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REAL-X—Robot Open-Ended Autonomous
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Sensorimotor Autonomous Learning Systems
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Abstract—Open-ended learning is a core research field of
developmental robotics and AI aiming to build learning machines
and robots that can autonomously acquire knowledge and skills
incrementally as infants. The first contribution of this work is
to highlight the challenges posed by the previously proposed
benchmark “REAL competition” fostering the development of
truly open-ended learning robots. The benchmark involves a sim-
ulated camera-arm robot that: 1) in a first “intrinsic phase”
acquires sensorimotor competence by autonomously interacting
with objects and 2) in a second “extrinsic phase” is tested with
tasks, unknown in the intrinsic phase, to measure the quality
of previously acquired knowledge. The benchmark requires the
solution of multiple challenges usually tackled in isolation, in
particular exploration, sparse-rewards, object learning, general-
ization, task/goal self-generation, and autonomous skill learning.
As a second contribution, the work presents a “REAL-X” archi-
tecture. Different systems implementing the architecture can solve
different versions of the benchmark progressively releasing initial
simplifications. The REAL-X systems are based on a planning
approach that dynamically increases abstraction and on intrin-
sic motivations to foster exploration. Some systems achieves a
good performance level in very demanding conditions. Overall,
the REAL benchmark is shown to represent a valuable tool for
studying open-ended learning in its hardest form.

Index Terms—Autonomous robot, benchmark, competition,
intrinsic motivation, open-ended learning, planning, simulation.

I. INTRODUCTION

THE SATISFACTION of biological and social needs
represents a major drive for animal learning. Beyond

these drives, learning in humans and other animals with more
sophisticated cognition is also guided by drives such as curios-
ity and intrinsic motivations. These motivations allow them
to acquire knowledge and skills that can be later used to
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accomplish biological and social needs [1], [2], [3]. In the
last two decades, several algorithms have been proposed to
reproduce such processes in artificial intelligent machines and
robots. This endows machines and robots with the capabilities
for open-ended learning, that is, the capacity to autonomously
acquire knowledge and skills without relying on prewired
reward functions, tasks, or goals [4], [5]. The autonomous
acquisition of knowledge and skills in an open-ended fash-
ion has been studied under different headings. The field of
developmental robotics [6], [7] has developed algorithms for
autonomous learning based on intrinsic motivations (e.g., [8],
[9], [10], [11], [12], [13], [14], [15], and [16]). More recently,
also machine learning and robotics have started to propose
systems to face the challenges of open-ended learning (see
Section V), in particular based on reinforcement learning
algorithms [17], [18].

An important trend1 within both fields has been the
use of intrinsic motivations not to directly learn skills
but rather to guide the self-generation or discovery of
goals, namely internal representations of the world that
might drive the agent’s actions to realize these world
states [19], [20], [21], [22]. The idea is that the autonomous
setting of goals can support open-ended leaning as it allows
the autonomous generation of tasks which in turn can drive
the acquisition of the skills directed to pursue the goals. An
increasing number of works thus focuses on the development
of agents able to autonomously form new goals and learn
the associated skills for realizing these goals [22], [23], [24],
[25], [26], [27], [28]. New goals may be defined based on the
saliency of world states [8], the change of states [26], [29],
eigenoptions [30], density models [31], entropy [32], or varia-
tional inference [33]. While these are important developments,
at present we still do not have systems able to undergo a truly
open-ended learning process.

One way to promote the development of such systems is
the proposal of benchmarks and competitions that facilitate
the comparison of alternative approaches and systems. Some
existing competitions face issues relevant for robotic open-
ended learning, but all seems to lack some key elements. For
example, the AutoML for Lifelong Machine Learning2 com-
petition focuses on the acquisition of an increasing amount

1Whole projects have been dedicated to this, see for example the EU project
GOAL-Robots—Goal-based Open-ended Autonomous Learning: www.goal-
robots.eu.

2http://automl.chalearn.org/life-long-learning
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of input-output data furnished externally, but it does not
involve embodied systems interacting with a physical world
to actively generate new experiences. Animal-AI Olympics3

is focused on simulated animal-like robots, but these are
tested with tasks defined through specific reward functions.
The ICDL MODELbot Challenge4 is focused on autonomous
developmental processes, but it is not conceived as a bench-
mark allowing quantitative comparisons among competing
approaches.

For these reasons, we have recently proposed a com-
petition, now in its third edition (REAL 2021 – Robot
open-Ended Autonomous Learning),5 proposing a benchmark
encompassing the major challenges of robotic open-ended
learning [34], [35]). The core structure of the competition
is based on two phases [34], [36]: 1) an intrinsic phase of
learning and 2) an extrinsic phase of testing. In the first intrin-
sic phase, involving a very long period of learning during
which no guidance is available in the form of rewards, tasks,
goals, etc., the robot should autonomously interact with the
environment to acquire as much knowledge and skills as pos-
sible to best solve any future tasks in the succeeding extrinsic
phase. During the extrinsic phase, the knowledge that the robot
acquired during the intrinsic phase is evaluated by asking it to
solve a certain number of tasks (goals to be achieved) that are
unknown during the intrinsic phase. Since during the intrinsic
phase the robot is not given any guidance, the only element
that it can exploit to learn knowledge useful to solve the tasks
of the second phase is that the environment and object proper-
ties are the same in the two phases. The competition features
two difficulty “Levels” in which the participants can take part:
1) an “Easy Level,” allowing the use of some simplifications
such as the availability of the position objects on the work-
ing space and the possibility of using parameterized motor
primitives to control the robot arm and 2) a “Difficult Level,”
where the robot has to autonomously acquire end-to-end
solutions directly mapping the image pixels and arm joint
angles to the desired arm motor commands. The competition
structure and the general setting is reviewed in more detail
in Section II-A.

The benchmark poses extremely hard challenges, as
revealed by the previous editions of the competition [34].
The first challenge is that the robot perceives only pix-
els, joint angles, and touch-sensor readings and so needs to
autonomously understand from scratch the very concept of
object and which specific objects populate the environment.
Second, the robot does not have any information on how to
control its several degrees of freedom to produce “relevant”
effects on the environment, for example, to touch the objects,
let alone to control them in any meaningful way. Third, and
even worse, the robot has to face a formidable bootstrapping
chicken-egg problem as to make sense of objects it should be
able to physically interact with them; but at the same time
to be able to interact with those objects it should first know
them. This circular interdependence of the learning processes

3http://animalaiolympics.com
4https://icdl-epirob2019.org/modelbot-challenge
5https://www.aicrowd.com/challenges/real-robots-2020

of sensory and motor abilities makes it very difficult to acquire
them at the same time.

The REAL benchmark thus uncovers the challenges posed
by open-ended-learning in the purest and hardest form. This is
important for both the study of development in children, and
for the design of autonomous robots.

Regarding the study of development, the challenges posed
by the REAL benchmark reflect in a “pure form” (i.e., neglect-
ing innate behaviors and experience acquired in the womb)
the “great blooming, buzzing confusion” [37] that newborn
babies have to face at birth when they are suddenly immersed
in a flood of unstructured information from the senses, and
have to control the many degrees of freedom of their bod-
ies. This problem has been studied several times within
the Developmental Robotics community, but very often it
is simplified by furnishing the robots with some hardwired
knowledge. Instead, the Difficult Level of the REAL chal-
lenge does not give the robot any prewired knowledge and
any guidance for learning. In this respect, one might argue that
the challenge is even too hard as the development of babies
and children can rely on important forms of social scaffolding
such as imitation, joint attention, social rewards, and teach-
ing. In this respect, the REAL benchmark purposefully leaves
out such forms of scaffolding for the sake of focusing on
how much autonomous individual learning mechanisms can
accomplish without using any form of external information
and guidance.

In addition, the benchmark is also important to develop
autonomous robots able to undergo open-ended learning to
face real-life nonengineered human scenarios as those that
might be encountered in homes or workplaces. These scenarios
are particularly demanding as they pose challenges that cannot
be foreseen at design time. For example, a robot-assistant able
to help to tidy up a kitchen will need sufficient versatility to
adapt to different kitchen layouts, kitchen objects etc. Thus,
instead of coming out of the factory with predefined skills
it should leverage intrinsic motivations and self-generated
goals/tasks to acquire in the working environment a repertoire
of skills that will be useful to accomplish human assigned
tasks [27]. The application value of these types of algo-
rithms cannot be overestimated. Indeed, a robot system able
to undergo truly open-ended learning could in principle be
employed in any different environments, with different robotic
platforms, and to pursue any goal relevant for the users.

