Interestingly, the model severely 509

underperforms (28% acc.) on fr-fqb which is a 510

question-bank corpus comprising of only questions, 511

and questions in French can have varying word or- 512

der patterns.7 The model fails to correctly predict 513

the word order because in the training treebank 514

only 1.7% of examples are questions making it 515

challenging for the model to learn word order rules 516

for different question types. 517

Through this tool, a linguist can potentially in- 518

spect and derive insights on how the patterns dis- 519

covered for a linguistic question vary across dif- 520

ferent settings, both within a language and across 521

different languages as well. 522

7.2 Human Evaluation Results 523

Through the above experiments, we automatically 524

evaluated that the extracted rules are predictive 525

(to some extent) and applicable to the language 526

in general. Before applying this framework on an 527

endangered language we first perform a manual 528

evaluation ourselves for English and Greek. We 529

select these languages based on the availability of 530

human annotators, using one expert each for En- 531

glish and Greek. First, we note that the total num- 532

ber of rules for English (29) are much less than that 533

for Greek (161), the latter being more morpholog- 534

ically rich. We find that 80% of the rules (across 535

all phenomena) are valid grammar rules for both 536

languages. A significant portion (40%) of the valid 537

rules are either too specific or too general, which 538

highlights that there is scope of improvement in the 539

feature and/or model design. Interestingly, even 540

for English, there were 7 rules which the expert 541

was not aware of. For example, the following rule 542

for adjective-noun order – “when the nominal is a 543

7In questions such as Que signifie l’ acronyme NASA?
("What does the acronym NASA mean?"), the verb comes
before its subject, but for questions such as Qui produit le
logiciel ? ("Who produces the software?") the subject is
before the verb.
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word like something,nothing,anything, the adjec-544

tive can come after the noun.“. For Greek, almost545

all valid rules were known to the expert, except546

for one Gender agreement rule8. Regarding feature547

correctness, the Greek expert found 69% of the548

valid rules to be readable and informative, while549

the English expert found 58% of such rules. We550

show the individual results in Appendix (Figure 5).551

8 Hmong Daw Study552

Finally, to test the applicability of AUTOLEX in a553

language documentation situation, we experiment554

with Hmong Daw (mww), a threatened language555

variety, spoken by roughly 1M people across US,556

China, Laos, Vietnam and Thailand. It certainly557

can be categorized as a low-resourced language558

with respect to computational resources as well as559

accessible and detailed machine-readable grammat-560

ical descriptions. Furthermore, this study presents561

a realistic setting of language analysis as there is562

no expert-annotated syntactic analysis available.563

We had access to 445k Hmong sentences, which564

were collected from the soc.culture.hmong565

Usenet group. Since the data was scraped from566

the web, it was noisy and intermixed with English.567

Therefore, first we automatically clean the corpus568

using a character-level language model trained on569

English. This automatically filtered 61k sentences.570

Next, we automatically obtain syntactic analyses,571

for which we train Udify (Kondratyuk and Straka,572

2019), a multilingual automatic parser that jointly573

predicts POS tags, lemmas, morphological analysis574

and dependency parses, on Vietnamese, Chinese575

and English treebanks and apply it to the Hmong576

text. We randomly split the parsed data into a train577

and test set (80:20) and apply our general frame-578

work to extract rules (details in Appendix E).579

Results Hmong has no inflectional morphology580

so we only train the model to answer word order581

questions. We conduct the expert evaluation on582

four relations where our model outperforms the583

baseline, albeit slightly (+4.08 for Adj-N, +0.12 for584

Subj-V, +0.52 for Adp-N, +0.72 for Num-N). For585

Obj-V relation, our model is on par with the base-586

line which could indicate that either there were not587

many examples whose word order deviated from588

the dominant order or the model needs improve-589

ment. First, we ask the expert, a linguist who stud-590

ies Hmong, to describe the rules (if any) for each re-591

8The rule was, “proper-nouns modifiers do not need to
necessarily agree with their head nouns”.

lation. Comparing with the expert’s provided rules, 592

we find that the model is successful in discovering 593

the dominant pattern for all relations. However, 594

of the 30 rules (across all relations) presented to 595

the expert for annotation, only 5 rules (1 rule for 596

subject-verb, 4 rules for numeral-noun) were found 597

to precisely describe the linguistic distinction. For 598

instance, according to the expert, numerals cannot 599

occur immediately before nouns, rather they occur 600

before classifiers which then occur before nouns 601

(“1 clf-1 noun-1”). Interestingly, one rule captured 602

examples where the numerals were occurring im- 603

mediately before nouns without the classifiers (e.g. 604

“1 noun-1, 2 noun-2”), which the expert was not 605

aware of. On one hand, this is promising as the 606

model, despite being trained on noisy sentences and 607

syntactic analyses, was able to discover instances 608

of interesting linguistic behavior. However, the 609

expert noted that a large portion of the rules were 610

difficult to evaluate as these referred to examples 611

which were incorrectly parsed, some of which even 612

described the English portion of code-mixed data. 613

Despite showing the promise of automatically 614

obtaining detailed descriptions on languages with 615

good syntactic analyzers, we can see that it is 616

still challenging to apply methods to such under- 617

resourced languages. This poses a new challenge 618

for zero-shot parsing, even the relatively strong 619

model of Kondratyuk and Straka (2019) resulted in 620

a high enough error rate that it impacted the effec- 621

tiveness of our method, and methods with higher 622

accuracy may further improve the results of end-to- 623

end generation of grammar descriptions. 624

9 Next Steps 625

While we have demonstrated that our automatic 626

framework can answer linguistic questions across 627

different languages, the rules we discover are lim- 628

ited by the SUD annotation decisions. For example, 629

several nouns in German are not annotated for the 630

default case, which means these nouns get ignored 631

by our model in the current setting. Possibly, using 632

language-specific annotations or heuristics could 633

help alleviate this problem. As noted in the Hmong 634

study, the quality of rules depends on the quality 635

of the underlying parses. We plan to devise an 636

iterative process where a linguist, assisted by an 637

automatic parser, can improve syntactic parsing. 638

The model extracts rules using improved analyses, 639

which the linguist can inspect and provide more 640

inputs to further improve. 641

8



Statement of Ethics642

We acknowledge that there are several ethical con-643

cerns while working with endangered or threatened644

languages, in particular, that we include and take645

guidance from community members when design-646

ing any technology using their data. Secondly, that647

any data we collect is appropriately used, without648

causing any detrimental effect or bias on the com-649

munity. In adherence to that, this work is done in650

collaboration with a Hmong linguist who is in close651

collaboration and consultation with the community.652

We will release any tools that we build for Hmong653

in consultation with them and the community.654
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A Related Work849

