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ABSTRACT

Multi-armed bandits (MAB) are commonly used in sequential online decision-
making when the reward of each decision is an unknown random variable. In
practice, however, the typical goal of maximizing total reward may be less im-
portant than minimizing the total cost of the decisions taken, subject to a reward
constraint. For example, we may seek to make decisions that have at least the
reward of a reference “default” decision. This problem was recently introduced
in the Multi-Armed Bandits with Cost Subsidy (MAB-CS) framework. MAB-
CS is broadly applicable to problem domains where a primary metric (cost) is
constrained by a secondary metric (reward), and there is an inability to explicitly
determine the trade-off between these metrics. In our work, we first introduce the
Pairwise-Elimination algorithm for a simplified variant of the cost subsidy prob-
lem with a known reference arm. We then generalize PE to PE-CS to solve the
MAB-CS problem in the setting where the reference arm is the un-identified op-
timal arm. Next, we analyze the performance of both PE and PE-CS on the dual
metrics of Cost and Quality Regret. Our instance-dependent analysis of PE and
PE-CS reveals that both algorithms have an order-wise logarithmic upper bound
on Cost and Quality Regret, making our policy the first with such a guarantee.
Finally, experiments are conducted using the MovieLens 25M dataset for both
PE and PE-CS and using a synthetic toy experiment for PE-CS revealing that our
method invariably outperforms the ETC-CS baseline from the literature.

1 INTRODUCTION

Online sequential decision-making problems capture many applications where decisions must be
made without knowing their outcomes in advance. After each decision, the resulting outcome or
reward is observed, and an internal model is updated to improve future decisions. In clinical trials
for example, the goal is to compare the therapeutic value of various drugs against an ailment. The
decisions in this case represent administering a certain drug and the rewards are the apriori unknown
efficacies of the candidate drugs. Communication networks are another example. Here decisions
must be made about the communication channel to be employed. In this scenario the reward rep-
resents the success or lack thereof of communicating over a chosen channel. Multi-Armed Bandits
(MABs) (Lattimore & Szepesvari, [2020) are a framework for stateless sequential decision making
where the available decisions are abstracted as arms of a MAB problem instance. The stateless
assumption implies that the distribution of rewards associated with an arm is not affected by the
choices of past arms. The setting within MABs we work with is that of stationary stochastic bandits
where the distribution of arm rewards does not evolve with time.

The generality of the assumptions imposed by the stationary stochastic bandits setting provides a
wide net to capture a range of problem domains. However, in real-world applications there are
often several competing objectives that go beyond the limited goal of maximizing reward. For
instance consider the problem faced by a marketing agency where there are several communication
modalities available to communicate the agency’s advertising message. Blindly maximizing the
overall success rate (reward) in this case would be naive. Since such can approach would ignore the
drastically different costs of using these modalities. Our example reveals that costs being associated
with the sampling of any particular arm is a structure that appears quite naturally in applications.
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In the marketing agency problem we know that the various communication modalities shall have un-
known success rates for any brand new ad campaign. However, the cost of employing any modality
will typically be known. These known arm sampling costs might manifest themselves in the form
of a prescribed cost budget (Badanidiyuru et al.,|2018), or as a metric whose cumulative value is to
be minimized (Sinha et al., 2021), to specify two among many possible cost structures. We work
with the latter among these settings. In particular our paper works with variants of the MAB with
Cost-Subsidy (MAB-CS) framework introduced recently in|Sinha et al.| (2021]).

1.1 MULTI-ARMED BANDITS WITH COST SUBSIDY (MAB-CS) SETTING

What makes the MAB-CS setting so interesting is that it requires the bandit policy minimize cumu-
lative costs while obtaining cumulative reward that is satisfactory and not necessarily maximal. The
dual objectives of minimizing costs while maintaining satisfactory reward are captured by the cumu-
lative cost and quality regret objectives defined in Equations[I|and [2] which we seek to minimize. To
complete these definitions we define the best action a* in Equation [3|and re-formulate the cumulative
regret expressions in terms of cost gaps Ac; = (¢; — ca*)Jr and quality gaps Ag ; = (pcs — i)
using a standard regret decomposition result.
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The regret definitions are cumulative over problem horizon 7'. Just like a conventional stationary
stochastic bandit instance, specifying a K-armed MAB-CS instance v entails providing expected
returns p;,4 € [K] corresponding to the stationary arm reward distributions. Additionally for an
MAB-CS instance we require arm-costs ¢; associated with each arm ¢, and a reward threshold pcs.
The arm a* is the least cost arm that satisfies the constraint implicit in the specification of reward
threshold pcs, and is known as the best action. Lastly, 7 is the bandit policy, and the expectation in
the definitions is over the choice of the arm k; made by policy 7 during time slot ¢.

In conventional bandits, it is typical to define sub-optimality gaps as the difference in reward between
the largest expected return p* of optimal arm ¢* = arg max; u,; and sub-optimal arm ¢ as A; = u* —
;. ©T denotes max {0, 2}, i.e. the zero-clipped x. Zero-clipping the per round incremental regret
in Equations[I]and [2] serves a critical purpose for the applications we work with. The zero-clipping
ensures that a stellar performance in one time-slot cannot compensate for a poor performance in
another time-slot. In other words, unlike some prior works, in our setting, bad decisions in some
time-slots cannot make up for stellar decisions in other time-slots. In advertising, for example, a
good advertising decision for one product cannot make up for a poor advertising of another product.

To conclude the presentation of the MAB-CS setting we motivate its variants using our running
example of a marketing agency. Consider that there are three modalities available for the agency to
deliver their message. These methods are: (1) very expensive personalized door-step solicitation,
(2) moderately expensive automated phone call, and (3) inexpensive email. Given these modalities,
the agency’s goal may be to achieve a prescribed sales rate with the minimum possible cost. Or,
the goal may be that sales be at least a prescribed fraction of the sales of a certain communication
modality. Finally, we may not have a reference mode in mind, and we may just desire a conversation
rate that is (say) 80% as much as the modality with the highest sales rate that is unknown. The
first and second settings are captured by our novel contributions of the fixed threshold and known
reference arm settings of MAB-CS. The third setting was introduced in prior work and we refer to
in our paper as the full cost subsidy setting.

1.2 KEY CONTRIBUTIONS

Our first contribution is to extend the MAB-CS framework to include two new settings. (1) The
known threshold g MAB-CS setting with pcs = po. (2) When ucs = (1 — a) g is the subidized
but unknown return of a known reference arm ¢. We then present an original regret minimization
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algorithm, called Pairwise Elimination (PE) for the latter setting. Under PE non-reference arms are
pit against the reference arm in the ascending order of their costs. PE uses a principled elimina-
tion based regret minimization algorithm called Improved-UCB (Auer & Ortner}, 2010) to determine
whether an arm provides satisfactory rewards. Moreover PE intelligently re-uses samples for down-
stream comparisons. Further we present an asymmetric variant of PE that leverages accrued up
samples of the reference arm ¢ to require fewer samples from arms further downstream and show an
improved empirical performance using this variant.

We show that our PE has an instance dependent upper bound on both expected cost and quality
regret that is O (log T'), and that PE only samples arms more expensive then the best action at most
a constant number of times under expectation. Next, we develop a generalization of PE for the full
cost subsidy setting called PE-CS. We show that PE-CS too admits an O (log T') instance dependent
upper bound on both cost and quality regret that involves both notions of conventional sub-optimality
gaps and quality gaps.

Not only is PE-CS the first algorithm for the full cost subsidy setting with instance dependent upper
bounds on cost and quality regret, is also offers an improvement in the guarantee over the only
other algorithm that has one, namely ETC-CS. While ETC-CS admits an O (T 2/ 3) upper bound,
PE-CS admits an O (logT") one on summed cost and quality regret. Further, through experiments
based on data both real and synthetic, we demonstrate that PE-CS offers the best balance between
performance and reliability when compared with baselines.

2 RELATED WORK

Structured Bandits: There have been numerous works that impose additional structure onto the
stationary stochastic bandits problem with the goal of better addressing specific application domains.
This structure can sometimes come in the form of relationships imposed on the rewards of arms.
These reward-relationships may be known (Kleinberg et al.,|2008)) or unknown (Gupta et al.,[2021])).
Adding constraints that depend on the risks associated with sampling the rewards of an arm as in
Wau et al.|(2016)) or|[Chen et al.|(2022) is another form of the structured problem.

Bandits with Costs: We contextualize the core contributions of this paper by comparing and con-
trasting our setting and methods with related ones from the Literature. We build on the MAB-CS
setting introduced in [Sinha et al.| (2021). A core component of the MAB-CS setting is that there
is a known cost associated with sampling any arm that is specified as part of the problem instance.
There have been numerous works within the MAB literature that include the notion that a price has
to be paid for sampling an arm. Notably the Bandits with Knapsacks (Badanidiyuru et al., [2018])
line of work also considers a setting with known costs. However, in|Badanidiyuru et al.| (2018) there
is a limited cost-budget and reward must be optimized while satisfying strict budget constraints. In
MAB-CS and its variants on the other hand, the goal is to minimize cumulative costs without there
being any explicit constraints on cost. In MAB-CS, the constraints are in fact on reward, and are
referred to as quality constraints.

Bandit with Constraints: The quality constraints in our work closely resemble the constraints on
expected rewards that are imposed in the work on Conservative Bandits (Wu et al.,|2016). In both
our work and in |Wu et al.| (2016), there is a constraint that requires the accumulated reward to
exceed a (1 — «) discounted version of the reward of a reference arm. The conservative bandits
setting only considers the cases where either the return of the reference arm is a known constant g,
or the case where the reference arm is known, but its return is unknown. The primary difference in
our work is that in addition to satisfying a quality constraint, in the MAB-CS setting, we must work
to minimize the cumulative cost. The notion of costs are completely absent in [Wu et al.| (2016),
moreover, in addition to the cases with a known reward threshold 19, and a known reference arm
with an unknown return, which we consider as novel extensions to the MAB-CS framework, we also
address the problem of the original MAB-CS framework where the reference arm is the unknown
optimal arm. Another key difference is that Wu et al.| (2016) imposes the reward constraints in a
cumulative anytime manner, whereas we impose it at every time-step.

BAI and Improved UCB In our paper, we work with the notions of Cost Regret and Quality Regret
which are identical to the ones introduced by [Sinha et al.| (2021), however unlike the setting in
Sinha et al.| (2021) which only considers the case where the reference reward comes from the so-
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far unidentified optimal arm, we consider the additional cases (1) Where there is a fixed known
threshold to be exceeded (which we call the known threshold setting), and (2) When there is a known
reference arm ¢ whose reward 1, has to be exceeded however pi itself is unknown. In addition to
our novel PE-CS algorithm for the setting from Sinha et al.| (2021)) we present novel algorithms for
our new settings (1) and (2) as well. In|Sinha et al.[(2021)) the authors present three novel algorithms
for the MAB-CS setting, the former two among which construct a set of empirically satisfactory
arms by interleaving exploration and exploitation. We build up our approach to optimizing for
the regret objectives by first solving the known reference arm ¢ with unknown reward i, setting
using a successive elimination style algorithm that compares candidate arms one at a time against
the reference arm to see if they are satisfactory. We call this approach Pairwise Elimination (PE),
and we adapt the elimination based regret minimization algorithm Improved-UCB (Auer & Ortner,
2010) to develop it. Then we generalize PE to the case where the reference arm is the unknown
optimal arm by prepending PE with a Best-Arm-Identification (BAI) stage (also based on |Auer &
Ortner| (2010)). We call this latter algorithm PE-CS.

3  ALGORITHMS AND ANALYSIS

As discussed in Section [T} we introduce novel settings called: (1) Fixed threshold MAB-CS with
tcs = po and (2) known reference £ MAB-CS with pucs = (1—a ). Ininterest of building up to our
presentation on PE-CS we start with the known reference £ setting and relegate the known threshold
setting to Appendix D] For the known reference ¢ setting, we present our novel Pairwise-Elimination
algorithm in Section Our PE algorithm builds upon Improved-UCB (Figure 1 in|Auer & Ortner
(2010)), a regret minimization algorithm for the stationary stochastic bandits setting. We choose to
build on Improved-UCB since its successive elimination approach to regret minimization intuitively
adapts to our insight that arms be evaluated in the order of their costs. By adapting Improved-UCB,
we compare cheaper arms to arm ¢. We eliminate these cheaper arms if they are unsatisfactory or
we declare them the best action o™ if they are able to eliminate arm .

One of the core features of Improved-UCB is that the cadence of sampling and elimination is gov-
erned by rounds. We inherit the use of these rounds and associated formulas from Improved-UCB.
Moreover, we use the elimination checks prescribed in the Improved-UCB algorithm but adapt them
to better leverage the advanced round number and number of samples available for the reference arm
as we describe in more detail in Section 3.1l

Finally, our third setting has the reward threshold pcs = (1 — «)p*. This full cost-subsidy setting
is strictly more challenging than the known reference arm ¢ setting since the optimal arm itself is
unknown. To solve the Full Cost-Subsidy setting, we extend the PE algorithm by pre-pending it
with a Best-Arm-Identification (BAI) stage to develop the PE-CS algorithm. The details of the Full
Cost-Subsidy setting and PE-CS are presented in Section[3.2}

3.1 PAIRWISE-ELIMINATION FOR KNOWN REFERENCE ARM SETTING

Under the known reference arm setting, the quality regret is calibrated against the expected reward
of the reference arm ¢ which we denote p,. For jointly optimizing cost and quality regret in the
known reference arm ¢ setting, we take an approach where the suitability of an arm with respect to
the quality constraint implicit in the quality regret definition (Equation 2)) is evaluated in the order of
the costs of the arms: cheapest first. This insight motivates a pairwise-comparison between the non-
reference candidate arms and the known reference arm ¢, where the candidate arms are considered in
the ascending order of their known costs. As alluded to earlier we adapt Improved-UCB to facilitate
this pairwise comparison. Improved UCB operates in two phases: An exploration phase where a
set of active arms is progressively refined, and an exploitation phase where the last surviving arm
is sampled for the remainder of the budget. We adapt this algorithm to our problem setting by (1)
Assigning a separate episode to each candidate arm, where the candidate arms are being assessed in
the ascending order of their costs. (2) Initializing the set of active arms at the start of each episode
with only the candidate arm associated with that episode and the reference arm. This initialization
of the active set facilitates the pairwise comparison. (3) In our Pairwise Elimination (PE) algorithm,
the exploitation phase is only entered once the reference arm is bested by the candidate arm in
an episode. This episode is said to be the final episode, and under the nominal operation of the
algorithm, this shall be episode a* that evaluates the candidacy of the arm a* that is the best action.
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Finally, we remark that since any arm that is more expensive than the reference arm ¢ is necessarily
sub-optimal, these arms are pruned away from the bandit instance and are never sampled as part of
this problem formulation.