The first contribution of this article is to explain the actual
nature and difficulty of the challenges posed by the REAL
open-ended learning benchmark from a robotics perspec-
tive. In particular, the difficulties posed by the challenges
are made evident by gradually introducing increasingly com-
plex versions of the environment encompassing them, and
by the different algorithms proposed to solve them. Indeed,
as mentioned, open-ended learning poses multiple challenges,
such as exploration to independently discover tasks/objectives
and learn the policies to achieve them, interesting events
that occur infrequently and thus cause sparse rewards, the
need to learn from scratch how to represent and interact
with objects, and the need to generalize all acquired knowl-
edge to varying conditions. Moreover, these challenges are
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made more difficult by the fact that they must be addressed
simultaneously, as mentioned above. The REAL benchmark
enables a systematic study of these challenges and their inter-
actions. To this end, here we used the following “progressive”
strategy. We first faced a simplified version of the REAL
challenge with a basic REAL system, and then we progres-
sively removed the simplifications and faced them through
improved systems obtained by implementing the architecture
components with enhanced algorithms. The simplifications we
considered included: 1) sensors: the availability to the robot
of information on the position of objects rather than on raw
pixel images; 2) actions: the availability of a parameterized
macro-action rather than joint angles; and 3) environment: the
use of only one object rather than two or more.

The literature has proposed various systems having
some features that might be relevant to face the REAL
benchmark. These systems are briefly introduced here
and then considered in more detail in Section V. Some
systems [38], [39], [40], [41] focus on exploration using a
reward based on prediction errors. However, all these systems
use reward functions to guide the agent to execute a task
and they do not learn a goal-conditioned policy that can be
readily used to reach goal states: to face the REAL bench-
mark, they would need an added component that translates the
goal images into suitable reward functions. In a subsequent
work [42], this limitation is lifted by concurrently training
an “achiever” component that embodies a goal-conditional
policy using images. The systems presented in [43], [44],
and [45] also focused on exploration, in this case using a
variational autoencoder to generate target states and learn
the skills to accomplish them. These systems can potentially
be applied to the REAL benchmark but this is prevented
by the limitations discussed below. The system proposed
in [46] is also relevant as it trains a robotic agent in a pick
and place scenario (“OpenAI FetchPickAndPlace”) without
using an external reward, but using an intrinsic reward based
on the mutual information between the agent state and the
environment state. However, in the used scenario the robot
does not use a camera but has access to the position of
objects.

Another work [23] progressively trains an agent by using
a network to predict states with “intermediate difficulty” to
be reached, thus focusing on “competence” instead of “nov-
elty” [47]. The system is not compatible with the REAL
benchmark, as it requires the environment to be reset peri-
odically during the training. Other relevant works [48], [49],
[50], [51], [52], [53] are based on image-based planning and
use a controller to execute plans formulated on the basis of
latent state representations.

Among these systems, [48] and [52] do not seem directly
applicable to the REAL scenario because they lack the mech-
anisms needed to support autonomous learning during the
intrinsic phase as they rely on an external reward objective.
Instead, the works presented in [49], [50], and [51], and also
in [42], [43], [44], [45], and [53] mentioned above, seem to be
applicable to the REAL challenge. This however would need
to adapt their code (available only for [42], [43], [44], [49],
[50], and [53]) to the benchmark scenario, a task that might

be carried out in future work if it will be possible to solve the
implementation issues presented in Section V.

The second contribution of this work is to propose a
software architecture, called REAL-X, that can be used
to implement different open-ended learning robot control
systems. The different systems, named by differently spec-
ifying the “X” in “REAL-X,” encompass different sets of
solutions that can be used to face the different versions of the
REAL benchmark. The REAL-X systems used to solve the
benchmark highlight the nature and difficulty of the different
challenges it poses. Moreover, they are the first robotic con-
trollers to achieve a score well beyond chance level in different
versions of the REAL benchmark, in particular by managing
to autonomously learn from scratch to move objects closer to
different goal positions on the table.

The REAL-X architecture has a modular design to facili-
tate incremental development and is in particular formed by
three components: 1) abstractor: this component performs the
abstraction of sensory inputs to learn relevant environment
variables, for example related to the position and identity of
objects; 2) explorer: this component generates the motor expe-
rience supporting the learning of goals and actions during
the intrinsic phase; and 3) planner: this component formu-
lates and executes action plans to accomplish the extrinsic
goals. The tests of the different versions of REAL-X show
that they exhibit coherent behavior and achieve a performance
well above chance level with the simplifications, and also when
these simplifications are progressively removed. In the fol-
lowing we present a thorough investigation of the challenges
posed by REAL benchmark and possible solutions relying on
the REAL-X architecture; in future work we plan to use the
REAL benchmark and the architecture to further develop these
solutions and systematically compare and integrate them with
the systems and mechanisms reviewed above and in Section V.

The remainder of this article is organized as follows.
Section II first presents more in detail the open-ended learning
REAL benchmark and its objective function, and then presents
the REAL-X architecture and its implementation in different
systems created to solve increasingly complex versions of the
scenario. Section III compares the performance of the different
REAL-X systems and analyzes some aspects of their internal
functioning. Section V reviews in more depth relevant previous
systems on open-ended learning. Finally, Section VI draws the
conclusions.

II. METHODS

A. Scenario of the Open-Ended Learning Benchmark

The competition scenario is inspired by an assistant-robot
scenario where the robot should help to tidy up a kitchen
(kitchen scenario). Specifically, the systems participating in
the competition have to control a camera-arm-gripper robot
manipulating some objects on a table simulated with the
PyBullet physics engine and using the OpenAI Gym environ-
ment format [see Fig. 1(a)]. The robot is a 7-DoF Kuka arm
coupled with a 2-DoF gripper. It stands in front of a table,
which has a shelf and 1–3 objects: 1) a cube; 2) a tomato
can; and 3) a mustard bottle. The perceptual space comprises



CARTONI et al.: REAL-X—ROBOT OPEN-ENDED AUTONOMOUS LEARNING ARCHITECTURE 2017

Fig. 1. (a) Environment encompassing the robot, the table with the shelf, and
the three objects. The inset shows the environment as seen from the robot top-
view camera. (b) Three examples of the 50 tasks used in the extrinsic phase:
each row shows the initial object configuration (left) and the final one, that
is, the extrinsic goals (right), for the different tasks.

the images from a fixed top-view camera, the proprioception
of joint angles, and the gripper touch sensors; in a simpli-
fied version of the benchmark the robot directly perceives the
positions of the objects. In the REAL-X systems discussed
below, the touch sensors will not be used. The action space
is the arm-gripper joint space; however, in a simplified ver-
sion of the benchmark the robot can be controlled based on
a parameterized macro-action. The environment also allows
control of the arm in the Cartesian space combined with con-
trol of the gripper in the joint space. In the REAL-X systems
discussed below we used either the macro-action or the whole-
body joint control. The macro-action, as explained below, is
limited to only “pushing actions.” Instead, the other control
modalities, in particular the whole-body joint control, allow
the performance of any action, including grasping.

The kitchen scenario is inspired by a possible future real
world use case for open-ended learning robots. In this regard,
one of the main objectives of the competition is to translate
this kind of scenario into a robotic benchmark for objectively
measuring the capacity of robots for autonomous open-ended
learning. To this purpose, a main feature of the benchmark is
its organization into two phases [34], [36]. In the first intrinsic
phase, the robot autonomously interacts with the environment
for a long time during which it should acquire as much knowl-
edge and skills as possible to best solve the tasks in a second
“extrinsic phase.” Here, the intrinsic phase lasts 15 000 000
simulation steps each lasting 5 ms, amounting to 20.83 h
of simulated time. During the extrinsic phase, the acquired
knowledge and skills are evaluated with tasks (here goals,
intended as desired world states) unknown by the robot during
the intrinsic phase. The extrinsic goals are drawn from the fol-
lowing classes of possible object configurations: 1) 2-D goals:
goals defined in terms of the configuration of 1–3 objects on
the table plane, never close to each other, and with a fixed
orientation; 2) 2.5-D goals: goals defined in terms of the con-
figuration of 1–3 objects set on the table plane and on the
shelf, never close to each other, and with a fixed orientation;
and 3) 3-D goals: goals defined in terms of 1–3 objects set
on the table plane and on the shelf, with any orientation and
no minimum distance. Each goal involves a different start-
ing configuration, which adheres to the same criteria as for
the goal itself. Fig. 1(b) shows some examples of extrinsic
goals. Crucially, in the extrinsic test the robot can still learn,
but this is of little help given the limited time available to
solve each task, so the performance in the extrinsic phase can
be considered an objective measure of the system’s capac-
ity to autonomously acquire knowledge during the intrinsic
phase. Importantly, during the intrinsic phase the robot is not
given any knowledge: no tasks, reward functions, pretrained
networks for object recognition, world models, abilities, or
motor skills. The robot learning processes used in the intrin-
sic phase should hence be guided by algorithms supporting
autonomous learning, for example intrinsic motivations and
mechanisms for the self-generation of tasks or goals.

