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ABSTRACT

Neural networks are not learning optimal decision boundaries. We show that de-
cision boundaries are situated in areas of low training data density. They are im-
pacted by few training samples which can easily lead to overfitting. We provide
a simple algorithm performing a weighted average of the prediction of a sample
and its nearest neighbors’ (computed in latent space) leading to a minor favor-
able outcomes for a variety of important measures for neural networks. In our
evaluation, we employ various self-trained and pre-trained convolutional neural
networks to show that our approach improves (i) resistance to label noise, (ii)
robustness against adversarial attacks, (iii) classification accuracy, and to some
degree even (iv) interpretability. While improvements are not necessarily large
in all four areas, our approach is conceptually simple, i.e., improvements come
without any modification to network architecture, training procedure or dataset.
Furthermore, they are in stark contrast to prior works that often require trade-offs
among the four objectives or provide valuable, but non-actionable insights.

1 INTRODUCTION

In the realm of machine learning, the decision boundary plays a crucial role in distinguishing be-
tween classes. Classes typically share certain characteristics and tend to form clusters. The decision
boundary is a hypersurface that partitions the input space into regions corresponding to different
classes. An optimal decision boundary implies an optimal classifier and vice versa. Simple classi-
fiers, such as support vector machines (SVMs), logistic regression, and k-nearest neighbors, often
generate decision boundaries, which can be linear or non-linear Cortes & Vapnik (1995), but are
overall rather simple. On the other hand, deep learning models, especially deep neural networks
(DNNs), have shown remarkable capability in learning feature hierarchies and capturing complex,
non-linear decision boundaries owing to their architectural depth and non-linear activation functions
LeCun et al. (2015). They can be said to have revolutionized the field of computer vision and oth-
ers, leading to astonishing improvements in accuracy on multiple benchmarks. Still, these models
also suffer from weaknesses such as a lack of interpretability, lack of robustness as witnessed by
the effectiveness of adversarial samplesGoodfellow et al. (2014). Many techniques that tackle the
problem of adversarial samples, interpretability, as well as improving handling of noisy labels come
with tradeoffs. That is, any of these goals often leads to lower accuracy or requires altering training
schemes, datasets, and architectures.

Table 1: Comparison to (some) prior work

Method
Improvements in Can use Better

Accur- Interpr- Advers. Label Noise pretrained understanding
acy etabili. Robust. Robust. networks? of dec. boun.?

Wu et al. (2020) ✓ ✓
Ortiz-Jimenez et al. (2020) ✓
Karimi et al. (2019) ✓
Yang et al. (2020) ✓ ✓
Oyen et al. (2022) ✓
ours ✓ ✓ ✓ ✓ ✓ ✓
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In this work, we propose a technique that should tackle all of these issues as illustrated in Table 1.
We combine the prediction of a pre-trained neural network of a sample to predict and the prediction
of the k-nearest neighbors (kNNs). We compute nearest neighbors(NNs) in latent space using layer
activations of a (pre-trained) classifier. We calculate a weighted average of the actual prediction
and those of NNs as final prediction (see Figure 1). This approach manages to improve robustness
against adversarial samples, interpretability, and handling noisy samples without compromising per-
formance of the classifier, i.e., we mostly improve it. It also does not require altering a (pretrained)
classifier. However, obtaining kNNs is also computationally expensive and our technique does also
not provide a full mitigation against any of the issues or desiderata (in Table 1), but rather addresses
them partially. This, is still a major step forward given that other techniques require rather unpleas-
ant trade-offs. Our work is also interesting as it sheds new insights on decision boundaries. In our
work, we show that classifiers do generally not learn optimal decision boundaries (also) due to the
fact that these boundaries lie in areas of few training samples and thus naturally suffer from over-
fitting. Predictions of samples near the decision boundary, i.e. samples in these sparse areas, can
benefit from using NNs. While we expect few (test) data in such sparse areas, differences when
altering the boundary using NNs can still be observed.

2 METHOD

Our method is different from classical kNNs in three ways. First, we compute nearest neighbors
based on a latent representation given by layer activations rather than on input samples. Second,
the prediction is a combination of the network output of the sample to predict itself and its NNs,
while for classical kNNs only the NNs are used to make a prediction. Third, the combination is
based on directly aggregating network outputs rather than performing a majority vote of the classes
of the kNNs. The method is illustrated in Figure 1. More formal pseudocode is shown in Algorithm
1 called “LAtent-SElf-kNN”(LaSeNN), since it combines the sample to predict itself and its NNs
and computes NNs based on similarity in latent space. We are given a classifier C = (L1, ..., Ln)
consisting of n layers, a training dataset D = {(X,Y )} and a query sample Xq used for inference.
We compute the activations C:i(X) of layer i for all samples in the training dataset and the sample
for inference, i.e. X ∈ {D∪{Xq}}. Then we compute the k-nearest neighbors NNk(C:i(Xq)) ⊂ D
and, finally, a weighted average

