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Abstract

Behavioral cloning is a simple yet effective technique for learning sequential
decision-making from demonstrations. Recently, it has gained prominence as
the core of foundation models for the physical world, where achieving gener-
alization requires countless demonstrations of a multitude of tasks. Typically,
a human expert with full information on the task demonstrates a (nearly) opti-
mal behavior. In this paper, we propose to hide some of the task’s information
from the demonstrator. This “blindfolded” expert is compelled to employ non-
trivial exploration to solve the task. We show that cloning the blindfolded expert
generalizes better to unseen tasks than its fully-informed counterpart. We con-
duct experiments of real-world robot peg insertion tasks with (limited) human
demonstrations, alongside videogames from the Procgen benchmark. Addition-
ally, we support our findings with theoretical analysis, which confirms that the
generalization error scales with /I/m, where I measures the amount of task
information available to the demonstrator, and m is the number of demonstrated
tasks. Both theory and practice indicate that cloning blindfolded experts gener-
alizes better with fewer demonstrated tasks. Project page with videos and code:
https://sites.google.com/view/blindfoldedexperts/home,

1 Introduction

Behavioral cloning (BC) is a simple yet effective method for training policies in sequential decision-
making problems [32]16]. In BC, an expert demonstrates how to perform a task, and the sequence of
observation-action data is input to a supervised learning algorithm for training a policy.

A key question in BC is generalization—how many demonstrations are required to train an effective
policy. For single tasks, a well-investigated challenge is compounding errors—small mistakes in the
trained policy may lead to visit states that the expert did not visit, further increasing the prediction
errors [43]. However, recent results show that using appropriate neural-network architectures, BC can
learn to solve complex tasks even with a modest number of demonstrations [6}159], and these results
are reinforced by recent theory [13]]. For multiple tasks (or significant variations of a single task), on
the other hand, BC still requires abundant data, and recent methods for mitigating data requirements
include augmentations [26], simulation [52]], and fine tuning foundation models trained on large scale
demonstration data |30} 49, [21]]. In this work, we hence focus on generalization to task variations.

While various works study how to improve generalization via the BC algorithm [43]], the policy
representation [6]], and the data diversity [23]], one aspect that remains unexplored is the experts
themselves. Many tasks can be solved in various ways—can some behaviors generalize better than
others? Recently, in the context of zero-shot reinforcement learning, Zisselman et al. [61] showed
that certain exploratory behaviors generalize better than goal-oriented, reward-maximizing behavior.
Intuitively, since exploratory behavior is less goal-oriented, it is less dependent on any particular task
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Figure 1: Ilustration of the learning process. Note that the mask on observations only applies to the
blindfolded expert, while the observations in the logged trajectories are unmasked in both cases.

instance and therefore, more likely to generalize to novel tasks. In this work we ask—can a similar
principle be useful also for imitation learning?

Our main idea (depicted in Figure[)) is that by introducing a blindfold—an information bottleneck on
the expert’s observation that makes it harder to identify the particular task, we can induce the expert
to express a more exploratory and less task-dependent behavior, which we conjecture will generalize
better. Importantly, our method does not change the observations used for training the policy but only
the expert’s behavior, and is therefore compliant with any BC algorithm, and complementary to the
methods for improving generalization mentioned above. Since the expert’s exploratory behavior is
typically history dependent, our method makes use of policy architectures that can process a sequence
of observations, such as recurrent neural networks or transformers [[7, [53]].

Theoretically, we prove an upper bound on the generalization that scales with Eg,, + 1/I/m, where
I measures the amount of task information available to the demonstrator, m is the number of
demonstrated tasks, and &g, is a cost associated with the expert not taking optimal actions. For
domains where the exploratory behavior can still solve the task, £ge,, is zero, and thus by lowering I
using a “blindfold” we reduce the generalization error without paying any price. To our knowledge,
this result is the first of its kind in relating non-trivial properties of the expert’s behavior to multi-task
generalization of the resulting BC policy.

Empirically, we demonstrate our approach on simulated games from the Procgen suite [§]—a
standard benchmark for task generalization, and on a real-robot peg insertion task, based on the FMB
challenge [23]], where the shapes of the peg and the hole define the task. For the Procgen games, our
blindfold hides the observation and reveals only the agent’s immediate surroundings to the expert.
For the peg insertion domain, we let the expert teleoperate the robot by observing images from
robot-mounted cameras, and mask out the hole shape from the image. In both domains, we find that
the blindfold induces more exploratory behavior from the expert, which in turn yields significantly
better generalization to different tasks.

Our results pave the way to a new and principled approach for collecting demonstrations, both for
specific problems, and also for more general foundation-model scale endeavors.

2 Problem formulation

Throughout the paper, we will focus on a multi-task imitation learning setup in which we aim to clone
an expert’s behavior from demonstrations of a (small) selection of tasks with the goal to generalize the
behavior to (many) unseen tasks. As we shall see both theoretically and empirically, the generalization
is not only affected by the number of available demonstrations, but also by the information available
to the expert when performing demonstrations. First, let us introduce the setting formally.



Setting. We consider a set of tasks © := {6, }}/, and a task distribution Py € A(©), where A(S)
denotes the probability simplex over a set S. Each task # € O is defined through a Markov Decision
Process (MDP [33]) My := (X, A, pg, e, H), where X, A, H respectively denote the observation
space, the action space, and the horizon of an episode, which we assume common across all the
tasks in @E] Instead, each task may have their own transition model pp : X x A — A(X) and
reward function 9 : X X A — [0, 1]. A history-based randomized policy is a sequence of functions
7= {m : Tn = A(A)}Z where Ty, is the set of h-steps trajectories 7" = (2°,a°, 70, ... 2")
and T = Uth_Olﬁ. A policy m on the MDP My induces a distribution P over trajectories with the
following process. An initial observation is sampled 2 ~ py(-). Then, for every step h > 0, an
action is sampled from the policy a® ~ 7(7"), the reward 7 = ry (2", a") is collected, and the MDP
emits the next observation z"+! ~ py(z", a"). The process goes on until the step H is reached
The Reinforcement Learning (RL [47]) objective for an MDP My is the cumulative sum of rewards
J(m) == Epg | 7= 7, where the sequence (0, ... 77 1) is taken on expectation over trajectories
T ~ P7. An optimal policy for My is denoted as 7* € argmax J (7). For some R € N, we assume
J(7*) < R, where typically R = 1 when rewards are sparse, as large as H when rewards are dense.