Prior work (Lewis and Xia, 2008; Hellan, 2010;850

Bender et al., 2013; Howell et al., 2017) have851

proposed methods to map descriptive grammars,852

present in the form of inter-linear glossed text853

(IGT), to existing head-phrase structure grammar854

(HPSG) based grammar system which is machine-855

readable. Lewis and Xia (2008) enrich IGT data856

with syntactic structures to determine canonical857

word order and case marking observed in the lan-858

guage. They do note that, while a linguist carefully859

chooses the examples to create the IGT corpus such860

that they are representative of the linguistic phe-861

nomena of interest, insights derived from IGT may862

suffer from this bias as the data doesn’t encompass863

many of the naturally-occurring examples. Hel-864

lan (2010) present a sentence-level annotation code865

which maps the properties of the sentence to dis-866

crete labels. These discrete labels form a template867

which are then mapped to in a mixed to HPSG868

or LFG format (Pollard and Sag, 1994; Kaplan869

et al., 1981). Bender et al. (2013) extract major-870

constituent word order and case marking properties871

from the IGT for a diverse set of languages. Poten-872

tially, grammar rules can also be derived from ex-873

isting projects such as the LinGO Grammar Matrix874

(Bender et al., 2002), ParGram (Butt et al., 2002;875

King et al., 2005). These are grammar development876

tools designed to write and create grammar spec-877

ifications that support a wide range of languages,878

in a unified format. They focus on mapping simple879

description of languages, obtained from existing880

IGT-annotated data or input from a linguist, to pre-881

cision grammar fragments, grounded in a grammar882

formalism such as HPSG, LFG. Our work differs in883

that, 1) we attempt to discover and explain the local884

linguistic behaviors for the language in general, 2)885

we do not extract rules for an individual sentence886

in isolation, as some of the HPSG/LFG-based ap-887

proaches do, 3) we discover these behaviors from888

naturally occurring sentences. We do note that the889

rules we present in this work are based on the SUD890

annotation scheme, but the current framework can891

be easily extended to any other such scheme. In Ta-892

ble 2, we outline the different linguistic questions893

answered by our work and the related work.894

There has also been work on developing toolkits895

to visualize some aspects of language structure –896

Lepp et al. (2019) present a web-based system to897

explore different morphological analyses. They898

also allow a user to improve the analyses thereby899

also improving the grammar specification which 900

relies on those analyses. 901

B Learning and Extracting Rules 902

Statistical Threshold for Rule Extraction Sim- 903

ilar to Chaudhary et al. (2020), we apply statistical 904

testing to label leaves. For morphological agree- 905

ment, we use the same hypothesis definition where 906

the null hypothesis H0 states that each leaf denotes 907

chance-agreement. This means that there is no 908

required agreement between a head and its depen- 909

dent on the morphological attribute m. The hy- 910

pothesis to be tested for is H1 which states that the 911

leaf denotes required-agreement. For case mark- 912

ing, we follow a similar approach as explained for 913

word order. We can design H0 as word order, be- 914

cause under the abstract case viewpoint (§ 3), case 915

is a universal property for each word. We use a 916

p− value = 0.01 based on the recommendation of 917

Chaudhary et al. (2020). 918

Rule Visualization Under each rule, we present 919

a subset of examples from the training portion of 920

the treebank to illustrate the rule. Positive examples 921

refer to the examples which have features (from 922

that rule) and follow the label as predicted by that 923

leaf. However, there could be examples in the train- 924

ing data which have the same features as defined 925

under that rule, but these example do not follow 926

the predicted label. We refer to these examples as 927

negative examples. 928

Since we only show a small set of examples, we 929

select these examples to be concise and represen- 930

tative. We first group the examples under the rule 931

with the lemmatized forms of the focus words. For 932

example, under the Type-1 rule (Table 1) extracted 933

for Spanish adjective-noun word order, the focus 934

words are the adjective (wa) and the noun (wb). 935

We group these examples by the lemmatized forms 936

of the adjective and noun 〈la, lb〉. The examples 937

grouped under a lemmatized pair 〈la, lb〉 are then 938

sorted by their lengths. For each lemmatized pair 939

〈la, lb〉, we select the top shortest examples. Fi- 940

nally, all selected examples are shuffled and we 941

randomly select 10 examples. 942

C Experimental Setup 943

Data Below we describe the license details of the 944

datasets we used: 945

• SUD treebanks: No specific license is speci- 946

fied, but the data is released as part of research 947
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Linguistic Phenomena Work Rule-Type Corpus Type

WordOrder Ours C+FG Raw text
Grammar Matrix (Bender et al., 2002) C+FG IGT text*
Lewis and Xia (2008) C IGT text
Bender et al. (2013) C IGT text
Östling (2015) C Raw text
Wang and Eisner (2017) C Raw text
WALS Dryer and Haspelmath (2013) C Reference grammar*

Case Marking Ours C+FG Raw text
Grammar Matrix (Bender et al., 2002) C+FG IGT text*
WALS Dryer and Haspelmath (2013) C Reference grammar*
Howell et al. (2017) C IGT text

Agreement Ours C+FG Raw text
Grammar Matrix (Bender et al., 2002) C+FG IGT text*
Chaudhary et al. (2020) C+FG Raw text

Sentence construction Hellan (2010) FG IGT text*

Table 2: An overview of linguistic questions automatically answered by our current work and existing related work.
Some of them combine semi-automatic approaches with manually annotated resources, there are marked with *.
Rule-Type denotes the type of rule extracted for a language, C refers to coarse-grained such as rules for canonical
word order, FG refers to fine-grained i.e. rules extracted at a local level.