Xi
w = wq · C(Xq) + (1− wq) ·

∑
X∈NNk

C(X)

k

1: Input: Classifier C, (training) data D, sample to predict Xq

2: Output: Prediction Yp

3: k := 3 {number of NNs}
4: wq := 0.88 {weight of sample Xq}
5: i := n− 1 {Layer index to obtain embeddings used for similarity computation for NNs}
6: sim(X,X ′) := ||X −X ′||22 {similarity metric for NN}
7: LD := {(C:i(X), Y )|(X,Y ) ∈ D}
8: NNk(C:i(Xq)) := k-NNs of C:i(Xq) in LD using metric sim

9: Xi
w = wq · C(Xq) + (1− wq) ·

∑
X∈NNk

C(X)

k

10: Yp := argmaxj X
i
w,j {Predicted class is index j of “neuron” with maximal output}

Algorithm 1: LaSeNN

The underlying motivation is illustrated in Figure 4. Classes form dense clusters that are separated
by sparse space. The decision boundary runs through the sparse space. The exact location of the
boundary is heavily influenced by the samples in the sparse space and is likely overfitting. Generally,
using NNs can lead to a smoother boundary that is simpler and less-prone to overfitting (see e.g.
textbooks like Hastie et al. (2009)). Predictions for samples near any of the cluster centers are
relatively far from the decision boundary and bear little uncertainty and are likely correct. They are
not impacted by our method, i.e., the prediction using Algorithm 1 (LaSeNN) and the prediction of
the network without using NNs is identical. However, predictions in the sparse space are potentially
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Figure 1: Method: The training data and the sample to infer is run through the classifier up to some
layer yielding an embedding, used to compute the kNNs. Finally, a weighted average of the sample
to infer and the NNs is used for prediction.

Figure 2: Computation of projections for his-
tograms in Figures 7 and 3. Projections are
made onto the line connecting the means of
class samples (black dots). Figure 3: Distribution of projections (see

Figure 2) for a VGG-13 trained on Cifar-10
using the third last convolutional layer.

close to the decision boundary, which is strongly influenced by a few samples. Using kNNs leads
to changes in this space to the boundary, i.e., a ‘novel’ decision boundary as illustrated conceptually
in Figure 4. (Actual data is shown in Figures 7 and 3.) As shown in Figure 2, for a class c0 we
compute the mean of class samples and find the class c1 with the mean that is at minimum L2-
distance. We then compute the projection (based on an ordinary dot product) and create histograms.
Figure 7 shows that “confusion” of predictions between the two classes occurs primarily in areas
of lower density. Figure 3 shows that changes of samples due to Algorithm LaSeNN also occur
primarily in low density areas. Furthermore, there are only relatively few changes, e.g., the dense
areas containing most samples are not impacted by our method, but only areas of low density. Note
that Figure 3 has a twin axis, i.e., the left y-axis is for the distribution of projection of class samples
and the right one only for those samples which prediction got changed due to the use of nearest
neighbors, i.e. Algorithm LaSeNN. (We also provide some conceptual understanding using more
mathematical analysis and abstractions in the Appendix.)

The returned NNs help to better understand classifier decisions, i.e., they are well-interpretable.
They indicate which samples of the training data contribute at least the fraction (1 − wq) to the
decision, i.e., each output the classifier of the kNNs has a weight of 1−wq

k . Furthermore, in particular,
if the layer i is close to the output, the NNs also resemble samples that are considered “very similar”
by the classifier and therefore can help in understanding, which concepts are relevant (see concept-
based XAI techniques such as Schneider & Vlachos (2022)).
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Figure 4: Motivation. The decision bound-
ary between two classes (solid line) deviates
from the optimal (dashed line). It tends to be
strongly influenced by a few points, which can
be reduced using NNs (dotted line).

Figure 5: Distribution of projections (see Fig-
ure 2) for a ResNet-34 trained on Imagenet us-
ing the layer (outputs) prior to the last dense
layer.

3 EVALUATION

Our evaluation focuses on image classification using various classifiers and datasets. We do the
following:

• Assessing basic assumptions on distribution of layer activations (Section 3.2)

• Analyzing parameter sensitivity, e.g., impact of number of NNs and their weight on classi-
fier accuracy (Section 3.3)

• Robustness to adversarial samples (Section 3.5) and label noise (Section 3.4)

• Performance of Algorithm LaSeNN for pre-trained classifiers (Section 3.6)

3.1 DATASETS, NETWORKS AND SETUP

Datasets used are CIFAR-10/100 Krizhevsky & Hinton (2009) (scaled to 32x32) and ImageNet Deng
et al. (2009). As networks we used VGG Simonyan & Zisserman (2014), Resnet He et al. (2016),
MobileNetv3 Howard et al. (2019) and ConvNextLiu et al. (2022) networks. We used pre-trained
networks from the pytorch’s torchvision library v0.15 based on ImageNetDeng et al. (2009) ‘IMA-
GENET1KV1’ and trained multiple models on CIFAR-10/100 on our own. Training was standard,
i.e., stochastic gradient descent with momentum 0.9, batchsize 128, weight decay of 0.0005, no
data augmentation and 80 epochs (starting from learning rate 0.11 and decaying it twice by 0.1).
We trained five networks for each configuration, i.e. hyperparameter setting and report the mean
and standard deviation of metrics. We employ two common targeted adversarial attacks using the
Pytorch advertorch library with default parameters and targets being set to “(index of ground truth
class +1) modulo numberOfClasses”. Specifically, we use the PGD attackKurakin et al. (2016) and a
Basic Iterative Attack(BIA)Madry et al. (2018) which is an iterative extension of FGSMGoodfellow
et al. (2014). If not stated differently, we use Algorithm 1 LaSeNN with the stated parameters in the
algorithm. For VGG-13, we use as default, the third last convolutional layer for layer i, while for
ResNet-10, we use the output of the second last ‘BasicBlock’. Our own architecture variants as well
as some additional code is part of the supplement.