Behavioral cloning. In the setting described above, we assume to have access to a dataset of expert

demonstrations E = {0; ~ Py, (Ti1, ... Tin) ~ ng ™, where 7;; = (:c?j, a?j, r?j e xg, ag, 7’5)
is a H-steps trajectory sampled independently from a policy 7 in the MDP 6;. Thus, the total
number of trajectories is | E| = mn and the total number of transitions is mnH. With the available
data, we aim to clone the expert’s behavior 7%, a problem that is known as behavioral cloning [41]].
The idea is to train a policy 7 to mimic the expert’s policy 7 by minimizing a supervised learning
loss on the demonstrations. While several choice of loss functions could be made [55]], here we opt
for the negative log likelihood as in [13]. The behavioral cloning problem is then

m n H-1 1
7 € argmin L(7) := Z log () (1

mell m(afs|7h)

where I is a policy space of our choice and ’Ti};» is h-steps chunk of the trajectories 7;; in the dataset

of demonstrations F, afj is the action taken at step h in 7;;. While a sufficiently expressive policy
space II may allow for a cloned policy 7 that closely approximates the expert on the training data
L(7) = 0, we typically aim for a policy 7 that can mimic the expert’s behavior on unseen data as well.
Differently from the common setting [41},142} 156138} 136, 37, [13]], here we are not only concerned with
generalization across unseen observations in X', but also across unseen tasks in ©. Before proceeding
with the study of generalization in the next section, we introduce additional notation for later use.

Additional notation. In our behavioral cloning problem (), a single data point is given by the
triplet (6;, TZ}, a?j), which we intend as realizations from the random variables (T, X, A) distributed
asT ~ Pyand (X, A) ~ IP}E respectively. We will turn to one or the other notation when convenient.
For a random variable A taking values a1, as, . . . with probabilities p(a1), p(az), . . ., we denote its
entropy H(A) = — 3. p(a;)logp(a;). For two random variables A, B, we denote their mutual
information 4.5 = H(A) — H(A|B) = H(B) — H(B|A), where H(A|B) is the conditional
entropy. Finally, we will use the symbol < to hide constant and lower order terms from inequalities.

3 Generalization analysis

In the previous section, we detailed how an expert’s policy can be “cloned” from data by solving the
optimization problem (I)). Obviously, fully cloning the expert’s behavior is a far fetched objective
when limited demonstrations are available: When training data spans only a small portion of the
observation space X’ and the set of tasks ©, how can we extract information on what would the expert
do in unseen observations and tasks? Nonetheless, we aim for our cloned policy 7 to transfer at least
part of the expert’s behavior beyond the demonstrated observations and tasks. In this section, we

2Note that this does not hinder generality, as we can always take X = Upco Xy when observation spaces
vary across tasks (ditto for the action space) and H = maxgco Hg when the episode horizons vary.

3Oftentimes, the episode horizon is an upper bound to the episode length, while secondary termination
conditions may end the episode early, as it will be the case in our experimental setting. For the ease of
presentation, we ignore early termination in our setup and consider episodes of length H.



provide a formal study of the generalization guarantees of the cloned policy 7, showing an original
dependence with the information available to the expert when collecting demonstrations. To specify
what do we mean by “information” in this setting, let us consider the figure below.
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The latter is a graphical illustration of the expert’s behaviorE] At each step, the expert takes as input
an observation (X') which depends on the task they are going to demonstrate (1), processing them
into an internal representation 2. The demonstrated action (A) is then conditioned on Z. Note that Z
is recurrent and retains any information that is relevant to select A, including the task information
that may be available in the observation X. The mutual information /7,7 measures the task-related
information that goes into Z and, consequently, how much the strategy to select A relies on it.

We typically expect an expert with full information on the task—large Iz.,7—to demonstrate an
optimal policy specific to the task, without any exploratory actions. Instead, whenever there is an
information bottleneck between the task information and the expert—small Iz, 7—we expect them to
take exploratory actions to first “understand” the task in order to solve it. We still call them experts as
we assume their behavior to be optimal with the given information, a concept that has been formalized
with Bayes-optimal policies [[16]. We conjecture that the latter behavior may generalize better to new
tasks, as the process of understanding the task is more general than just solving it. In the following,
we provide a formal result based on this conjecture, in which we analyze the generalization gap of
the cloned policy as a function of the information Iz.r available to the demonstrator.

Analogously to previous works [e.g., 41} [13]], we are interested in deriving an upper bound on the
performance gap between an optimal policy for each task (7*) and the cloned policy (7). Since we
are considering a multi-task setting, we average the gap across the task distribution P

e - B[S0 B[S e

Before stating the result, we introduce a few technical assumptions. First, we define the generalization
error of a policy 7 as

Egen(m) = E E [1(m(X)# A)] 3)

T~Po X A~PT
for a single point indicator loss. We make the following assumptions on the expert’s policy.
Assumption 1. The expert’s policy w7 is deterministic.
Assumption 2. The generalization error of the expert’s policy is given by Egen, (F).

Note that we allow the expert’s policy to depend on the history, for which assuming determinism is
reasonable even when an information bottleneck is applied to the expert. Whereas it is standard in
the literature to assume the expert is optimal, i.e., Egen (7TE ) = 0, in the presence of an information
bottleneck we do not take for granted that the expert is optimal in all the tasks. Nonetheless, if the
expert’s behavior is Bayes-optimal, non-trivial worst-case bounds on Egen(wE) hold [5]], for which
the generalization error only scales with log( H ) under our assumptions. Moreover, in settings where
the reward is sparse denoting task success, i.e., R = 1, the Bayes-optimal policy may still have
ng(ﬂE ) = 0 w.r.t. some optimal policy, albeit inefficient in the number of steps.