work (Gerdes et al., 2019). We have used948

this data as intended which is for academic949

research purposes.950

• Fasttext embeddings: Released9 under the951

Creative Commons Attribution-Share-Alike952

License 3.0. We have used this data as in-953

tended, which is for academic research pur-954

poses.955

• Hmong Daw: This dataset was collected by956

one of the co-authors from the Usenet group957

soc.culture.hmong and is currently in sub-958

mission to LREC. The data used will be re-959

leased as part of the Creative Commons Zero960

v1.0 Universal license. Accordingly, we will961

also release the train/test split for better repro-962

ducibility.963

The obvious identifying information has been964

removed from the data, although it would be965

possible to recover that information by going966

back to the original Usenet posts.967

Model As described in the main text, we use the968

XGBOOST to learn a decision tree. For each language,969

the running time of the model is approximately 2-5970

mins. We perform a grid search over a set of hyper-971

parameters and select the best performing model972

9https://fasttext.cc/docs/en/pretrained-vectors.
html

based on the validation set performance. Here the 973

hyperparameters we use: 974

• criterion: {gini, entropy} 975

• max-depth: {3, 4, 5, 6, 7, 8, 9, 10, 15, 20} 976

• n-estimators: 1 977

• learning-rate: 0.1 978

• objective: multi:softprob 979

D Gold-standard Experiments 980

D.1 Automated Evaluation Results 981

In the main text, we reported the average improve- 982

ment for the word order, agreement and case mark- 983

ing models. In Table 3 we present the breakdown 984

per each question. The word order results are re- 985

ported over 56 languages, agreement over 38 and 986

case marking over 35 languages.10 987

We also report results under three resource set- 988

tings as shown in Table 5. We also show individual 989

results per each language for word order (Table 7, 990

Table 8), agreement (Table 9), case marking (Ta- 991

ble 10, Table 11). We note that we report these 992

results on a single run of the experiment. 993

We experiment with Random Forest, which is 994

a better classifier, in comparison to decision trees, 995

10Some languages have very little training data on which
we couldn’t fit a model while for some languages the linguistic
questions was not applicable.
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Linguistic Phenomena Model Gain

Word Order adjective-noun 2.61
subject-verb 6.95
object-verb 10.78
numeral-noun 9.88
noun-adposition 2.31

Agreement Gender 4.02
Person 1.08
Number 4.95

Case Marking NOUN 30.03
PRON 32.66
DET 47.33
PROPN 29.77
ADJ 35.59
VERB 18.76
ADP 15.4
NUM 25.81

Table 3: Breakdown of the performance gain (over the
baseline) for each linguistic question. The performance
of the agreement models is compared with the mod-
els trained over simple syntactic features in Chaudhary
et al. (2020).

Subj-V Adj-N Obj-V
20

40
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100
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� fr-gsd � fr-partut � fr-pud � fr-ftb � fr-fqb � fr-spoken

Figure 4: Comparing the accuracy of the model across
different treebanks. Each model is trained on the fr-
gsd treebank and directly applied on the other tree-
banks. Shaded bars denote the best model performance
trained using all features while solid bars denote the
most-frequent baseline for that treebank.

but it is not as interpretable as the latter. Neverthe-996

less, as requested by the anonymous reviewers, we997

compare how decision trees fare against Random998

forest in Table 4. We train models for answering999

word order questions, across 15 languages from the1000

SUD treebanks. Overall, we observe that decision1001

trees slightly underperform the Random forest, but1002

by only (avg.) -0.12 acc. points, where the range1003

of accuracy is 0-100. Given our primary goal is to1004

extract comprehensible descriptions, we opt to use1005

decision trees.1006

D.2 Human Evaluation Results1007

We conduct expert evaluation for English and1008

Greek. Both the English and Greek language ex-1009

Model Language Random forest (acc.) Decision tree (acc.) Baseline

adjective-noun el 99.29 99.29 99.29
es 73.32 71.46 68.1
ur 99.04 99.04 99.04
fi 98.37 99.09 98.37
lv 98.84 98.84 98.84
it 70.4 69.26 66.02
no 97.92 97.92 97.76
fr 74.01 73.6 73.6
ro 95.83 95.19 92.95
bg 97.98 98.49 97.23
gl 79.2 79.2 79.2

subject-verb en 98.81 98.81 94.15
el 85.52 83.45 73.56
es 83.5 82.52 71.52
tr 92.96 92.96 92.96
hi 99.56 99.56 99.56
fi 87.14 90.36 79.16
lv 79.79 77.73 73.99
it 82.37 81.44 71.76
no 86.28 85.33 70.34
fr 94.21 94.21 94.21
ug 95.13 95.13 95.13
ro 75.62 73.49 54.36
bg 81.67 79.22 72.73
gl 86.26 85.5 82.14

object-verb en 98.8 98.66 97.26
el 96.2 96.2 86.0
es 95.99 95.99 90.4
tr 96.64 96.64 96.64
hi 99.78 99.61 74.71
ur 99.45 99.59 79.5
fi 85.21 86.36 74.83
lv 83.31 82.95 75.24
it 94.97 94.79 84.92
no 98.68 98.68 95.86
fr 96.96 96.53 86.33
ro 86.99 87.79 65.06
bg 92.53 92.22 80.66
gl 94.48 94.17 82.2

noun-adposition en 99.42 99.42 99.42
es 100.0 100.0 98.83
ur 98.91 98.91 98.91
fi 89.35 98.12 89.35
lv 97.78 97.78 97.78
no 99.3 99.26 99.14
gl 99.32 99.32 99.18

numeral-noun en 88.06 88.06 82.09
el 80.6 80.6 80.6
es 88.62 88.62 75.61
ur 95.63 95.63 95.63
fi 92.14 87.25 90.71
it 82.33 79.32 79.32
no 85.78 88.44 88.44
fr 81.16 81.88 60.87
ro 84.14 84.83 62.07
bg 88.24 88.24 88.24

Table 4: Comparing the accuracy of Random forest
classifier with the Decision Tree for different word or-
der relations.