3.2 DISTRIBUTION OF LAYER ACTIVATIONS

We aim to asssess our assumption that layer activations of most samples of one class are closer to
each other than to those of other classes, or, put differently (activations) of class samples form dense
clusters with dense centers that get increasingly sparse towards their boundary as illustrated through
Figures 7 and 3, where we see a roughly Gaussian shape for the distribution of projections for each
class. To verify this assumption, we compute for each point X of the test set, the nearest neighbors
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Table 2: Results for accuracy gains and adversarial Attacks on ImageNet

Net corr(P, avgL2) samePred avgL2corr avgL2wrong avgL2change

ResNet-34 -0.35 0.989 3.985 4.099 4.152
CoNexT-Tiny -0.49 0.993 1.434 1.565 1.663
MobileNetv3-Large -0.29 0.988 3.588 3.614 3.668

Table 3: Results for similarity metrics

Net Data Metric Acc. LaSeNN Acc. Original ∆ Acc

ResNet-10 Cifar-10 L2 0.855±0.003 0.854±0.002 0.001±0.001

Cosine 0.854±0.002 0.852±0.002 0.002±0.0

VGG13 Cifar-10 L2 0.819±0.002 0.816±0.001 0.003±0.001

Cosine 0.825±0.001 0.816±0.001 0.008±0.001

ResNet-10 Cifar-100 L2 0.579±0.001 0.574±0.002 0.004±0.001

Cosine 0.585±0.003 0.575±0.002 0.01±0.002

VGG13 Cifar-100 L2 0.511±0.003 0.505±0.002 0.006±0.0

Cosine 0.522±0.003 0.505±0.002 0.017±0.001

NNk(X) (for k = 3) in the training dataset and compute (1) pureness P : number of samples within
NNk(X) that are of the same class as X and (2) the average L2-distance avgL2 of the NNs to X1.

If our assumption is correct, we expect that density measured by average L2 distance (avgL2)
and pureness P are negatively correlated corr(P, avgL2) < 0, i.e., higher density is expected
for points of the same class (high pureness) and lower density for points of distinct classes(low
pureness). As shown in Table 2 the Pearson correlation yielded values between -0.29 to -0.49 for all
pretrained networks with p-values < 0.001. We also expect that most predictions remain unaltered
due to using Algorithm LaSeNN, which is confirmed in Table 2 showing that more than 99% of
all samples yield the same class prediction (samePred) if we compare the predictions of LaSeNN
and the native classifier. We also expect that the mean distance to neighbors is lower for correctly
classified points (since they are in dense areas near a center of a class with identical samples) than for
incorrectly classified samples (since they are in sparser areas with samples of different classes), i.e.,
avgL2corr < avgL2wrong, which is also confirmed (see Table 2). We also expect that changes of
class predictions due to LaSeNN occur primarily in low density areas (e.g. for large mean distances),
i.e., avgL2change > avgL2, which is also confirmed.

3.3 PARAMETER SENSITIVITY

First, we assess two common similarity metrics for high dimensional vectors: the (negative) L2-
norm sim(X,X ′) = −||X − X ′||22 and cosine similarity sim(X,X ′) = cosine(X,X ′). Our
evaluation shows that both lead to gains for using NN but cosine leads to larger gains. This is ex-
pected since the space is relatively sparse (the Cifar 10/100 datasets are small with just 50k samples
and the number of dimensions is large (at least 512 dimensions). In sparse spaces measures like
cosine that neglect magnitude and are only concerned with direction are more favorable. In turn,
L2 is more adequate for dense spaces, i.e., large training datasets. (We used L2 for our benchmarks
with Imagenet.)

The outcomes for different layers i are shown in Figure 4. Using deeper layer tends to lead to better
results. Given a network of sufficient capacity after training all training samples will be perfectly
classified, meaning they will have close to zero loss. In turn, the output of the very last layer is
similar for all samples of a class, e.g., samples cannot be well discriminated using the final layer
output.