Then, regarding the behavioral cloning problem (T)), we make a pair of assumptions as follows.
Assumption 3. The expert’s policy is realizable in the policy space 11, i.e., ¥ € I1.

Assumption 4. We have access to an optimization oracle that solves problem (1) with bounded error
m n H-1

£t (7) i= miH S5 S 1GGD) £ al).

i=1 j=1 h=0

“Note that this is not related to the architecture of the cloned policy, which will be discussed later on.
Note that the optimal policy 7* depends on the task 7" whereas 7 is a single policy cloned from data.



In principle, one can fulfill Asm. [3]by cloning the demonstrations into a rich enough policy space
II. However, a more expressive policy space may lead to a harder optimization problem, especially
when the policies are represented through large neural networks, for which (TJ) is non-convex.

We now have all the ingredients to state our main result.
Theorem 3.1. For a confidence § € (0, 1), it holds with probability at least 1 — 2§

I, Allog(1AI/5) log<|n|m/6>> .

m n

JE, /(i) = J(®)] S RH («‘JgemE) e+

All of the derivations and the hidden constants can be found in Appendix [A] Instead, here we unpack
the bound and discuss the meaning of each term. First, the RH factor accounts for the cost of
a “mistake” of the cloned policy, i.e., choosing an action different from 7*. The terms Egep (1)
and &,,:(T) depends on the quality of the expert’s policy and the solver for (I, hence they cannot
be reduced with additional data. The last term, scaling with the number of trajectories in each
demonstrated task n !, comes from a typical behavioral cloning analysis of generalization within
the training task [e.g.,[13]]. The more demonstrations we have from a task, the better we can clone
the expert’s policy in that task. The third term, scaling with the number of demonstrated tasks m 1,
controls the generalization across tasks and comes from the analysis of generalization induced by an
information bottleneck [20]], which is expressed by Iz.7. The most important finding of our result
lies in this term: To improve generalization of the cloned policy, we can either increase the number
of tasks m or apply an information bottleneck—a “blindfold”—to the demonstrator to reduce Iz.1
without paying any meaningful price, as it is typically Egey, () = 0 for tasks with sparse rewards
and Eye, (77) < log(H) for dense rewards, while other terms remain the same.

In the next sections, we provide an extensive empirical evaluation showing that this result is far from
being a theoretical fluke, but translates to practical scenarios as well.

Overcoming assumptions. The result presented in this section holds for deterministic expert’s
policies (Asm. 1), finite action space (due to |A| dependency), and finite policy class (due to |II|
dependency). Deterministic expert’s policy and finite policy class can be easily overcome by extending
the in-task generalization result to stochastic policies and infinite policy classes, as done in [13]].
Instead, the dependency on |.A| comes from reducing the cloning problem to classification, in order
to invoke information bottleneck generalization results [20]]. In principle, extending the analysis to
continuous action requires an analogous generalization bound for the regression problem [29] and to
circumvent established negative results for this setting [46].

4 Experiments

In this section, we report an experimental campaign to validate the results of previous sections and to
demonstrate the importance of the expert’s behavior for multi-task BC generalization. To this end,
we train two policies, with the same BC algorithm, on human demonstrations collected by either a
traditional expert or a blindfolded experlﬂ We refer to the resulting policies as 1o and Tpo_BFr
respectively. We compare them in the success rate achieved on both the demonstrated tasks and
unseen test tasks. We repeat the experiment twice, first in simulation on the Procgen maze and heist
(Section @ then on a real robot peg insertion task (Section @ For both domains, we describe
how the information bottleneck for the blindfolded expert is obtained in practice.

4.1 Procgen maze and heist

Procgen [8§]] is a popular benchmark for measuring sample efficiency and generalization [35), 34} 9l 22|
61]]. It consists of 16 different procedurally generated environments in which new levels are randomly
generated for every episode, forcing agents to handle changing layouts, colors, and textures. Here
we focus on the maze and heist games in the “easy” setting, in which each level is a 2D maze-like
layout that the agent navigates. These tasks are the most challenging tasks for generalization in the
Procgen suite, and until the results of [61] have seen only minor improvements over random walk.
We test how training on a set of demonstrated maze and heist tasks generalizes to unseen tasks for the
different experts.

0ur human demonstration dataset for Procgen maze and heist is available on the project website.
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Figure 2: Demonstration of actual experts’ observations. For the Procgen maze (left-pair), Procgen
heist (middle-pair), and robotic peg insertion (right-pair). We show the full observation of the Expert
and the masked observation of the Blindfolded-Expert.
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Figure 3: Game score as a function of training epochs in the Procgen maze and heist. Left-pair:
performance on 200 training levels. Right-pair: performance on unseen test levels. The mean and
standard deviation are computed over 10 seeds.

Maze. In Procgen maze, the agent (mouse) must find and reach a single goal (piece of cheese) in a
2D maze. Procedural level generation produces variation in maze layout (sprawling corridors), goal
positions, and the color and texture of navigable spaces.

Heist. The Procgen heist is based on a maze-like level, in which the agent has to additionally solve
a sequence of sub-goals in order to solve the task (reaching the gem). At each level, the goal (gem) is
hidden behind a series of color-coded locks, accessible through keys of corresponding colors, that are
scattered throughout the level (see Figure[2). This task requires multi-stage planning in the form of
lock-waypoints and to overcome variations in sub-task ordering, making the task more complex and
challenging than a regular maze.

Setup. For training, we consider 200 procedurally generated levels. There are 4 discrete actions,
move up, down, left, and right in the maze game, and additional 4 actions in heist: left-down, left-up,
right-down, and right-up. The observations are 64 x 64 RGB images of the current state as a
top-down view of the maze.