B. Objective Function of the Open-Ended Learning
Benchmark

The overall objective of the robot participating in the com-
petition is to find, during the intrinsic phase, the parameter
vector θ∗ that maximizes the expected reward collected during
the extrinsic phase

θ∗ = arg max
θ

Eg∼τ(g)

(
Eπ(a|s,g,θ)R(g)

)
(1)

where R(g) are the total rewards obtained for goal g used in
the extrinsic phase to evaluate the system, g ∼ τ(g) is the
distribution of possible tasks (goals) that can be posed in the
environment, and π(a|s, g, θ) is the control policy, dependent
on parameters θ , that the robot uses to select actions a in
response to state s and the currently pursued goal g. The cru-
cial feature of the benchmark is that the parameters θ must be
learned during the intrinsic phase but are tested with goals g
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during the extrinsic phase, but these goals are unknown dur-
ing the intrinsic phase. The latter condition implies that the
knowledge that the agent can pass from the intrinsic to the
extrinsic phase must rely on the physics of the environment,
the robot’s body, and the objects, that remain the same in the
two phases. The optimal policy π(a|s, g, θ∗) also depends on
the time that the robot has to solve each goal g (see [54]), but
for simplicity this issue is not considered here.

C. Metrics

During the extrinsic phase the system is asked to solve 50
tasks [Fig. 1(b)]. For each task: 1) the robot is shown a certain
configuration of the 3 (or 2 or 1) objects in the environment
(“overall goal”) in which they are placed anywhere on the table
plane or on the shelf: the objects can have any initial/final
orientation and may touch/overlap; 2) the objects are then set
in a different position and orientation in the environment; and
3) the robot is given 10 000 simulation steps (50 s) to bring
the object(s) to the overall goal configuration.

The extrinsic-phase performance for an overall goal g is
scored with the metric Mg

Mg =
n∑

o=1

[
e−c||p∗o−po||

]
(2)

where n is the number of objects (1, 2, or 3), p∗o is the (x, y, z)
position vector of the center of mass of object o in the overall
goal, po is the position of the object at the end of the task
after the robot attempts to bring it to the goal position, c is a
constant ensuring that this part of the score will be 0.25 if the
distance to the specific object goal position is 10 cm. Note that,
for each object, the performance metric Mg ranges in (0, 1],
is equal to 1.0 if the object is exactly at the goal position, and
decays exponentially with increasing distance from it. Placing
all 3 objects exactly in the overall goal configuration yields a
maximum score of 3.0. The total Score M is the average of
the scores across the G (G = 50) goals

M = 1

G

G∑

g=1

Mg. (3)

For simplicity the score does not consider object orientation,
but keeping track of orientation allows a finer object control
and hence facilitates a higher final score, so it is implicitly
rewarded.

D. Simplifications

We have designed different REAL-X systems to face differ-
ent versions of the described benchmark. These versions fea-
ture different simplifications that were progressively released
to move toward the full hardest challenge. In particular, the
simplifications were implemented along three dimensions:
perception, motor action, and number of objects. A fourth
dimension involves the absence of environment reset at the
end of “trials/rollouts,” which is commonly used in reinforce-
ment learning tasks but here is avoided. These simplifications
are now considered in more detail.

1) Perception: In the first simplification, the robot was
given the x, y, z positions of the objects. When this simplifi-
cation was removed, the robot instead received a raw camera
image of 320×240 RGB pixels. This is a challenging condi-
tion as it introduces a difficult “chicken and egg” problem:
as to acquire information on objects the robot needs to act
on them, but to learn to act on the objects the robot needs to
know where the objects are in space.

2) Motor Control: In this simplification the robot used a
parameterized macro-action to act on the objects. In partic-
ular, the macro-action first moved the (closed) end effector
near the working plane, then along a segment trajectory par-
allel to the plane, and then back to a home position (arm
straight up out of the camera sight). The use of the macro-
action greatly facilitated hitting/pushing the objects during
exploration. The parameters of the macro-action were the two
(x, y) and final (x′, y′) extremes of the movement segment
indicating positions of the end actuator on the plane. When
this macro-action is usable, the robot needs “only” to learn
the four parameters of the macro-action based on the objects’
state. When this simplification is removed, the robot has to
directly set the desired joint angles at each step. This poses a
great challenge as in the initial phase of (random) exploration
of the joint space the robot rarely touches the objects. While
using a macro-action restricts the robot to push movements
only, this is still a significant challenge as testified by simi-
lar push scenarios in many other benchmarking simulations,
such as in OpenAI RoboGym, RLBench, and Meta-World
[55], [56], [57]. However, some of the REAL-X systems we
will present below can also work without this simplification
and hence are not restricted to only push movements.

3) Number of Objects: The number of objects in the envi-
ronment is another critical element determining the level of
difficulty of open-ended learning. In the simplest case we
consider only one object. In more challenging conditions we
consider up to three. When the position and identity of objects
is furnished to the robot, this does not represent a problem as
the robot can focus on one object per time and so the situ-
ation becomes similar to the case involving only one object.
However, in the most realistic condition where the robot per-
ceives the environment through RGB images having more than
one object represents a notable challenge as the robot needs
to process the image pixels to make sense of the existence of
different objects. Moreover, the presence of multiple objects
can also make the planning and control more difficult as they
can interact and interfere with each other.

4) Environment Resets: During the intrinsic phase, when
the objects are moved by the robot they are left where they are,
without being reset to their initial position periodically. This
element, that at first sight might seem a secondary technical
detail, turned out to be one of the most important aspects of the
challenge (note how most reinforcement learning tasks make
the reset assumption). Indeed, to develop the different com-
ponents of REAL-X we often used the simplified condition
where we reset the objects, although the experiments reported
here do not report the results of this condition as it violates
a fundamental element of autonomous open-ended learning
(e.g., resetting a real environment would require another agent
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Fig. 2. General architecture of REAL-X, based on three components:
Abstractor, Explorer, and Planner. The boxes indicate the specific solutions
used here to implement the components.

to do so to support the robot learning). The challenge is that
if objects are not reset to the same position/orientation after
each action execution, then after each contact of the robot with
the object the succeeding initial condition will change. This
implies that initially the robot tends to face a sequence of new
situations making it difficult to accumulate knowledge.

E. REAL-X Architecture

In this section we describe the REAL-X architecture, while
in the following section we present the specific systems that
were implemented through the architecture to face the dif-
ferent challenges emerging when progressively removing the
simplifications of the REAL benchmark. The REAL-X archi-
tecture is formed by three main components (Fig. 2): 1) an
Explorer module; 2) an Abstractor module; and 3) a Planner
module. The processes performed by the architecture are indi-
cated in Algorithm 1. We now consider the overall functions
implemented by the architecture components and their fea-
tures shared by all systems instantiating the architecture and
explained in Section II-F.

1) Explorer: This component guides motor exploration
of the environment during the intrinsic phase in order to
maximize the acquisition of motor skills. Exploration is based
on actions each lasting 1000 steps. Each action starts and ends
in a “home” position involving the arm and gripper straight
upward. In its basic version, the Explorer produces actions
by generating random sets of the parameters of an action,
either referring to the macro-action or to joint trajectories
(explained below). On each action the components store the
acquired knowledge in the form of an action triplet (s, a, s′)
containing: 1) the precondition, that is, the initial state s of
the environment encoded in terms of image or positions of
objects; 2) the action parameters a of the performed actions;
and 3) the action outcome, that is, the state s′ that follows the
action (image/position of objects).

2) Abstractor: This component is in charge of imple-
menting an abstraction of the perceptual states to support
exploration, planning and action performance. The Abstractor
is implemented in different ways in the different systems.