In Table 5 we see that using NNs in addition to the sample to classify leads to gains from 0.1% up
to about 3%. Gains are largest if the weight wq of the sample to predict is about 75% and that of the
neighbors jointly only 25% though there is no strong sensitivity of the weight wq . Using only NNs

1Distance to the kNN has been employed for density-based clustering, e.g., Schneider & Vlachos (2017)
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Table 4: Results for layer i used for similarity computation

Net Data Layer i Acc. LaSeNN Acc. Original ∆ Acc

ResNet-10 Cifar-10
prior to dense 0.853±0.002 0.852±0.002 0.0±0.0

prior to 4x4 pool 0.854±0.002 0.852±0.002 0.002±0.0

prior to last block 0.864±0.004 0.854±0.002 0.01±0.002

VGG13 Cifar-10

prior to dense 0.817±0.001 0.816±0.001 0.001±0.0

2nd last conv 0.816±0.001 0.816±0.001 -0.001±0.001

4th last conv 0.825±0.001 0.816±0.001 0.008±0.001

6th last conv 0.824±0.001 0.816±0.001 0.008±0.002

ResNet-10 Cifar-100
prior to dense 0.581±0.001 0.574±0.002 0.007±0.002

prior to 4x4 pool 0.585±0.003 0.575±0.002 0.01±0.002

prior to last block 0.593±0.001 0.574±0.002 0.019±0.001

VGG13 Cifar-100

prior to dense 0.508±0.002 0.505±0.002 0.003±0.001

2nd last conv 0.518±0.002 0.505±0.002 0.012±0.0

4th last conv 0.522±0.003 0.505±0.002 0.017±0.001

6th last conv 0.518±0.003 0.505±0.002 0.013±0.001

Table 5: Results for weight wq

Net Data wq Acc. LaSeNN Acc. Original ∆ Acc

ResNet-10 Cifar-10

0 0.853±0.0 0.852±0.0 0.001±0.0

0.52 0.854±0.0 0.852±0.0 0.001±0.0

0.76 0.854±0.0 0.852±0.0 0.002±0.0

0.88 0.854±0.002 0.852±0.002 0.002±0.0

0.94 0.854±0.0 0.852±0.0 0.002±0.0

0.97 0.853±0.0 0.852±0.0 0.001±0.0

VGG13 Cifar-10

0 0.799±0.002 0.816±0.001 -0.017±0.004

0.52 0.825±0.001 0.816±0.001 0.009±0.002

0.76 0.831±0.0 0.816±0.001 0.015±0.001

0.88 0.825±0.001 0.816±0.001 0.008±0.001

0.94 0.821±0.001 0.816±0.001 0.004±0.001

0.97 0.819±0.001 0.816±0.001 0.002±0.001

ResNet-10 Cifar-100

0 0.586±0.0 0.577±0.0 0.01±0.0

0.52 0.586±0.0 0.577±0.0 0.009±0.0

0.76 0.587±0.0 0.577±0.0 0.01±0.0

0.88 0.585±0.003 0.575±0.002 0.01±0.002

0.94 0.585±0.0 0.577±0.0 0.008±0.0

0.97 0.58±0.0 0.577±0.0 0.004±0.0

VGG13 Cifar-100

0 0.448±0.003 0.505±0.002 -0.058±0.004

0.52 0.525±0.002 0.505±0.002 0.02±0.002

0.76 0.536±0.002 0.505±0.002 0.031±0.002

0.88 0.522±0.003 0.505±0.002 0.017±0.001

0.94 0.515±0.004 0.505±0.002 0.01±0.002

0.97 0.511±0.002 0.505±0.002 0.005±0.0

(instead of the sample to classify) can be worse (i.e. for VGG13), but it can also be beneficial (i.e.
for ResNet-10). For VGG13 it is worse. We believe that this is due to the nature of the latent space.

Considering the number of neighbors k (Table 6, we see that improvements are largest, if just a
single nearest neigbhor is used. This is not surprising, since the space is sparse and, thus, the larger
k the more dissimilar the neighbors are and the less valuable they are for prediction, i.e., they are
more likely of another class than the ground truth class.

3.4 NOISY LABELS

Table 7 shows that using nearest neighbors leads to larger gains with growing noise, i.e., if we
permute an increasing fraction of labels are permuted in the training data and the classifier is trained
on this noisy data. This suggests that in latent space (induced by a classifier layer) training samples
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Table 6: Results for number of nearest neighbors k
Net Data k Acc. LaSeNN Acc. Original ∆ Acc

ResNet-10 Cifar-10

8 0.856±0.003 0.854±0.002 0.002±0.001
4 0.855±0.003 0.854±0.002 0.001±0.001
3 0.854±0.002 0.852±0.002 0.002±0.0
2 0.856±0.002 0.854±0.002 0.002±0.0
1 0.856±0.002 0.854±0.002 0.001±0.0

VGG13 Cifar-10

8 0.824±0.001 0.816±0.001 0.007±0.001
4 0.824±0.001 0.816±0.001 0.008±0.001
3 0.825±0.001 0.816±0.001 0.008±0.001
2 0.825±0.002 0.816±0.001 0.009±0.0
1 0.826±0.001 0.816±0.001 0.01±0.001

ResNet-10 Cifar-100

8 0.582±0.002 0.574±0.002 0.008±0.0
4 0.584±0.002 0.574±0.002 0.01±0.0
3 0.585±0.003 0.575±0.002 0.01±0.002
2 0.587±0.001 0.574±0.002 0.012±0.001
1 0.587±0.003 0.574±0.002 0.012±0.001