Function 1: Pairwise Elimination Function PE()

Function PE( ji: Empirical Means, {: Reference Arm, n: Sample Vector, T': Horizon, w:
Round Numbers, i: Episode, o.: Subsidy Factor ):
A2 wi
e 210gé:/2“52)
for k € {i,¢} do
if n; < 7 then
return k, w, i // ki =k, round numbers w and episode i
L unchanged

A2
ﬂ<_ lOg(QLA)
T

if (1— ) (i + B) < fii — 3 then

return ¢, w, None // Declare ¢ as winner, further episodes are
| None

elseif i; + 8 < (1 — «) (fir — 5) then

return: + 1, w, 7+ 1 // Sample next candidate arm, Rounds w
| unchanged, Update episode to that of next candidate arm
else
w; < w; +1 // Increment round only for arm 7 being evaluated
return i, w, 7 // Move to next round within same episode

Algorithm 1: Pairwise Elimination (PE) for a known reference arm /¢

Inputs: Bandit Instance v, Horizon T', Reference Arm /.
Initialize: Samples n;, = 0, Empirical Means /i, = 0, Current Rounds wy, = 0, Vk € [K], PE

Episode ¢ = 1.
v < reorder_per_cost(v) // reorder into ascending cost order
while t < T do
if i ¢ {None, (} then
ky,w,i« PE(f1,4,n,T,w,i, ) // receive arm to be sampled,
L updated round numbers, and updated episode number
else
| ke ke // sample winning arm for remaining budget

p(t+1),n(t+1),t < sample_and_update(ky, fi(t), n(t),t)

This scheme described for PE is made precise in Algorithm[I} For this novel PE algorithm, we were
able to show the guarantees on cumulative cost and quality regret stated in Theorem 3.1} The proof
for Theorem [3.1]is available in Appendix [E]

Practical Extensions of PE. We highlight that although PE makes comparisons between the can-
didate arms and the reference arm in a pairwise manner, samples of the reference arm are re-used
across episodes. This sample reuse is a key feature of the PE algorithm and endows it with good
sample efficiency, since the samples accrued during most episodes shall be limited to the ones of the
candidate arm undergoing evaluation for its return exceeding pics. In PE as presented in Algorithm
during an arbitrary episode evaluating the candidacy of arm i, the reference arm ¢ shall only ever
have to be sampled if the number of samples of arm 7 exceeds the samples reached by the reference
arm / in the episodes through ¢ — 1 preceding episode 7. In practice, we can implement another
version of PE called asymmetric-PE. Asymmetric-PE allows for a mismatch between the number of
samples for the arm ¢ under evaluation and the reference arm ¢. The details of asymmetric-PE and
an example comparing performance to PE are available in Appendix
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Theorem 3.1 (Instance dependent upper bound on Cumulative Cost and Quality Regret for Pairwise
Elimination). For bandit instance v, over horizon T, the expected cumulative cost and quality regret
of the PE algorithm are upper bounded as

32log (TAZ , oy
E [Cost_Reg (T, v)] < <1+max M) Acy+ (Z A23> Ay

1aa 2 )
isa AQ,i i=1 T Qi
43
+ v max AC,1'~
AQ,a* i>a*

a*—1 2 a*—1

321og (TA2, . 43 43

E [Quality Reg (T, v)] < Z (AQ@ + gA(QQ)> + Z -+~ max At
i=1 " i a

Thus, PE achieves logarithmic expected cost and quality regret in 7. We call a* the best action since
it is the only action sampling which leads to accumulation of neither cost nor quality regret.

3.2 PE-CS AND FULL COST SUBSIDY SETTING

Algorithm 2: Pairwise Elimination for Cost Subsidy Problem (PE-CS).

Inputs: Bandit Instance v, Horizon 7', Subsidy Factor .
Initialize: Samples n; = 0, Empirical Means fi, = 0, Current Rounds wy, = 0, Vk € [K],
BAI Candidates (Active Arms) A = [K], Arm £ = None, PE Episode i = 1.

v < reorder_per_cost(v) // reorder indices into ascending cost
order

while t < T do

if len(A) > 1 then

ki,w, A<+ BAI(f1,n,T,w, A) // receive arm to be sampled,
updated round numbers, and updated active arms

if len(A) = 1 then
£ <+ A[0] // set ¢ to be identified best arm
continue // ignore sample recommendation ky

elseif i ¢ {None, {} then
ki,w,i+ PE(f1,4,n,T,w,i,«) // receive arm to be sampled,
updated round numbers, and updated episode number

el;e
L ke < ki1 // sample winning arm for remaining budget
a(t+1),n(t +1),t < sample_and_update(k, f1(t), n(t), t)

When solving the MAB-CS problem in the full cost subsidy setting we face the additional challenge
that the arm whose (1 — «) subsidized reward we must calibrate against is unidentified. To solve
this problem, we present the novel PE-CS algorithm that comprises two stages, the BAI stage and
the PE stage. Importantly, information about the highest number of samples reached in each stage
is shared through the vector w. This information sharing allows for maximal sample re-usage and
prevents idle elimination checks.

To solve the full cost-subsidy setting using our Pairwise-Elimination style approach, we must first
identify the optimal arm ¢*. We achieve this using a BAI stage also implemented using Improved
UCB and is specified in Function [2]in Appendix [A] The difference between our BAI() method and
Improved-UCB is that BAI() has no exploit phase. Under BAI() once the set of active arms collapses
to a single arm, sampling decisions are passed over to the PE stage. In passing over control from the
BAI stage to the PE stage in PE-CS, a key role is played by the w vector. Used in both Algorithms
and?] omega is responsible for tracking the point up to which any bandit arm has been sampled
at any point in time. Once the time comes for passing over control from BAI to PE, the PE stage
is able to pick up sampling and elimination checks in any of its pairwise comparison episodes right
where the BAI stage left-off sampling.
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The PE stage in the PE-CS algorithm works identically to the PE algorithm described in Algorithm
In fact, due to the modular and phased nature of PE-CS in the description of PE-CS in Algorithm
[2) we use precisely the same function block for PE (Function [2). For the PE-CS algorithm, there is
all the more reason to work to make best use of the accumulated samples of the reference arm since
not only does the accumulation occur in the various episodes of the PE-stage, but also it occurs in
the BAI-stage where the reference arm is by construction the last surviving and therefore the most
sampled arm.

We analyze the performance of PE-CS and prove upper bounds on its expected cumulative cost
and quality regret in Theorem [3.2] Our modular analysis allows us to sequester the outcomes of
the BAI stage where best arm is identified incorrectly and condition on the event that the identified
arm is indeed correct. The contribution to expected cumulative cost and quality regret from an
incorrect identification of arm ¢* is shown to be a constant. Moreover, conditioned on ¢* being
identified correctly, we are able to analyze the PE stage of PE-CS in a manner that closely parallels
the analysis of PE.

Theorem 3.2 (Instance dependent upper bound on Cumulative Cost and Quality Regret for PE-CS).

32log (TAZ,, 32log (T'A?)
E [Cost Reg (T.v)] < Acs (1 ¥ {AD LY A <1 p LS

min i>a* 77;#2'*

N2
Amln i 7 i>ar

a*—1
43 32 43
s (S (i)

11 32 32 43
+ Ac,max -+ Z p + max ACl <Ag* =+ A2*>

i=1 T Q1

= 32log (TAY ) 32log (TA?)
E [Quality Reg (T, v) Z (AQi T + Z A+,i 14+ T

i=1 i>a* iti*

11 32 32 43
+
+ Aman | Taz— + 2 Taz | FmaxAg, (A tAz )

min i 7 Q,a*
a*—1
43
+
; AQi

=0 (K +a")log(T).
Where a* is the index of the best action and i* > a* is the index of the best arm. Apin =
min {{A,;}#i* AAQ i} <0 } is the smallest gap in reward that PE-CS has to contend with.

As with Theorem[3.1] we see that both the expected cost and quality regret are bounded by a quantity
logarithmic in T'.

4 EXPERIMENTS

While in Section |3| we presented the PE and PE-CS algorithms to be the ideal choice for the MAB-
CS setting with known and unknown reference arms respectively, the validation for our approach
so far has been based exclusively on theoretical upper bounds on cumulative expected cost and
quality regret. In this section, we complement our theoretical analysis with a study of the empirical
performance of our methods. In particular, we compare PE and PE-CS with baselines from [Sinha
et al.|(2021) on a problem instance derived from a real-world dataset. The real-world dataset we use
is the MovieLens 25M dataset (Harper & Konstan, 2015). Next we describe how we make use of
this dataset for our experiments.

The MovieLens 25M dataset consists of 25 million ratings for 62,000 movies rated by 162,000 users.
It is a popular dataset for studying the performance of recommendation systems. The movie ratings
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Figure 1: Fixed ¢ MovieLens Experiment. In the experiment: ¢ = 11, up = 0.703, ucs = 0.668.

in the dataset are from numerous users and on a 5 point scale. Moreover, every movie for which
ratings are available in the dataset are tagged with one or more genres. Our MovieLens experi-
ment simulates a scenario where a movie streaming website such as Netflix attempts to recommend
movies to its users. The available movie selection is organized into genres and the movie streaming
website deploys a recommendation system to decide which genre of movie should be served to its
user. Whenever a genre is chosen by the recommendation system, a random movie tagged with that
genre is drawn with replacement. Under these conditions, bandit arms become a natural abstraction
for movie genres. The cost associated with pulling the arm corresponding to a certain genre is sim-
ply the average of the royalties that must be paid to the movie producer for every new streaming of a
movie. Since royalty data is unavailable as part of MovieLens 25M, we sample the costs associated
with sampling any bandit arm (genre) to lie uniformly at random between O and 1.

For every genre we first obtain the mean 5-point scale rating of all movies tagged with that genre
and then divide this rating by 5 so that it lies between 0 and 1. We then treat this fractional rating as
the expected reward return from that genre. Through this process we end up with a bandit instance
consisting of 20 arms corresponding to the 20 distinct genres the details of which are available in
Table[T] In all the experiments discussed in Section ] we plot the summed together values of the
cost regret and the quality regret. Looking at the summed regret allows us to view the performance
of our method as a whole. The only way for an algorithm to perform well on summed regret is if it
locks on satisfactorily to the best action a*.

Number of Arms | Reward Spread | Cost Spread | Subsidy Factor o
20 0.659 - 0.785 0.02 - 0.964 0.05

Table 1: Information about the MovieLens Bandit Instance

4.1 EVALUATING OUR PAIRWISE ELIMINATION (PE) ALGORITHM

To understand the effectiveness of PE empirically, we compare PE to a natural variant of the UCB-
CS algorithm from [Sinha et al.| (2021). In the specification of UCB-CS (Algorithm [IT] defined in
Appendix , the target reference arm (whose reward determines pics) is the optimal arm ¢*. UCB-
CS estimates the index of arm ¢* as the arm with the largest UCB-index in any time-slot. To develop
a comparison with PE for the known reference arm £ setting, we simply replace this estimate with
the true known fixed index of the reference arm while keeping the rest of the Algorithm the same.
We call this variant of UCB-CS as UCB-CS Known ¢ and compare it to PE on the MovieLens Bandit
Instance described earlier.

In Figure |1I| we plot the performance of our novel PE algorithm and compare it against UCB-CS
Known /. Since there is no notion of a reference arm inherent to the MovieLens dataset, we arrange
the 20 arms in the MovieLens bandit instance in ascending cost order and assign the 11th arm in
the sequence to be the reference arm. To achieve sub-linear summed regret, an algorithm must
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Figure 2: Unknown ¢* MovieLens Experiment. In the experiment: p* = 0.785, pcs = 0.746.

primarily sample the best action and sample the other actions at most a sub-linear in horizon T'
number of times. Through the results of Figure |I| we find that while PE, through its cost-ordered
arm-elimination scheme achieves this goal, UCB-CS known-/ is unsuccessful at it.

From the results in Section [4.T] we see that an interleaved exploration and exploitation approach
such as UCB-CS known ¢ does not work for the known ¢ setting. Next in Section[4.2] we go into the
experiments for PE-CS in the full cost-subsidy setting.

4.2 EVALUATING OUR PE-CS (PAIRWISE ELIMINATION COST SUBSIDY) ALGORITHM

In Section [3] we saw that PE-CS admitted logarithmic instance dependent guarantees on expected
cumulative cost and quality regret. The only algorithm for the full cost-subsidy problem from the
literature that has an upper bound guarantee on expected cumulative regret is the ETC-CS algorithm
from |Sinha et al.[|(2021). Moreover their work also prescribes the UCB-CS and TS-CS algorithms
which are approaches to solving the full cost subsidy problem that interleave exploration and ex-
ploitation that lack any performance guarantees. The three algorithms ETC-CS, UCB-CS, and TS-
CS comprise all the algorithms from the literature and are specified in Appendix [A] We compare
PE-CS against all three of these approaches on the MovieLens bandit instance of Table|I]

In Figure E] we have simulated PE-CS, UCB-CS, TS-CS, and ETC-CS on the MovieLens bandit
instance for a horizon of 5 Million samples and we plot the summed cost and quality regret for an
average over the 100 independent runs on the left, and the worst performing case among the 100 runs
for each of the algorithm on the right. Here the notion of worst is in terms of the summed terminal
regret. We find that PE-CS significantly outperforms ETC-CS which is the only other algorithm with
an upper bound on regret. As the only other algorithm with a guarantee on summed regret, ETC-CS
is our primary competitor. As mentioned earlier ETC-CS has O (TQ/ 3) guarantee on summed cost
plus quality regret while PE-CS has a O (log T'). We see this difference reflected in the performance
results of Figure

Moreover PE-CS also outperforms the UCB-CS baseline and the latter algorithm has a linear regret
trend arising from a persistent mis-identification of the best action. Although we find that the average
of the regret over the 100 independent runs for TS-CS is lower than PE-CS, a closer examination
of the regret trend reveals the problem with the performance of TS-CS. While initially it takes PE-
CS more exploration to lock onto the best action, it does so in a consistent and reliable way and
once it does, there is no further incremental regret. This is seen from both the average and worst-
case regret trends in Figure [2] and from our upper bounds in Theorem [3.2] Whereas for TS-CS,
while interleaving exploration and exploitation leads to lower regret at the outset, there is a distinct
slow-but steady upward trend in regret observed for the method. The worst case summed regret
trend reveals that a consistent failure to identify and exploit the best-action occurs for the worst
performing case of TS-CS exhibiting its unreliability. The worst and other similar traces of TS-CS
contributing linear regret disproportionately contribute to the upward regret trend for TS-CS.
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Toy Experiment
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Figure 3: Toy Experiment performed using a family of four armed bandit instances. Expected
rewards: 1 = 0.6,...,0.93, uo = 0.81, u3 = 0.95, ug = 0.8, and costs: ¢; = 0.05,co = 0.9,¢c3 =
0.9, cq4 = 1.0, subsidy factor: o = 0.2.