Algorithm 1: Benchmark and Architecture Functioning

1 Input: a set G of extrinsic goals, environment;
2 Output: global_performance

3 obs_pre = env.get_observation()
4 for i← 1 to I // intrinsic phase steps
5 do
6 action ← explorer.select_next_action(obs_pre)
7 obs_post ← env.step(action)
8 transitions.add(obs_pre, action, obs_post)
9 obs_pre ← obs_post

10 abstract_transitions = VAE(transitions)
11 da = dynami_abstractor(abstract_transitions)
12 planner = planner_setting(da, abstract_transitions)
13 foreach sg ∈ G // extrinsic phase goals
14 do
15 goal_to_pursue ← sg

16 obs = env.get_observation()
17 for i← 1 to J // extrinsic goal steps
18 do
19 action ← planner.plan(obs, goal_to_pursue)
20 obs ← env.step(action)

21 sfinal ← obs
22 performance_array.append(evaluate(sfinal,sg))

23 return(global_performance(performance_vector))

3) Planner: Planning processes implemented by this com-
ponent can be used by some systems in the extrinsic phase
to pursue each single extrinsic goal. Given an extrinsic goal,
the component should be able to search sequences of action
triplets that lead from the current state of the environment to a
desired goal state. When a plan is found, the first action of the
plan is performed and then replanning is repeated to choose
the next action and deal with noisy outcomes caused by the
previous action.

F. Increasingly Sophisticated REAL-X Systems

We now consider the different systems we used to instantiate
the REAL-X architecture. These systems were implemented to
face increasingly difficult versions of the REAL benchmark.
See Table I for a summary of the different systems and the
different conditions of the benchmark. Note that the character
“_” was used to indicate the different conditions (REAL_X) of
the real REAL benchmark, whereas the character “-” was used
to indicate the different systems (REAL-X) implementing the
REAL-X architecture.

1) REAL-R—Random: To have a baseline performance, we
compared all systems tested in all conditions with REAL-R, a
system facing the extrinsic goals by producing random actions.
These actions were produced by generating action parameters
with a uniform probability distribution.

2) REAL-D—Dynamic Abstractor, REAL-T—Threshold:
The REAL-D system was used to face the simplest version
of the benchmark, REAL_OM, where the robot was given
the positions of objects and it could use the macro-action.
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TABLE I
PERFORMANCE OF THE DIFFERENT ARCHITECTURE IMPLEMENTATIONS,
NAMED REAL-X (WITH A DIFFERENT “X” FOR DIFFERENT SYSTEMS),
IN DIFFERENT CONDITIONS, NAMED AS REAL_X (WITH DIFFERENT X

FOR DIFFERENT CONDITIONS). THE UPPER PART OF THE TABLE REPORTS

THE PERFORMANCE OF THE DIFFERENT SYSTEMS IN THE DIFFERENT

CONDITIONS (MEAN SCORE AND STANDARD ERROR OF THE MEAN OVER

30 REPETITIONS OF THE TEST). THE LOWER PART OF THE TABLE

INDICATES THE MEANING OF THE ACRONYMS USED IN PLACE OF THE X
IN THE NAMES OF THE SYSTEMS OR THE CONDITIONS. *: BEST RESULT

AFTER RUNNING WITH DIFFERENT THRESHOLDS. NA: THE RESULT IS

NOT AVAILABLE AS THE PLANNER WAS NOT ABLE TO RETURN

A PLAN BEFORE RUNNING OUT OF MEMORY

A first innovation of REAL-D is represented by a “dynamic
abstractor (DA),” implementing the Abstractor component,
allowing the performance of planning at levels of abstraction
decided autonomously by the system (Fig. 3). The motivating
idea of the DA is that the Planner should be able to reuse
the actions of those triplets, even if the current state is not
exactly one of starting states (s) of those triplets, or even if
the goal state is not exactly one of the outcome (s′) states. To
define when a certain environment state si can be considered
equivalent to an s or s′ state of a triplet, we define a series
of increasing thresholds that define different abstraction
levels. These thresholds are constructed by considering the
differences caused by the experienced actions, considering
in particular the minimum and maximum differences. We
reasoned that it does not make sense to make a distinction
between states that are nearer than the minimum difference
that the agent has experienced between each variable, since
it has no actions that can move it through states at such
a resolution. Conversely, the highest abstraction should not
“merge” states that are farther than the maximum experienced
difference since, with such a high threshold, even the action
which caused the largest difference would not bring the agent
to a different state. The DA algorithm thus works in detail as
follows (see also Algorithm 2).

The output of the DA is an L × V matrix, where L is the
number of desired abstraction levels (here 200), and V is the
number of state variables to consider (e.g., the x-y position
of an object; or the latent variables of an autoencoder used
to abstract images, as explained below). For each level of
abstraction, the DA gives V thresholds, one for each vari-
able. This L×V matrix is used later by the Planner to decide
which states are considered equivalent to each other at a given

Algorithm 2: DA Threhold Matrix Generation

1 Input: (s, a, s′) triplets, L levels of abstractions;
2 Output: abstractions distances matrix

3 foreach (s, a, s′) ∈ triplets do
4 difference_vector ← |s− s′|

difference_matrix.append(difference_vector)

5 for v← 1 to V // V variables
6 do
7 sort_by_column(difference_matrix, v)

8 for l← 1 to L // L levels of abstraction
9 do

10 t ← 0 // T triplets
11 for v← 1 to V do
12 abstractions[l, v] ← difference_matrix[t, v]

13 t ← t + T / (L - 1)

Fig. 3. Dynamic abstraction: scheme of functioning. In each of the three
rectangles, a different level of abstraction is represented. The yellow circles in
each rectangle represent the states experienced during the intrinsic phase, the
red circle represents the current position of the object seen in the environment,
and the blue circle represents the position of the object in the goal image. The
arrows are the experienced actions that connect the different states. The dashed
ovals represent the boundary within which a certain state (at the center of each
oval) is considered to be the same as the states within the boundary. The oval
shape of the dashed circles suggests that at each level of abstraction each state
dimension can have different thresholds. The bold circles and arrows represent
the plan portion that the algorithms managed to find up to a certain level of
abstraction: only the last abstraction level allows finding a plan linking the
start and goal states.

level of the abstraction: two state vectors whose difference is
less than the thresholds specified for each variable v at a cer-
tain abstraction level l are considered equal, i.e., s1 � s2 if
|s1[v] − s2[v]| < DA[l, v] ∀v ∈ V . To compute the levels
of abstraction, the absolute differences |s− s′| of each action
triplet are first computed and then ranked, independently for
each variable. From these ranked differences, 200 differences,
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one for each abstraction level, are then selected for each vari-
able, starting from the lowest rank up to the maximum rank, at
equal intervals. The lowest level of abstraction thus involves
V thresholds representing the minimum differences found, for
each state variable, between all the starting-outcome state cou-
ples of the triplets; the maximum level of abstraction uses
instead the largest differences found. This process allows the
DA to work in an unsupervised fashion for any domain and
requires only a single parameter establishing the granularity of
the different abstraction levels (how many levels are desired).
The DA can then be used to pursue a given extrinsic goal
based on the planning processes described below.

In this system, the Planner is based on the A* algorithm
having a maximum depth of ten actions. The heuristic used
for the A* search was the outcome-goal distance based on the
L-1 norm. The planning process works in close integration
with the DA mechanism. The states are initially abstracted at
“abstraction level 1”: if a plan is found, its first action is exe-
cuted, otherwise the planning process tries to find a plan with
the succeeding higher level of abstraction (“abstraction level
2,” “abstraction level 3,” etc.) until a plan is found. If the
DA reaches the maximum level of abstraction without find-
ing a plan, the goal is aborted as deemed not reachable with
the current action triplets. By using the DA, planning is able
to generalize the triplet preconditions or triplet outcomes to
increasingly different environment states. A higher abstraction,
however, comes at the cost of less accurate actions.

To test the utility of the DA in this condition (REAL_OM)
we also tested a system, called REAL-T, where we manually
set a fixed abstraction threshold that was optimised manually.
It was not possible to test REAL-D system with images as the
A* Planner was not able to return a plan before running out
of memory.

