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ABSTRACT

Federated learning is a large scale machine learning training paradigm where data is
distributed across clients, and can be highly heterogeneous from one client to another. To
ensure personalization in client models, and at the same time to ensure that the local mod-
els have enough commonality (i.e., prevent “client-drift”), it has been recently proposed
to cast the federated learning problem as a consensus optimization problem, where local
models are trained on local data, but are forced to be similar via a regularization term. In
this paper we propose an improved federated learning algorithm, where we ensure con-
sensus optimization at the representation part of each local client, and not on whole local
models. This algorithm naturally takes into account that today’s deep networks are often
partitioned into a feature extraction part (representation) and a prediction part. Our algo-
rithm ensures greater flexibility compared to previous works on exact shared representa-
tion in highly heterogeneous settings, as it has been seen that the representation part can
differ substantially with data distribution. Our method is quite stable to noise, and can be
made differentially private with strong privacy guarantee without much loss of accuracy.
We provide a complete convergence analysis of our algorithm under general nonconvex
loss functions, and validate its good performance experimentally in standard datasets.

1 INTRODUCTION

Federated learning (FL) has attracted much attention from the machine learning community recently due
to rapid development of distributed intelligent devices and the demand of data privacy protection in large
scale learning models. A typical FL framework is a machine learning training paradigm that includes
a central server to aggregate the local information from participating clients to update a global model.
The local data of each client should not be shared with other clients and should ideally be kept private up
to certain degree also from the server Konečnỳ et al. (2016); McMahan et al. (2017); Kairouz & McMahan
(2021). With M clients, a standard FL algorithm usually tries to solve the following optimization problem:

min
ω

1

M

M∑
i=1

fi(ω) (1)

where ω is a global model updated at the server, fi(ω) is the local objective function at i-th client (the
empirical risk functions at each of the client evaluated at their respective data samples). At each iteration,
a local (stochastic) gradient or the entire local model is sent to the server for global model update.

However, in the context of FL, the data distribution across different clients are usually highly non-identical
and heterogeneous. Thus in many practical applications, a single global model is not sufficient to satisfy
the requirements of all the clients. To tackle this issue, many personalized FL methods have been proposed
to allow each client to maintain a local model. A popular formulation of the problem is to use the concept
of consensus optimization Smith et al. (2017); T Dinh et al. (2020); Li et al. (2021), that replaces the
optimization problem of eq. (1) with the following:

min
ω0,{ωi}Mi=1

1

M

M∑
i=1

fi(ωi)+
λ

2
∥ωi−ω0∥2 (2)

where ω0 is the global model maintained at the server, ωi is an unique local model at i-th client, and λ
is a hyper-parameter to balance the local training and forced consensus. The local models are not required
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to be the exactly same but the regularization forces them to be close to each other, and the parameter λ
provides a flexibility to fit local data distribution.

Recent success of centralized multi-task learning is based on the realization that different tasks have shared
common representation Bengio et al. (2013); Collins et al. (2021). Inspired by this observation, several
studies have tried to exploit shared representation in personalized federated learning to achieve better local
performance Arivazhagan et al. (2019); Collins et al. (2021); Pillutla et al. (2022). In this setting, at a
high level, the local prediction model at each client is divided into two parts, including a representation
part common to all clients. This motivates our first question:

Q1: Can we force the consensus (cf. eq. 2) on the representation level, not the whole model level?

Note that, a regularization at the representation part will include less number of variables, and therefore
potentially is less expensive (e.g., in taking gradients) than a constraint on entire model. Indeed, in modern
machine learning tasks, the model is usually a deep neural network consisting of a feature extractor and
a prediction head. In the personalized FL works mentioned above, the deep neural network model is
partitioned into a feature extractor u and prediction head v. They consider the following optimization
problem across different clients:

min
u,{vi}Mi=1

1

M

M∑
i=1

fi(u,vi) (3)