Data collection. We collect a total of 4K demonstrated trajectories from 200 different training
levels (20 trajectories per level). The environment allows for at most 500 input steps for maze and
1000 for heist, and we only retain trajectories of successful expert demonstrations. The standard
experts are humans who see the top-view of the entire game, and therefore are likely to follow the
shortest path to the goal. The blindfolded experts are humans playing the game with occluded
observations of its layout, such that only the immediate proximity of the agent is visible and the
rest of the level is concealed (see Figure 2] middle and left). As a result, human experts cannot
directly plan a path to the goal location, and exploration of the level is needed. Note that while the
observations are masked to the expert, the stored data contains the original (unmasked) observations
for training the cloning algorithm. The trajectories are tuples of observation, action, reward, and
done flag (o, a;, ¢, done).

Policy architecture and training. Training is conducted from scratch on the demonstrated trajec-
tories by minimizing the negative log likelihood[I] We use the architecture from [27] for both the
Expert (mp¢) and BF-Expert (73— pc)—a ResNet [17] to encode the observations, which are then
processed by two fully-connected layers. To capture the exploratory behavior, we add a single GRU
[7] before the Softmax policy layer (further details are in Appendix [C).



Table 1: Average number of steps + std in the trajectories demonstrated by standard Experts and
BF-Experts. The latter takes more steps due to the information bottleneck, which forces exploration.

Mode ‘ L * . + A ‘ Maze
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Figure 4: Procgen maze score as a function of training epochs. Left: performance on 100 training
levels. Right: performance on unseen test levels. Policies mpc and mpp_pc are trained on 2K
trajectories, the former clearly overfits. We also train mpc_.,+ on 4.6 K non-blindfolded experts’
trajectories, matching the total number of steps of mgr_pc. The resulting mpc_,¢ Overfits despite
access to twice the amount of data. The mean and standard deviation are computed over 10 seeds.

Results. In Figure[3] we compare the game score over the training epochs achieved by policy cloning
of the standard Expert (7p¢) and the BF-Expert (mpc—pr). As we can see from Figure [3| (left-pair),
the performance of the two policies is similar on the training levels, approaching the maximum task
score. However, as evident from Figure 3] (right-pair), while the mpc_ pr gracefully improves the
test score, the ¢ policy overfits to the training-set, and its test score slightly degrades with further
training. This is a testament to the inherent generalization capabilities granted by the BF-Expert w.r.t.
a standard Expert.

Number of steps. Table [I] (left-most column) details the average number of steps taken by the
experts (Experts) and the blindfolded experts (BF-Experts) across 100 demonstrated levels, accruing
2K maze trajectories. Trajectories taken by the Experts are shorter on average than the BF-Experts,
supporting the assumption that the BF-Experts exhibit a more exploratory behavior, whereas the
Experts take the shortest path to the goal.

To further highlight the contribution of exploration toward generalization and to show that it isn’t
merely the result of additional training steps, we train a policy Tpc—ez+ On double the amount of
non-blindfolded experts’ trajectories—to match the total number of steps produced by the blindfolded
experts. Figure|4|shows that even with an equal number of total steps from both experts, Tpc—ext
overfits. Further details on the number of trajectories and steps are provided in Appendix [C]

4.2 Robotic peg insertion

Peg insertion is a standard problem in robotic manipulation. Here, we consider the insertion task in
the Functional Manipulation Benchmark [FMB, 25]], which focuses on inserting variously shaped
pegs into tightly matching holes. Different from [25]], however, we investigate generalization: How
training on a fixed set of shapes generalizes to inserting previously unseen shapes. We simplify less
relevant technical aspects of the benchmark by fixing the peg to the robot gripper, and 3D-printing
individual holes, so that discerning the target hole becomes trivial (see Figure E]-left). In addition, we
added several new shapes to the benchmark to increase its variations.

Setup. The task comprises ten pegs of various shapes with corresponding slots. In our setting,
the robot initiates with the peg already in its grip and needs to insert it into a single-slotted board
anchored to the surface. The robot setup is shown in Figure[5]in full, alongside a few examples of
peg shapes. We use a Franka Emika Panda robot arm and teleoperate the robot using a SpaceMouse.
For operating the robot and the SpaceMouse, we use the SERL open-sourced package [24] with the
same settings as the authors. The actions are input as SpaceMouse commands: 6-DoF end-effector
move and twist (location and Euler angles) at 10Hz, tracked by a low-level impedance controller
running at 1KHz. The observations are obtained as RGB-only images from two Intel RealSense
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Figure 5: The robotic arm configured for peg insertion (left). Close-up view of various peg shapes
and their boards (right).

D405 cameras, mounted on the robot end-effector, which simultaneously capture imageﬂ To avoid
background distractions in image observations, we place each shaped board inside a black bin. In
addition to the 6-DoF pose of the robot end-effector, the framework also includes the force, torque,
and velocity information provided by the Franka Panda robot.

Data collection. We split the ten shapes into training and test shapes. When collecting demonstra-
tions, only the training shapes are used, while the test shapes serve as a withheld subset for evaluation.
We collect 400 trajectories from human demonstrations of each training shape, first with a standard
Experts and then with BF-Experts. Each trajectory begins at a random initial pose. When the full
information from the wrist cameras is provided to the human experts, they easily succeed in inserting
all training shapes. The blindfolded experts are human experts exposed to redacted observations
from the wrist cameras, which occlude the articulation of the slot as they attempt to insert the peg
(see Figure[2). We use SegmentAnything2 (SAM2) [39] modified to segment a live video stream and
prompt it to mask out the shape of the target hole. In addition to the masked-out images from the
wrist cameras, the initial robot pose varies with each insertion attempt, thus preventing the expert
from memorizing or inferring the articulation of the target hole. Note, however, that the recorded
trajectories collected by both the Expert and BF-Expert contain the full unmasked observation. The
distinction is then the behavior of the two experts, with blindfolded experts taking exploratory actions
to cope with masked-out images in an attempt to complete the task. The trajectories are collected
on the training shapes only. Table [I] details the training shapes and the average number of steps
taken by the standard Expert and BF-Expert until successful peg insertion. Clearly, the trajectories
demonstrated by the BF-Expert are longer, indicating more exploratory behavior, whereby the expert
must rely on masked-out images until resolving the correct articulation for inserting the peg. In the
next sections, we show that the resulting exploratory behavior is useful for generalization.