3) REAL-LD—Latent Variables and Dynamic Abstractor:
The REAL-LD system was used to face the version of the
benchmark where the robot had to use raw images although
it could still use the macro-action, the REAL_IM condition.
The Explorer and Planner components were as in REAL-D.
The Abstractor was instead enhanced to handle RGB images
with an additional abstraction process run at the end of the
intrinsic phase. To this purpose, the precondition and outcome
images were first processed with the OpenCV MOG2 com-
puter vision algorithm filtering everything that does not change
much in different images, in our case, the background behind
the objects. The algorithm does this in a fully autonomous
way based only on the images collected during the intrinsic
phase. We filtered the background because we assume that the
robot is interested in learning about things that it can change
with its actions, and so the static areas of the image are not
interesting for it. Next, a variational autoencoder (VAE [58])
is trained with the background-filtered precondition and out-
come images of the triplets. Based on this training, the VAE
can extract a compact representation of images encoded by the
activation pattern of the VAE bottleneck (latent variables). The
latent state representations are used in place of the images in
all planning processes during the extrinsic phase. REAL-LD
was an important system that allowed to focus on study-
ing the challenges posed by a perception based on raw-pixel

images without the complications of the motor aspects. The
system was thus also tested with two objects achieving lower
performance than with 1 object but higher than random (0.095
versus 0.060 of REAL-R, not further reported).

REAL-LD was also tested in the REAL_IJ condition involv-
ing not only raw-pixel but also the direct control of joints. To
face this condition, the macro-action was substituted with a
control method that did not make specific assumptions about
how to act in the environment. In particular, an action was
implemented as a sequence of via points and directly used
to control the arm-gripper joints (based on the robot’s PIDs).
In particular, the action was generated as follows. The whole
action still lasted 1000 steps in total. First a random number
of via points (from 1 to 10) was generated with a uniform
distribution. Then each via point was generated by randomly
sampling the joint angles from a uniform distribution.

4) REAL-ILD—Intrinsic Motivation Exploration, Latent
Variables, Dynamic Abstractor: The REAL-ILD system
worked as REAL-LD but its Exploration component was
enhanced with a mechanism directed to improve the efficiency
of exploration during the intrinsic phase based on a new intrin-
sic motivation mechanism (see Algorithm 3). This mechanism
was in particular used to increase the likelihood that the actions
generated for exploration touched the objects. The mechanism
is based on a neural-network predictor that takes as input the
current state and a planned action (parameters), and predicts
if the action will lead to a significant change of the state, for
example because an object has been moved. The predictor is
trained every 500 000 steps based on the information acquired
that far. A VAE is also trained every 500 000 steps to feed
suitable representations of the images to the predictor, with
the data collected that far. The predictor is then used before
performing each exploration action to select the actions that
have a high chance to cause a change (hit the objects). In
particular, the system generates up to 1000 actions and then
performs the first one that is predicted to cause a change or a
random one if no such action is found.

III. RESULTS

Table I reports the scores of all REAL-X systems tested
with their respective versions of the benchmark. The
performance and some aspects of the internal functioning
of the systems are now analyzed in detail. A video of the
performance of REAL-LD is available on https://youtu.be/
kl26SyGAy_M (REAL_IM condition) and on https://youtu.be/
nriO73Sftq0 (REAL_IJ condition).

A. REAL-D Versus REAL-R and REAL-T: Test in the
REAL_OM Condition

The REAL-D system, tested in the REAL_OM condition,
achieves a score of 0.216 while a random system REAL-R
achieves a performance of 0.021.

The role of the DA for such result can be seen by com-
paring such performance to the one of REAL-T. We tried
different values of the threshold, and only the best one led
to a performance similar to the one of REAL-D, 0.212. In
particular, we first tried with threshold values close to those



2022 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 15, NO. 4, DECEMBER 2023

Algorithm 3: Intrinsic Motivation Exploration Based on
the Change Predictor

1 Input: environment, action_space
2 Output: transitions

3 obs_pre ← env.get_observation()
4 for i← 1 to I // intrinsic phase steps
5 do

// Bootstrap
6 if i < 500 then
7 action ← action_space.random_sample()

8 else
// Training every 500 actions

9 if i mod 500 = 0 then
10 abstract_transitions = VAE(transitions)
11 max_difference = max(abst_pre - abs_post)
12 dataset = ∅

13 foreach pre,post ∈ abstract_transitions do
14 if pre - post > max_difference * 0.01

then
15 change = 1

16 else
17 change = 0

18 dataset.append(pre, action, change)

19 network.train(dataset)

// Action generation
20 for n← 1 to 1000 do
21 action ← action_space.random_sample()
22 change = network.predict(action)
23 if change = 1 then
24 break

25 obs_post ← env.step(action)
26 transitions.add(obs_pre, action, obs_post)
27 obs_pre ← obs_post

most used by REAL-D while planning, that is 1 cm and 2 cm
for, respectively, the x and y position of the object. The score,
however, was only 0.141. We then tested lower values, (0.005,
0.01), which obtained a lower score (0.040), and higher val-
ues, (0.02, 0.04) and (0.04, 0.08), which obtained 0.212 and
0.150, respectively. This shows the capacity of the DA to auto-
matically find a good level of abstraction compatible with the
found actions.

To investigate how the DA works, Fig. 4 shows the number
of effective actions available to the Planner (A*) for each level
of abstraction. We consider an action to be “effective” if its
precondition (starting state) is considered different from the
outcome at the given abstraction level. At level 0, all actions
are different, so the Planner has 15 000 actions available at its
disposal (all the actions found in the intrinsic phase). However,
it is unlikely that the starting state during the extrinsic phase
is exactly the same as any precondition of the action triplets
and it is also unlikely that the goal matches the outcome of

Fig. 4. REAL-D: Number of effective actions (left y-axis) at different levels
of abstraction (x-axis). An action is effective if it changes the world from a
state to another state that is considered different at the considered level of
abstraction. The right y-axis measures the minimum distance between two
states to be considered different at that abstraction level.

an action triplet. So at abstraction level 0, the Planner usually
cannot find an action to start from, or an action that leads to
the goal state. As the abstraction level is increased to higher
levels, the minimum distance to consider two states as differ-
ent rises (orange line in the figure), so an increasing number of
actions are not effective as the precondition and outcome are
no longer considered different. In particular, we can see that up
to about the abstraction level 171, the distance is very small,
less than 1 cm. When the distance is about 1 cm, only 2435
effective actions remain. This is because during the intrinsic
phase most of the time the random macro-actions produced
by the Explorer and performed in the environment miss the
object and so the precondition-outcome difference is basically
only due to the noise of the perceived object position. Indeed,
only about one in six times the robot hits the object and dis-
places it by a distance higher than 1 cm. In the simulations,
the Planner quickly filters out all the first abstraction levels
where no solution is found and then starts finding workable
solutions at the abstraction level 170 or higher. The combina-
tion of the Planner with the Dynamic Abstraction thus works
effectively in providing the right abstraction level with which
to plan by adapting to the experienced data and without the
need of providing any preset threshold. In the given domain,
this allows the system to automatically adapt to the failure to
obtain significant effects with most actions and to the noise of
the perceived object position.

B. REAL-LD: Test in the REAL_IM Condition

The REAL-LD system in the REAL_IM condition achieves
an average score of 0.222, even slightly higher than the score
of the REAL-D system in the simpler REAL_OM condition
(0.216). This confirms that using the VAE to convert the
images into a latent space, and then make plans on such a
basis, performs just as well as receiving directly the object
positions.

We thus investigate the quality of the latent variable rep-
resentations. Fig. 5 shows how the Euclidean distance in
the latent space correlates with the distance between the
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Fig. 5. REAL-LD in the REAL_IM condition: correlation between distances
between randomly chosen couples of object locations (perceived through the
RGB images), measured in both the real and the latent space. Spearman
correlation ρ = 0.75, p < 0.001; Pearson correlation r = 0.83, p < 0.001.

Fig. 6. REAL-LD in the REAL_IM condition: about 80% of the actions
longer than 1 cm are shorter than 20 cm.

Fig. 7. REAL-LD in the REAL_IM condition: correlation between distances
between couples of states, measured in both the real and the latent space,
restricted to distances ranging between 1 and 20 cm. Spearman correlation
ρ = 0.94, p < 0.001; Pearson correlation r = 0.90 p < 0.001.

object positions. The correlation is high (Spearman correla-
tion ρ = 0.75, p < 0.001; Pearson correlation r = 0.83,
p < 0.001), especially for short distances. About 80% of
the actions longer than 1 cm (those mostly used for planning,
see preceding analyses) are shorter than 20 cm (see Fig. 6):
Fig. 7 shows that within that range the correlation is even
higher (Spearman correlation ρ = 0.94, p < 0.001; Pearson

Fig. 8. REAL-LD in the REAL_IM condition: performance per goal. The
first 25 goals are 2-D goals, while the rest are 2.5-D (15) and 3-D (10).