where u is a global feature extractor mapping inputs to a low dimensional space, vi is the local prediction
head at i-th client. The server only maintains the global feature extractor u, not the whole model, and
broadcasts it to all the clients at each communication round. The global extractor is trained via a method
similar to FedAvg, a popular federated learning method Li et al. (2020b), and local prediction heads are
trained only locally. Each client will generate the same representation for the same input. This method
decouples the representation part and prediction part and obtains better performance on heterogeneous
data Collins et al. (2021); Pillutla et al. (2022). However, as we will show in the next section, for different
data distributions even the feature extractors can be different across clients. Although the prediction head
has the largest difference between different clients, the differences in previous layers also exist Li et al.
(2023). This motivates our second question:

Q2: Can we further allow the feature extractor in one client to be different from others while still learning
information on shared representations from other clients?

Motivated by the two questions, in this work we propose a consensus optimization problem at the
representation level as:

min
{ui}Mi=0,{vi}Mi=1

1

M

M∑
i=1

fi(ui,vi)+
λ

2

1

M

M∑
i=1

Hi(ui,u0) (4)

where ui and vi are the local feature extractor and local prediction head at i-th client, i = 1, ... ,M,
respectively, u0 is a global feature extractor maintained at the server. Hi(ui,u0) is a regularization term
to force the representation of the ith client ui, which is defined on local dataset, and u0 to be close. In this
formulation the local feature extractors are no longer exactly same for each client, which provides more
flexibility to fit highly heterogeneous data. The local models are almost trained locally except that their
intermediate representations are forced to be close to each other. The local parameters are not covered by
the global parameters in the training process, retaining more local knowledge. Fig. 1 displays an overview
of our proposed framework. One point that we would like to stress: our regularization of the representation
part is data-driven (compare with the regularization term in eq. 2).

For this formulation of the problem, we propose a new federated learning algorithm (detailed in Algo-
rithm 4.1 and outlined in Fig. 1) based on distributed stochastic gradient descent. Note that, the server does
not have the training data; the regularization term is defined based on the local data at i-th client. The server
maintains u0, which can be seen as a ‘probe model’ from server to detect the representations of local data.

As it is expensive to get access to the full gradient of Hi(ui,u0), we leverage the batch of samples used to
calculate the stochastic gradient of fi(ui,vi) to compute a stochastic gradient of Hi(ui,u0). It will bring an
additional stochastic noise of regularization term. To handle this issue, we further propose a partial variance
(partial, because it is only applied to the stochastic gradient term related to regularization) reduction method
to reduce the effect of the stochastic regularization. Note that, it has been previously observed that the
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application of variance reduction methods in neural network training is not successful Defazio & Bottou
(2019); Reddi et al. (2021); Li et al. (2023) - therefore we wish to retain the randomness of stochastic
gradient of fi(ui,vi). As a result, we only apply the variance reduction technique on the stochastic
regularization term. To avoid digression, this partial variance reduction part is delegated to Appendix C.

Figure 1: An overview of FedReCo.

Our contributions are summarized as follows.

• We propose a formulation of consensus optimization problem at the representation level to improve
the flexibility of personalized federated learning (Sec. 3). The local models are trained locally except
that their intermediate representations are forced to be close to each other by interacting with the server,
retaining local knowledge to the maximum extent.

• We propose a stochastic gradient descent (SGD) based algorithm to solve this representation consensus
problem, abbreviated as FedReCo (Federated Representation Consensus). Then we provide a theoretical
convergence analysis of FedReCo for general non-convex functions (Sec. 4 and Sec. 5).

• Our algorithm is naturally private because clients share only their representation part with the server.
Moreover, it is very noise resilient, and as a result can be easily adapted to a differential private variant
to further protect data privacy, without loss of accuracy (see, Sec. 4.2 and Sec. 6.2.

• We conduct experiments on several benchmark datasets to illustrate the effectiveness of our proposed al-
gorithms. Our algorithm can outperform the existing methods in highly heterogeneous settings (Sec. 6.1).