A close examination of the Algorithm descriptions for UCB-CS and TS-CS reveals the source of
their unreliability that we see in Figure Both these algorithms work by constructing a set of
empirically satisfactory arms and choose to sample the cheapest arm in this empirical set. This
approach is vulnerable to a satisfactory arm being consistently excluded as a result of an initially
poor performance. In our PE-CS on the other hand there is a systematic comparison between the
arms where they are evaluated in the order of their costs and eliminated only when they have been
sampled to be excluded with sufficient confidence.

To take a closer look at the sensitivity of PE-CS and all three baselines, we perform an additional
synthetic experiment in the known reference arm setting which we call the toy experiment. For the
toy experiment, we create a family of 12 full cost subsidy problem instances each with four arms.
Then we run all four algorithms over 50 independent runs of each instance. The expected reward of
the first arm in the instance varies uniformly in the range 0.6 through 0.93 over the 12 instances in
the family. Since the optimal return in all instances is p* = 0.95 and the subsidy factor is o = 0.2,
the reward threshold pics for all the instances is 0.8 x 0.95 = 0.76.

In Figure 3| we plot the results from the toy experiment on a scatter plot. On the y-axis is the summed
terminal cost and quality regret (in log scale) and on the x-axis is the value of the varying expected
return of the first arm of the instance family. Firstly, we find that on almost all instances, PE-CS
performs either similar to or better than our primary comparator ETC-CS. Among the 12 instances
tested here, the ones where the return of an arm is close to pcs = 0.76 are the most challenging. We
find that most runs of UCB-CS and several runs of TS-CS are unsuccessful at satisfactorily solving
the 111 = 0.78 case. Moreover, from Figures [2 and [3] we conclude that among the four algorithms
tested here, PE-CS arguably offers the best balance between performance and reliability.
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A APPENDIX ALGORITHMS

In this section of the Appendix. We provide a precise specification of algorithms from prior work
that we compare our methods against. In particular these are the ETC-CS, TS-CS, and UCB-CS
Algorithms introduced by [Sinha et al| (2021) and specified in Algorithms [12] [I3] [TT] respectively.
For the upper bound on Regret Guarantee provided in |Sinha et al.| (2021) to hold, we require the

2
exploration budget 7 to satisfy 7 = ¢ (%) ® where c is some unspecified proportionality constant.

Based on a few trial runs and examples we pick ¢ = 5 since in the average case, the above seemed
to give the best performance overall for the ETC-CS approach.

Algorithm 3: Cost-Subsidized Explore-Then-Commit (ETC-CS)
Inputs: Bandit instance v, Cost Vector ¢, Horizon T', Exploration Budget 7.

Initialize: Empirical means fix, = 0, Number of Samples ny, = 0, Vk € [K].
1 whilet < K7 do

p—
e

2 ki <t mod K
3 | p(t+1),n(t+1),t < sample_and_update(ky, f1(t), n(t),1)
4 while K7 < t < Tdo
5 fori e |
6 Bi(t) +
7 M?CB < min {MZ( )+ Bi(t), 1}
8 i < max {fu;(t ) Bi(t), 0}
9 0y + argmax;e (k) 1B (t)

Feas(t) < {i: pYB(t) > (1 - a) LCB(t)}

k¢ + arg manEFeas(t) Ci

| a(t+1),n(t+1),t < sample_and_update(k;, f1(t), n(t),1)

i
[ 5]

Algorithm 4: Cost-Subsidized Thompson Sampling with Beta Priors (TS-CS)

Inputs: Bandit Instance v, Cost Vector ¢, Subsidy Factor «, Beta Priors and Binomial
Likelihood (Bernoulli Rewards).

Initialize: Successes Sj = 0, Failures Fj, = 0 Vk € [K].

while t < K do

kt —t

ry < sample (k)

Skt (t + 1) — Skt (t) + 7y

t+—t+1

while K < ¢ < T do
fori € [K] do

1
2
3
4
5 Fr,(t+1) < Fy,(t) + ¢
6
7
8
9

L 0;(t) ~ Beta (S;(¢t) + 1, F;(t) + 1)
l; < arg maxze K] 0;(t)
Feas(t) < {i: 0;(¢t) > (1 — )b, (¢)}
k¢ < arg minieFeas(t) Ci
ry < sample (k)
Skt (t + 1) — Skt (t) + 7y
Fr, (t +1) < Fy, () + (1 —7¢)

We also provide here the specification of the BAI stage of the PE-CS algorithm introduced in Section

Bl
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Algorithm 5: Cost-Subsidized UCB (UCB-CS)

Inputs: Bandit Instance v, Cost Vector ¢, Horizon 7', Subsidy factor «.
Initialize: Empirical means ji, = 0, Number of Samples n, =0 Vk € [K].
while ¢t < K do
kit

| a(t+1),n(t+1),t < sample_and_update(k;, f1(t), n(t),1)
while K <t <T do
fori € [K]do

Bi(t) ¢ /28T

(1 ® = min {f1;(t) + (1), 1}

ly < argmax;e(x) py 5 (1)
Feas(t)  {i € [K]: p/® > (1 —a) x P}
ki < arg minieFeas(t) Ci

p(t+1),n(t+1),t < sample_and_update(ky, fi(t), n(t),1)

Function 2: Best Arm Identification BAI()

Function BAI( ji: Empirical Means, n: Sample Vector, T: Horizon, w: Round Numbers, A:
Active Arms ):
A ¢ 9 —maXie[K] Wi

- [

A2
for k € Ado
if ni < 7 then
Lreturn k,w, A // next arm to be sampled, unchanged w and A

ﬂ - log(;;AQ)
fori € Ado

R R TR N T
AT+ {ie A: pY® > maxjeq ujL.CB} // update set of active arms
ky < Uniform (AT) // tentatively, the next arm to be sampled
fori € AT do

Lwy; —w; +1 // increment round number for still active arms

return k;, w, AT

B ASYMMETRIC PAIRWISE ELIMINATION

Algorithms [1] and 2] as described in Section 3| use Function [1] PE() as a sub-routine. While in PE()
the round number w; is used to determine the stipulated number of samples for both the candidate
arm 7 and the reference arm ¢, this does not have to be the case. By the time we commence episode
i to evaluate the candidacy of arm ¢, we would have already accrued numerous samples of arm ¢.
In particular, we denote the number of samples of arm ¢ as ny(t) = 7,,,, where the vector w, first
introduced in Section |3} is a vector recording highest round up to which the samples of each arm
have evolved. Consequently, wy is the highest round number reached for the samples of reference
arm /.

Based on this observation about the greater progressed round number w, we create a variant of PE
called Asymmetric-PE in Function [3] that replaces Function[I]in Algorithm I]

Asymmetric-PE described in Function [3] has all the same inputs that conventional PE did. In addi-
tion, it has an input « called the Maximum round deviation. While we have no bound on how much

13
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Figure 4: An experiment that illustrates potential savings in regret from the asymmetric-pe opti-
mization. Bandit instance with Expected rewards: pq = 0.74, o = 0.5, u3 = 0.8, ug = 0.75, and
costs: ¢; = 0.15,¢c5 = 0.2, ¢c3 = 0.21, ¢4 = 0.25, subsidy factor: o = 0.0, £ = 3.

Function 3: Asymmetric Pairwise Elimination Function Asymmetric_PE()

Function Asymmetric_PE( ji: Empirical Means, {: Reference Arm, n: Sample Vector, T':
Horizon, w: Round Numbers, i: Episode, o: Subsidy Factor, k: Max Round Deviation ):
for k € {i,¢} do

Ak’ «— 92— max{w;+k,wk }

2log(TA?)
e 2R
if ne < Tk then
return k, w, % // ks =k, round numbers w and episode %

L unchanged

[log(TAZ2)
L B+ 27

it (1—a)(ju+ Be) < jii — B, then

return ¢, w, None // Declare ¢ as winner, further episodes are
L None
elseif ji; + 5; < (1 — ) (fie — B¢) then

returni + 1, w,i + 1 // Sample next candidate arm, Rounds w
| unchanged, Update episode to that of next candidate arm
else

w; < w;+1 // Increment round only for arm ¢ being evaluated

return ¢, w, ¢ // Move to next round within same episode

larger wy is compared to w;, when it comes to inferring the gap Ay corresponding to arm ¢ in Line 2
of Function 3| we restrict the round number we use to be at most « larger than the round w;.

Effectively, the use of the further advanced round number w, trades performance for tightness of the
upper bound (as we shall see in the analysis of Section [E)). We get an improvement in performance
since 3 < f3; potentially leading to a resolution in lines 7 or 9 of Function[3| with a smaller value of
B; thereby requiring fewer samples of candidate arm .

14
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C PRELIMINARIES

In this section of the appendix, we collate the preliminary results required for the analysis of our cost-
subsidy framework algorithms that follow in the forthcoming sections. The results stated without
proof are standard results from the MAB literature.

Definition C.1 (Subgaussian Random Variable). We say that X is o-subgaussian if for any € > 0,

202
Lemma C.1 (Bounded random variables are Subgaussian, Example 5.6(c) in |Lattimore &
Szepesviri (2020)). If Random Variable X € [a,b] almost surely, then X is b_T“ subgaussian.
Lemma C.2 (Hoeffding Bound, Section 5.4 in [Lattimore & Szepesvari (2020)). Let

Pr(X —E[X] >¢€) <exp <_€2) 4

X1,Xs,...,X, be n independent random variables, each bounded within the interval [a,b] :
a < X; <b. The empirical mean of these variables is given by,
1
X=2 ; X,. 5)
Then Hoeffding’s inequality states that,
_ 2nt?

Lemma C.3 (Iterated expectation over mutually exclusive and exhaustive events). Let X be any in-
tegrable random variable over probability space (Q, F,Pr), and let { E;}._, be a collection of mu-
tually exclusive and exhaustive measurable events. Thatis | J;_, E; = Qand E; N E; = ¢, Vi,j €
[n],i # j. Then the following identity holds,

n
E[X]:Z]E[X|Ei}Pr(Ei)- @)
i=1
As a special case if the events are just some I and its complement E°, then,

E[X]=E[X | E|Pr(E)+E[X | E]|Pr(E°). (8)

Proof. Define a sub o-algebra of F, G = {¢, E1, Es, ..., E,,Q}. Then,

E[X]=E[E[X | G]] (Because G C F) )
=> E[X|E|Pr(E;). (10)

i=1
O

Lemma C.4 (Expectation is at most equal to larger of the conditioned expectations). Let X be
any integrable random variable over probability space (0, F,Pr), and let { E;}"_, be a collection
of mutually exclusive and exhaustive measurable events. That is |J;_, E; = Q and E; N E; =
¢, Vi,j € [nl,i+#j. Then,

E[X] < max{E[X | E]}. (11

i€[n]

Proof. Lemma [C.4]can be considered a Corollary to Lemma [C.3]as is illustrated by the following
proof,

E[X] = ZE (X | E;] Pr (E;) (From the proof of Lemma[C.3). (12)
i=1
< (; Pr (E») : (gg%g]c {EX | Ei]}) (13)

=max{E[X | E;]}. (14)

1€[n]

O

15
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Lemma C.5 (Regret Decomposition Lemma, Lemma 4.5 in [Lattimore & Szepesvari| (2020)). For
any policy w and stochastic bandit environment v with K arms, for horizon T, the Expected Cumu-
lative Regret Reg.. (T, v) of policy 7 in v satisfies,
E[Reg, (T,v)] = > AE[ni(T)]. (15)
i€[K]
This result may be trivially generalized to other notions of regret where the gap determining the

incremental regret due to arm i is some arbitrary Ax ;. In this case, the regret decomposition shall
be,

E [RegTr (T,v) Z Ax ;En,(T)]. (16)
i€[K]

In particular in our problem we have Cost and Quality regret which are,

E [Cost_Reg(T, v)] Z AciEn; (T)] a7
i€[K]

E [Quality Reg(T, v)) Z A (7). (18)
i€[K]
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D ANALYSIS FOR MINIMUM TOLERATED REWARD SETTING

Algorithm 1: MINIMUM TOLERATED REWARD (MTR) UCB

Input: Number of arms K, Known costs ¢ for each arm k € [K], Minimum Tolerated Reward
Ho-
Initialize: Empirical Means ji;, = 0, Pulls of arm & : ny, = 0, Vk € [K], Time step ¢t = 0.
for Each Round t do
if t < K then
L kt — 1
else
Oy {k Fin(t) + % > uo}
if C; # ¢ then
| k¢ < argmingec, ¢

else
| k¢ = Uniform(K)

X, (t) < Ber(u, )

N L (t—Dng, (t—1)+Xg, (¢
ik, (t) Ay ( n)ktk(t( 1)_21 Ky (1)
nkt( ) <—nkt(t—1)—|—1
t—t+1

D.1 GUARANTEES FOR MTR-UCB

Combining the results from the previous two subsections and the formula for Quality and Cost
regrets the upper bound for Algorithm [I] is stated in Theorem

Theorem D.1 (Overall Regret Upper Bound for MTR-UCB).