pert are co-authors of the paper. For English, a total 1010

of 15 rules were evaluated for agreement, 11 for 1011

word order and 3 for case marking. For Greek, a 1012

total of 35 rules were evaluated for agreement, 11 1013

for word order and 115 for case marking. We dis- 1014

cussed the results in the main text, here we present 1015

the figures for English and Greek (Figure 5). For 1016

English, there were some rules which the expert 1017

was not aware of. We discussed one example for 1018

word order in the main text, we show an example 1019

for agreement and case marking in Table 6. 1020

E Hmong Daw Study 1021

Data We experimented with the Hmong Daw va- 1022

riety in this setting. One of co-authors of the paper 1023

is a Hmong linguist who is in close collaboration 1024

and consultation with the community, and is the 1025

expert who provided us with the Hmong data and 1026
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CaseMarking WordOrder Agreement
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Figure 5: Evaluating rule correctness (left), prior knowledge (middle) and feature correctness (right). Top plot
shows the results for English while the bottom plot shows for Greek.

Figure 6: Rule evaluation form presented to the language expert.
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Linguistic Phenomena Resource-Setting Gain (number of models)

Agreement low -3.39 (10)
mid 1.07 (25)
high 5.89 (55)

Case Marking low 12.14 (11)
mid 28.17 (56)
high 37.17 (56)

Table 5: Breakdown of the performance gain (over the
baseline) for each linguistic question by resource set-
ting.

also helped evaluate the extracted grammar rules.1027

We chose Vietnamese, Chinese and English to train1028

udify model as they share syntactic and lexical1029

similarity with Hmong. We use the same hyperpa-1030

rameter setting as specified in the code11.1031

11https://github.com/Hyperparticle/udify
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Linguistic Phenomena Rule Examples Label

Number dependent’s head is a NOUN Kids fun games are added to the building. Not-required-agreement
Agreement Nationalist groups are coming to the conference.

Object Pronoun is a oblique Because Large Fries give you FOUR PIECES ! Accusative
Case Marking Give him a call tommorow

Table 6: Some example of rules for agreement and case marking, which the expert annotator was not aware of.
The focus word is highlighted, for agreement we also underline the head with which the dependent’s agreement is
checked. The examples under number agreement demonstrate that when dependent’s head is a noun the dependent
need not agree with its head. We show one example where the first example shows the dependent matches the
number of the head, and the second example shows that it didn’t not match.

Type Lang Train - Test - Baseline Type Lang Train - Test - Baseline

adjective-noun it-vit 70.71 - 69.51 - 66.02 object-verb cu-proiel 80.37 - 82.72 - 76.03
adjective-noun no-nynorsk 97.68 - 97.92 - 97.76 object-verb be-hse 87.79 - 95.38 - 95.38
adjective-noun ro-nonstandard 87.46 - 95.19 - 92.95 object-verb sv-lines 96.75 - 96.79 - 95.31
adjective-noun bg-btb 97.27 - 98.49 - 97.23 object-verb uk-iu 82.77 - 87.16 - 83.16
adjective-noun gl-ctg 79.02 - 79.2 - 79.2 object-verb ga-idt 94.89 - 91.55 - 82.8
adjective-noun cs-pdt 94.69 - 94.36 - 93.69 object-verb sk-snk 81.84 - 86.17 - 80.91
adjective-noun fi-tdt 98.56 - 99.09 - 99.09 object-verb hu-szeged 73.23 - 68.26 - 53.73
adjective-noun pl-pdb 65.61 - 68.0 - 61.84 object-verb got-proiel 74.58 - 80.15 - 72.44
adjective-noun la-ittb 63.64 - 59.65 - 40.2 object-verb hr-set 89.27 - 92.2 - 83.32
adjective-noun nl-alpino 98.38 - 98.65 - 98.65 object-verb lzh-kyoto 97.86 - 98.01 - 95.7
adjective-noun mt-mudt 78.91 - 82.84 - 82.84 object-verb lv-lvtb 85.03 - 82.95 - 75.24
adjective-noun ja-bccwj 99.4 - 98.69 - 98.69 object-verb et-edt 76.03 - 79.51 - 69.67
adjective-noun orv-torot 71.39 - 65.76 - 53.48 object-verb fro-srcmf 79.62 - 81.82 - 48.25
adjective-noun pt-gsd 70.31 - 74.54 - 71.63 object-verb af-afribooms 82.72 - 96.19 - 86.03
adjective-noun cu-proiel 84.96 - 84.98 - 84.98 object-verb hy-armtdp 71.47 - 74.58 - 44.92
adjective-noun sv-lines 98.3 - 98.29 - 95.67 object-verb en-ewt 98.33 - 98.94 - 97.26
adjective-noun uk-iu 94.68 - 95.19 - 95.19 object-verb fr-gsd 98.89 - 97.18 - 86.33
adjective-noun sk-snk 96.11 - 95.17 - 95.17 object-verb el-gdt 97.18 - 96.2 - 86.0
adjective-noun got-proiel 79.51 - 79.51 - 72.48 object-verb es-gsd 97.47 - 95.99 - 90.4
adjective-noun hr-set 96.24 - 96.78 - 96.36 object-verb tr-imst 95.38 - 96.64 - 96.64
adjective-noun lv-lvtb 98.93 - 98.84 - 98.84 object-verb ru-syntagrus 87.47 - 88.33 - 85.63
adjective-noun et-edt 99.57 - 99.36 - 99.01 object-verb sl-ssj 84.16 - 88.24 - 72.92
adjective-noun fro-srcmf 73.84 - 74.42 - 73.26 object-verb id-gsd 99.33 - 98.99 - 95.97
adjective-noun en-ewt 97.84 - 98.25 - 96.77 object-verb lt-alksnis 80.76 - 79.02 - 69.73
adjective-noun fr-gsd 71.04 - 73.8 - 73.6 object-verb ar-nyuad 96.27 - 95.91 - 95.63
adjective-noun el-gdt 97.34 - 99.29 - 99.29 object-verb grc-proiel 72.98 - 75.87 - 67.05
adjective-noun es-gsd 76.27 - 71.46 - 68.1 subject-verb it-vit 82.95 - 82.53 - 71.76
adjective-noun ru-syntagrus 97.84 - 98.0 - 96.54 subject-verb no-nynorsk 83.42 - 85.33 - 70.34
adjective-noun sl-ssj 98.22 - 98.27 - 97.78 subject-verb ug-udt 95.32 - 95.13 - 95.13
adjective-noun id-gsd 93.41 - 92.79 - 92.79 subject-verb ro-nonstandard 69.06 - 74.27 - 54.36
adjective-noun lt-alksnis 98.61 - 98.3 - 98.3 subject-verb bg-btb 78.86 - 79.65 - 72.73
adjective-noun ar-nyuad 99.65 - 99.64 - 99.64 subject-verb gl-ctg 84.54 - 85.5 - 82.14
adjective-noun grc-proiel 65.23 - 72.33 - 64.82 subject-verb cs-pdt 67.13 - 73.18 - 63.33
adjective-noun de-hdt 99.47 - 99.66 - 99.26 subject-verb fi-tdt 88.11 - 90.57 - 88.19