Policy architecture and training. Training was conducted for k € {2, 3,4, 5} peg shapes, with the
remaining shapes serving as a withheld test set. We use the same network architecture for cloning
both the expert mp¢ and the blindfolded expert mpr— . Specifically, we use a weight-shared frozen
ResNet-10 encoder pretrained on the ImageNet dataset [10] for encoding the incoming images
from both wrist cameras. The resulting embeddings are concatenated with the MLP-embedding of the
proprioceptive information before entering a single GRU [[7]] that outputs a Gaussian policy. The use
of a memory-based architecture is crucial to fully capture the non-Markovian exploratory behavior of
the blindfolded expert [28]. For more detailed specifications regarding our experimental setup and
hyperparameters, please refer to Appendix [B]

Results. Figure [6] shows the success rate for k = 2,5 training shapes (results for k = 3,4 are in
Appendix [B)). The success rate is the average of 24 insertion attempts per peg shape by the robotic
arm. The results demonstrate that cloning the BF-Expert with mgr_ g achieves better generalization
compared with the standard Expert, cloned with 7w, across all peg shapes and over all test subsets.
Importantly, the advantage of the proposed blindfolding approach is more significant when fewer

"Following the conclusions of FMB [25], we omit the depth data, as they showed it has a marginal benefit.
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Figure 6: Success rate of robotic peg insertion for 10 peg shapes (horizontal axis). We train on a
subset of shapes k = {2, 5}, with the remaining shapes withheld as test-set. Both for k& = 2 (left) and
k = 5 (right), cloning blindfolded experts generalizes better than cloning standard experts.

shapes are used to train the model, i.e., when a larger portion of shapes are withheld during training.
Interestingly, the figure shows that even for shapes encountered in training, the mpr_pc policy
generalizes better than cloning the standard expert mpo. This is a result of the limited ability of
expert demonstrations to account for all real-world variations, e.g., lighting and control-loop errors.
In comparison, the 7pr_ g is more robust to these kinds of errors, since it imitates blindfolded
experts who cannot rely on visual cues, and must compensate in order to solve the task. Additionally,
it is worth mentioning that certain shapes are more challenging than others. We observe that shapes
with greater radial symmetry and convexity (such as the circle, triangle, hexagon) are simpler to learn
than shapes with non-radial symmetry (such as the ellipse, rectangle) or non-convex shapes (such as
the cut-out-rectangle), as they require a more specific orientation for insertion.

The sensitivity to the choice of a specific blindfold. To demonstrate the generality of our approach,
we conduct an experiment of robotic peg insertion, where we apply random noise to the experts’
observations instead of masking the shape socket. We collected a total of 1600 expert trajectories
with random noise p ~ UJ0, P] added to all pixel values, from varying maximum noise level
P € 0,100,170, 200] and 2 training shapes (square and star). We then train a network on each noise
level P (i.e., 400 trajectories per level). Table |2 details the Success Rate (SR) [%] and State Entropy
(SE) of the demonstrated trajectories, alongside the networks’ performance on train (square and star)
and test shapes (plus and ellipse). The table shows several interesting results:

1. Introducing more noise increases the State Entropy (SE), but a severe noise corruption
(P = 200) impairs the expert, lowering the Success Rate (SR) of the demonstrations, and
degrading the robot’s performance.

2. Adding the “right” amount of noise (P = 100) helps generalize to unseen shapes. Although
less effective than masking, it still significantly outperforms the traditional approach, i.e.,
without any blindfolding (0 noise).

3. This experiment demonstrates that even a general form of blindfold (non-task specific) may
still be superior to the conventional imitation learning approach.

Table 2: Success Rate (SR) [%] and State Entropy (SE) for the various blindfold types: range of noise
levels or SAM2 mask. The column "Demos" details the SR and SE of experts’ demonstration subject
to the blindfold. The left-most columns are their corresponding evaluation performance [%] on Train
(square, star) and Test (plus, ellipse).

. Demos Train Test
Max-Noise Level SR SE  square star plus ellipse
0 100% 3.17 71% 67% 20% 17%
100 9% 326 100% 88% 96% 79%
170 5% 339 92% T1% 58% 62%
200 58% 346 46% 38% 21% 54%

SAM2 Mask 100% 3.52 96% 96% 100%  96%




5 Related works

Our work closely relates to imitation learning, information bottleneck, and robotic manipulation.

Imitation learning theory. The imitation learning literature counts a plethora of contributions, for
which we refer to recent surveys [19,160]. Here we are concerned with the generalization of behavioral
cloning — a dominant imitation learning technique. Previous works [41} 42} 56, |38} 136, 37, 50} [13]]
have studied the theoretical limits of behavior cloning and settled the generalization gap on the
training task as J(7*) — J(7) < Rlog(|1I|/d)/n [13]. These results are mostly limited to cloning a
Markovian policy in a single MDP. Other works have considered more general settings, including
cloning history-based policies [4] and imitation learning under partial observability [48]. However,
the generalization of behavior cloning in a meta learning setup, which is popular in empirical
works [[11,112]], is understudied. The only generalization analysis that strikes close to this setting is,
to the best of our knowledge, the one in [40]. Differently from ours, they assume online access to the
set of tasks to further fine-tune the cloned policy and they do not study how the information available
to the demonstrator affects generalization, which is our main theoretical contribution.