Quality Reg (n, ¢, ji0) = > E[Ty(n)] A + Y~ E[T;(n)] Af (19)
ieC— jeCc+
8logn 72 N
<D At (1 + 3> > A (20)
ieC— ¢ JEIK],j#i*
CostReg (n, ¢, p0) = »  E[T;(n)] AS 2n
ject

(22)

IA
7 N
w| 3,
N———

>

9]

D.1.1 ANALYSIS FOR MTR-UCB

Under this setting, the quality gaps are defined as the O-clipped version of the gap between the
known minimum tolerated reward pucs = po and the expected return of an arm j : Ag- =
max {0, ues — 45}

For a policy 7, we have, Cumulative Regret,

T

Quality Reg (T, ¢, o) Zmax Ho — Mﬂr70)] (23)
T

Cost Reg (T, ¢, j1o) = E Zmax Cr, — Ci ,0)] (24)

(25)

17
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For a policy 7, we have, Incremental Regret,

Quality Reg™ (t, ¢, j10) = Ex [max {po — jix,, 0}] (26)
Cost_Reg™ (t, b, t1o) = By [max {cg, — i+, 0}] (27)
Also define gaps,
A = max {po — pi, 0} (28)
AY = max {¢; — ¢;+,0} (29)

Note from 10/25: A key takeaway from the adivising meeting today was that the uncertainty of
the decision making of a policy can be in the construction of the filtered set of arms or in the final
decision taken about arm k; (either or, or both).

Moreover, under the sorted costs structure, for a Bandit Instance ¢ (s, ¢), we have,

Quality Reg (n, ¢, po) = Z )] AF + Z )] A% (30)
=1 Jj=t*+1
K
Cost_Reg (n, ¢, po) = Z E[T, 3D
Jj=t*+1
To bound quality regret,

1. n;(T) and T;(n) are used interchangeably to represent the number of pulls of arm ¢ up to a
horizon

2. Bound Pr (k € [i* — 1] entering Cy). This is enough since the contribution from the be-
yond ¢* arms will be a constant term as we shall see soon.

3. Pr(fu(t) + /2% 2 o)

4. Where, 1o > fu;, pto — p; = Al

Pr <{ﬂk<t) + %(gt; > m}) (32)

21
Pr({,&k(t)+ %ﬁ; zm+A§‘}> (33)

R o b 2logt

To deal with the R.V. / ilo(%)f (nk(t) in denominator), we do the sum/max/min trick in the original

UCB proof in the Auer et al. paper.

Goal: Bound the probability of the event,

> Ho, (35)

using the Auer et al. paper tricks.

18
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Leti € [i* — 1] be any arm with A% > 0, then,

T(n) =1+ Y T{k =i} (36)
t=K+1
<O+ Y Mk =imi(t—1)> ¢} (37)
t=K+1
" . 2log(t — 1)
<(+ IS it — 1) 4+ 4| —=——=> > po,ni(t — 1) > £ 38
t:;l {M( ) nk(t—l) MOTL( ) } ( )

At this point we do not have precise knowledge of the number of pulls 72;(t — 1), so we just sum

over all the possibilities and modify the indexing t' = t—1. Moreover, we update the notation [i;(s)
to represent the mean return for arm ¢ over s samples.

oo t—1

Ti(n>§€+ZZH{m<s)+ 2logt z;m} (39)

t=1 s=/

fii + ) 2B >y = ﬂi(t)*uiZA?*\/@~

Applying Lemma [C.2]to equation 39 we get,

2
Pr (ﬂi(s>mzAé‘ 21°gt>3exp 25 (Ai»‘\/gbgt> (40)
S S
gexp<—2s ((Af)Q—l—QlOgt—QAf /210gt>) @n
S S

< exp (—25 (—4logt +AAM /25 1og t)) 42)
exp (4Al'\/2slogt)

= 2 43)

* We want to make the thing inside exp(—2s(+)) smaller for upper bound.

e Make \/@ term largest =—> plugin s = Hi\f}gﬂ-‘

Refine the steps from Friday 10/27:

(a) Bound on E [T;(n)] fori < ¢*
(b) Bound on E [T}(n)] for j > i*

D.1.2 BOUND ON (A)

For i < i*, we have A" > 0.

Ti(n) =1+ Y I{k, =i} (44)
K+1
<O+ Ik =i, Ty(t—1) > £} (45)
K+1
ge+2ﬂ{m(t1>+ %ZMO,Ti(tUZé}- (46)
K+1 v
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Here the number of pulls s at time ¢ is implicit in the notation. In the next step when we sum over
it, we make it explicit.
Since there is no precise knowledge of the number of pulls T;(n), we resort to summing over all

possibilities and for convenience, we change the indexing of time to be t =t — 1, and take the sum
to oo.

> =1 ) 2logt
<D T Als) + [ = o g 47)

t=1 s=¢

From previous notes, eventually, on applying Lemma[C.2 we get,

Pr (ﬂi(s) —p > A — 21§gt> (48)
< s (- (1201 2280 onpy [280) )
(50

Plugin s = ?i"f)z for the red s, and leave the remaining s untouched to work towards the bound.

Key steps from the analysis from the morning session are recapped for continuity,

Ti(n) =1+ > T{k =i} (51)
K+1
- ) 2log(t — 1)
</ I a(t—1 — 2 > o, Ti(t—1)> ¢ 52
</l+ Z {u( )+ Ti(t=1) > o, Ti( ) } (52)
t=K+1
n—1t—1 210gt
se+ZZH{m<t>+ ., ZMO} (53)
t=1 s;=~
Take expectations on both sides,
n—1t—1 210gt
E[T; </ Pr| jii(t) — pg > A — 54
[Ti(n)] < +;§r<u() pi > Al Si) (54)

Applying Hoeffding Inequality, we have,

2
Pr (# — > Al - 210‘”) <exp [ —2s; <A$ - 210“) (55)
S; S;
21 21
exp <—25i ((Af)2 + %gt —2A# ;)g?f)) (56)
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Plugging into Expected number of pulls expression,

g 2logt 2logt
E[T;(n)] < £ —2s; A2 —oAK, [ T2
COEES 3 o N )

t=1 s;,=/¢
(57)
We pick £ = 810& as usual (58)
P @ '
<€+§§exp —4logt + 2s;(A})? log? -1
a t=1 s;=¢ Y logn
(59)
since t < n, we have, (60)
8logn e
E[T(n)] < ﬁ +14 33 exp(—4logt) 1)
i t=1 s;=0
8logn =1
< —_ 41 — 62
<t +;t3 (62)
8logn 2
< 1+ — 63
= an? +1+ 5 (63)

D.1.3 BOUND FOR TERM (B)

Initial Attempt on 10/30/23 corrections added on 11/3/23.
Further notational corrections added on 11/15/23.

Bound E [T}j(n)] for arms j > i*, define, o = p;« — pio, 6o > 0, and note that A%, =0
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n
Tj(n) <1+ Y I{k =} (64)
t=K+1
Just as a note and an aside, these arms j can satisfy, u; — o > 0 or pi; — p19 < 0. (65)
The former incurs no quality regret but the latter does. (66)

<1+ Z I{i* ¢ C¢} otherwise arm ¢* would have been pulled and not arm j

t=K+1
(67)
- . 2log(t — 1)
<1 I< Q= (t—1 _— 68
LD {u( )\ =1y < Ho (68)
t=K+1
= 2log(t — 1)
=1 IQ fige(t—1) — e < —0g — 4| ————= 69
+Z{u( )= e <=y [ (69)
t=K+1
Since no direct handle on s is available, we sum over all its possible values (70)
Also NB: We update the notation i;(s) to represent (71)
the mean return for arm ¢ over s samples. (72)
n t—1
. 2log(t —1)
Tj(n) <1+ Z ZH {Mz’*(s) — pix < —0p — — . (73)
t=K+1 s=1
Taking expectations, and perform a shift of 1 in time-indexing, we have, (74)
n—1t—1
) 2log(t — 1)
E[T;(n)] <1+ ; Z_;Pr (Mz’*(s) = e < =0 = \[ T —— (75)
> A 2logt
SO (76)
t=1 s=1 s
oo t—1 1
SRR )
t=1 s=1
2
<1+ 7 (78)
6
D.1.4 FINAL UPPER BOUND ANALYSIS
MAB instance: ¢ (u, c)
For this instance, without loss of generality, we assume,
c=lci,c0,. .., CK] (79)
w=[p1,p2,- ., K], where, (80)
c1<ca<e3 <. Scro1 S6r Serg1 S Scek (81)

In the MAB-CS with minimum tolerated reward setting, the optimal arm ¢* is the least cost arm that
has expected reward more than . We also define C* to be set of feasible arms per the following,

C* =A{k: pr > po, k € [K]} (82)
1* = arg min ¢;. (83)
ieC*

We assume C* is non-empty, i.e. at least one arm has expected return higher than the minimum-
tolerated-reward .
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Further, for the analysis, define,

C™ =A{k:cp <,k €[K]}
Ct={k:cp>ci,ke[K]}

Quality Reg (n, ¢, po) = Z E [T;(n)] A + Z E [T;(n)] A?

ieC— ject

Cost_Reg (n, ¢, ig) = Z E[T;(n)] Aj
jec+

D.1.5 BOUND ON THE EXPECTED NUMBER OF PULLS OF HIGH COST ARMS

(84)
(85)

(86)

87)

* Anarm j € C" contributes to Quality Regret if p1; < pg, otherwise A? = 0 and there is

no contribution

e Anarm j € CT always contributes to Cost Regret

Lm<1+ S Tk =)

t=K+1

<1+ Y Hk=4Ci#¢}+ Y. I{k =jCi =0}
t=K+1 t=K+1

<1+ Y I{it¢Cl+ > I{i" ¢ Ci}
t=K+1 t=K+1

<1+2 z": H{ﬂi*(qu*(t—l))+ 2log(tl)<u0}

Mo T (t—1)

n R 2log(t — 1
=1+2 ) ]I{,Ui*(Tz’*(tl))ﬂi*<,uO,ui* T(i_l))}
t=K+1 "
n t—1
. 2log(t—1
<1+2 Z ZH{M*(S)—M*<M0—M*— (S)}
t=K+1 s=1

Taking expectations, and perform a shift of 1 in time-indexing, we have,

co t
. 2logt
]E[Tj(”)]<1+2ZZP1"<M*(S)—/M*<No—/ii*— < >

t=1 s=1 s

> & 2logt
<1+2ZZexp<—25 . >
t=1 s=1
o t 1
:HQZZ?

t=1 s=1

2
<1+

3
Therefore, the expected number of pulls of a high-cost arm under MTR-UCB is given by,
2

E[L;(m)] <1+ 5
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O

92)
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D.1.6 BOUND ON THE PULLS OF LOW-COST UNSATISFACTORY ARMS

* Anarm i € C~ always contributes to Quality Regret and does not contribute to cost regret

Tin) =1+ Y Ik =i,Ci# ¢} + Y T{k =i,Cr = ¢} (99)
t=K+1 t=K+1
=14+ Y Hk=i,Ci#¢t+ > I{i*¢Cy} (100)
t=K+1 t=K+1
=0+ Z I{k; =i,Cy # ¢, Ts(t — 1) > {} + Z 1{i* ¢ Cy} (101)
t=K+1 t=K+1
" 2log(t — 1) < "
=7+ Z I MZ(T(t—l))-i- mZﬂo,Ti(t—l)Zg + Z H{Z %Ct}
t=K+1 E t=K+1
(102)
[e'e] t
guZZH{m(s)ﬂ/legt }+ZH{Z ¢ ) (103)
t=1 s=¢

Taking expectations on both sides, we have,

n)]§£+ZZPr<ﬂi(si)m2Aé‘wmogt> ZPr ¢C) (104

t=1s,=¢L

Applying Hoeffding Inequality, we have,

2
2logt 2logt
Pr (ﬂz — i > Al — ()g) <exp | —2s; (Ai‘ — og) (105)

54 54

< exp (—2&- ((AW ; 2ot _ 2Af~/2logt>> (106)
S S

Plugging in the bound in [I06| and recognizing that we have already bounded the term
S, Pr(i* ¢ Cy) inthe prev10us subsection when we bounded the number of pulls of a high-cost

arm, we have,
21 21 2
<€+ZZexp( 2&( i (Af)Q—zAg,/Ogt>>+2 (107)
Si Si

t=1s;,=¢

We pick £ = [ log )Z—‘ as in the proof technique in |Auer et al.[(2002)

> <& logt 2
< _ (AP)2 _ .
n) <f+ E E exp ( 4logt + 2s;(A]) ( log 1)) + 5 (108)

t=1 s;=¢(
since ¢t < n , we have, (109)
810gn n—1t—1
E[T;(n)] < (Af‘) Z Z exp (—4logt) + 6 (110)
? t=1 s;=¢
8logn 1 2
S(M)2“+Zf3+€ (111)
i =1
8logn w2
< (A’,‘)2+1+§ (112)
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Therefore, the expected number of pulls of a low-cost (necessarily unsatisfactory) arm under MTR-
UCB is given by,

8logn 2

A ity (113)

E[Ti(n)] <
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E ANALYSIS FOR PE IN THE KNOWN REFERENCE ARM SETTING

In this Section we build up to the proof of Theorem by upper bounding the expected number
of samples of low-cost unsatisfactory arms, the reference arm ¢, and of high-cost arms under the
Asymmetric-PE setting with maximum round-deviation x. We then particularize these results to the
= 0 case corresponding to conventional PE to obtain an upper bound on the expected regret for
Algorithm [I|PE.

E.1 DEFINITIONS AND SETUP REQUIRED FOR ANALYSIS

As discussed in the main paper, the PE algorithm is inspired by the Improved-UCB successive
elimination approach where sampling of arms occurs in un-interrupted batches called rounds. In
Improved-UCB, a set of active arms is maintained and at the end of every round, arms in the active
set are re-tested for their candidacy using an elimination criteria. Since in Pairwise-Elimination,
we inherit the un-interrupted round based sampling scheme and elimination-criteria first used in
Improved-UCB, to prove Theorem [3.1] we build on the analysis from [Auer & Ortner (2010).

For i < a*, define round number p; to be,

~ ANRY
pi = min {wi | AL, < | 2Ql| } , (114)
Intuitively, p; is the PE round number during episode ¢ by which we expect to either identify low-
cost unsatisfactory arm 7 < a* as being unsuitable or identify the best action a* as being suitable.
Moreover from Function [3} we know that for any arm the required number of samples to be drawn
by round w; is given by,

2log (TAE,)

el oo | (115)

Table 2: Probabilistic Events Descriptions and Symbols for PE Analysis

Symbol Event Description

G1,, Vi <a* | Episode ¢ is executed to evaluate arm ¢

Ga,i, Vi < a* | Arm i is eliminated by arm ¢ by when round w; = p;, during episode %

G20+ Arm / is eliminated by arm a* by when w,« = pg~, during episode a*
G3,i, Vi <a* | Arm £ is not eliminated by arm 4 by when round w; = p; — 1, during
episode ¢
G3 0 Arm a* 1s not eliminated by arm ¢ by when round w,« = p,~ — 1, during
episode a*

E;, Vi <a* | Available samples ran out during episode 7 before the sampling for
round p; could conclude and before an arm could be eliminated

To lay the groundwork for the forthcoming analysis we introduce notation n; (¢1, t2) for the random
variable denoting the number of samples of arm ¢ accrued between time steps ¢1 and ¢5 both inclu-
sive. Further, we use ¢, to denote the final time-step in episode i. Thereby, the variable n,(1,t;)
denotes the number of samples of reference arm ¢ accrued by the end of episode i.