VGG13 Cifar-100

8 0.519±0.003 0.505±0.002 0.014±0.001
4 0.522±0.002 0.505±0.002 0.017±0.001
3 0.522±0.003 0.505±0.002 0.017±0.001
2 0.524±0.002 0.505±0.002 0.018±0.0
1 0.527±0.001 0.505±0.002 0.022±0.001

Table 7: Results for noisy labels
Net Data Fraction permuted labels Acc. LaSeNN Acc. Original ∆ Acc

ResNet-10 Cifar-10

0.0 0.854±0.002 0.852±0.002 0.002±0.0
0.01 0.841±0.0 0.839±0.001 0.002±0.0
0.04 0.807±0.0 0.807±0.001 0.0±0.0
0.08 0.77±0.0 0.766±0.0 0.003±0.001
0.16 0.708±0.002 0.703±0.001 0.005±0.001
0.32 0.59±0.003 0.581±0.003 0.01±0.0

VGG13 Cifar-10

0.0 0.825±0.001 0.816±0.001 0.008±0.001
0.01 0.814±0.003 0.806±0.004 0.008±0.001
0.04 0.796±0.001 0.783±0.002 0.013±0.002
0.08 0.767±0.004 0.753±0.004 0.014±0.0
0.16 0.716±0.001 0.696±0.001 0.02±0.0
0.32 0.604±0.0 0.577±0.003 0.026±0.003

ResNet-10 Cifar-100

0.0 0.585±0.003 0.575±0.002 0.01±0.002
0.01 0.576±0.0 0.566±0.0 0.01±0.0
0.04 0.542±0.001 0.529±0.001 0.013±0.001
0.08 0.502±0.002 0.49±0.002 0.012±0.0
0.16 0.437±0.0 0.424±0.002 0.013±0.002
0.32 0.332±0.002 0.315±0.002 0.017±0.0

VGG13 Cifar-100

0.0 0.522±0.003 0.505±0.002 0.017±0.001
0.01 0.52±0.001 0.501±0.001 0.019±0.002
0.04 0.493±0.002 0.473±0.003 0.02±0.001
0.08 0.47±0.002 0.45±0.002 0.02±0.001
0.16 0.422±0.0 0.399±0.001 0.022±0.001
0.32 0.33±0.01 0.307±0.007 0.024±0.003

with permuted (incorrect) label are still placed near samples of the correct label since they share
similarities (beyond the class label).

3.5 ROBUSTNESS TO ADVERSARIAL ATTACKS

In Table 8 we see that the difference between LaSeNN and the unmodified classifier is larger for both
of the targeted adversarial attacks indicating that our approach increases robustness to adversarial
attacks. We believe that this is due to the fact that the adversarial samples are closer to the decision
boundary and, thus, are more likely changed, when combined with NN.

3.6 PRETRAINED NETWORKS

While we have shown accuracy gains and robustness to adversarial samples on our self-trained small
networks, it is unclear to what extent they also exist on large scale networks that are also trained
using heavy data augmentation. To this end, we evaluate our technique on multiple pre-trained
networks available through Pytorch’s torchvision using the layer i prior to the last dense layer,
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Table 8: Results for adversarial attacks
Net Data Attack Acc. LaSeNN Acc. Original ∆ Acc

ResNet-10 Cifar-10
None 0.854±0.002 0.852±0.002 0.002±0.0
BIA 0.093±0.01 0.09±0.009 0.003±0.001
PGD 0.118±0.012 0.116±0.012 0.003±0.001

VGG13 Cifar-10
None 0.825±0.001 0.816±0.001 0.008±0.001
BIA 0.235±0.01 0.202±0.006 0.033±0.006
PGD 0.261±0.011 0.237±0.004 0.024±0.008

ResNet-10 Cifar-100
None 0.585±0.003 0.575±0.002 0.01±0.002
BIA 0.045±0.003 0.038±0.003 0.007±0.001
PGD 0.056±0.003 0.048±0.003 0.008±0.0

VGG13 Cifar-100
None 0.522±0.003 0.505±0.002 0.017±0.001
BIA 0.132±0.001 0.091±0.002 0.04±0.002
PGD 0.15±0.003 0.113±0.004 0.037±0.005

Table 9: Results for accuracy gains and adversarial attacks on pretrained networks on ImageNet

Net Attack Acc. LaSeNN Acc. Original ∆ Acc

ResNet34
None 0.7337 0.73316 0.00053
PGD 0.01189 0.00991 0.00198
BIA 0.01414 0.01191 0.00222

ConvNext-Tiny
None 0.82218 0.82128 0.00090
PGD 0.01175 0.01035 0.00140
BIA 0.01388 0.01252 0.00136

MobileNetV3-Large
None 0.74154 0.74056 0.00097
PGD 0.00614 0.00506 0.00108
BIA 0.00847 0.00707 0.00140

wq = 0.94, and cosine similarity sim(X,X ′) = cosine(X,X ′). We also employ augmentation for
our nearest neighbor query, i.e., we compute the NNs for sample Xq and for the horizontally flipped
version X ′

q of sample Xq , but no other techniques. We take the union of the NNs (i.e. the original
one and the flipped ones) and take those that are closest. In Table 9 we observe minor gains for all
networks. This is somewhat surprising given that all these models are trained based on extensive
data augmentation (e.g., random rotation, color jittering, random cropping and resizing, horizontal
flipping), while our approach queries only leverage horizontal flipping. Aligned with our self-trained
smaller networks we find that there is an increased robustness to adversarial attacks.