Imitation learning in robotics.  Imitation learning has been fundamental to various robotic
domains, including autonomous driving [132]], locomotion [31]], flight 1], and manipulation [12]]. A
recent survey on manipulation, our case of interest here, is provided in [2]]. Several works showed
that imitation is useful for learning complex visuo-motor policies for robotic manipulation, where
key ideas include predicting a sequence of future actions, and using a diffusion generative model
to learn a distribution over the action sequence [6} 59, [14]]. However, it is known that imitation
learning requires a large number of demonstrations in order to generalize to variations in the task.
Previously studied mitigations include 3-dimensional priors in the representation [S8]], automatic
data augmentation [26} 15} 571, interactive data collection [18]], and using simulations [52]]. Another
approach is leveraging large-scale data, either by collecting diverse task variations [23]], or by fine
tuning robotics foundations models [30} 49, [21]]. Differently from the approaches above, we postulate
that the way a demonstrator performs a task affects generalization, showing that by blindfolding
the demonstrator we obtain an exploratory behavior, which induces better generalization when
cloned. The generalization of exploratory behavior has been demonstrated in zero-shot reinforcement
learning [61]. In comparison, we apply this idea to imitation learning, which requires a different
approach, and also develop a theoretical explanation for the improved generalization. The idea that
exploration at test time helps generalization has also been explored in the sim-to-real context in [54].

Information bottleneck. When learning a X — Y relationship between random variables, the
information bottleneck [51]] prescribes to “squeeze” X into a representation that only retains informa-
tion to predict Y. This principle is believed to be a factor beyond the generalization capabilities of
deep learning [44]] and formal generalization bounds through the information bottleneck have been
derived [45} 29, 120]. In imitation learning, the information bottleneck has been used to analyze gener-
alization in [3]]. However, they consider generalization on the training task only and the information
bottleneck is applied to the representation of the cloned policy. Our work advocates for applying an
information bottleneck to the demonstrator to improve generalization of the cloned policy.

6 Conclusion

We showed that cloning the behavior of blindfolded experts leads to better generalization to unseen
tasks. We supported this with theoretical analysis and conducted empirical tests that, for the first
time, explored the concept of blindfolding experts in the context of a real-world robotic task, as well
as a maze videogame. We observed that in both peg insertion and maze-solving tasks, blindfolding
the experts encouraged them to enact a more exploratory behavior, cloned to produce policies that
better generalize. Importantly, our approach achieves better generalization while accommodating any
imitation learning algorithm.

Finally, we point out a limitation of the proposed approach: each domain may require a different kind
of blindfold (e.g., concealing the field of view in the maze videogame, or masking out the shape of the
hole in the peg insertion task). Too little obstruction does not elicit exploration, while redacting too
aggressively would impede any informative exploratory behavior (may resort to near random walk).
An interesting question is how to find the optimal balance, which we reserve for future research.
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A  Proofs

Here we provide the derivations for the generalization bound in Section 3] The proof requires a
non-trivial combination of previous results in provable imitation learning, mostly from [[13]], and the
generalization guarantees of information bottleneck [20]. These results are reported in Lemma[A_J]
and[A.4] Before going through the proofs, we state the main theorem again for convenience.

Theorem A.1 (Theorem [3.1). For a confidence 6 € (0, 1), it holds with probability at least 1 — 20
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where

* R is an upper bound to the cumulative reward of any policy in any task 0 € © (Section[2);

Eqgen () is the generalization error of the expert’s policy (Asm. ;

* Eopt () is a bound to the optimization error of solving (I)) (Asm. EI)

C(E, ¥ %) is a constant that depends on the training data E, the expert’s policy 7%, the
cloned policy 7, and other absolute constants as detailed in Lemma

Proof. We derive the result as follows
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where (@) and (3)) are straightforward from the definitions of the performance J(7) and the general-
ization error £y, () (see Section 2 and @) respectively), @ follows from Assumptlonl 2l and (]ﬂ)
holds with probability at least 1 — 2 through Lemma[A2]

We provide below the lemmas we need to prove the result above.
Lemma A.2. For a confidence 6 € (0, 1), it holds with probability at least 1 — 26
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where Ir.z is the mutual information between the task T' and the internal representation of the
demonstrator Z.

Proof. We derive the result as follows
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where (8) is a trivial consequence of Assumption[don the optimization error for solving (I), (9) holds
with probability at least 1 — § through Lemmal[A.3|and a union bound on the m training tasks, and
(T0) holds with probability 1 — 2§ from Lemma by omitting constant and lower order terms and
applying a union bound. O

Lemma A.3 (Sample complexity of behavioral cloning [13]). For a confidence § € (0, 1), an MDP
0, and a deterministic expert’s policy ¥, it holds with probability at least 1 — §

E G £ 4) < 2ol
XANIP’@r n

Proof. This result can be obtained through a combination of results in [[13]]. First, for a policy 7
obtained by minimizing the negative log likelihood of the data, as in (T)), from Proposition 2.1 [13]]
we have with probability at least 1 — ¢ that

~ 2log(|I1|/90)
D3 (7. B") < 280

where D% (P,Q) = [ (\/ dP — \/d@)2 is the squared Hellinger distance between the probability
measures P and Q. Then, through Lemma F.3 [[13]] we have

~ 7T 7_‘_E
E [1(®(X) # A)] < 4D, (P5,PF )
X A~P
which concludes the proof. O
Lemma A.4 (Information bottleneck generalization gap [20]). For a dataset E = {0; ~ Py}, of
m tasks and a single-point convex loss {(7(X), A), let us define the generalization gap across the
prior Py as

_ 1 « A
e =_E XAEP;E [ (X), A)] = — ; XA@NEP&E [L(7(X), A)].

For a confidence § € (0, 1), T'(E) is upper bounded with probability at least 1 — § by
5\/IT;ZA log2 + aylog2 + H(Z|T, A) +10g(2|A|/d) = f(7)+/27]Allog(2]A]/9) 4 29(@)
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where o, 3,7 are constant values, f(T) = maxjcim) Ey , o2 [((7(X), A)] is the maximum
2

training loss, g(T) = supx 4 £(T(X), A) is the maximum generalization loss, and H(Z|T, A) is the
entropy of the demonstrator internal representation given T A.