At the outset of our analysis, we define a large collection of probabilistic events needed for devel-
oping Theorem [3.1]'s intermediate results in Table 2] Each event in Table[2]is a subset of the sample
space (2 associated with a run of PE. In the descriptions of events in Table 2 when we say that
an elimination event occurs by a round, we are including the round being mentioned. For example:
“Arm ¢ is eliminated by round p;” means that the arm ¢ was eliminated in round w; such that w; < p;.

Remark E.1. In the event descriptions, whenever we refer to the reference arm £ available to the
algorithm, we are really referring to the action whose expected return is (1 — a) g, where « is the
subsidy factor.
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Arm ¢ not being eliminated by arm ¢ during round p; is covered by G'2 ;, hence the rounds range up
to p; — 1 in the definition of G3 ;. Unlike the episodes 7 < a* where the nominal outcome is for
the reference arm to win over the candidate arm, for episode a*, nominally the arm a* shall be the
winner and therefore the events Gz o+, G'3 o+ are defined separately to account for this reality.

Lastly, we define compound event GG; using events in Table[2] as,
G; = Gl,i N ((GQ’Z‘ M Ggﬁ‘) U El) . (116)

In English the event G;,7 < a* is the event that episode i occurs (event G ;) and that either an
accurate and timely elimination of one arm by another is made (event G5 ; N G3 ;), or we run out
of samples before a decision could be made and prior to the conclusion of round p; (event Ej).
Conditioning the samples n;(T") for PE on event GG; gives us the following key result,

Pr(ni(T) <1, | Gi) = 1. (117)

We leverage Equation in conjunction with Lemma |C.3| to prove Theorem To use this
procedure, we require Lemma [E.T] that partitions the probability space 2 into mutually exclusive
and exhaustive events including G;.

Lemma E.1 (Partition of 2 with G;). The events G;, B1,; = G ;, and B; = G1,;N (G§Z U Ggl) N
Ef are exhaustive and pairwise exclusive ¥ i < a*.

Proof. We can prove that the events stated in Lemma [E.T| are mutually exclusive and exhaustive by
showing that G = B; ; U B;. Since G; and G are exhaustive showing so will show that the three
events are exhaustive. Moreover, since G; and G are mutually exclusive, and since B; ; and B;
are mutually exclusive by construction, we would also have all the events being pairwise mutually
exclusive in addition to being exhaustive.

B1;UB; =G, U(G1;N (G5, UGs,) NEY) (118)

= (Gf,UG:) N (G, U ((G5,UGS,)NES)) (U distributes over N)  (119)

=G U ((G5, U Gs,) N EY) (120)

= G¢. (121)

Where Equation[I21]follows from the expression obtained using De Morgan’s laws for G using the
definition of G; in Equation O

BOUND SAMPLES FOR THE CASE i < a*

Lemma E.2 (Bound on the number of samples of a low-cost unsatisfactory arm under Pairwise-E-
limination). When the maximum round deviation k = 0, the expected number of samples of a
low-cost arm with index i < a™ over horizon T is upper bounded by,

32log (TAY ;) LB
2 2
AQi AQ.i

En,(T)] <1+

Proof. The expected number of pulls E [n; (T')] are bound by using the Iterated Expectation Lemma
and conditioning on the event collection G;, By ;, B; which are mutually exclusive and exhaus-
tive per Lemmal|E. 1

Eln (T)] =E[n; (T) | Gi] - Pr(Gi) + E[n; (T) | B1,i] - Pr(Bi,)

+E[n; (T) | Bi] - Pr(B;) (122)
<E[n(T)|Gi|+ T Pr(B) (123)
=E[n; (T) | Gi]+T -Pr(G1:N (G5, UG5,;) N Ef)  (B; from Lemmal[ET)

(124)
<En(T)| Gi]+T -Pr(Gi:n (G5, UGS,)) (125)
=E[n; (1) | Gi]+T-Pr((G1iNGs;) U (G1iNGS,)) (distributivity of M) (126)
<E[n;(T)| G|+ T -Pr(By;UBs;) (simplifying notation) (127)
=E[n; (T)| G| +T-(Pr(Ba;)+Pr(Bs;)) (using the union bound). (128)
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Where Equation follows from the fact that n; (7) | B1; = 0 since there can be no samples
of arm ¢ if episode ¢ never occurs, and we define G1,; N G5 ; and G1; N Gg,i as By ; and Bs ;
respectively for notational simplicity.

First we bound the number of samples of arm 4 conditioned on the good event GG;. Since during
episode 7 < a*, we either make the correct decision of eliminating arm ¢ by episode w; = p; as
captured by G2 ; N G'3 ;. Alternatively, under G; we run out of samples as captured by F;. In either
case we will not have more than 7,, samples of arm ¢, where 7, is given by,

2log(TA2
Tp, = gf”q . (129)
A2
Pi
By construction of the round p;, for all © < a*, we have,
1Al _ % 1Aqi
A, < 1
1 =B < 5 (130)
Plugging in the bounds in Equation {130}
32log (TAQ”)
Tp, < 5 (131)
AQ’Z.
321og(TAZ .
M. (132)
AQ’,L,
Therefore, we have,
32 log(TAQQ i)
En,(T) | Gi] < 1p, <1+ ——5——. (133)

Adi

Next we bound Pr (Bs;) and Pr (Bs ;) in order. Since By ; = G1,; N G5 ;, from the specification
of G5 ; and the fact that intersecting with G'1 ; puts us in the sub-space of {2 where episode ¢ occurs,
By Vi < a* is the event: “Arm ¢ is not eliminated by arm ¢ by when round w; = p;, during
episode ¢”. Similarly B3 ; Vi < a* is the event that “Arm ¢ is eliminated by arm ¢ by when round
w; = p; — 1, during episode "

Along the lines of the proof composition in|Auer & Ortner (2010) for the Improved UCB algorithm,
we construct three clauses on the empirical returns of arms ¢ and ¢ in Equations [134}[135] and

log (TA2
fii < g+ Oggwa) (134)
log (TA2
fie > i — oggm“) (135)
log (TA2
TR OggT) (136)
wye

Clauses and[135]holding when w; = p; lead to the elimination of arm by arm ¢ as is shown in
the work that follows,

\/ log (TAgi) 27, < A, /2 < Do /A. (137)
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Therefore,

log (TAI%%)

27,

i + <pi+2 (From clause[134} and w; = p; ) (138)

log (TA%)
<pi+Agi—2 — (From the ordering[I37) (139)
Pi
A2
=1—-a)ue—2 710g (TAM) (140)
27—/%
log (TAZJ
<(1-a)i—(1—a) —r (From clause[135] and w; = p; )
Pi
(141)
) log (TAE,Z) _
<(1—a)ie— (1 —a)\| ——= (Since wy > w;). (142)

27,

Here, Equation is the criteria for arm ¢ being eliminated by arm ¢ in PE. We upper bound the
probability of the arm 7 not being eliminated by union bounding the probability of the complements
of the Clauses [I34] and [[35|using Lemma [C.2] (Hoeffding’s Inequality). In addition, we include the
bound on the complement of Clause which shall be useful later in bounding Pr (Bs ;).

< —
27, — TA2

Wi

Pr| f; > p; + (143)

(Since 7, > Ty,)

Pr | fie < pe — \ M < exp <—Tw£10g (TA?J) <

27, Toos TA2
(144)
A log (TAZ, ) 1 o o
Pr | fie < po — o7 < TA?M < TAEM (Since wy < w; + K, and A, =27™).
(145)

If either of the two clauses[I34]or[I33]are violated, then elimination of arm ¢ will not occur. There-
fore, we can bound,

Pr (Bg,i) < Pr|f;>p+ (146)

2
< (147)

Plugging in round number w; = p; in Equation , and then plugging in the lower bound on A 0
from Ordering [I30] we have,

2 32
2 S TAZ
TAPi Q,i

Pr(By;) < (148)

Finally, we wish to bound Pr (Bs ;) . Say that the actual elimination of arm ¢ by arm 4 occurs in
some round w; = p < p;. To bound the probability of this clause of the event G, we note that the
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clauses in Equations and holding simultaneously preclude arm ¢ from being removed by
arm ¢ regardless of the round number p in question. Therefore, using the results in Equations [143
and [143] the probability of a round p, where ¢ is removed, existing, can be found by plugging in

w; = p, and is upper bounded by %1 While there is no definitive round number associated with
P

p, from the clause itself we know that we must have p < p;.

pi—1 pi—1
47 +1 (4 +1)-4° . “m
Pr(Bu) <) —=5 =D 7 — (Using Ay =27") (149)

p=0 P p=0
4% +1 _ ) . .

< T 4% (Using the formula for the sum of a Geometric Series) (150)
47 +1 ~

= 4: (Since A,,, =27™) (151)
3TA;2;7:
16 (4% + 1) < Ag

= STTZM (Because A, > 1 ) (152)

11 . . .

< =5 (Since we impose in Lemma E.2). (153)

TAQ’Z.

Plugging in the bounds in Expressions[133] and[T53]into Equation[200] we get the overall bound
on the number of samples stated in Lemma [E.2] O

BOUNDING SAMPLES OF REFERENCE ARM £

Lemma E.3 (Bound on Samples of Reference arm ¢ under Pairwise-Elimination). Samples of ref-
erence arm { emanate from the episodes of candidate arms being compared to arm £. When k. = 0,
we show the bound,

32log (TAZ . @
og ( Q,Z)Jr 43 s 43

E [ne(T)] < 1+ max

e 2 2 2
i=a AQ.i Ao = B
Proof. Under Pairwise-Elimination the nominal outcome is for episodes ¢ = 1,...,a* — 1 to result

in the candidate arm 4 being eliminated by arm ¢, followed arm a* eliminating arm ¢ during episode
a*. To prove Lemma[E.3|we condition on this nominal sequence and upper bound the probability of
the outcome deviating from this sequence by a factor proportional to % Throughout the episodes
i =1,...a* the number of samples n, (T") are equal to the number of samples of the most sampled
candidate arm ¢ < a*. This is because in PE we re-use samples of arm ¢ across episodes and only
further sample £ to keep up with the samples of a candidate arm. Motivated by this fact about n, we

begin by defining a compound high-probability good event G.

The compound good event G is the event that for each episode ¢ < a* that was executed, the episode
satisfied the episode-wise good event G;. Let the random variable Z denote the final episode in the
run of PE. Then {Z = z} constitutes a measurable event in the sample space (2. Mathematically we
define,

G:U({Zzz}mﬁ@). (154)
z=1 =1

"Because for any events A, B,and C, Pr(AN B) < Pr(C°) = Pr(C) < Pr(4°U B°).
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The complement of GG, namely G can be written out using the definition of G and De Morgan’s
laws as,

a* z
= ({z=2vlY Gf) (155)

z=1 i=1
o

C U G{U{Z #a*}  (picking z = a* from the iterated intersection) (156)
i=1
o

=JGiu{z<a}u{Z>a"} (157)
i=1
a* a*

=| J(BLiUB)U U B U{Z>a"} (158)
i=1 i=1
=1

=|JGeu{z>a). (160)

1

<.
Il

Where the first term in Equationfollows from the equivalence between G and B ; U B; shown
in the proof of Lemma [E.T} The second term in Equation [T58]is based on the equivalence between

the event {Z < a*}, meaning that the final episode precedes a*, and the event | J;_, B ; which
means that some episode ¢ = 1,...,a* was not executed.

We leverage event GG to bound the expected number of arm ¢,
E[ne(T)] = E [ne(T) | G) Pr (G) + E [ne(T) | G| Pr (G°) (161)
<En(T)| Gl +T--Pr(G°). (162)

Since samples of arm ¢ are reused between episodes with further sampling of arm ¢ only occurring
to match the demand from a higher round number, we have,

e (1) 6] = & | (magens(11) ) 6] (163
<E s (14) [ 6] (2216 <) (164)

<maxr7, (using Equation|[l117} and by construction of G as N G;) (165)

i<a*

2log (TA[%q)

~ max . (166)
isa APi
2log (TA%H)
<1+max — 2~ (167)
i=a Api
32log (TAG;/4) . . .
< 1+ max T (Using the ordering in Relation [T30) (168)
= Qi
32log (TAZ .
<1+ max gA(QQ”). (169)
= Qi

To complete the bound EE [ny(T')] , we develop a bound on the term Pr (G°) in LemmalE.6| However,
to prove Lemma [E.6| we first require two intermediate results in the form of Lemmas [E.4| and [E.3]
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*

Lemma E.4. In all the outcomes contained in G ending in some episode Z = i < a*, some
Bj,j < imust have held.

Gn{z=iyc|JB; Vi<a" (170)

j=1

Proof.
G‘Nn{Z =1}

(GsuG)N{Z=i})NG° (171)

=(Gin{Z =i} U(G;N{Z =14}))NG° (N distributes over U) (172)

=(GiN{Z =i} )U(G;N{Z=i}NG°) (-Gin{Z =i} CG° (173)

(BiUB)N{Z=i})U(Gin{Z =i} NG°) (- Gf=DB1;UBy) (174)

CB UG N{Z=i}NnG) (. Biin{Z=1i}=4¢). (175)

Now consider just the event G; N {Z =i} N G° from Equation We can find an event it is
subsumed within in the following way,

C

i—1 i—1
Gin{z=ijnG=G:n|(GU|(G| |n{Zz=i}nG" (176)
j=1 j=1
i i—1
=N Gn{z=i}nc|u|Gin|JGn{Zz=i}nG" (177)
j=1 j=1
i—1 i
=GinlJ(@n{z=i})nG® ([\Gin{Z=i} CG, Vi<a)
j=1 j=1
(178)

i1
G;N U ((B1,; UBj)N{Z =1i})NG° (from Lemmal[ET) (179)

Jj=
17—

=

Gin|)(B;N{Z=i})NG (- B;n{Z=i}=¢Vj<i) (180)
J

Il
-

N

i-1
U B (181)
j=1

Plugging in Equation [I8T]into Equation [T73] gives us the result stated in Lemma [E-4] O

Lemma E.5. Within the space of events that constitute G€, if an episode i < a* does not occur, then
there exists j < i such that the event B; occurred. Mathematically,

—1
Bi,NG°C|JB;,Vi<a" (182)

j=1

Proof. We can prove the result by induction. First note that B1 ; = ¢ since Episode 1 always occurs.
Let © = 2 represent the base case. Then,

BioNG ={Z=1}NnG° (183)
C B; (Using Lemmal[E4). (184)
Now say that the statement in Lemmaholds true for some ¢ = k < a*. That is,
k—1
By, NGe C U B;. (185)
j=1
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To prove Lemma [E.5| we need to show this result for i = k + 1.