2 RELATED WORKS

Personalized FL. There are many strategies to achieve personalization in federated learning, including
local fine-tuning Wang et al. (2019); Collins et al. (2022), meta-learning Chen et al. (2018); Jiang et al.
(2019); Fallah et al. (2020), multi-task learning Smith et al. (2017), mixture of local and global model
Hanzely & Richtárik (2020); Deng et al. (2020); Mansour et al. (2020), consensus based regularization
T Dinh et al. (2020); Li et al. (2021). In all of these methods, the model is considered as a whole and
fully personalized at each client.

Consensus Based Regularization in FL. Consensus based regularization has recently been applied in
federated learning to force the local models to be close to each other. Notable works include FedProx Li et al.
(2020a), that adds a proximal term to make the local model close to global model during the local training
process, and Ditto Li et al. (2021), that has extended this idea to personalized federated learning. In addition,
pFedMe T Dinh et al. (2020) proposes a bi-level problem based on similar proximal term and Moreau
envelop as clients’ loss function. In Li et al. (2019); Zhu & Ling (2022), ℓ1-norm based regularization has
been proposed and proven to be robust to malicious attacks. Consensus optimization has also been studied
in federated learning from a primal-dual view Zhang et al. (2021), including the alternating direction
method of multipliers (ADMM) Zhou & Li (2021); Huang et al. (2019). The regularization term in these
works is generally based on the difference between local model and global model in the whole model level.

Shared Representation in FL. The idea of partitioning a neural network into feature extractor and
personalized prediction head has been applied to federated learning in Arivazhagan et al. (2019), which
personalizes the last layer for different clients. The shared representation in linear regression problem
and a convergence analysis has been given in Collins et al. (2021). Oh et al. (2022) only updates the feature
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extractor with a randomly initialized prediction head, which is never updated in the training. Different from
the shared feature extractor, the work of Liang et al. (2020) personalizes the first few layers and aggregates
the last layer globally. Pillutla et al. (2022) considers a general framework of partial personalization in
neural network training and establishes general convergence analysis for non-convex functions. Zhong et al.
(2023) has extended the shared representation idea from different clients to different domains. Further,
Shen et al. (2022) analyzes the differential privacy property for shared representation in federated learning.

On top of shared representation, Xu et al. (2023) and Zhang et al. (2023) add a regularization term in
the local training of shared feature extractor. These two works are the ones most related to this work.
Specifically, Xu et al. (2023) exploits the centroid of the representations within one class to regularize the
local training, while Zhang et al. (2023) uses the difference between global and local mutual information
as the regularization term. The primary differences of our work compared to these are: 1) The feature
extractor in Xu et al. (2023) and Zhang et al. (2023) is still the same for every clients, although a
regularization term is provided to constrain the update of feature extractor; 2) It is hard to provide privacy
analysis on the regularization terms based on centroid of representations and mutual information. Being
an SGD-type method our algorithm is on the other hand easily adapted to differential private versions;
and 3) These prior works have not provided convergence analysis of their algorithm, while in this work
we theoretically prove the convergence for our algorithms.

3 MOTIVATION AND PROBLEM STATEMENT

3.1 REPRESENTATION SIMILARITY ACROSS CLIENTS IN DIFFERENT LAYERS

In federated learning, the heterogeneous data distribution can lead the local models to different directions
through multiple local SGD steps. The FedAvg-like algorithms suffer from this “client drift”, which
makes the local model far from global model within one communication round. In what follows, we will
show the influence of client drift on the representations of different layers in one neural network model.
We conduct an experiment on CIFAR10 dataset with a small 5-layer CNN model and ResNet18 He et al.
(2016). There are 10 clients, each with 2 classes of data in the CIFAR10 dataset. We train the models via
the FedAvg algorithm Li et al. (2020b). For each communication round, we perform two epochs of local
SGD updates of the local model. After local iterations within one communication round t, we measure
the similarity between the representations of local model ωt

i and global model ωt before aggregation. We
use the centered kernel alignment (CKA) measurement Kornblith et al. (2019); Nguyen et al. (2021); Li
et al. (2023) to quantify the similarity of representations.
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Figure 2: CKA Similarity for different layers.