Proof. This result is based on Theorem 1 in [20], in which the notation adapted to our setting of
interest. All of the derivations can be found in [20]. A more coarse version of the bound is given as

I,z 4| Al log(2|A|/0)

m

A(B) < (Waw log2 + H(ZI|T. 4) + f(7)v/27 + vg(?r)>\/

where the first factor can be incorporated into a constant C(E, 7% 7). We note that the term
H(Z|T, A) = 0 whenever the demonstrator internal representation is deterministic, which is a fair
assumption in our setting. Further, the maximum training error f(7) is close to zero and upper
bounded by the optimization error &, (7). The value of g(7) is upper bounded by 1 for the indicator
loss £(7(X), A) = 1(7(X) # A). Finally, we note that I,z > I,z 4. With these considerations,
by omitting all of the constants, we have

A(E) < \/IT;ZMI log(|-A[/5)

~
m

as it is reported elsewhere in the paper. O
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B Peg insertion extended results

This section describes in detail the setting, hyperparameters, and constants used for the peg insertion
task, as well as provides extended evaluation results.

B.1 Experimental setup

Figure [7]shows a close-up view of all peg shapes (10 shapes in total) and their corresponding boards,
where the training shapes are in the top row and the test shapes are in the bottom row. Each peg
insertion attempt starts from 10cm above the hole (Z axis) and a random reset position within a 0.5¢m
box in the XY plane, centered above the hole position. In this experiment, initial rotations about the
X and Y axes are fixed (0 degrees), while the Z angle starts from a random rotation ranging from —60
to 60 degrees. Two Realsense cameras are mounted on the robot’s wrist. For the blindfolded expert
experiment, we mask out the hole to hide its orientation from the experts, such that they cannot infer
the orientation of the peg and must explore the domain in order to insert the peg.

FAFAFES
FAEarara

Figure 7: Close-up view of all peg insertion tasks. Top row: Training pegs. Bottom row: Test pegs.

B.2 Hyperparameters and constants

As described in section the same architecture is used for learning both ¢ and 7pp_pc.
Specifically, we use ResNet-10 encoder pretrained on the ImageNet dataset [10]], and a GRU
of 1024, which we found to produce the best performance for both policies mgc and 7pr_pc
independently. Throughout our experiments, we train our networks using the Adam optimizer. The
hyperparameters of the networks are the learning rate, learning rate decay, and the batch size. To
ensure that the best performance of each approach is achieved, we perform a separate hyperparameter
search for each policy, trained on each subset of shapes. The best hyperparameters are listed in Table
Bl The network outputs a 6-dimensional vector for the mean and a 6-dimensional vector for the
diagonal covariance matrix of a Gaussian policy (for 6-DoF action space). We train our networks
using the log-likelihood loss. In all our evaluations, the action is chosen as the maximum likelihood
of the distribution.

Table 3: List of hyperparameters used in the peg insertion experiment. The learning rate (Ir) schedule
indicates the iteration number for multiplying the Ir by 0.5.

Hyperparameter TBC TBF—BC
batch size 1024 1024
hidden size 1024 1024
initial Ir 0.0003 0.0003
Ir schedule Ir x0.5 at {10,100, 150,200} K | Ir x0.5 at {50, 100, 150, 200} K

B.3 Measuring exploratory behavior

We compute two additional measures for the exploratory behavior of the different experts: the map
coverage score (Table ) and the entropy of state visitation (Table [5).

Map coverage score is the ratio C' = N, /Ny,14; given by the number of visited states N,, divided by
all accessible states Nyo1q, averaged over all episodes. For the peg insertion experiment, we consider
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Figure 8: Success rate of robotic peg insertion for 10 peg shapes (horizontal axis). We train on a
subset of shapes k = {3, 4}, with the remaining shapes withheld as test-set. Both for k¥ = 3 (left) and
k = 4 (right), cloning blindfolded experts generalizes better than cloning standard experts.

the rotation of the robotic arm around the Z-axis as the crucial component of the state space for
obtaining the correct articulation for insertion. We compute the ratio of the rotation performed (in
radians) divided by 27 in each trajectory, averaged over all trajectories.

The entropy of state visitation is defined by H = — " _p(s)logp(s). We calculate p(s) using a
histogram (with 20 bins) of rotation angles along the trajectory, averaged over all trajectories.

The results confirm that blindfolded experts explore a larger portion of the state space to compensate
for the redacted information in the observations.

Table 4: Map coverage score of the trajectories demonstrated by fully-informed experts (Experts) and
blindfolded experts (BF-Experts).

Mode hexagon  star  square plus triangle Average

Experts 0.078  0.113 0.150 0.153  0.191 0.137

BF-Experts  0.114  0.259 0.267 0.270  0.327 0.247

Table 5: Entropy of the state visitation of the trajectories demonstrated by fully-informed experts
(Experts) and blindfolded experts (BF-Experts).

Mode hexagon  star square plus triangle Average

Experts 2876  3.121 3.266 3.228 3418 3.182

BF-Experts  3.100  3.416 3.546 3.577 3.631 3.454

B.4 Results for different combinations of training shapes

Figure 8] shows the success rate for k = 3, 4 training shapes (and the rest serve as a test set, out of a
total of 10 peg shapes). The results on the varying amounts of training shapes, further support that
cloning blindfolded experts generalizes better than the standard BC approach.

C Procgen maze and heist extended results

This section describes in detail the hyperparameters and constants used for the Procgen maze task.

C.1 Hyperparameters and constants

For a fair comparison, we conduct a separate hyperparameter search for both 7pc and 7pp_pc. We
perform a hyperparameter search for the batch size b € {128,256, 512, 1024}, for the learning rate
Ir € {le73,1e7*,1e75,5e72,5¢ 7%, 5¢ 75} and for hidden size h € {128,256,512,1024}. We also
evaluate the performance with and without using a learning decay schedule. Our networks are trained
using the Adam optimizer. The best hyperparameters are chosen based on the lowest training loss and
the highest training success rate. We evaluate performance over an average of 10 different random
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Figure 9: Loss as a function of training epochs for the Procgen maze (left) and heist (right). Mean
(color line) and std (shaded region) are computed across 10 seeds.

training seeds. Figure 0] and Table 6] show the loss function and the chosen hyperparameters. Note
that in most cases, the best hyperparameters for 7 and mpr_ pc turned out to be fairly similar.

Table 6: List of hyperparameters used in the Procgen Maze experiment.