object-verb it-vit 96.28 - 94.88 - 84.92 subject-verb pl-pdb 78.19 - 80.6 - 72.1
object-verb no-nynorsk 97.73 - 98.68 - 95.86 subject-verb la-ittb 80.29 - 82.69 - 72.54
object-verb ro-nonstandard 86.05 - 87.79 - 65.06 subject-verb zh-gsd 99.78 - 99.44 - 97.39
object-verb bg-btb 92.18 - 92.43 - 80.66 subject-verb nl-alpino 70.62 - 72.11 - 67.12
object-verb gl-ctg 92.71 - 94.17 - 82.2 subject-verb mt-mudt 83.91 - 84.96 - 72.03
object-verb cs-pdt 82.35 - 83.91 - 73.97 subject-verb orv-torot 72.38 - 66.07 - 60.46
object-verb fi-tdt 84.21 - 86.62 - 77.98 subject-verb he-htb 73.43 - 70.7 - 63.44
object-verb pl-pdb 88.89 - 90.28 - 81.07 subject-verb pt-gsd 89.4 - 93.15 - 87.47
object-verb la-ittb 65.96 - 65.36 - 52.63 subject-verb cu-proiel 73.88 - 76.31 - 62.48
object-verb zh-gsd 93.4 - 94.12 - 87.75 subject-verb be-hse 82.86 - 83.33 - 81.11
object-verb nl-alpino 90.32 - 94.69 - 47.48 subject-verb sv-lines 80.17 - 80.72 - 73.06
object-verb mt-mudt 95.66 - 94.96 - 94.96 subject-verb uk-iu 76.89 - 77.14 - 74.56
object-verb wo-wtb 91.6 - 91.81 - 75.11 subject-verb ga-idt 99.33 - 99.28 - 85.25
object-verb orv-torot 76.71 - 72.56 - 65.51 subject-verb sk-snk 63.43 - 73.69 - 73.69
object-verb he-htb 97.87 - 98.03 - 98.03 subject-verb hu-szeged 75.91 - 74.59 - 72.43
object-verb pt-gsd 95.17 - 95.02 - 88.45 subject-verb got-proiel 67.56 - 73.2 - 66.17

Table 7: Accuracy results for all relations across different languages. Baseline is the most frequent order in the
training data.
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Type Lang Train - Test - Baseline Type Lang Train - Test - Baseline

subject-verb hr-set 81.87 - 86.62 - 77.44 noun-adposition fi-tdt 97.88 - 98.12 - 89.47
subject-verb cop-scriptorium 85.92 - 83.84 - 76.71 noun-adposition pl-pdb 99.97 - 99.97 - 99.83
subject-verb lv-lvtb 76.96 - 77.98 - 73.99 noun-adposition nl-alpino 99.28 - 99.57 - 99.23
subject-verb et-edt 68.13 - 71.93 - 61.02 noun-adposition orv-torot 97.92 - 97.54 - 96.83
subject-verb fro-srcmf 79.21 - 80.69 - 78.1 noun-adposition he-htb 99.71 - 99.77 - 99.55
subject-verb hy-armtdp 81.25 - 80.25 - 80.25 noun-adposition cu-proiel 98.06 - 98.4 - 98.4
subject-verb en-ewt 98.92 - 98.81 - 94.15 noun-adposition sv-lines 98.6 - 98.11 - 98.11
subject-verb fr-gsd 96.7 - 94.21 - 94.21 noun-adposition uk-iu 99.74 - 99.8 - 99.54
subject-verb el-gdt 77.04 - 77.93 - 73.56 noun-adposition lzh-kyoto 95.58 - 96.61 - 96.61
subject-verb es-gsd 79.15 - 84.14 - 71.52 noun-adposition cop-scriptorium 99.92 - 99.78 - 99.18
subject-verb tr-imst 91.12 - 92.96 - 92.96 noun-adposition lv-lvtb 98.56 - 97.78 - 97.78
subject-verb ru-syntagrus 72.33 - 80.49 - 72.94 noun-adposition et-edt 98.92 - 98.77 - 81.84
subject-verb sl-ssj 70.95 - 74.66 - 63.01 noun-adposition fro-srcmf 99.75 - 99.42 - 99.42
subject-verb id-gsd 99.09 - 99.34 - 99.34 noun-adposition hy-armtdp 97.22 - 96.83 - 85.71
subject-verb lt-alksnis 74.44 - 78.39 - 75.33 noun-adposition en-ewt 99.67 - 99.42 - 99.42
subject-verb ar-nyuad 91.01 - 91.32 - 87.82 noun-adposition es-gsd 99.81 - 100.0 - 98.83
subject-verb grc-proiel 69.46 - 72.23 - 65.71 noun-adposition ru-syntagrus 99.24 - 99.41 - 99.13
subject-verb de-hdt 68.1 - 76.23 - 61.84 noun-adposition id-gsd 97.67 - 97.81 - 96.81