B NG = (BiprU{Z =k} NGe (186)
=B NG)H)UH{Z=k}NG°) nNovery (187)

C U B; U U B;  (using the induction hypothesis and Lemma[E.4).  (188)
. e

j=1
k

= U B;. (189)
j=1

Where Equation uses the identity By x+1 = B1 U {Z = k} which breaks down the event of
episode k£ + 1 not occurring into the event that episode & did not occur, or the event that episode k
was the final episode Z. Equation[I89]is the required result from the statement of Lemma[E.3] [

Lemma E.6 (Bound on Pr (G¢)). We can upper bound the probability of the compound good event
G not occurring as,

r (G°) <ZPr ) + Pr(B,-) (190)
a*—1 43
< Z + 2Pr (By+) (bound on Pr (B;) shown in the proof of LemmalE.2)).
=1 Ql
(191)

Where B;, Vi < a* is as defined in LemmalE. ]

Proof. We begin by introducing the expanded expression for G¢ developed in Equation

Pr(G) = Pr(G° N G°) (192)
Pr ((U Giu{Z > a*}) N G“> (from Equation [T60) (193)
i=1
((U ‘N G") {Z>a"}n G“)) (N distributes over U) (194)
=1
<Pr ( (GSn GC)> +Pr(Z >a") (unionbound and Pr (A4, B) < Pr(A))
i=1
(195)
=Pr < ((B1,;UB;)N GC)> +Pr(Z >a") (by definition of G;) (196)
i=1

a* i—1

<Pr ( (Bi U U B, +Pr(Z >a") (using LemmalE.5) (198)
i=1 j=1

=Pr B,;> +Pr(Z>a") (199)
=1

<» Pr(Bj)+Pr(Bs-) (Unionbound, and {Z > a*} = B,-). (200)

O
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To complete the upper bound on the expected number of samples E [n, (1")] from Equation (162}
we upper bound Pr (B,«) along the same lines as Pr (B;),i < a* in the proof of Lemma [E.2]
The key difference being that the roles of candidate arm a* and reference arm ¢ are reversed as
compared to the earlier procedure since p,+ > pg. Moreover, just like the earlier proof we can
define By g+ = G4+ N G2 i and Bg g« = = G1,a» N G35 ;. In words By .~ is the event that “Arm ¢
is not eliminated by arm a* by when wg+ = pg-, dur1ng episode a*”. Slmllarly, B3 4~ is the event
“Arm a* is eliminated by arm ¢ by when round w,» = pg« — 1, during episode a*”.

We bound Pr (Bs 4+ ) and Pr (Bs 4+ ) separately by constructing clauses on /i, and fi,- as before.

201)

(202)

(203)

Clauses[201]and[203|holding when wq+ = pq~ lead to the elimination of arm £ by arm a* as is shown
in the following steps,

\/ log (TA2,.) /27y, < By, /2 < |Bquar/4 (204)

Therefore using wg+ = pg~ ,

Here Equation 210]is the criteria for arm ¢ being eliminated by arm * in PE. Since Clause and
Clause being true and applicable at round w; = a* imply arm ¢ being eliminated, we can upper
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bound Pr (Bg o+ ) as,

Pr(Ba,q~) < Pr | fie > pe +

@211)

2
< Az (Similar to the bounds in[I43]and [144)). (212)

Wa*

Plugging in round number wy+ = p,- in Equation 212] and then plugging in the lower bound on
A .~ from Ordering|130} we have,

2 32
Pr(Bg o) < — < . 213
*(Bre) < 35— < iap (213)
To complete the bound on Pr (B,+) we must bound Pr (Bj3 .+ ) which is the the probability of arm a*
being eliminated by arm ¢ by round w,+ = pg+. Similar to the arguments in the Proof of Lemmal[E.2}
the clauses in Equations and 203] holding simultaneously preclude arm a* from being removed
by arm / regardless of the round number, and we shall have,

16 (4" 4+ 1)
Pr (B3 g+ e 214
v(Bae) < grRE @19

11 )
< 75— (When we impose x = 0). (215)
TAG o
Using steps identical to those that lead up to Equation we shall have,
Pr (Ba*) S Pr (BQ,(L*) —+ PI‘ (Bg_’a*) (216)
43

< TAT A% - (from upper bounds in Equations 213]and 213 (217)

Combining the upper bound on the expected number of samples of arm ¢ in Equation with the
bound on Pr (G°) in Lemma and the bound on Pr (B,«) in Equation we reach the upper
bound stated in Lemmal[E3] O

BOUNDING SAMPLES FOR HIGH COST ARMS a* < i < /

Lemma E.7 (Bound on the expected number of samples of all high cost arms under Pairwise-Elim-
ination). When k = 0 the expected number of samples of all the higher cost, non-reference arms,
that is, arms with index in the range a* < i < £ is upper bounded by a constant given by,

14
43
i=a*+1 Q,a*

Proof. We can upper bound the expected number of samples >
on the event {Z < a*} and its complement.

14 14

i=a*+1 t=a*+1

a*<i<t E [n; (T)] by conditioning

(from the linearity of Expectation operator)  (218)

4
=E[ S w1 {ZSa*}] Pr({Z<a))

t=a*+1

¢
+E Z n; (T)|{Z > a*}] -Pr({Z > a"}) (from Lemmal[C.3)
1=a*+1
(219)
<T-Pr(By) ({Z>a"} = By) (220)
< A;;?) (from Equation 217)). (221)
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Where E [ZZ art
of an arm 7 > a* in the case when the final episode Z is less than a*. O

1ni(T) | {Z < a* }] = 0 follows from the fact that there cannot be any samples

Finally, we are in a position to Prove Theorem

Proof of Theorem[3.1] First, we apply Regret decomposition in Lemma[C.5|to Cost Regret,

E [Cost_Reg(T, v)] Z Ac;En; (T)] (because Ac; < 0fori <a”) (222)
t1=a*+1
= Ac o Eng ( Z Ac,iEn; (T)] (223)
1=a*+1
321log (TAL,) <. 43 )
< |14+ max ————= + 3 Acy
( i<a* AQ,'L’ P AQ,i
43
+ -5 — | max Aci+Acy (224)
AQ,G* a*<i<t
Similarly for Quality Regret we have,
‘
E [Quality Reg(T, v)] = Y Al E{n; (T)] (225)
i=1
a*—1 {—1
=Y AQiEMi (D)]+ Y AL E[n (T)] (226)
i=1 i=a*+1
< AqiE[n (T) A E[n; 227
< D AqiE [ni (1) + max, Qzlal n; (227)
a*—1 2
32log (TAL,) 43 43
Ao s it A+ 228
< ; ( Gt T AL T hg,) T Ay, M Ser 29)
Which are the bounds stated in Theorem [3.1] O

For an improved understanding of these upper bounds, we provide a description of the terms.

First for Cost Regret,
2 a”
32log (TAZ,) 43 43
I+ max ———5—= | Age + E —— | Ace + 5 maXACZ
i<a* A%z . ‘ Az A o+ >ar
Q 5T =1 Q 52
Contribution from ¢ under nominal Contribution from £ under Contribution from episodes >a*
termination in PE episode a* mis-termination in PE episode <a™ in case of mis-termination during ep a*®

Next for Quality Regret,

a*—1 2 a*—1

32log (TAQJ-) 43 43 i
P v E D Dy e o maxAg,
i=1 Qi i=1 Qi Q,a* 1>ax
—_——
Contribution from i < a* Contribution from ¢ < a™ under Contribution from episodes >a*

under nominal termination in PE episode a* mis-termination in PE episode <a*  in case of mis-termination during ep ™
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F ANALYSIS FOR PE-CS IN THE FULL COST-SUBSIDY SETTING

We now turn towards proving Theorem 3.2]that establishes an upper bound on Expected Cumulative
Cost and Quality regret for PE-CS. The PE-CS algorithm operates in the unknown reference arm
setting, which we also refer to from time-to-time to be the Full Cost-Subsidy Setting [Sinha et al.
(2021)). We have already shown upper bounds on Cost and Quality regret for Pairwise-Elimination
(PE) for its operation in the known reference arm setting. The principle hurdle in generalizing
the PE analysis to an analysis for PE-CS is working through the uncertainty associated with the
identification of the best arm in the BAI stage of PE-CS. To perform the PE-CS analysis, not only
do we need the definitions, notation, and setup from the analysis of PE, but also we require some
additional constructs spelled out in the following Section.

F.1 PE-CS AND UNKNOWN REFERENCE ARM SETTING SPECIFIC DEFINITIONS

As described in Algorithm 2] PE-CS operates in two phases, a Best-Arm-Identification (BAI) phase
and a Pairwise Elimination (PE) phase. As discussed in Section [3} the BAI phase of PE-CS is
the Improved UCB algorithm |Auer & Ortner| (2010) terminated once there is a single active arm
remaining. The single remaining arm is assigned to be the empirical reference arm denoted by /. As
we show in the subsequent work, by the manner in which PE-CS is setup, the event that the identified
reference arm gets arm * in the line ¢ < A [0] (Line 6, Algorithm is a high probability event.
The core idea behind the analysis is to condition the expected number of samples on this desirable
and likely outcome occurring during the BAI stage.

In addition to the notation defined in the main paper, we define more constructs that are specific to
the analysis of PE-CS. For arm 4, define round number o; within the Best-Arm-Identification (BAI)
phase of PE-CS to be,
. A,
oimin{mAm<22}. (229)

Intuitively, round o; is the round number by which we expect arm ¢ to be eliminated by arm ¢* in
the BAI stage of PE-CS.

We let the final round during which arm 7 was sampled during the BAI stage be denoted by the
random variable YJ;. To apportion the contributions of the BAI stage and the PE stage to the total
number of samples n; (T'), we introduce the variable ¢gay to denote the final time-step ¢ in the BAI
stage. As a consequence of these two definitions n; (1,tga1) < 7x,. The highest round number
reached during the BAI stage overall for any and all active arms,

Y= r&azi DI (230)

And to denote the set of active arms at the last time-step of the BAI stage we use,

Ay = A(tgar) - (231)

Next, we define a collection of useful events in Table E] for the analysis that follows. These events
are contingent on outcomes occurring during the BAI stage alone.

Table 3: Probabilistic Events Descriptions and Symbols for PE-CS Analysis

Symbol Event Description

I';, Vi #14* | Arm 4 is eliminated by when round m = o; during the BAI-stage

B14, Vi#4* | Arm 4 is not eliminated by when round m = o; and Arm * € A,
during the BAI-stage

B2,:, Vi #4* | Arm 4 is not eliminated by when round m = o; and Arm i* ¢ A,,
during the BAI-stage

F;,Vi# 1" | Final BAlround Xy < 0; and Arm ¢ € Ay
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Remark F.1 (The event F;). The event F; in words is the event that samples run out before the
validity of the event I'; could be checked and before the arm i could be eliminated. Equivalent to
the description in Table[3| we can write F; = {S§ < 0;} N {i € Ay}. Using De Morgan’s rules, its
complement is given by Ff = {¥; > 0;} U{t ¢ Ay}. Consequently, I'; C Ff, andT'; =T'; N Ff.
Since event F; requires that i € Ay, the event {tpa; =T} C F; Vi #i*.

Remark F.2 (Events are proper subsets of Q). Similar to the events defined in Table[2|for the analysis
of PE, the events in Table[3|are proper subsets of the sample space Q). From the setup inherited from
Improved-UCB, T; is a desirable and likely fate for Arm i during the BAI-stage.

To analyze the outcome of the BAI stage of the PE-CS algorithm we intuit and validate a three way
partition of the sample space €2 into the events I', 53, and F. I is the event conditioning on which
ensures that £ = i* by requiring that the events I'; held for each arm i # i*. Additionally we require
that there are samples remaining at the end of the BAI stage by intersecting with {¢tga; < 7'}. This
structure makes the downstream analysis of the PE-stage tractable.

L= {tpar <T}N ﬂ ;. (232)
i
Let A denote the set of sub-optimal arms, we know that |A| = K — 1. We use P(A) to denote the

power set of A, that is the collection of all the possible sub-sets of A. Let S € P(A) denote an
arbitrary subset of A. We define an event F'(.S) C ) parameterized by the set .S as,

F(S)={tsa=TIn [ Fn [ (T;NE) (233)
i€S JEA\S

Intuitively, the set .S consists of arms ¢ € S for which F; held thereby making I'; unverifiable. In
contrast the arms j contained in j € A\ S are those for which I'; held. An inspection of the definition
of F(S) in Equation 233|reveals that F'(S1) N F(S2) = ¢ V.51, 52 € P(A),S1 # S». Taking a
union over all possible F'(.S) we get the compound event F,

F= J F(9) (234)

SeP(A)

Finally, the event S is the event that I"; did not hold for some arm 7 # 7* despite it being verifiable
(F¥ holding).

B=|J @nE). (235)

iFi*

Lemma F.1 (A partition of Q using I'). The events I, F, and 3 as defined in Equations[232)
and[233] respectively, form a mutually exclusive and exhaustive partition of the sample space €.

Proof. First we show that the sets are mutually exclusive by showing that their pairwise intersections
namely ' N F, F N G, and S N T are all ¢. Starting off, it is easy to see that ' N F' = ¢ since,

I'NF C {tgar < T} N {tgar = T} = ¢ (definitions from Equations [232]and [234). (236)
Next, to show that F' N 3 = ¢, it is sufficient to show that F'(.S) N 8 = ¢ for arbitrary S € P(A).