Fig. 2 display the CKA similarity of representations after 1 round and 10 rounds of training, respectively.
After only 1 round local training, the similarity decreases with deeper layers for both models. When training
continues, the similarity between local model and global model increases for all the layers. After 10 rounds
of training, the first four layers of 5-layer CNN model become close to global model, while the similarity of
last (classifier) layer is still low. It shows that the FedAvg can learn a shared representation before the final
classifier layer. However, even the previous layers are slightly dissimilar (similarity strictly less than 1).
It is more obvious for larger ResNet18 model. Even after many rounds of training, the similarity decreases
with deeper layers. The same phenomena has also been observed in Li et al. (2023) for a VGG model.
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This observation motivates our work to consider a framework to allow different feature extractors in
different clients while still learning the shared representations. The classifier layer or prediction head has
the largest difference between local model and global model, thus we wish to train it completely locally.
For the feature extractor, we train it locally, but with a regularization term to force it to learn representations
from a global model.

3.2 REPRESENTATION CONSENSUS OPTIMIZATION PROBLEM

Let us know formally formulate our problem. Consider a federated learning system with M clients, each
client i with N samples {xij∈Rdx,yij∈Rdy}Nj=1,i=1,...,M . For a designed neural network, the model
is partitioned into a feature extractor u and a prediction head v. For i-th client, it maintains its own local
model ui and vi. And the server maintains a global feature extractor u0. If we are to mandate that the
representations of local data to be the same for local feature extractor and global feature extractor, then
the representation consensus optimization problem would be,

min
u0,{ui,vi}Mi=1

M∑
i=1

fi(ui,vi) s.t. hij(ui)=hij(u0), i=1,2,...,M, j=1,2,...,N

where fi(ui, vi) = 1
N

∑N
j=1 fi(ui, vi|xij, yij) is the empirical loss function with N samples, and

hij(u)≜hij(xij|u) is the mapping function Rdx →Rp that maps input xij to a intermediate representation
with dimension p.

However we do not need the representations to be the exactly same for local feature extractor and global
feature extractor. Thus we only put a ℓ2-norm regularization term to constrain the local training:

min
u0,{ui,vi}Mi=1

F(u0,{ui,vi}Mi=1)≜
1

M

M∑
i=1

fi(ui,vi)+
λ

2

1

M

M∑
i=1

Hi(ui,u0) (5)

where Hi(ui,u0)=
1
N

∑N
j=1∥hij(ui)−hij(u0)∥2 is the regularization term to force the representations

of all the local data samples to be close for local feature extractors and global feature extractor.

Since fi(ui,vi) and Hi(ui,u0) are separable for each client i, we can also write the objective function
as F(u0,{ui,vi}Mi=1)=

1
M

∑M
i=1Fi(u0,ui,vi) where Fi(u0,ui,vi)=fi(ui,vi)+

λ
2Hi(ui,u0).

The regularization term Hi(ui,u0) is fully defined on the local dataset at i-th client. The server cannot
know the local data samples and can only send the global feature extractor to the clients to “detect” local
information.

4 FEDRECO ALGORITHM

4.1 ALGORITHM DESCRIPTION

Since both fi(ui,vi) and Hi(ui,u0) are based on the local data samples, we can apply stochastic gradient
descent (SGD) to solve the problem of eq. (5). We can exploit the same batch of data samples to calculate
the stochastic gradients of fi(ui,vi) and Hi(ui,u0) simultaneously, just passing the same batch of samples
twice to model {ui,vi} and feature extractor u0, respectively. The global feature extractor only appears in
the regularization term Hi(ui,u0); thus we can just send the stochastic gradient of Hi(ui,u0) with respect
to u0 to the server to update u0 (this leads to a faster algorithm). To reduce the communication burden,
we can perform multiple local SGD steps before transmitting the stochastic gradient. And due to the
decoupling of feature extractor and prediction head, we can apply different learning rates and numbers of
local steps to the two parts, respectively. In the following we use symbol ∇̃ to represent stochastic gradient.