Hyperparameter TBC | TBF—BC
batch size 256 256
hidden size 1024 1024
learning rate 1073 1073
learning rate schedule? | No No

Table 7: List of hyperparameters used in the Procgen Heist experiment.

Hyperparameter TBC | TBF—_BC
batch size 128 128
hidden size 512 1024
learning rate 10-° 10-°
learning rate schedule? | No No

C.2 Number of steps vs. number of trajectories

As described in Table[I] the blindfolded expert takes more steps on average to complete each trajectory.
When comparing the different approaches, we match the number of trajectories, which leads to a
greater total number of environment steps for the blindfolded expert. Table [8| shows the total number
of steps available for training the different BC policies, alongside their performance. We also compare
our results to a standard BC approach with twice the number of trajectories (from the same 100
seeds) to match the number of environment steps produced by the blindfolded expert. In addition, we
compare our results to the results reported by [27]], who train a BC policy on the Procgen maze with
a dataset of 1M environment steps taken from a trained PPO expert, on 200 training seedﬂ

We can see in Table[§|that mp_ pc achieves better performance than all other contending policies.
When compared to the results reported in [27], we can see that our results are better despite signifi-
cantly less training data (an order of magnitude fewer trajectories) and half the number of training
seeds.

8For 1M expert dataset, we report the results from [27] who evaluated over 5 seeds.
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Table 8: Performance comparison on the Procgen maze experiment. Our results are reported at epoch
40 (early stopping) when training performance plateaus. The mean and std are computed over 10
seeds. Top performer in bold.

H Parameter IM Expert Dataset in [27]] TBC TBC—ext TBF—BC H
# of trajectories 15385 2000 4608 2000
# of total env steps 1000000 57166 115290 103238
# of seeds 200 100 100 100
Test performance 4.46 +0.16 3.35£0.29 365+£0.3 6.371+047

D Data collection

Peg insertion. For both mp¢ and mpr_pc, we use 400 trajectories for each of the training
shapes. We, the authors, collected the data by operating the robot manually using a Spacemouse
control. Recall that the blindfolded expert observes a masked-out view of the board (through the robot
wrist cameras) such that the orientation of the peg is not directly visible and must be inferred through
exploration. However, recorded observations in favor of cloning the blindfolded policy mpr_pc
are unmasked, i.e., only the human expert is blindfolded. In addition, we rescale the images from
480 x 480 to 128 x 128 for both mp¢- and wpF_ g to facilitate computations.

Procgen maze and heist.

To train our experts (BC) and blindfolded experts (BF-BC) policies, we collected 4000 human
demonstrations on 200 levels. We conducted crowd-sourced data collection for the maze and heist
videogames by recruiting 20 volunteers who played the games. Each expert played all 200 levels
of maze and all 200 levels of heist twice, once with the mask and once without the mask. Their
game trajectories were recorded to serve toward the imitation-learning of the experts’ policy mp¢ and
blindfolded experts’ policy mpr— pc. The participants moved the mouse using the keyboard’s arrow
keys and relied on the Procgen “interactive” GUI for maze and heist observations in full resolution
(512 x 512). For the blindfolded experts’ data, their observations are modified to reveal only the
agent’s immediate surroundings (a diameter of % of the width for maze and é for heist) with the
rest of the observation masked out. Note that the state observations that are provided to the cloning
networks are a lower resolution of 64 x 64 of the unmasked observations.

All participants were compensated with vouchers for their efforts. The experiment’s GUI environment,
alongside the training code and the recorded data, are available at:
https://github.com/EvZissel/blindfolded-experts/
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract claims that the paper shows that cloning blindfolded experts
leads to better generalization. We support this claim both theoretically (see Theorem [3.1]in
Section [3)) and empirically (see Sectiond.T|and Section 4.2 where we provide the Procgen
and peg insertion experiments advertised in the abstract).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: While the paper does not include a “Limitations” section, limitations are
discussed in the paper. On the theoretical side, a discussion on the limitations given by the
considered assumptions, and how they may be overcome, is provided at the end of Section 3]
For the general approach, a limitation on the design of the information bottleneck for the
blindfolded expert is reported in the Conclusion section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper has a theoretical section (Section [3) with a main theoretical result
(Theorem [3.1)). The assumptions to derive the result are explicitly stated in the same section,
above the theorem (Asm. [T|2|3|d). The proof of the theorem, together with the necessary
lemmas, is provided in the Appendix

Guidelines:

» The answer NA means that the paper does not include theoretical results.

e All theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in the appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: The experimental setup, network architecture and hyperparameters, data
collection and training schemes are all detailed in Sections [4] [C} [B] for full reproducibility.
In addition, the abstract provides a link to the project home page that contains the full source
code and documentation.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] .

Justification: The abstract section provides a link to the project home page that will contain
the full source code, environment setup and documentation, tutorial, components CAD and
network weights (complete soon).

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experiments, their setup, parameters and process are detailed at length in
the Experiments section (). Also, the abstract provides a link to the project’s page with all
the necessary code, documentation, components CAD and tutorials.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .

23


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: The paper contains error bars in table[T]and figure 3]in the form of mean and
standard deviation and the method for their computation is detailed in the corresponding
captions.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .
Justification: For both experiments, the compute-resources are detailed in sections [B|and
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The paper fully respect the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper can be categorized as foundational research. At the current stage of
development, it is not tied to any product that may be deployed in the real world and have
an impact on society.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose such risks such as potential for dual-use or risk to
society.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .
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13.

14.

15.

Justification: All relevant papers and works mentioned are properly cited, and supportive
code implementations are recognized and accredited (Procgen [8]], SERL [25])

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes] .

Justification: Our dataset of human expert trajectories for the Procgen maze and peg-insertion
tasks will be made available online on the project page https://sites.google.com/
view/blindfoldedexperts/home|

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes] .

Justification: In section [D| we detail how data collection was conducted, including the
instructions for the participants and the compensation provided.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: There are no potential risks incurred by study participants, and we verified our
study conforms to the guidelines in our institution.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This paper does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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