4 RELATED WORK

Decision boundary: Studying the decision boundary of neural networks dates back multiple
decades Lee & Landgrebe (1997); Bishop (2006). Nowadays, studying the decision boundary is
often motivated due to adversarial samples, which show that minor changes to a sample can result
in crossing the decision boundary, e.g., deep learning networks are non-robust. Commonly, de-
cision boundaries are also examined using measures and tools found in the context of adversarial
examples, e.g., Ortiz-Jimenez et al. (2020); Karimi et al. (2019); Szegedy et al. (2014). Szegedy
et al. (2014) discusses adversarial examples in deep learning, illustrating the sensitivity of decision
boundaries in neural networks to slight input perturbations. Karimi et al. (2019) generates samples
near the decision boundary based on techniques from adversarial samples and in a subsequent step
they analyze the generated instances. Nguyen et al. (2015) presents the existence of ”fooling” im-
ages—unrecognizable inputs that deep neural networks classify with high confidence, highlighting
peculiarities in deep learning decision boundaries. Nguyen et al.’s findings shed light on the unusual
and unexpected shapes that decision boundaries in deep networks can take. We approach decision
boundaries more from the perspective that learnt representations are fixed and the task is to identify
an optimal boundary separating samples. Ortiz-Jimenez et al. (2020) leverages tools from adver-
sarial robustness to associate dataset features to the distance of samples to the decision boundary.
In turn, they tweak the position of the training samples and measure the resulting changes on the
boundaries. They show that deep learning networks exhibit a high invariance to non-discriminative
features, and that the decision boundary of a neural networks only exist “as long as the classifier is
trained with some features that hold them together”Ortiz-Jimenez et al. (2020). There are a num-
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ber of theoretical and empirical findings on decision boundaries for neural networks not relying on
ideas from adversarial samples. Fawzi et al. (2017) investigates topology of classification regions
created by deep networks, as well as their associated decision boundary. The paper claims based
on empirical evidence that regions (containing samples of a class) are connected and flat. Li et al.
(2018) claims that the decision boundary of the last layer equals that of a hard SVM. Lei et al.
(2022) measures the variability of the decision boundary. They show that the more variable the
boundary, the less the networks generalizes. Recently, Mouton et al. (2023) predicts generalization
performance based on input margins. That is, they use the variability computed based on PCA to
assess generalization performance. Nar et al. (2018) argues that cross-entropy loss leads to poor
margins, since samples can be very close to decision boundary. Support vector machines lead to
better margins. In fact, years earlier this has been claimed empirically, i.e., Tang (2013) showed
that using a margin-based loss instead of a cross-entropy loss can lead to improvements. Yang et al.
(2020) states that thick decision boundaries lead to increased robustness. In the paper they propose
training techniques to achieve this, but these techniques lead to significantly worse performance on
the clean test sets and only improve on adversarial and out-of-distribution samples.

Noisy Labels: The impact of noise on decision boundaries cannot be understated. Noise in the train-
ing data can potentially lead to overfitting, manifesting as erratic decision boundaries Zhang et al.
(2021). Large neural networks can “memorize” arbitrary noisy training dataZhang et al. (2021).
However, noisy labels degenerates performance and research has investigated special techniques to
deal with label noise. For example, Wu et al. (2020) constructs a topological filter to remove noisy
samples. However, their approach falls short, when data is non-noisy and it is only shown to yield
benefits if a large fraction of labels is noisy. Oyen et al. (2022) showed that label noise depends
directly on feature space, i.e.,“when the noise distribution targets decision boundaries, classification
robustness can drop off even at a small scale of noise.”
kNN: Early works (prior to deep learning) Zhang et al. (2006) trained a SVM on NNs of a query
sample. Theoretical works, e.g.,Cover (1968), studied also properties of neural networks. How-
ever, few theoretical and practical results are known relating deep learning and kNNs. Zhuang et al.
(2020) designed a network for training a neural enforcing that a sample and its kNNs all belong to
the same class based on a triplet loss. In contrast, we do not constrain training in any way, but rather
compute NNs as they emerge by computing them based on the similarity of some layer activation of
a trained classifier. Furthermore, our objective is to improve classifiers rather than primarily enforc-
ing that decisions are based (solely) on kNNs.
Memory and attention: Our work also relates to works on including external memory in deep
learning Graves et al. (2016) and to a lesser extent also attention, allowing to focus on specific (in-
put) samplesVaswani et al. (2017) and Bahdanau et al. (2014). Our approach can be said to use
training data as a read-only external memory in a static manner, in contrast to differentiable neural
computersGraves et al. (2016) that allow read and write to memory and learn access. Attention
allows to attend to (already processed) inputs within an input sequence. Our approach attends to
specific training data used already for network training.
Explainability: Explaining using training data is common, e.g., influence functions Koh & Liang
(2017) allow to explain the impact of training data on decisions. Naively, the influence of a training
sample is computed by removing the training sample from the training data retraining the classifier
on the reduced data, before assessing how the prediction for a specific sample changes. Our ap-
proach does not yield the influence but rather states that the output of a sample is determined by the
NNs (at least with fraction determined by wq). But it is then up to a human to compare the NNs
and potentially assess concepts that are shared among them or to identify shared concepts using
additional concept-based explainability methods, e.g. Schneider & Vlachos (2022).