Specifically, our proposed FedReCo (Representation Consensus) algorithm is as follows: At each
communication round t, the server broadcasts the u0 to all the clients. Each client first updates the local
prediction head vi via Kv SGD local steps with learning rate ηv as:

vt+1
i =vti−ηv

Kv−1∑
k=0

∇̃vifi(v
t,k
i ,uti), (6)
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Algorithm 1 FedReCo Algorithm
Input: Step size ηu,ηv,η0, penalty parameter λ
Initialize: Initialize u00 for server, initialize ui and vi for i-th client

1: for t=0,1,...,T−1 do
2: Server:
3: Broadcast ut0 to all the clients
4: Receive stochastic gradient ∇̃u0Hi(u

t+1
i ,ut0) from all the clients

5: Update u0: ut+1
0 =ut0−η0

1
M

∑M
i=1∇̃u0

Hi(u
t+1
i ,ut0)

6: client i:
7: Receive ut0 from server, let ut,0i =uti
8: for k=0,1,...,Kv−1 do
9: Randomly select one batch of samples, pass the samples to the model {uti,v

t,k
i } and calculate

stochastic gradient ∇̃vifi(v
t,k
i ,uti)

10: Update vt,k+1
i =vt,ki −ηv∇̃vifi(v

t,k
i ,uti)

11: end for
12: Let vt+1

i =vt,Kv

i
13: for k=0,1,...,Ku−1 do
14: Randomly select one batch of samples, pass the samples to model {ut,ki ,vt+1

i } and calculate
stochastic gradients ∇̃ui

fi(v
t+1
i ,ut,ki ), pass the same batch of t samples to feature extractor ut0

and calculate stochastic gradient ∇̃ui
Hi(u

t,k
i ,ut0)

15: Update ut,k+1
i =ut,ki −ηu

(
∇̃ui

fi(v
t+1
i ,ut,ki )+ λ

2 ∇̃ui
Hi(u

t,k
i ,ut0)

)
16: end for
17: Let ut+1

i =ut,Ku

i

18: Randomly select one batch of samples and pass them to ut+1
i and ut0, calculate the stochastic

gradient ∇̃u0
Hi(u

t+1
i ,ut0) and send it to the server

19: end for

where vt,0i ≡ vti. Then the client fixes vi and updates local feature extractor ui via Ku local steps with
learning rate ηu as

ut+1
i =uti−ηu

Ku−1∑
k=0

(
∇̃ui

fi(v
t+1
i ,ut,ki )+

λ

2
∇̃ui

Hi(u
t,k
i ,ut0)

)
, (7)

where again ut,0i ≡uti. After local training, the client calculates the stochastic gradient ∇̃u0Hi(u
t+1
i ,ut0)

and sends it to server. The server aggregates the stochastic gradients and updates u0 with a server learning
rate η0 as

ut+1
0 =ut0−η0

1

M

λ

2

M∑
i=1

∇̃u0Hi(u
t+1
i ,ut0). (8)

The details of FedReCo algorithm are described in Algorithm 4.1.

4.2 COMPUTATION, COMMUNICATION, AND PRIVACY

For local training in FedReCo, each client needs to pass the same batch of samples to two models and cal-
culate the stochastic gradients. The local training burden does not increase too much compared to FedAvg.
Although the global feature extractor enlarges the demand of local computation and memory, the local com-
putation power is not usually the bottleneck in the whole system. For the communication stage, each client
needs to send a stochastic gradient ∇̃u0Hi(u

t+1
i ,ut0) to the server, which only includes the gradients of

model parameters in feature extractor, less than the whole model. It is like a sparsification method on the gra-
dient, but with fixed selected dimensions. Therefore the size of the transmitted information is actually much
lighter than FedAvg and prior consensus optimization works, improving the communication efficiency.