FSNB={tea=Tt0[(Fin () (OnF)|n Y TFnF) (237)
ies JEA\S k#i*

Since both F; N (T$ N FF) = ¢ and (T; N FE) N (T¢ N FE) = ¢, we shall have F(S) N B = ¢.
Lastly, for the pair 8 N I" we have,

BsNT = U T$NES)N ﬂ I';  (since the indexing for 3 and I' need not coincide)  (238)
iF£1* JF*
=J@nE)N () @;NFy) (sincel; = FfNT) (239)
i i
=J N (CnF)N(T;nFf)) = ¢ (240)
it i
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Next we show that TUF'US = (2, that is, the event collection considered in Lemmais exhaustive.
TUFDTUF(¢p) = m (I; NFY)  (plugging F(S) when S = ¢ per Equation233)  (241)
i
= TUFUBD [ MinFHU | @5nFy) (242)
i jAi*
U ﬂ (T¢N FY) u(T; N FY)) (243)
JF i
O () (@snF)u@inFy) = () Ff. (244)
it it
We shall now show that FU S D U#l F; which combined with Equationcompletes the check
on the exhaustive criteria. To do this we show that F; C F'U 8 Vi #£ i*.

PROOF THAT F; C F'U S

To prove this result, we start with the event F'({3}),

F({i}) ={tsa=T}N [F;n () (T;NF) (245)
JEA,jFi
=Fn () @NE) (. FC{tsa=T}. (246)
JEA,jF#i

Without loss of generality, let the set of remaining sub-optimal arms A\ {i} = {p,q,...}. The
idea behind this proof is to identify sub-events F'(-) such that iteratively taking their union with one
another and with events lying in /3 reveals that F; C F'U 3. Since 8 = ;- (Fy NT'};) we have,

(FsnTg) € B = Fin(TgnF)n (| (@;NF)CB (247)
j€A\{i,p}
(intersecting with sets keeps us inside 3)

FihuFRnTsnF)n () (0ynF) CFUB (- F{i}) CF) (248)

jeA\{ip}
= FEnEN (] (TynF)CFup (249)
jeA\{ip}
¢ (Tg N FE) U (D N EE) from B, F({i}))
F{i,phUFsnFn (| (INF)CFUp (250)
jeA\{ip}
= FKEn (] (InF) CFUB (251)
jeA\{ip}

In reaching Equation[251} we have removed the dependence on Arm p for the event on the left. With
the next series of equations, we further remove the dependence on Arm gq.

F;N ﬂ (T,NF)CFUB (252)
JEA\{i,p}
— FENIynF)n (] @NF)CFUB. (253)
jeA\{i,p.q}
Similar to what we saw in the first iteration of this procedure, we have,
FEn@nr)n () (LnF)CB (254)
jeA\{i,p.q}
= F;N FqC N ﬂ (Fj N ch) C FUB (combining with Equation @ (255)
JeA\{i,p.q}
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Similar to how we reached the result in Equation in starting from F({i}), if instead we had
started with the set F'({i, q}), and then eliminated the dependence on p, we would have shown,

FinF,n () (T,nE) CFUB (256)
jeA\{i,p,q}
Combining Equations [255]and [256] we have,
Fn () ([@nE)CFUB (257)
jeA\{i,p,q}

Repeating this procedure iteratively, it is clear that the event on the left can be pruned down to simply
F’;, and therefore,

F, CFUB. (258)
Since no assumptions were made on the choice of ¢, we have,
U FRcFus (259)
i#i*

As mentioned earlier, we can combine ' U FFU 8 D ﬂl Six F¢ from Equation and FUB D
U,z Fi from Equation 259[to obtain [' U F'U § = Q.

Corollary F.1 (Corollary to Lemma. The events T, {F(S)} gep(ay » Bform a mutually exclusive

and exhaustive partition over the sample space Q. This result follows trivially from Lemma [FZ1| and
the fact that S1 # Sy = F(Sl) n F(Sg) = ¢.

Next we prove an upper bound on the probability of the event S which we will need repeatedly in
proving subsequent results.

Lemma F.2 (Bound on Pr (8)). To bound the expected number of samples in all the cases pertinent
to PE-CS we show the following bound on Pr (),

11 32
Proof.
Pr(8)=Pr| |J T¢nEY) (261)
i
=Pr U (B, U Bayi) (since I'Y N F = B1,; U Ba,;) (262)
i
< Pr U B | +Pr U Ba2.i (Union Bound) (263)
i i

< Z Pr(B1,:) +Pr U {Arm i* ¢ A,,} | (Union Bound, Latter clause of 55 ;)

iAi* iAi*
(264)
= Pr(Bu) +Pr({Ami* ¢ A, }). (265)
iFEi*

Where 0pax = max;-;+ 0;, and Equation follows from the fact that i* ¢ A,, — i* ¢ A,,
when oy > 07.

The event 3, ; is the event that Arm ¢ is not eliminated by round o; while Arm ¢* is active at the end
of the sampling for round ¢;. The term Pr (3, ;) therefore can be bounded in a manner analogous
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to the way the probability of low-cost unsatisfactory arm ¢ not being eliminated by reference arm ¢
was bound in Equation The difference being that the round number p; is replaced by the round
o;, or equivalently, the gap Ag ; is replaced by the gap A;. Therefore,

32

(61 l) TA2

(266)

The problem of analyzing Pr(f2;) is analogous to the analysis of Pr(Bs;) in the proof of
Lemma [E.2] for the PE algorithm. By applying the Hoeffding bound (Lemma [C.2) to the
clauses in Equations and we were able to establish that the probability of the event
{Arm / eliminated by unsatisfactory arm i after the sampling for an arbitrary round p concludes} is

upper bounded by ‘;fgzl. Since for the BAI setting the samples of all the arms are always matched
P

(k = 0) here we shall have,

. Mop Tl g g Mpm Tl
Pr({ Ami* ¢ A, }) < ;:; TAz <% > 4P (267)
2;; (268)
3TA2§ (269
< T;mn @71)

Combining the bounds shown in Equations [266] and we obtain the overall bound stated in
Lemmal[E2] O

We now move on to analyzing the evolution of samples in the PE stage of PE-CS. The pieces needed
from the analysis of the BAI stage are the partition over 2 from Lemma the bound on Pr ()
shown in Lemma and the Iterated Expectation Lemma The key difference between the
analysis of PE and the PE-stage in PE-CS is the possibility that the round number ¥; to which the
samples of an arbitrary arm ¢ # ¢* advance during the BAI-stage exceeds the round number p;
defined in Equation Our modular proof technique sequesters both the pathological (event F')
and the unlikely (event 3) outcomes of the BAI stage away from the PE stage. In our approach the
>; > p; case in the analysis of the PE-stage of PE-CS only surfaces for episode a*. Moreover,
analyzing samples accrued during episode a* is only called for when bounding the expected number
of samples of the best arm ¢*.

Remark F.3. Similar to Remark[E_l|we note here that Arm i* during the PE stage of PE-CS really
refers to a hypothetical Bandit Arm with expected return (1 — «) pi.

Using all the definitions and constructs introduced in this section, we are now in a position to show
an upper bound on the expected number of samples of low-cost arms in Lemma|[F3] the best arm *
in Lemma|[F4] and high-cost arms in Lemma[F3]

BOUND SAMPLES FOR ARMS ¢ < a*

Lemma F.3 (Bound on the expected number of samples of a low-cost arm under PE-CS). For any
low cost unsatisfactory arm i < a*, its expected number of samples accrued is upper bounded by,

32log (TA%L) N 43

En; (T) <1+
A%, A%

min
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Proof. We begin the analysis by applying the Iterated Expectation Lemma [C.3]to the partition de-
veloped in Lemmal|F.1

E[n; (T)] =E[n: (T) | TIPr (D) + Y E[ni (T)| F(S)]Pr(F(S)) +E[ni (T) | 8] Pr(B)
SeP(A)
272)

< max {E [n; (T) | T AE [n: (T) | F(S)]bseps) | +Elna (T) | BPr(8)  273)

(- Pr(T)+ > Pr(F(S)) <1)

<max{E[n;(T)|1],7s,} + E[n; (T) | 8] Pr(5). 274)

Where Equation follows from the fact that conditioned on any F'(S), the maximum round up

to which arm ¢ can be sampled is o; both in the case when T'; holds (¢ ¢ S), and in the case when

i€ S,and F; = {X5 < 0;} N{i € As} holds instead. We now proceed by separately bounding the
E [n; (T) | T'] term by further conditioning on the cases where 3; > p; and &; < p;.

Eni(T) [ T]=Eni(T) | £ < pi, TTPr(Z; < pi | )

+E[ni(T) | £ > p;,T]Pr(%; > p; |T)  (using Lemma[C.3Jon {Z; < p;})
(275)

<En(T)|%; <p;,T]=Eq [n;(T)] (introducing shorthand notation E;).
(276)

Where p; is as defined in Equation[IT4] In writing Equation we leverage the fact that for a low
cost arm with index ¢ < a*, Ag; = (1 — a)p« — p; is necessarily a smaller gap than A; = i, — p;
since by construction, each of these low cost arms has a return u; < pcs = (1 — @) .. It follows
that Pr (32; > p;,T) = Pr(%; > p; | I') = 0 because the largest value that the random variable ¥;
can take under I' is 0, and Ag ; < A; = p; > 0;.

BOUND ON E4 [n; (T)]

Since we enter the PE stage of the algorithm with a round number ¥; < p;, we use the same
event construction of the compound event G; Vi < a*, defined and used in the Proof of Lemma
Therefore, just as before we work towards a bound by conditioning on the partition with G
introduced in Lemma Let A; be the random variable denoting the highest round number
corresponding to which sampling was performed for arm ¢ during the run of PE-CS.

By [ni(T)] = Ey [ni(T) | Gi] Pr(Gi) + Eqy [ni(T) | By Pr(Bui) +Eq [ni(T) | Bi] Pr (B)
277)
<max{Ey [n;(T) | Gi],E1 [ni(T) | B14]} +T - Pr(B;) (278)
(Since Pr (G;) + Pr(By,) < 1)
=max {E; [n;(T) | Gi],E1 [ni(1, tgar) + ni(tear + 1,T) | B1i]} + T - Pr(B;)

(279)

< max {El [TAi Gl] JEq [szi +0 | Bl,i}} +T-Pr (Bl) (280)
(T, as defined in Equation|115)

<max{7,,, 7} + T -Pr(B;) (281)

=7, + T -Pr(B;) (since (1 —a) prs — pt; = Agi < A = pye — p; Vi < a*) (282)
32log (TA2QZ) ) . .

+ T +T -Pr(B;) (Using bound on 7,, in Equation|[T33). (283)
Where the treatment of the random variable n;(tga; + 1, T) is based on the expression for the addi-
tional rounds for which arm i is sampled during the PE stage of PE-CS. In Equation [280|conditioned
on G; there may be more samples, however conditioned on B ; there shall be no further samples

2The probability operator Pr is also for the conditional distribution conditioned on {%; < p;i, T}
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since the episode corresponding to 7 is never initiated. Now to bound Pr (B; | ¥; < p;,T') we use
arguments similar to the ones in Proof of Lemmal[E.2]
Where By ; = G1, NG5 ; and By ; = G1,; N G5 ; as in the proof of Lemma The Probability
Pr(B;,;) in Lemma was bound by the probability of either Clause or Clause being
violated during round p;. Due to the parallel nature of the construction here, and the possibility of
round p; being conducted, we can upper bound Pr (B ; | £; < p;,T") identically as,

32

Pr(Bi; | % < pi, 1) < 55—
(B 150 o) <

(285)
Now we move on to bounding Pr (B ; | ¥; < p;,I') by bounding the probability of arm ¢ being
eliminated in any round w; = p lying in the range ¥; < p < p;. Just like in the proof of Lemma
even here Clauses [134] and [[36] holding simultaneously preclude arm ¢ from being eliminated
by arm ¢ regardless of round p. Therefore using work identical to the one that goes into establishing

Equations [T52] and [T53] we have,

1
4% 4+ 1
Pr(Bsy,; | 2; < p;, 1) < = 286
(Bzi | Zi < pirT) Z e (286)
p=%; P
pi—1
4" +1
< = Because >; > 0 287
< Z 77 ¢ > 0) (287)
p=0 P
11
< TAZ (From Equation[T53]in Lemma[E2] x = 0). (288)
Q,i
Applying the Union bound to Equation[284] and plugging in the bounds in[285]and 288] we have,
43
Pr(B; | % < pi,T . 289
B B0 T) < g (289
Substituting the bounds in Equations [289] [283] and Lemma [F.2]into Equation 274] we obtain,
E[n; (T)] < max{7,, + T -Pr(B;), 7} + E[n; (T) | 3] Pr(B) (290)
32log (TAZ . 43
+ A(é- @) A7 +E[n; (T) | B Pr(8). (291)
Which when combined with Lemma [E2]is the bound stated in Lemma [F3] O

BOUND SAMPLES FOR ARM ¢*

Lemma F.4 (Bound on the expected number of samples of the best arm). For the best arm i* =
arg max;e(x] Mi, the expected number of samples accrued is upper bounded as,

32log (TAZ;,) { 32log (TA)) }
i<a*

E[n; (T)] < 1+ max

2 2
Amm AQ,Z’
a*—1
43 32 43 11 32
) 2 E [n;- (T) | 8] - 3
’ i=1 Az?ﬂ * (AQ * AgQ a*) " [n ( ) | B] TAI2HII’1 +]751* TA.?

Proof. Just like in the proof of Lemma [F3]we sequester away outcomes of the BAI stage that make
analysis of the PE stage intractable.

E [ni- (1)) = E[ni- (T) [ T]Pr (D) + ) Efng- (T) | F()]Pr(F(S)) +Eng- (T) | 8] Pr (5)
SeP(A
o (292)

< max {E - (7) | ), {E [ (T) | F(S)]}sepis) b +E [ (T) | B Pr(5)
(293)
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(.- Pr(I) + Pr(F) < 1)
< max{E[n;- (T) [T, 75,,.. } + E[ns- (T) | 5] Pr(B). (294)

Equation[294]results from the observation that the maximum round number up till which any arm is
sampled during the BAI stage under F'(S) VS € P(A) iS Omax. Conditioned on T, the reference
arm / is identified correctly to be i*. Consequently, the expected number of samples E [n;« (T') | I
can be analyzed in a manner that closely parallels the analysis of E [n,(7T)] in the Proof of Lemma

The key difference from Lemma [E3] is that we grapple with the case ¥, > p,+. This pos-
sibility arises because our bandit instance may have Ag .- < Ag+, which in turn implies that
Pr(pax < Xgx < 0g« | T') > 0. The outcome X,« > p,» skips the checks associated with the
events G2 ; and G'3 ;. Mathematically, this means that for the event G- as defined in Equation
[116] we shall have Pr (G1,a- N ((G2,a= N G3,4+) U Eg+) | Ba» > pa-,T') = 0. This motivates us to
expand the scope of the good event G«

First we define new event G4 .- C (2 and then we augment the definition of G~ using this new
event.