Fig. 9. REAL-LD on REAL_IJ condition: performance per goal. The first
25 goals are 2-D goals, while the rest are 2.5-D (15) and 3-D (10). The system
manages to score also on the 2.5-D and 3-D goals as it can reach objects on
the shelf and push them down on the table.

correlation r = 0.90 p < 0.001). However, REAL-LD is still
limited by the use of the macro-action that can achieve only
the first 25 goals but not the other goals involving an object
located on the shelf (see Fig. 8), since the macro-action is
restricted to pushing across the table surface.

C. REAL-LD: Test in the REAL_IJ Condition

REAL-LD was tested in the REAL_IJ condition to evaluate
its ability to handle more general actions defined by an arbi-
trary sequence of joint via points. These general joint actions
produce noncoordinated arm movements, which are however
still able to hit the object and push it along the table; and they
are able to reach the shelf as well. The REAL-LD system
is capable of extracting from these noncoordinated actions
the effective ones to reach its goals, with a performance of
0.139, which is lower than for the REAL_OM and REAL_IM
conditions but still higher than the random system (0.038).
Fig. 9 shows that while the REAL-LD performance is lower
with respect to the previous condition with the macro-action,
it can still move objects toward their goal. Moreover, the joint-
based action can also reach objects located on the shelf, and



2024 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 15, NO. 4, DECEMBER 2023

Fig. 10. REAL-ILD in the REAL_IM condition: progressive increase of
object contacts/displacements per 500 actions (y-axis), achieved thanks to the
IM change predictor used to select actions for exploration during the intrinsic
phase (x-axis).

this allows REAL-LD to partially accomplish some of the
2.5-D and 3-D goals (Fig. 9). In particular, the system did
not find actions to put objects on the shelf but managed to
find actions to push them down from the shelf. These tests
thus shows that the REAL-X architecture can be used without
predefined macro-actions. To further improve the performance
of REAL-LD in the REAL_IJ condition, we would need the
ability to discover more structured actions (out of the gen-
eral via-point-based actions), but this would probably require
a smarter exploration rather than the random-action sampling
used by the REAL-LD system.

D. REAL-ILD: Test in the REAL_IM and REAL_IJ Condition

Fig. 10 shows the effectiveness of the change predictor dur-
ing the intrinsic phase. Compared to the previous systems,
where random action sampling led to hitting the object only
one out of six actions, REAL-ILD gradually filters out the
ineffective actions before executing them, so the chances to
actually hit the object rise through the phase up to about
273 hits every 500 actions, so about half of the times. As
an example, one of the simulations had 4269 actions pushing
the object for more than 1 cm, compared to the 2435 in the
REAL-LD system.

As shown in Table I, in the REAL_IM condition, the higher
number of actions discovered allows REAL-ILD to achieve a
higher performance than REAL-LD, 0.234 versus 0.222. In
the REAL_IJ condition, these figures become 0.149 versus
0.139. This performance is only marginally higher so we inves-
tigated how the REAL-X performance scales with the number
of actions. Fig. 11 shows the performance of REAL-LD on
the REAL_IM condition with different lengths of the intrinsic
phase. We can see that the performance of REAL-LD is not
really limited by the number of experienced actions as it is
already reaching a plateau with a length of the intrinsic phase
of about 8ML steps (8000 actions). Most of the performance
is indeed acquired during the first 2000 actions. These results
suggest that to improve the performance the exploration should
not simply provide “more actions” but rather focus on find-
ing new actions most needed by the Planner. In the case of

Fig. 11. REAL-LD in the REAL_IM condition: score in the extrinsic phase
with different lengths of the intrinsic phase. The scores start to plateau after
an intrinsic phase of about 8 million time steps, which leads to collect about
8000 actions.

REAL_IJ this might for example mean finding actions that
have a higher precision and actions able to bring the object to
the shelf.

On the other hand, the current approach based on the change
predictor can still be very useful where the performance is
limited by the small number of actions collected during the
intrinsic phase as it improved the speed of finding effective
actions up to threefold. This can be especially relevant when
using real robots, as the exploration can be very time consum-
ing, so any improvement in speed is valuable even if it does
not lead to a higher final performance.

E. REAL-LD With Multiple Objects

We also tested REAL-LD using multiple objects. With two
objects, REAL-LD performance drops to 0.095. This is still
higher than the performance of REAL-R, achieving 0.060, but
it is drastically lower than when using only one object as
the system is not equipped to deal with the complexity of
multiple objects. In particular, multiple objects raise multiple
challenges. First, the combinatorial explosion between the
positions of multiple objects worsens the nonreset problem:
the robot sees new conditions most of the times, so abstraction
with the VAE is more challenging. Second, moving one object
could also move another one, so making the outcomes appear
less regular. We did not investigate which of these causes, or
others, represented the most limiting factors.

IV. DISCUSSION: REAL-X CHALLENGES AND SOLUTIONS

The tests performed highlight the different challenges posed
by the REAL-X benchmark. These also reflect the current
unsolved challenges of open-ended learning. We now discuss
these challenges also considering the possible strategies that
can be used to face them and that were in part explored here.

A. Exploration to Autonomously Discover Tasks/Goals and
Learn Policies

An important challenge of open-ended learning is the
performance of an exploration of the environment that allows
the robots to gain knowledge on how to act in the world. A
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major strategy followed in the literature is the autonomous
construction of tasks, possibly requiring the achievement of
“salient states” (“goals”) in the environment [18], [42], [45].
The general solution followed here is based on the generation
of movements in space (variants of already known actions)
in order to experience new environment states. Then the new
states are considered as “salient,” and hence recorded as goals,
if they satisfy two features: 1) they involve the “external” envi-
ronment: to this purpose, here the robot brings the arm out of
the camera sight and 2) they are caused by the robot: to this
purpose, here the robot compares the world state before and
after action performance. An additional feature that is often
used, not considered here, is the fact that the salient state is
different (or sufficiently different) from those already discov-
ered [41], [47]. Few observations can be made on this strategy.
In the REAL-X scenario, states do not change without the
robot’s action. This might be a future element to introduce into
the scenario for additional realism and challenge. Facing this
solution would require the robot to understand what is caused
by its action and what by other agents or the environment
dynamics [29], [38].

Another relevant aspect of exploration is the opportunity
to identify and focus on some small regions of the explo-
ration space where information gain is higher. In REAL-X,
this region is represented by the work plane where objects
lay. A possible strategy to do so, also followed here, is to
use predictors capable of anticipating the effects of actions so
as to perform in the environment those actions that are most
promising [42], [45], [59].

B. Interesting Events That Occur Infrequently and Thus
Cause Sparse Rewards

An important challenge of open-ended learning is the fact
that events supporting learning might be rare, especially at
the beginning of learning when the robot’s motor repertoire is
poor. This causes “sparse rewards,” in case one uses RL, and
in general little information for learning. REAL-X presents
this challenge in at least two forms. First, the fact that touch-
ing objects based on random movements happens rarely. This
challenge was already discussed in the previous point and
the solution considered there leverages the fact that, although
rare, the event sometimes still takes place. The second case
involves events that in practical terms never happen with ran-
dom movements (this belongs to a type of events that might
be called super-rare). Consider the event of lifting objects on
the plane. This event is extremely important as it might lead
robots to learn to grasp objects thus opening the possibility
to learn several other behaviors, for example in REAL-X to
carry objects on the shelf. What could be the solutions adopted
with super-rare events? Babies learn to grasp based on their
tendency to keep the contact with objects for a prolonged
time once they get in touch with them based on the grasping
reflex [60], [61]. The capacity to have long interactions with
objects would probably require close-loop policies and haptic
sensors, solutions not explored here. Since hardwiring behav-
iors is not allowed in REAL-X (e.g., as done in the system
presented in [62]), the attainment of effects similar to those of

the grasping reflex might be possibly achieved with novelty or
surprise intrinsic motivations used to mark the saliency of the
hand–object interactions [63]: as an example, [46] used mutual
information between the agent state (proprioception) and envi-
ronment state (object positions) to achieve good results in a
pick and place scenario.