5 CONCLUSIONS

While many approaches exist that target isolated problems such as interpretability, robustness against
label noise or adversarial robustness, or better performance in general, we achieve with some extra
computation“a little bit of most things” using a conceptual simple approach that also highlights that
“overfitting” is a concern for deep learning on large datasets.
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Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
et al. Hybrid computing using a neural network with dynamic external memory. Nature, 538
(7626):471–476, 2016.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Conference on computer vision and pattern recognition (CVPR), pp. 770–778, 2016.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324, 2019.

Hamid Karimi, Tyler Derr, and Jiliang Tang. Characterizing the decision boundary of deep neural
networks. arXiv preprint arXiv:1912.11460, 2019.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, 2009.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv
preprint arXiv:1611.01236, 2016.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Chulhee Lee and David A Landgrebe. Decision boundary feature extraction for neural networks.
IEEE Transactions on Neural Networks, 8(1):75–83, 1997.

Shiye Lei, Fengxiang He, Yancheng Yuan, and Dacheng Tao. Understanding deep learning via
decision boundary. arXiv preprint arXiv:2206.01515, 2022.

Yu Li, Lizhong Ding, and Xin Gao. On the decision boundary of deep neural networks. arXiv
preprint arXiv:1808.05385, 2018.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022.

10



Under review as a conference paper at ICLR 2024

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2018.

Coenraad Mouton, Marthinus W Theunissen, and Marelie H Davel. Input margins can predict
generalization too. arXiv preprint arXiv:2308.15466, 2023.

Kamil Nar, Orhan Ocal, S Shankar Sastry, and Kannan Ramchandran. Cross-entropy loss leads to
poor margins. 2018.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confi-
dence predictions for unrecognizable images. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 427–436, 2015.

Guillermo Ortiz-Jimenez, Apostolos Modas, Seyed-Mohsen Moosavi, and Pascal Frossard. Hold
me tight! influence of discriminative features on deep network boundaries. Advances in Neural
Information Processing Systems, 33:2935–2946, 2020.

Diane Oyen, Michal Kucer, Nicolas Hengartner, and Har Simrat Singh. Robustness to Label Noise
Depends on the Shape of the Noise Distribution. Advances in Neural Information Processing
Systems, 35:35645–35656, 2022.

Johannes Schneider and Michail Vlachos. Scalable density-based clustering with quality guarantees
using random projections. Data Mining and Knowledge Discovery, 31:972–1005, 2017.

Johannes Schneider and Michalis Vlachos. Explaining classifiers by constructing familiar concepts.
Machine Learning, pp. 1–34, 2022.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. Int. Conference on Learning Representations (ICLR), 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. In International Conference on
Learning Representations (ICLR), 2014.

Yichuan Tang. Deep learning using support vector machines. CoRR, abs/1306.0239, 2(1), 2013.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Pengxiang Wu, Songzhu Zheng, Mayank Goswami, Dimitris Metaxas, and Chao Chen. A topolog-
ical filter for learning with label noise. Advances in neural information processing systems, 33:
21382–21393, 2020.

Yaoqing Yang, Rajiv Khanna, Yaodong Yu, Amir Gholami, Kurt Keutzer, Joseph E Gonzalez, Kan-
nan Ramchandran, and Michael W Mahoney. Boundary thickness and robustness in learning
models. Advances in Neural Information Processing Systems, 33:6223–6234, 2020.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

Hao Zhang, Alexander C Berg, Michael Maire, and Jitendra Malik. SVM-KNN: Discriminative
nearest neighbor classification for visual category recognition. In 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06), volume 2, pp. 2126–2136.
IEEE, 2006.

Jiaxin Zhuang, Jiabin Cai, Ruixuan Wang, Jianguo Zhang, and Wei-Shi Zheng. Deep kNN for
medical image classification. In Medical Image Computing and Computer Assisted Intervention–
MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part
I 23, pp. 127–136. Springer, 2020.

11



Under review as a conference paper at ICLR 2024

Figure 6: Unbalanced class probabilities as
typical in real data, e.g. shown in Figures 7
and 3

Figure 7: Uniform class probabilities high-
lighting the case, when class probabilities be-
come more and more similar in a region, i.e.,
differentiating between classes becomes diffi-
cult in the region between two class centers.
Note that further to the left or right (of the
shown region in the figure) there might be clus-
ter centers with only points of one or the other
class. However, for a sigmoid activtion they
have limited impact if their distance to th lin-
ear regime is far.