numeral-noun it-vit 73.17 - 79.32 - 79.32 noun-adposition ar-nyuad 99.84 - 99.87 - 99.48
numeral-noun no-nynorsk 88.49 - 88.44 - 88.44 noun-adposition grc-proiel 99.03 - 98.92 - 98.92
numeral-noun ro-nonstandard 87.27 - 84.83 - 62.07 noun-adposition de-hdt 99.98 - 99.98 - 99.37
numeral-noun bg-btb 92.22 - 88.24 - 88.24
numeral-noun cs-pdt 84.4 - 88.65 - 69.59
numeral-noun fi-tdt 82.35 - 87.25 - 68.3
numeral-noun pl-pdb 97.27 - 97.27 - 97.27
numeral-noun la-ittb 88.0 - 87.16 - 53.21
numeral-noun nl-alpino 95.03 - 98.7 - 89.61
numeral-noun mt-mudt 69.77 - 70.77 - 70.77
numeral-noun wo-wtb 74.63 - 82.5 - 73.75
numeral-noun ja-bccwj 99.05 - 98.71 - 98.71
numeral-noun orv-torot 86.64 - 79.8 - 72.73
numeral-noun he-htb 85.21 - 80.0 - 64.0
numeral-noun pt-gsd 92.18 - 89.42 - 73.56
numeral-noun sv-lines 81.3 - 85.48 - 85.48
numeral-noun ga-idt 73.2 - 62.86 - 57.14
numeral-noun sk-snk 88.01 - 75.36 - 43.12
numeral-noun hr-set 95.39 - 97.28 - 96.94
numeral-noun et-edt 91.63 - 91.54 - 83.65
numeral-noun en-ewt 85.33 - 89.05 - 82.09
numeral-noun fr-gsd 79.7 - 81.88 - 60.87
numeral-noun el-gdt 88.2 - 80.6 - 80.6
numeral-noun es-gsd 87.17 - 89.43 - 75.61
numeral-noun ru-syntagrus 93.48 - 95.01 - 85.15
numeral-noun sl-ssj 84.08 - 78.45 - 78.45
numeral-noun id-gsd 61.04 - 68.12 - 53.44
numeral-noun ar-nyuad 88.96 - 91.79 - 47.9
numeral-noun grc-proiel 68.76 - 62.9 - 62.9

noun-adposition no-nynorsk 99.31 - 99.26 - 99.14
noun-adposition gl-ctg 99.33 - 99.32 - 99.18
noun-adposition cs-pdt 99.98 - 99.98 - 99.94

Table 8: Accuracy results for all relations across different languages. Baseline is the most frequent order in the
training data.
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Type Lang Test - Baseline Type Lang Test - Baseline

Gender it-vit 71.01 - 67.19 Gender hr-set 71.32 - 72.5
Person it-vit 70.83 - 62.5 Person hr-set 63.33 - 76.92

Number it-vit 59.56 - 71.2 Number hr-set 64.25 - 67.53
Gender no-nynorsk 70.0 - 46.43 Gender lv-lvtb 74.48 - 72.66
Number no-nynorsk 70.0 - 70.21 Person lv-lvtb 60.98 - 50.0
Gender ro-nonstandard 61.05 - 63.95 Number lv-lvtb 72.78 - 68.83
Person ro-nonstandard 55.22 - 63.64 Gender hsb-ufal 60.87 - 85.71

Number ro-nonstandard 62.86 - 62.63 Number hsb-ufal 46.72 - 69.23
Gender bg-btb 66.0 - 63.83 Gender ru-syntagrus 64.96 - 69.68
Person bg-btb 64.0 - 62.5 Person ru-syntagrus 64.0 - 62.5

Number bg-btb 73.17 - 63.93 Number ru-syntagrus 60.24 - 59.09
Gender cs-pdt 75.09 - 56.44 Gender el-gdt 73.58 - 63.83
Person cs-pdt 57.78 - 59.09 Person el-gdt 65.0 - 66.67

Number cs-pdt 63.35 - 47.66 Number el-gdt 76.54 - 62.73
Gender pl-pdb 71.11 - 64.53 Gender hi-hdtb 69.11 - 58.59
Person pl-pdb 60.71 - 55.56 Number hi-hdtb 71.77 - 41.61

Number pl-pdb 66.06 - 63.68 Gender es-gsd 84.31 - 71.83
Gender la-ittb 77.78 - 73.53 Person es-gsd 91.67 - 59.09
Person la-ittb 19.05 - 19.05 Number es-gsd 88.89 - 64.39

Number la-ittb 65.14 - 57.89 Gender ta-ttb 100.0 - 68.18
Gender nl-alpino 56.25 - 66.67 Number ta-ttb 77.78 - 52.27
Number nl-alpino 60.94 - 54.84 Person ug-udt 37.93 - 52.63
Gender orv-torot 64.52 - 65.54 Number ug-udt 47.73 - 76.67
Person orv-torot 66.67 - 60.0 Person fi-tdt 58.06 - 38.71

Number orv-torot 64.04 - 62.12 Number fi-tdt 60.0 - 50.23
Gender he-htb 78.16 - 74.7 Person wo-wtb 52.17 - 55.0
Person he-htb 78.95 - 73.68 Number wo-wtb 57.14 - 48.57

Number he-htb 58.14 - 58.54 Person hu-szeged 39.39 - 44.44
Gender cu-proiel 58.26 - 61.0 Number hu-szeged 38.34 - 39.63
Person cu-proiel 61.54 - 66.67 Person et-edt 68.75 - 61.29

Number cu-proiel 60.4 - 67.21 Number et-edt 61.21 - 64.84
Gender mr-ufal 53.57 - 60.87 Person hy-armtdp 57.14 - 44.44
Person mr-ufal 28.57 - 72.73 Number hy-armtdp 58.49 - 59.18

Number mr-ufal 66.67 - 39.39 Person en-ewt 100.0 - 81.25
Gender be-hse 61.29 - 59.57 Number en-ewt 69.0 - 35.71
Number be-hse 65.82 - 64.62 Person tr-imst 32.69 - 35.91
Gender sv-lines 65.52 - 53.85 Number tr-imst 84.62 - 46.96
Number sv-lines 60.0 - 64.29 Number kmr-mg 55.56 - 78.26
Gender uk-iu 68.92 - 70.08 Number af-afribooms 68.75 - 60.0
Person uk-iu 72.73 - 70.0 Number fr-gsd 75.0 - 62.37