The server only receives the gradient of the norm of difference between local representations and global
representations, which makes it harder to directly infer the local data, ensuring a more private setting.
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Nevertheless, we can still easily adapt the FedReCo algorithm to differential private version by injecting
the Gaussian noise to the stochastic gradient ∇̃u0

Hi(u
t+1
i ,ut0). Since the noise is added to the gradient of a

penalty term on the difference between global representations and local representations, not to the gradient
of local training function itself, the influence of the noise is pretty small. We can see from the experiments
(see Sec. 6.2) that our algorithm can accommodate very high level privacy requirement of differential privacy.
The privacy analysis is a straightforward extension of the standard Gaussian mechanism, thus omitted here.

As noted in the related works, FedPAC Xu et al. (2023) and FedCR Zhang et al. (2023) also add
regularization terms in shared feature extractor. However, both methods need to send additional information
to the server, enlarging the communication burden. Plus FedCR needs to estimate the distribution of
local representations, which requires much more local computations (see Sec. 6.1). Finally it is not
straightforward to add noise to the centroid or mutual information of the distributions, hence both works
are not amenable to a privacy protection mechanism.

5 CONVERGENCE ANALYSIS

In this section we provide a theoretical convergence analysis of our proposed FedReCo algorithm. We first
give the assumptions needed for theoretical analysis of our algorithm, and then provide a convergence result.

Assumption 1 (Smoothness). We assume the smoothness of the loss function with respect to different
parameters in the local model and global feature extractor.

• For each i=1,2,...,M , the gradient ∇uifi(ui,vi) is Lfu-Lipschitz with respect to ui and Lfuv-Lipschitz
with respect to vi. Similarly, for each i=1,2,...,M , the gradient ∇vifi(ui,vi) is Lfv-Lipschitz with
respect to vi and Lfvu-Lipschitz with respect to ui.

• For each i = 1, 2, ... , M , the gradient ∇ui
Hi(ui, u0) is LHu

-Lipschitz with respect to ui and
LHuu

-Lipschitz with respect to u0. Similarly, the gradient ∇u0
Hi(ui,u0) is LHu

-Lipschitz with respect
to u0 and LHuu

-Lipschitz with respect to ui.

Assumption 2 (Bounded variance of stochastic gradients). For each client i=1,2,...,M , its stochastic
gradient is unbiased and the variance of the stochastic gradient is upper-bounded by:

E
∥∥∥∇̃ui

fi(ui,vi)−∇ui
fi(ui,vi)

∥∥∥2≤σ2
u, E

∥∥∥∇̃vifi(ui,vi)−∇vifi(ui,vi)
∥∥∥2≤σ2

v, i=1,...,M

E
∥∥∥∇̃ui

Hi(ui,u0)−∇ui
Hi(ui,u0)

∥∥∥2≤σ2
H, E

∥∥∥∇̃u0
Hi(ui,u0)−∇u0

Hi(ui,u0)
∥∥∥2≤σ2

H, i=1,...,M.

The assumptions 1, 2 are standard in non-convex convergence analysis. Note that, we do not need a bound
of heterogeneity since our method is full personalized and fits to arbitrary heterogeneous settings. We
also do not need any bounded gradient assumption which is common in some literature.

In the following we let Ut≜ [ut1,...,u
t
M ], and V t≜ [vt1,...,v

t
M ]. For the measurements of convergence,

we define

Γt
1=∥∇u0F(Ut,ut0)∥2, Γt

2=
1

M

M∑
i=1

∥∇uiFi(u
t
i,v

t
i,u

t
0)∥2, Γt

3=
1

M

M∑
i=1

∥∇vifi(u
t
i,u

t
i)∥2

If the three sequences converge to zero with t in expectation, then we can obtain the convergence of F
in expectation to a stationary point. Throughout this paper we will denote by Fmin the minimum of F
over its domain.

For the FedReCo algorithm described in Algorithm 4.1, we have the following convergence result.