G40+ : {Arm ¢" is eliminated by arm ¢ in round X+, during episode a* of the PE stage of PE-CS}

Remark F.4. Since arm a* enters the PE stage of PE-CS with samples corresponding to X ,~ number
of rounds already accrued, checking whether the event G4 o+ holds does not involve any further
sampling of arms.

The definition of G+ is now changed to the one in Equation[295] which supersedes the prior generic

G+ (Equation[T16).

Gor =  Gra+ N|((Goa- NG340) UE)U(Gagr N{Zar > par}) | - (295)
——
Ep. a™ is executed Prior G .« Clause New Clause

Remark F.5 (Implicit event in Prior G~ clause). We remark here that the event {¥q« < pg-} is
implicit in the event G1 g+ N ((Go,qx NG3,4+) UEg+) ie. Gig N ((Gaar N G+) UEy-) C
{4+ < pa+}. This is because the event is contingent on correct eliminations happening leading up
to and during pq~.

While retaining the definition of G from Equation [I54} and the definition of B ,- from LemmalE.|
we redefine B« so that the relation G¢. = B ,- U B, continues to hold.

Gar = G1ae N (((Gorar NG3.0-) UEge) U (Gaar N {Zar > par})) (296)
= Gl,a* n ((((Ggﬂ* N Gg)a*) U Ea*)) n {Za* < pa*} U (G47a* N {Za* > pa*}))

(297)

(due to Remark [F3))

= G =G, ( Sar UGS 0 ) N Eg ) U{Sax > par}) N (G] 4o U {Sar < pa-})

& (298)
— B ((( B (8, < o }) U{Zar > par})

far N {Zar > pa}) U{Zar < par})) (299)
= By U (( °“g“‘a1 N {Se- < pa- }) U (G0 N (S > pa*})> . (300)

B+

Where Equation follows from AU B = (A N B°) U B being applied to both the left and right
clauses. Equation gives us the updated definition of the event B,-. Armed with the updated
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event B+, we can now develop a bound for Pr (G€ | ") using the result in Lemma By trivially
generalizing the bound on Pr (G°¢) developed in Lemmato the scenario for this Proof where we
condition on I' we shall have,

*

Pr(G°|T) <Y Pr(B;|T)+Pr(B,- |T) (301)
i=1
a*—1 43
< Z AL, +2-Pr (B, |T), (302)

" Equation 289 and Pr(X; > p; |T') = 0 Vi < a*. We need now only develop a bound for

Pr (B, | I') under its definition in Equation [300]
Pr(B,- |T) = Pr ((Bgiigi“al A {Z,- < pa*}) U (GSae N {Zar > par}) | r) (303)
<Pr (B"“g‘“‘” N {Za < pa- | P) P (GG N {Dar > pa-} [T)  (304)
(Union Bound)
< Tﬁg,a* + Pr ( fa- N {Zax > par} | I')  (From Equation[2T7). (305)
From Equation[212]in the Proof of Lemmal|E:2] we have the probability of arm ¢ not being eliminated
by arm a* during round w,~ of episode a* as being upper bounded by ﬁ. Therefore since

W g

elimination under G4 .~ happens during episode a* in round X+,

2

Pr(GS .- N {20+ > pa-} | T) < TA2

(306)

I') =0, and A,,, decreases with m).
A,

(since Pr (X4 > 0

32 < i
< i iti i > —).
<7 Ai* (since by definition of o;, A, > 1 (307)
Combining the bounds in Equations [303]and [307] with the Expression [302] we have,
a*—1
. 43 32
r(G°|T) < ZTA2 +2<TA2Q,G*+TA§*>' (308)
Armed with the result in Equation [308] we are now in a position to bound E [n;- (T') | T'].
E[ni(T) | T] =Eng(T) | G,T|Pr (G |T) + E[n;«(T) | G, T]Pr (G° | T) (309)
<Ene(T)| G, T+ T Pr(G°|T) (310)
a*—1
43 32
< E[n-(T) | G,T] + Z (A% +A2*>. (311)

As in the proof of Lemma [E.3| let Z denote the last PE episode. To bound E [n;«(T') | G,T'] we
leverage the result Pr (n;- (') > max;z;« n; (1,tz) | G,T") = 0. Conditioned on G, T" there can be
no further sampling of the best arm * beyond time ¢z, since under I' the best arm ¢* is the reference
arm. Consequently,

E[n; (T)| G,T] <E {H;éaxn (1,t2) | G, F] (312)
<E [n;lé xn; (1,ta+) | GJ‘] (because Pr (Z > a™ | G,T') = 0) (313)

=E [max {{n; (1, ta*)}icqe snar (L, tax) , {ni (Lita=) b0 } | G.T] (314)

< E [max {{Ta, }icae s TAp s {75 Hinae | | G5 T (315)
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(using definitions of 7, A, and X)

< max {{7p, }; .o »max {7y, 7o } {70, }inar } (316)
(because Pr (A« > max {pg=, 00+ }) = 0)
< max {{Tpi}iga* 77—0';nax} . (317

Combining Equations and and using the result in Equation we obtain the upper bound
stated in Lemma [F.4]

a*—1
43 43 32
E[nﬁ (T)] S max{{Tm}iga* ,To’max} + Z AT +2 (AQ + A2>

i=1 Q@ Q,a*
+E[n- (T) | 8] Pr(5) (318)
32log (TA2,) [ 32log (TAZ, ol 43
<1+ max A(Q ),{ A(Q @) + . Ao (319)
min Q,i i<a* i=1 Qi

43 32 11 32
+2<%*+A2*>+E[ni*(T)|m W+ZW : (320)

,a a min J#Z* J
Where Equation follows directly from from Equation and Lemma[F2] O

BOUND SAMPLES FOR ARMS i > a*,i #£ i*

Lemma FE.5 (Bound on the expected number of samples of high-cost arms). For any high cost arm
with i > a*,1 # i¥, its expected number of samples are upper bounded as,

32log (T'A?) . 32 43
Bl (1) < 1+ =05 A Bl ()12 > )1 ia + p
11 32

Proof. To prove the bound stated in Lemma [F.5] we proceed with initial steps identical to the ones
that go into proving Lemmas [F.3]and [F4]

E[ni(T)] = E[ni(T) [ T]Pr(T)+ > E[ni(T) | F(S)Pr(F(S)) +E [ni(T) | 8] Pr(B)

SeP(A)
(321)
< max {E () 1], mae E[a(T) | FS)p+Elm(T) [ 81P1() G2
(. Pr(T) +Pr(F) < 1)
11 32
< max {E[ni(T) | T), 7.} + E[ni(T) | B) | 7xz—+ D 7a3 | - (323)
min G J

Where the final bound is from LemmaF.2] Now we must bound the expectation term I [n;(T') | T'].
For this we recognize that during the PE-stage, the critical event which determines the number of
samples further accrued for a high-cost arm is whether the final PE episode Z > a* or not. In the
case when Z < a*, there are no further samples of arm ¢ accrued beyond the BAI-stage.

E[n(T) | T] = E[n(T) | {Z > a"} T Pr(Z > " | T)
FE(T) | {Z <a'}, T|Pr(Z < a” |T) (324
<7, +E[ni(T) | {Z >a"},T|Pr(B,« |T') (since {Z >a*} C By ) (325)

32 43
< o +E[ni(T) [{Z > a™}, 1] < + ) : (326)
TAZ T TAY .
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Where the final line follows by using the bound developed in Equation 305} Returning to bounding
E [n; (T')] we obtain the bound stated in Lemma F.3]

E[ni(T)] <7, + E[ni(T) [{Z > a"},T7- (TZZ% * TA4§ )

Q.ar
11 32
+ER(D) 8] | 7a2— + D 7a2 (327)
min G 7
|, 32log (TA2) E(mi(T) | {Z>a*}.T 32 43
<1+ AZQ + [le ‘{ >Cl}, ] TAg* TAé,a*
11 32
+E[ni(T) | ] | iz + Z A7 |- (328)
min j#i* J
O

Finally we have all the pieces needed to prove Theorem [3.2] We combine the results obtained in
Lemmas [F3] and [F5] by adding together the contributions to regret of all three categories of
arms while collating like terms.
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Proof of Theorem[3.2] Using Equation [T6]from the Regret decomposition Lemma [C.5] we can ex-
press and bound the Expected Cumulative Cost Regret as,

E [Cost_Reg (T, v)] (329)
K
= z AciE [ni (T)] (330)
=Y AcER M+ D AcEni (T)+ AcE[ni- (T)] (331)
i<a* i>a* iti*
= Y AcE[ni (T)]+ Aci-Eng (T)]  (because Ac; =0, Vi< a*) (332)
i>a* iti*
32log (TAZ) 32 43
< Z Ac,i<1+2Z+E[”i(T)|{Z>a*}vF]' 2 2
i>a* iti* A TAG TAQ ar

FE M) |8 | mpr + Y s >

min ];ﬁl* J

2log (TA? 32log (TAZ . a*-1
+ Ay (1 + max 3 Og( mm) , { 08 ( Q,z) } n 43
i<a*

2 2 2
Amln AQL i=1 AQai
32 43 11 32
2 E [n;« (T . — 333
+ < TR >+ [+ (T) | B TAfm+7;M? ) (333)
11 32 32log (T'A?)
=2 Aci | 1+Em M B | aa—+ D gaz | |+ 22 Bei——ar
i>a* min ji* 7 i>a* iti* 7
32log (TA%) | = 43 32 43
Acix _— 2
+Aac, <A6{A,,,i,,%?’écg,j}jga*{ A2 T LAy, T\ AT Ay
. 32 43
+4 ZlAc,iIE[ni(T){Z>a},F]-<TA2 +TA2 ) (334)
i>a*,i£* Q,a
11 32log (TA )
= Z AC,i + AC,max F Z TAQ Z E nz Z ACz
i>a* min FEIN J ] i>a* i>a*,iAi*
32log (TA%) | = 43 32 43
Ac i+ — = =/ 2 -
+ Ag, ( Acq Ammgw}jga* { A2 + 2. Az, + A2, + A2 .
32 43 .
R S P T L B
a i>a*,i£*
11 32 32log (TA?)
S Z AC,i + AC,max AQ + Z p + ‘ Z A ACJT
i>a* min i 7 i>a*,iti* 7
32log (TA%) | = 43 32 43
Ac i R S — ol 2= 4 2
+ C7 (Ae{Amini{ﬂ%}de}j<a* { AQ + ; Aéﬂ + Ag* + A?Q7a*
32 43 . . .
+ max Aci| -5+ (linearity of expectation, total samples T). (336)
i>a*,i£* Aa* AQ a*

Where Ac max = max;e[x] Ac,; is the largest cost gap among all arms. Equation is the upper
bound on Expected Cumulative Cost Regret stated in Theorem 3.2]
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Proceeding identically, for Quality Regret we shall have,

[QualityReg (T,v)] (337)
= Z Af T)] (338)
= Z AQiE[n (D) + > AbE[ni ()] (339)

i<a* i>a*,i£1*
32log (TAZ ;) 43 11 32
<ZAQ¢ 1+ A2 = +A2 +E[n; (T) | B]- WJF TAZ
i<a* Q,i Q,i min it j
(340)
32log (TA?) 32 43
+ 1 ) * .
+ Z'AJ(L}—A?+E[nZ(T){Z>a},F] TAZ T TAZ
i>a* iF£L* v Q.a
11 32
+E[n: (T) | 8] | 7xz— + D a )
min J;él* J
32log (TAY,;) 43 11 32
< : E [n;
_Z< Bg:  Bg.) \TAZ, T L TA QWZ il
i<a* ’ ’ min - gogge J
32 43 K
+

+<TA3*+TA2 a*>£§%xA D;#Enz )1 {Z > a*},T] +Z§;A (341)

32log (TA?

Y Ay T Og( ) (342)

i>a* iF£*
Z 32 log TA2 Z) Z A+ 32log (TA )
- Aq.i AQ i .
i<a* i>a* iF£*

32 43 11
A, (w tan. )*“f“w AT+ > 7a7 ZAU (34
a* min jAi* 7

Where Equation [343]is the upper bound on Expected Cumulative Quality Regret states in Theorem
[3.2)and follows from the Linearity of the Expectation operator and the total sample budget being 7.
Similar to the description that followed the proof

Similar to the description that followed the proof of Theorem 3.1} we have for Cost Regret,

32log (T'A?) 32log (TA?)
Aci- (1 + AE{Aminl}T&J%}éQ,j}jgu* {Ag + Z Aci |1+ 7A?

i>a* iti*

Contribution from i* under nominal Contribution from high-cost arms
termination in PE-stage episode a with a proper end to the BAI-stage

a*—1
11 32 43 32 43
A | gr+ D 1o | Fhes (Z a3 " (m - >>
J

min gt i=1 Qi Q.a*
Contribution from improper _ Contribution from ™ under .
end to BAI stage mis-termination in PE-stage episode <a
n A 32 n 43
maxAcy | 75~ T 23 | -
i>a* Aa* A 00"

Contribution from PE-stage episodes >a*
in case of mis-termination during ep a™
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And for Quality Regret,
ol 32log (TAZ,) N 32log (TA?)
S (ng,+ 28800 ) gy 328 (T4
— Aq,i P A7
i=1 ’ i>a*,1£1*
Contribution from ¢ < a™ under nominal Contribution from PE-stage episodes >a ™

termination in PE-stage episode a in case of mis-termination during ep a*

a*—1
32 43
+ E : +
+AQ,max TA2 § : TA2 + AQz +£I;%§AQ-¢ ACQL* t = A

min Q,a*

Contribution from PE-stage episodes >a* Contrlbutlon from Contribution from PE-stage episodes >a*
. . Lo 4 < a” under i is- inati i *
in case of mis-termination during ep a™ mis-termination in in case of mis-termination during ep a

PE-stage episode <a™
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