A APPENDIX

B CONCEPTUAL UNDERSTANDING USING SIMPLIFIED MODEL

Let us get a better conceptual understanding of the benefits of using a simple classifier, i.e. a logistic
regressor and NNs based on discussing two extreme class distributions of one dimensional data. The
distributions are illustrated in Figures 6 and 7. That is, if we sample a point (for the training or test
data) it is chosen according to these distributions, i.e., the class of a point c(X) can be red (r) or
blue (b). A point X at position c is blue with probability p(c(X) = b|X = c) = 1 − c in Figure 6
(skewed triangular distribution) and p(c(X) = b|X = c) = 0.5 in Figure 7 (uniform distribution).
The probability p(X = c) to have a point X at position c ∈ [0, 1] is given by p(X = c) = c, i.e., if
we add up the blue and red class distributions we obtain the uniform distribution for both Figures 6
and 7.2.

A classifier C outputs p(c(X) = b). We consider three classifiers. A classifier CS using an sim-
plification of a logistic regression, which has a small linear regime of width 2d. A classifier CNN

that is based on one NN. Classifier CLa that outputs CLa(X) = wqCS(X) + (1 − wq)CkNN (X)
with wq > 0.5, i.e., the sample X to predict is most important as also assumed in Algorithm 1 and
confirmed empirically.

The classifier CNN (X) simply returns p(c(NN(X)) = b) according to distributions in Figures 6
and 7, i.e., the likelihood that the prediction of the nearest neighbor is blue or red. That is, we assume
that we can more accurately estimate a point that is very close to the training data sample NN(X)
but there is still uncertainty, i.e., we do not predict the class with probability 1. This captures the
idea that we do not use the label of the training data, but rather use the classifier output to make the
prediction for the NN (as in Algorithm 1). But the classifier output is more accurate for the specific
sample than possibly for a sample X to infer.

The logistic classifier CS has a small linear region of width 2d. That is CS(X) = p(c(X) = b) = 0
if X < c− d, 1 if X > c+ d and 0.5(1 + (X − c)/d) otherwise as shown in Figures 6 and 7.

Let’s consider the value of c obtained when fitting n data points. Say the training dataset is balanced
(same number of samples for either class) and c is chosen optimally so that there a minimal number
of errors. The probability that a blue point X is on one the side where red is more likely, i.e. at
distance 0.5 + l is p(X = 0.5 + l|c(X) = b) = 0.5 − l. (Analogously for red) Thus, for some
distance l, for n points we expect n · (0.5− l) to be blue and n · (0.5 + l) to be red. Due to the law

2This is done on purpose to keep the analysis straight forward and intuitive.
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of large numbers the larger n the less variation the mean exhibits and thus the less likely it becomes
that there are more blue than red points at distance l from the center 0.5, implying that c is expected
to move closer to 0 as n grows. Say we obtained some classifier Cs with some c ̸= 0 for some
training data of n samples.

Let us consider CLa and a query sample Xq . Outside the linear regime for CS , i.e. Xq /∈ [c−d, c+d]
the NN has no impact since the probability of blue is either 1 or 0 and the weight wq > 0.5. That, is
the predicted class is the same for CLa as for CS . If Xq is chosen randomly from the distribution this
happens with probability 1− 2d. Let’s assume Xq is close to the boundary, i.e., more specifically to
simplify calculations directly at 1−c so that the classifier CS is undecided on whether to choose red
or blue. Say there are k red points to the left of 0.5−c and n/2−k blue points with k ≤ n/2. If points
were distributed uniformly at random the chance to have the nearest neighbor to the left is larger 0.5,
since the density of points is larger to the left. However, to get a bound assume that we the NN(xq)
is randomly chosen according to the distribution in Figures 6 and 7. Consider the distribution in
Figure 6. Let us assume there is a nearest neighbor within distance a so that c−a > 0 and c+a < 1.3
Consider the probability that the NN(Xq) is blue p(NN(X) = b|NN(Xq) = x) = 1− x

p(NN(Xq) = b|NN(Xq) ∈ [c− a, c+ a]) =

p(NN(Xq) = b|NN(Xq) ∈ [c− a, c+ a])

p(NN(Xq) = b|NN(Xq) ∈ [c− a, c+ a]) + p(NN(Xq) = r|NN(Xq) ∈ [c− a, c+ a]

We have that
p(NN(Xq) = b|NN(Xq) ∈ [c− a, c+ a]) =∫ 0.5−c+d

x=0.5−c−d

1− x = 2(c+ 0.5)d

Similarly for p(NN(Xq) = r|NN(Xq) ∈ [c− a, c+ a]) = (1− 2c). Plugging in yields

p(NN(Xq) = b|NN(Xq) ∈ [c− a, c+ a]) =

2(c+ 0.5)d

(1− 2c)d+ 2(c+ 0.5)d
=

2c+ 1

2
= 0.5 + c

Thus, we see that if the classifier CS is likely to incorrectly predict a sample as red due to the
variation in training data leading to c > 0, the NN classifier CNN is likely to compensate, since
the NN(Xq) is more likely blue than red. Consider the distribution in Figure 7. Since samples of
both classes are uniformly distributed, at any position x ∈ [0, 1] a point X = x is as likely from the
blue and red class. Thus using NN has no benefits. This illustrates that NN are primarily helpful in
areas, where the class densities are not well-balanced.

3a depends on n. We have that the probability to have at least one point in [c − a, c + a] being 1 −
p(nopoint) = 1− (1− 2a)n.
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