Theorem 1 (Convergence of FedReCo). Suppose that Assumptions 1 and 2 hold. Let L2
1=2L2

fu
+ λ2

2 L2
Hu

,

σ2
1 =2σ2

u+
λ2σ2

H

2 . If learning rates satisfy η0 =
η

LHu
, ηu = η

L1Ku
, ηv = η

LfvKv
and η is chosen on the

parameters λ,LHu,L1,Lfv ,LHuu,Lfuv ,σH,σu,σv, then ignoring absolute constants, we have:

1

T

T−1∑
t=0

E
(

1

4LHu

Γt
1+

1

16L1
Γt
2+

1

8Lfv

Γt
3

)
≲

Σ
1
2
1√
T
+
Σ

1
3
2

T
2
3

+O

(
1

T

)
(9)
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where

Σ1=
λ3

16M

σ2
H

LHu

+
3

2

σ2
1

L1
+
3

2

σ2
v

Lfv

, Σ2=
3

20

(
λ2

L2
Huu

LHu
L2
1

σ2
1+

L2
fuv

L1L2
fv

σ2
v

)
.

are positive constants depending on Lipschitz constants and stochastic variance.

The proofs are deferred in Appendix B.

The left-hand side of (9) is a weighted sum of measurements Γ1,Γ2,Γ3, that converges to zero with
iterations. The decaying rate on the right-hand side is standard in non-convex SGD, and depends on the
stochastic variances σH,σu,σv. In the Σ1 at O(1/

√
T) term, σ2

H is divided by M , the number of clients.
That’s because u0 is trained by aggregating the stochastic gradients from all the clients, while ui and vi
are trained only locally.

The data-centric regularization term brings an additional error, which can be reduced by a partial variance
reduction technique described in Appendix C. The σ2

H can be removed in the theoretical result of partial
variance reduction, and we can further achieveO(1/T) convergence rate by applying the variance reduction
on both fi(ui,vi) function and regularization term Hi(ui,u0). However, we found that in the practical
training of neural network, the partial variance reduction brings almost no improvement. The performance of
FedReCo is good even when the batch size is small, and sometimes slightly better than the variance-reduced
version. This shows that FedReCo is robust to the additional error produced by the regularization term.

6 EXPERIMENTS

In this section we experimentally compare FedReCo with other recent personalized federated learning
algorithms to show the effectiveness of our algorithm, and also show the privacy advantage of FedReCo.

6.1 PERFORMANCE ON BENCHMARK DATASETS

We perform the experiments on FashionMNIST/FMNIST and CIFAR10 datasets with a 5-layer CNN
model, with two convolution layers and three fully connected layers. The first four layers are considered
as the feature extractor and one last classifier layer as the prediction head trained totally locally. The
compared methods include: FedAvg McMahan et al. (2017), FedAvg-FineTuning (FT) Collins et al.
(2022), Ditto Li et al. (2021), FedRep Collins et al. (2021), FedBabu Oh et al. (2022), FedPAC Xu et al.
(2023), FedCR Zhang et al. (2023). There are 50 clients in the network, each with 4 classes of data for
FMNIST dataset and 2 classes of data for CIFAR10 dataset, to form a hetegenerous data distribution. The
results are obtained after 500 rounds of communication, each with local SGD updates for 2 epochs of
local samples, 1 epoch on training local prediction head, 1 epoch on training local feature extractor. More
details of settings and hyper-parameters are provided in Appendix A.

For the relatively simple dataset FMNIST, FedAvg can already get an acceptable accuracy, and other
algorithms obtain similar final accuracy. Note that in this case the FedAvg+fine-tuning is competitive
to other methods, getting the highest accuracy. For the more complex CIFAR10 dataset and more
heterogeneous setting, fine-tuning is still competitive to some personalization methods, with FedReCo
outperforming all compared methods, showing the higher flexibility to more heterogeneous setting.