Number uk-iu 65.78 - 64.67
Gender ga-idt 73.77 - 64.0
Person ga-idt 42.86 - 62.5

Number ga-idt 43.16 - 46.75
Gender sk-snk 71.9 - 69.16
Person sk-snk 88.89 - 77.78

Number sk-snk 63.36 - 55.83
Gender got-proiel 62.02 - 55.86
Person got-proiel 62.16 - 57.14

Number got-proiel 67.51 - 64.0

Table 9: Accuracy results for all relations across different languages. Baseline is Chaudhary et al. (2020)
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Type Lang Train - Test - Baseline Type Lang Train - Test - Baseline

PRON no-nynorsk 98.55 - 99.55 - 78.28 VERB ug-udt 76.0 - 75.64 - 71.37
PRON ug-udt 92.22 - 94.87 - 73.68 VERB got-proiel 85.51 - 86.15 - 81.15
PRON ro-nonstandard 89.77 - 91.2 - 38.33 VERB lv-lvtb 96.43 - 95.61 - 75.58
PRON sk-snk 83.19 - 83.9 - 34.75 VERB tr-imst 67.53 - 66.58 - 46.13
PRON hu-szeged 73.94 - 79.15 - 59.46 VERB et-edt 86.95 - 86.08 - 82.91
PRON got-proiel 87.97 - 91.05 - 36.79 VERB hy-armtdp 86.63 - 94.34 - 39.62
PRON hr-set 88.6 - 89.54 - 68.79 VERB ur-udtb 96.01 - 98.95 - 98.95
PRON lv-lvtb 90.64 - 90.85 - 54.03 VERB lt-alksnis 94.86 - 95.0 - 52.5
PRON en-ewt 97.74 - 96.76 - 81.48 ADP ro-nonstandard 98.5 - 98.85 - 98.85
PRON el-gdt 93.5 - 93.35 - 36.8 ADP sk-snk 41.74 - 44.46 - 40.74
PRON tr-imst 71.0 - 73.33 - 42.5 ADP hr-set 45.85 - 48.42 - 37.96
PRON sme-giella 85.31 - 76.82 - 47.05 ADP hi-hdtb 85.57 - 86.99 - 52.34
PRON es-gsd 95.89 - 96.14 - 53.71 ADP ur-udtb 82.06 - 96.59 - 63.54
PRON da-ddt 84.38 - 82.53 - 54.7 ADP uk-iu 45.85 - 43.39 - 32.85
PRON et-edt 79.75 - 81.58 - 45.26 ADJ ro-nonstandard 98.14 - 96.9 - 96.42
PRON af-afribooms 58.86 - 53.07 - 31.2 ADJ ga-idt 95.47 - 93.25 - 90.18
PRON hy-armtdp 78.1 - 79.05 - 63.81 ADJ sk-snk 99.03 - 98.71 - 35.01
PRON mr-ufal 71.58 - 78.95 - 78.95 ADJ hu-szeged 98.73 - 98.25 - 92.58
PRON be-hse 81.3 - 76.12 - 65.67 ADJ got-proiel 88.48 - 92.33 - 38.36
PRON ur-udtb 87.78 - 90.53 - 54.73 ADJ hr-set 97.75 - 98.3 - 37.5
PRON lt-alksnis 82.8 - 80.28 - 30.28 ADJ lv-lvtb 93.85 - 94.37 - 39.59
PRON bg-btb 95.73 - 95.78 - 46.78 ADJ et-edt 94.13 - 95.16 - 41.07
PRON sv-lines 99.32 - 99.41 - 58.02 ADJ el-gdt 85.61 - 89.49 - 48.6
PRON uk-iu 88.52 - 90.98 - 48.82 ADJ hi-hdtb 84.36 - 84.34 - 70.48
NOUN ug-udt 78.31 - 77.13 - 63.46 ADJ tr-imst 56.45 - 60.22 - 51.88
NOUN ro-nonstandard 96.68 - 97.53 - 87.8 ADJ sme-giella 86.09 - 90.55 - 90.55
NOUN kmr-mg 53.09 - 47.21 - 47.21 ADJ ar-nyuad 94.15 - 96.94 - 62.54
NOUN ga-idt 93.26 - 95.62 - 80.28 ADJ be-hse 89.59 - 95.06 - 43.83
NOUN sk-snk 91.27 - 92.27 - 20.61 ADJ ur-udtb 99.04 - 98.81 - 62.02
NOUN hu-szeged 72.25 - 72.1 - 47.6 ADJ lt-alksnis 96.89 - 96.72 - 25.5
NOUN got-proiel 84.89 - 87.12 - 27.72 ADJ uk-iu 97.38 - 98.15 - 46.39
NOUN hr-set 88.35 - 92.21 - 34.41 DET ro-nonstandard 97.01 - 95.87 - 75.58
NOUN lzh-kyoto 89.86 - 93.72 - 76.61 DET sk-snk 95.7 - 93.24 - 43.74
NOUN lv-lvtb 81.94 - 83.87 - 31.62 DET got-proiel 94.78 - 96.25 - 32.29
NOUN kk-ktb 49.24 - 53.32 - 53.32 DET hr-set 94.87 - 95.64 - 42.81
NOUN et-edt 62.6 - 66.51 - 27.65 DET lv-lvtb 96.59 - 97.12 - 30.15
NOUN el-gdt 91.02 - 94.69 - 49.72 DET et-edt 96.73 - 96.19 - 34.25
NOUN hi-hdtb 96.1 - 97.35 - 54.72 DET el-gdt 91.42 - 93.64 - 47.48
NOUN tr-imst 59.03 - 64.52 - 54.65 DET hi-hdtb 88.89 - 92.87 - 76.1
NOUN ta-ttb 77.24 - 76.49 - 68.02 DET ur-udtb 95.79 - 95.91 - 64.33
NOUN sme-giella 76.51 - 78.78 - 30.32 DET lt-alksnis 79.46 - 83.65 - 39.92
NOUN ar-nyuad 87.66 - 94.66 - 67.49 DET uk-iu 94.31 - 94.86 - 27.93
NOUN hsb-ufal 24.07 - 19.53 - 19.53 PROPN ro-nonstandard 97.35 - 96.77 - 92.98
NOUN hy-armtdp 78.17 - 80.2 - 46.08 PROPN ga-idt 79.87 - 85.78 - 73.28
NOUN mr-ufal 81.38 - 75.0 - 42.65 PROPN sk-snk 90.24 - 88.9 - 46.39
NOUN be-hse 69.27 - 75.95 - 46.1 PROPN hu-szeged 91.47 - 89.36 - 89.36
NOUN ur-udtb 92.1 - 96.81 - 51.25 PROPN got-proiel 85.91 - 86.89 - 50.91
NOUN lt-alksnis 85.08 - 82.93 - 39.07 PROPN hr-set 92.42 - 94.67 - 48.27
NOUN sv-lines 99.6 - 99.86 - 97.47 PROPN lv-lvtb 88.64 - 90.13 - 39.91
NOUN uk-iu 94.1 - 94.73 - 43.79 PROPN el-gdt 91.44 - 90.32 - 32.58