C. Environment Reset

Learning (e.g., RL) is usually based on trials that allow
the agent to have the same experience multiple times and thus
to progressively accumulate knowledge. In open-ended learn-
ing, as reflected in the REAL-X benchmark, the experience is
not divided in trials at the end of which the environment is
reset to the same initial conditions. In this case, the robot can
generate the trials autonomously to aid learning, as done in
the REAL-X architecture, but the environment cannot be reset
to a desired condition. This represents a great challenge as
each trial involves different initial conditions (several strate-
gies usable with constant initial conditions, see [23], [64],
cannot be used). A possible strategy, used here, is to adopt
solutions able to learn the different conditions as they are expe-
rienced. Another possible strategy, usable in some contexts,
would be controllers able to self-recreate the initial conditions.
The importance of the absence of trials has also been empha-
sized in a recent formalization of Autonomous Reinforcement
Learning [65].

D. Learning Actions From Scratch

Another challenge of open-ended learning is to learn
movements by controlling low-level elements as joints. In this
respect, the results showed that control based on macro-actions
allows a faster learning but does not allow learning some
movements (e.g., with the macro-actions used here, reaching
objects on the shelf). On the other side, joint-based control
(a requirement of the REAL-X challenge) allows more flex-
ibility but leads to a slow learning and (initially) irregular
movements. A possible strategy to harvest the advantages of
high and low-level control is suggested by the brain, which
learns motor actions and then “habits” recalling them in corre-
spondence to specific stimuli [66]. Hierarchical reinforcement
learning [18] is a strategy imitating this solution and some
systems use it in the context of open-ended learning [67].

E. Need to Learn From Scratch How to Represent Objects

Another important challenge of open-ended learning,
reflected in the REAL-X scenario, is the need to represent
objects based on low-level information such as image pixels.
This problem is made even harder by the fact that the effi-
ciency of this low-level perception strongly depends on action
learning because an efficient exploration and motor behavior
is important, as we have seen in the solutions adopted here, to
gather information on objects. Here, information on objects
was “compiled” into a neural network (variational autoen-
coder) at the end of the initial learning phase and then used to
support the following planning phase (see also [22]). Object
representations might however be built during the acquisi-
tion of information on objects if this can support action
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learning (see [44], [45] where the VAE latent learning supports
exploration).

F. Need to Generalize Acquired Knowledge to
Varying Conditions

An important challenge of open-ended learning, reflected in
the REAL-X benchmark, is the need to generalize knowledge
related to perceptions, actions, and world models (support-
ing planning) to the ever changing environment conditions. A
strategy often used to this purpose is to store the raw data
and at the same time to use it to train neural networks capa-
ble of generalization. Then the knowledge encoded in one of
the two forms is used depending on the needs (e.g., [51]). In
particular, nonparametric models based on raw data can be
useful in initial phases of learning to face bootstrapping con-
ditions. Instead, neural networks, having higher generalization
capabilities, can be used in later stages of learning when more
data are available. Neural networks however also encounter the
problem that open-ended learning produces nonstationary data
and this causes catastrophic forgetting and interference. The
machine learning field of “lifelong learning” offers solutions
to these challenges [68].

G. Multiple Objects

Another problem of open-ended learning, and more in gen-
eral of real-life scenarios, is that the robot has to deal with
multiple objects at the same time. As shown in the study
presented here, this poses different challenges for vision, for
example for classifying and segmenting the different objects,
due to the combinatorial explosion caused by multiple objects.
Solutions to this problem might rely on attention mechanisms
focusing on single objects [36], [69]. Another challenge is that
multiple objects are often cluttered, and this requires dealing
with partially visible objects [70]. Multiple clutter objects also
pose problems to actions, which requires strategies for obstacle
avoidance and iterative behaviors [71].

H. All Challenges Must Be Addressed Simultaneously

As mentioned multiple times, open-ended learning poses
the problem that the robot faces all the challenges considered
above at the same time, in particular those involving simulta-
neous learning problems. A possible strategy to address this
problem is to use approaches that allow the reduction of the
interdependencies between the different solutions. For exam-
ple, some solutions presented here performed actions without
relying much on a trained vision system. Another possibility
is a suitable coordination between the different processes and
strategies to use partially trained components. For example,
some solutions presented here used a partially trained visual
component to support action guidance.

V. RELATED WORKS

Recently, a number of papers have proposed systems and
algorithms that seem promising for meeting the challenges
posed by the REAL competition. Here, we review these
systems, many of which have also been tested on robotic

simulations or on real robots, whose ideas we believe can be
integrated or compared with those presented in REAL-X.

Some of these works have focused on exploration. For
example, [38], [39], and [40] train a policy to explore unknown
environments using only images by providing a reward based
on prediction errors. In particular, the policy is rewarded if
it leads the agent to places where a predictor gives a high
error [38], [39], or where an ensemble of predictors do not
agree [40] thus showing uncertainty of information. The explo-
ration reward can be combined with an extrinsic task reward
to directly train a desired task policy, or it could be used alone
to first explore the environment and then use the data obtained
with the exploration to later train a task oriented policy with
other methods. Sekar et al. [41] further augmented the explo-
ration strategy by adding planning: instead of computing the
prediction error retrospectively, they add a planning step where
the consequences of the current policy from the current starting
state are imagined using a world model, and then the policy is
optimised to seek “novel states” before executing it in the envi-
ronment to explore (similar to our use of a change predictor to
prune actions before executing them). To learn a world model
and optimize the policy using imagined trajectories, they rely
on the work of [72] that shows the advantages of learning
long-horizon behaviors based on purely latent variable-based
imagination. In contrast to the previous works, the system
presented in [41] uses continuous actions and learns a world
model that is then used to train the agent without additional
data for any task for which the reward function is available.
The agent uses the world model and the reward function to
run a policy in its “imagination” (i.e., running imaginary tri-
als with the world model) and adapt it to the task specified
by the reward function. The trained policy can be then run on
the external world without additional training. However, this
requires that the task assigned can be specified with a reward
function and that this reward function is provided to the agent.
This is not the case in the REAL benchmark, where only a
goal state is provided in the form of an image. An additional
component would thus be needed to run the system from [41]
in REAL, in particular to create a suitable reward function that
enables the policy to be trained to reach the target image. In a
subsequent work, [42], this limitation is lifted as an “achiever”
goal-conditioned policy is concurrently trained, so that after
training, the system can be readily used to try and achieve any
goal-image state.

Another work [44] also focused on the exploration problem,
but in this case the images are first processed through a VAE,
and then the exploration is done by drawing from the VAE
latent space using biased-weights to encourage exploration of
low probability areas. Similarly, the system proposed in [45]
used the VAE latent space but added a learned reachability
network to ensure that exploration was done on the frontier of
already explored space. The same approach of using the latent
space of a VAE has been applied earlier in [43]. While [43]
did not use biased-weights it showed a full application of the
concept on a robotic scenario: starting with a first set of images
to train the VAE (either given or obtained by random explo-
ration) the robot automatically samples new images from the
VAE and then learns to achieve them, thus setting goals in an
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autonomous way. The data collected while trying to achieve
those goals can then be further fed back into the VAE, allowing
the creation of further new goals.

While the above works base exploration on the “novelty” of
states, another work [23] instead progressively trains an agent
by using a network to predict states of “intermediate diffi-
culty,” that is, states that the agent finds possible but hard
to reach. This latter work thus grounds its exploration on
“competence” instead of “novelty” [47]. However, the system
from [23] assumes a continuous goal-space representation but
does not use images but rather positions and velocities. This
approach also requires to evaluate the feasibility of each goal
by trying to reach multiple times, which can be very time
consuming. Furthermore, the system assumes the reset of the
environment to its starting condition after every episode, which
assumes an external control on the environment to aid the
training that is not available in REAL.