Table 1: Test Accuracy (%) on benchmark datasets; F: FMNIST, C: CIFAR10
FEDAVG FEDAVG-FT DITTO FEDREP FEDBABU FEDPAC FEDCR FEDRECO

F 85.38 93.85 92.92 93.04 92.85 92.62 92.71 93.09
C 56.17 89.05 90.55 89.12 85.69 88.71 89.21 91.07

To compare efficiency, Fig. 3 (a) displays the test accuracy of different algorithms with varying
communication rounds, and Table 2 shows the running time of different algorithms when they achieve
85% accuracy on CIFAR10 dataset. The experiments are done in a single NVIDIA-A100-PCIE-40GB
GPU, to simulate multiple clients. Note that, Table 2 only reflects the local computation cost, and does
not include communication cost. It can be seen that Ditto can achieve the same accuracy with least time.
FedReCo requires slightly more time in local computation as it needs to compute the representations twice
for local model and global feature extractor, but gets higher final accuracy. Plus FedReCo communicates
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less than Ditto which transmits the whole model. Compared to other methods using the partition of neural
network, FedReCo is faster: FedPAC needs more rounds of iteration to achieve the same accuracy, and
FedCR spends orders of magnitude more time on local computation.

Table 2: Running time to achieve 85% Accuracy on CIFAR10 dataset
DITTO FEDREP FEDBABU FEDPAC FEDCR FEDRECO

52 MIN 41 S 130 MIN 2 S 317 MIN 51 S 334 MIN 46 S 1736 MIN 7 S 61 MIN 56 S
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Figure 3: (a) Test accuracy on CIFAR10 dataset. (b) Test accuracy with differential privacy on CIFAR10 dataset.

6.2 ROBUSTNESS AND DIFFERENTIAL PRIVACY

We further explore the impact of differential privacy on our proposed algorithm. We use (ϵ,δ)-local differ-
ential privacy to reduce the risk of compromising local data and apply the standard Gaussian mechanism to
add noise to the transmitted information Dwork & Roth (2014); Abadi et al. (2016). For FedReCo, we add
Gaussian noise to the stochastic gradients of regularization term. To compare, we use FedAvg and add the
Gaussian noise to the model difference within one round of local training, which is the information to be
transmitted from a client to server for aggregation. More experiment details can be found in Appendix A.3.

Fig. 3 (b) shows the test accuracy with the number of communication rounds with Gaussian noise, and
Table 3 displays the final accuracy of FedAvg, FedAvg-FT and FedReCo after 500 of communication
rounds. We can see the FedReCo is almost not influenced by the added Gaussian noise, even when the
ϵ and δ is pretty small, while FedAvg suffers a lot from the added noise. FedAvg with fine-tuning also
suffers from the noise since the model trained by FedAvg cannot learn the local knowledge well with
the added noise. This suggests a huge advantage to do optimization on the representation level, not at
the model level, to be more robust to perturbations.

Table 3: Test Accuracy (%) with (ϵ,δ)-differential privacy
FEDAVG FEDAVG-FT FEDRECO

(ϵ=0.2,δ=0.1) (ϵ=0.2,δ=0.1) (ϵ=0.2,δ=0.1) (ϵ=0.05,δ=0.05)
FMNIST 8.43 69.00 93.14 93.15
CIFAR10 10.42 64.25 90.95 90.93

7 CONCLUSIONS

We have proposed a federated learning algorithm, FedReCo, that enforces the representation part of local
models to be similar in a data-driven manner. While being superior in accuracy and efficiency to many
other methods, FedReCo is also noise-robust and can be made differentially private without degradation.
FedReCo takes a step to study how layer sensitivity in neural networks can be fully exploited in federated
learning, which hopefully will result in further interesting works. In fact, the framework of FedReCo can
be easily extended to the partition of neural network at any layer, not limited to last classifier layer, and
even to partitioning at different layers for different clients.
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Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. Improving federated learning
personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

Peter Kairouz and H Brendan McMahan. Advances and open problems in federated learning. Foundations
and Trends® in Machine Learning, 14(1):1–210, 2021. ISSN 1935-8237. doi: 10.1561/2200000083.
URL http://dx.doi.org/10.1561/2200000083.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.
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