Table 10: Accuracy results for all relations across different languages. Baseline is the most frequent case value in
the training data.
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Type Lang Train - Test - Baseline Type Lang Train - Test - Baseline

VERB ug-udt 76.0 - 75.64 - 71.37 PROPN hi-hdtb 94.91 - 96.49 - 48.51
VERB got-proiel 85.51 - 86.15 - 81.15 PROPN tr-imst 73.55 - 71.73 - 68.0
VERB lv-lvtb 96.43 - 95.61 - 75.58 PROPN ta-ttb 97.99 - 94.84 - 93.55
VERB tr-imst 67.53 - 66.58 - 46.13 PROPN sme-giella 84.23 - 82.9 - 35.81
VERB et-edt 86.95 - 86.08 - 82.91 PROPN ar-nyuad 78.68 - 84.27 - 59.85
VERB hy-armtdp 86.63 - 94.34 - 39.62 PROPN et-edt 75.05 - 83.18 - 51.24
VERB ur-udtb 96.01 - 98.95 - 98.95 PROPN hy-armtdp 82.28 - 89.13 - 54.89
VERB lt-alksnis 94.86 - 95.0 - 52.5 PROPN be-hse 86.43 - 72.68 - 72.68
ADP ro-nonstandard 98.5 - 98.85 - 98.85 PROPN ur-udtb 92.7 - 97.65 - 59.77
ADP sk-snk 41.74 - 44.46 - 40.74 PROPN sv-lines 97.21 - 96.6 - 91.23
ADP hr-set 45.85 - 48.42 - 37.96 PROPN uk-iu 93.76 - 95.14 - 36.14
ADP hi-hdtb 85.57 - 86.99 - 52.34 NUM sk-snk 81.47 - 77.38 - 39.29
ADP ur-udtb 82.06 - 96.59 - 63.54 NUM got-proiel 44.0 - 45.83 - 33.33
ADP uk-iu 45.85 - 43.39 - 32.85 NUM hr-set 90.27 - 94.26 - 41.8
ADJ ro-nonstandard 98.14 - 96.9 - 96.42 NUM lv-lvtb 88.07 - 85.44 - 38.61
ADJ ga-idt 95.47 - 93.25 - 90.18 NUM el-gdt 75.75 - 73.17 - 58.54
ADJ sk-snk 99.03 - 98.71 - 35.01 NUM tr-imst 76.55 - 82.22 - 77.78
ADJ hu-szeged 98.73 - 98.25 - 92.58 NUM sme-giella 47.8 - 41.84 - 41.84
ADJ got-proiel 88.48 - 92.33 - 38.36 NUM et-edt 88.9 - 93.51 - 70.3
ADJ hr-set 97.75 - 98.3 - 37.5 NUM uk-iu 90.46 - 92.48 - 52.29
ADJ lv-lvtb 93.85 - 94.37 - 39.59 ADV fa-seraji 85.35 - 81.36 - 81.36
ADJ et-edt 94.13 - 95.16 - 41.07
ADJ el-gdt 85.61 - 89.49 - 48.6
ADJ hi-hdtb 84.36 - 84.34 - 70.48
ADJ tr-imst 56.45 - 60.22 - 51.88
ADJ sme-giella 86.09 - 90.55 - 90.55
ADJ ar-nyuad 94.15 - 96.94 - 62.54
ADJ be-hse 89.59 - 95.06 - 43.83
ADJ ur-udtb 99.04 - 98.81 - 62.02
ADJ lt-alksnis 96.89 - 96.72 - 25.5
ADJ uk-iu 97.38 - 98.15 - 46.39
DET ro-nonstandard 97.01 - 95.87 - 75.58
DET sk-snk 95.7 - 93.24 - 43.74
DET got-proiel 94.78 - 96.25 - 32.29
DET hr-set 94.87 - 95.64 - 42.81
DET lv-lvtb 96.59 - 97.12 - 30.15
DET et-edt 96.73 - 96.19 - 34.25
DET el-gdt 91.42 - 93.64 - 47.48
DET hi-hdtb 88.89 - 92.87 - 76.1
DET ur-udtb 95.79 - 95.91 - 64.33
DET lt-alksnis 79.46 - 83.65 - 39.92
DET uk-iu 94.31 - 94.86 - 27.93

PROPN ro-nonstandard 97.35 - 96.77 - 92.98
PROPN ga-idt 79.87 - 85.78 - 73.28
PROPN sk-snk 90.24 - 88.9 - 46.39
PROPN hu-szeged 91.47 - 89.36 - 89.36
PROPN got-proiel 85.91 - 86.89 - 50.91
PROPN hr-set 92.42 - 94.67 - 48.27
PROPN lv-lvtb 88.64 - 90.13 - 39.91
PROPN el-gdt 91.44 - 90.32 - 32.58

Table 11: Accuracy results for all relations across different languages. Baseline is the most frequent value training
data.
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