Other relevant works have focused on learning suitable rep-
resentations to enable planning in an unknown environment
directly based on images [48], [49], [50], [51], [52]. The
system in [48] uses a mutual information constraint between
observations and latent states to train the latent space repre-
sentations, while at the same time optimizing for the rewards
by jointly training a reward predictor. The authors present the
results of experiments that show how the learned represen-
tations are robust to distractors in the images that do not
alter the dynamics of the task. While the focus on mutual
information is interesting and could be incorporated in our
abstraction module (i.e., in the training objective of the VAE
to improve the latent representation), the reward prediction
part has no direct application in our intrinsic phase scenario.
In a similar vein, the system proposed in [52] uses a mutual
information plus an empowerment objective to improve the
training of an image encoder so that it focuses on encoding
action-relevant features and not on general image reconstruc-
tion. However, [52] also includes in the objective function an
external reward which is not present in our autonomous set-
ting. A mutual information constraint is also used in the system
proposed in [46], which learns to optimize a reward based on
the mutual information between the agent’s state (e.g., propri-
oception) and the environment state. The approach used, called
MUSIC, is tested successfully in the FetchPush, FetchSlide,
and FetchPickAndPlace OpenAI Gym scenarios, which are
similar in spirit to the REAL scenario. The algorithm, as it
is presented, seems to require a reset of the agent to an initial
state at the end of each episode and it also seems directed to
learn a general useful single policy, to be later tuned for a task
with an external reward instead of a goal-conditioned policy.
The authors however also combine MUSIC with earlier unsu-
pervised learning methods DIAYN [73] and DISCERN [74],
which are able to learn multiple policies or a goal-conditioned
policy, respectively. The authors of MUSIC show that DIAYN
and DISCERN alone do not achieve good performances in
these environments alone, but they can be combined with
MUSIC to do so. In those scenarios, however, the agent did not
use a camera but directly accessed the true object position. The
system proposed in [50] uses a distributional planning network
to learn a latent space over which to plan actions to reach a

goal. While the trained distributional planning network they
obtain could be directly used as a controller, they then actu-
ally train a soft-actor–critic controller using rewards derived
from the distances in the latent space. Their tests show how
the distributional planning network creates a latent space with
a distance metric that is more successful and meaningful than
the metric learned by an inverse model, a VAE, or by simply
calculating the distance in the pixel space. While their simu-
lations and real world experiments use a separate SAC system
trained for the task, the number of samples used is comparable
to our approach (e.g., 20 000 10-frame videos of random inter-
actions; or 28 h of capture in one of the robotic experiments,
which correspond to about 20 million time steps in REAL).

The system proposed in [49] is based on a sparse graphical
memory (SGM): a new data structure that stores observations
and feasible transitions in a sparse memory. This is similar to
our usage of triplets as a graph on which to do planning, but
their approach focuses on how to keep the nodes of the graph
limited (merging observations) while keeping at the same time
the consistency of the graph (e.g., do not merge two states that
cannot have similar successors). The system also assumes to
have access to a short-horizon parametric controller that is
capable of accomplishing the task when the starting and goal
states are nearby, that is, the optimal action sequence is short.
Similarly to [51] a low-level controller is thus needed to exe-
cute the plans. The system proposed in this latter work, [51],
learns a latent space from images with a Causal InfoGAN or a
Context Conditional CIGAN to then make a plan with A*. This
plan however does not contain actions, but only a sequence of
images (reconstructed from the latent variables) of the states
that the system has to achieve to reach its goal. This visual
plan is then fed to a “visual tracker,” a short-horizon controller
that tries to reduce the differences between the current input
image and the image of the current step in the visual plan.
Both the inverse model of the visual tracker and the latent
space are learned by a data set that can be constructed by the
robot itself with random exploration, with a number of sam-
ples comparable to our system (i.e., about 12 000 observations
in one of their robotic scenarios). Unfortunately, no code is
available to compare their approach to ours.

Also with a focus on learning useful representation of visual
planning with images, [53] proposes a system called MBOLD
where both a forward dynamics model and a distance model
are jointly learned. The forward dynamics learns to predict
subsequent images given a starting image and a sequence of
actions, while the distance model uses Q-learning to learn
a distance function between images. This distance function
is trained by using an indicator goal-dependant reward func-
tion which equals to 1 when a goal image is reached. As the
Q-learning scores images further away with temporally dis-
count rewards, the final trained values are equivalent to scoring
images based on how much they are distant from the goal
image not in terms of visual features but in terms of “func-
tional” distance, that is, how many timesteps it would take
to reach the goal image from there. After the learning phase,
done on a database of random interactions with the environ-
ment, the authors use model-predictive control to achieve any
goal in the environment; in practice, random trajectories are
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evaluated using the forward dynamics model and the distance
function, and iteratively improved until a trajectory is selected
for execution; trajectories are also replanned at every timestep
so that inaccurate predictions do not sum up over time. In a
similar way, [75] also trains offline from a database of visual
interactions to learn Q-values that are later used to drive goal-
conditioned policy. However, in their experiment they either
use this training as a support for later task-specific training
(with task rewards) or in the general case, they do learn a
goal-reaching policy (without rewards) but they start from
a database of interactions with the environment executed by
other RL algorithms.

Mechanisms from all these works might be integrated
into the REAL-X architecture components to solve different
aspects of the REAL competition, for example to achieve bet-
ter exploration or to learn better representations. Among these
works, only [42], [43], [49], [50], [51], and [53] seem to
offer complete solutions that could be applied to solve the
REAL benchmark from the intrinsic phase to the extrinsic
phase. However, there is a relevant technical challenge that
is encountered when readapting their software to interface it
with the benchmark software, which we encountered while
trying to apply the code of [43] to REAL. The software of
these systems is indeed organized as commonly done for rein-
forcement learning systems rather than as it would be required
by the REAL open-ended learning benchmark. In particular,
the software requires that the environment variable is passed
to the system program which then initializes it and controls
it whereas the REAL benchmark requires the system to be
passed to the REAL environment (i.e., the REAL evaluation
function). The REAL evaluation function also requires that:
1) the system is organized in terms of an initialization func-
tion and a 1-step function that can be called to pass the last
observation to the system and get its next action; 2) the system
can run in an intrinsic motivation mode where the environment
is not reset and the system is not given any guidance in terms
of reward function, goals, etc., and 3) the system can be run
in an extrinsic motivation mode where it can receive goals
to pursue within a given time. When available, the software
of most of the systems discussed above present this problem
and so it is technically cumbersome to adapt their code to test
them, or parts of them, with the REAL benchmark software.

This work focused on illustrating and exploring all the
several challenges posed by the REAL open-ended learning
benchmark, and to develop a general architecture that can be
used to implement different systems to face those challenges.
Here, we have shown and compared multiple instances of these
systems. In future work, we plan to use the REAL benchmark
to further develop these solutions and systematically compare
and integrate them with the systems and mechanisms reviewed
above.

VI. CONCLUSION

Several years of research within the developmental robotics
community have uncovered important mechanisms for sup-
porting open-ended learning [76]. However, this far the
community has not managed to propose a benchmark on

open-ended learning, allowing quantitative comparison of
competing approaches. The REAL competition closes this
gap by formulating an open-ended learning benchmark that
allows a rigorous measure of the quality of the knowledge
that an autonomous learning agent is able to acquire during
free interaction with its environment. This measure leverages
an extrinsic phase, where an agent is requested to solve a
number of tasks sampled from an environment of interest,
based on the knowledge that it has autonomously acquired
in a previous intrinsic phase involving a long autonomous
learning experience in the same environment. The particu-
lar open-ended learning benchmark proposed here involves a
camera-arm-gripper robot engaged in manipulating a number
of objects on a table and a shelf. The benchmark is extremely
challenging as it requires the solution of a number of problems
such as exploring to get in contact with the objects, learning
to perceive them, self-generating goals, acquiring the skills
to accomplish these goals, etc. In addition, the robot has to
face all these challenges at the same time, finding itself in a
condition similar to the one of newborn infants.

Here, we have presented several systems implementing
a blueprint robot architecture, REAL-X, that can be used
to face different versions of the REAL benchmark where
initial simplifications are progressively removed. The architec-
ture abilities involve the capacities: to autonomously process
images to extract relevant information on objects; to explore
the environment and progressively focus on relevant action
outcomes; to dynamically abstract over state representations
in order to support action planning. The performance of the
different implementations of the architecture was well above
chance level when some simplifications were still kept, and
still above chance level in the most challenging conditions.
This suggests that the REAL benchmark might remain a chal-
lenge for years to come. We are aware that the REAL-X
systems represent only a first step toward a full solution of
the benchmark. Future work might consider longer intrinsic
phases to allow the emergence of more sophisticated behav-
iors, for example for manipulating the objects beyond only
pushing them (e.g., for hitting, turning, or grasping them); the
introduction of other mechanisms to support a further focusing
of the robot’s learning processes; and the introduction of other
abstraction or attentional processes allowing the robot to cope
with multiple objects. Notwithstanding these open problems,
the REAL benchmark and the REAL-X architectures repre-
sent valuable tools to study the fascinating challenges posed
by truly open-ended learning.
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