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Abstract

We provide a new algorithmic framework for differentially private estimation of
general functions that adapts to the hardness of the underlying dataset. We build
upon previous work that gives a paradigm for selecting an output through the
exponential mechanism based upon closeness of the inverse to the underlying
dataset, termed the inverse sensitivity mechanism. Our framework will slightly
modify the closeness metric and instead give a simple and efficient application
of the sparse vector technique. While the inverse sensitivity mechanism was
shown to be instance optimal, it was only with respect to a class of unbiased
mechanisms such that the most likely outcome matches the underlying data.
We break this assumption in order to more naturally navigate the bias-variance
tradeoff, which will also critically allow for extending our method to unbounded
data. In consideration of this tradeoff, we provide theoretical guarantees and
empirical validation that our technique will be particularly effective when the
distances to the underlying dataset are asymmetric. This asymmetry is inher-
ent to a range of important problems including fundamental statistics such as
variance, as well as commonly used machine learning performance metrics for
both classification and regression tasks. We efficiently instantiate our method in
𝑂(𝑛) time for these problems and empirically show that our techniques will give
substantially improved differentially private estimations.

1 Introduction

We consider the general problem of estimating aggregate functions or statistics of a dataset with
differential privacy. The massive increase in data collection to improve analytics and modelling
across industries has made such data computations invaluable, but can also leak sensitive individual
information. Rigorously measuring such leakage can be achieved through differential privacy,
which quantifies the extent that one individual’s data can affect the output. Much of the focus
within the field of differential privacy is upon constructing algorithms that give both accurate
output and privacy guarantees by injecting specific types of randomness. One of the most canonical
mechanisms for achieving this considers the maximum effect one individual’s data could have upon
the output of a given function, referred to as the sensitivity of the function, and adds proportional
noise to the function output. In general, the notion of sensitivity plays a central role in many
differentially private algorithms, directly affecting the accuracy of the output.

While using the worst-case sensitivity across all potential datasets will ensure privacy guarantees,
the utility can be improved by using variants of sensitivity that are specific to the underlying dataset.
This notion was initially considered in Nissim et al. (2007), introducing smooth sensitivity, an
interpolation between worst-case sensitivity and local sensitivity of the underlying data, by which
noise could be added proportionally. The smooth sensitivity adapts well to the underlying data and
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was further extended to other commonly used variants of the original privacy definition Bun &
Steinke (2019).

More aggressive methods were also considered with a data-independent conjectured sensitivity
parameter andmore accurate results providedwhen the underlying data complies with the parameter.
The propose-test-release methods check that all datasets close to the underlying data have sensitivity
below a parameter and add noise proportional when the criteria is met and fail otherwise Dwork
& Lei (2009); Thakurta & Smith (2013). Preprocessing methods provide an approximation of the
function with sensitivity below a given parameter by which noise can be added proportionally
and the approximation is accurate for underlying data with low sensitivity Chen & Zhou (2013);
Blocki et al. (2013); Kasiviswanathan et al. (2013); Cummings & Durfee (2020). Clipping techniques,
commonly seen in differentially private stochastic gradient descent Abadi et al. (2016), are also a
more rudimentary and efficient preprocessing method for ensuring sufficiently small sensitivity.
The primary challenge with these approaches is the sensitivity parameter must be specified a priori
and can add significant bias if the underlying data does not comply with the parameter.

In contrast, the inverse sensitivity mechanism directly improves upon the smooth sensitivity
technique adapting even better to the underlying data. While several instantiations had been
previously known in the literature, it was introduced in it’s full generality in Asi & Duchi (2020b).
Specifically, this framework considers all potential outputs based upon the closeness of their inverse
to the underlying data and applies the exponential mechanism to select a point accordingly. This
exact methodology can even improve upon adding noise proportional to the local sensitivity of the
underlying data, which generally violates differential privacy. Follow-up work gave approximations
of this method that allow for efficient implementations of more complex instantiations Asi & Duchi
(2020a). For both the exact and approximate versions, the inverse sensitivity mechanism is instance
optimal and nearly instance optimal, respectively, under certain assumptions Asi & Duchi (2020a,b).

1.1 Our techniques

We build upon the inverse sensitivity mechanism, particularly within the class of functions for
which it was shown to be optimal. However, those guarantees only held for a class of unbiased
mechanisms such that the most likely outcome matches the underlying data. The inverse sensitivity
mechanism and smooth sensitivity techniques fit this characterization of unbiased. The methods
that specify a data-independent sensitivity parameter break this assumption by essentially fixing
the variance through this parameter but adding significant bias if the variance parameter is set too
low. Our method will also break the unbiased assumption but still adapt well to the underlying data
to more naturally navigate the bias-variance tradeoff.

In particular, we similarly consider the distance from the underlying data to the inverse of each
possible output, which can be considered the inverse sensitivity. However, we instead invoke the
well-known sparse vector technique, originally introduced in Dwork et al. (2009), to select an output
close to the underlying data. The iterative nature of sparse vector technique will create a slight bias,
while still adapting well to the underlying data. By utilizing this iterative technique, we can also
better take advantage when the sensitivities are asymmetric that allows us to reduce the variance,
and we thusly term our method the asymmetric sensitivity mechanism. In fact, the local sensitivity
can be infinite with unbounded data and our technique can still naturally handle this setting for
a wide variety of functions including our instantiations. We support this with theoretical utility
guarantees that are asymptotically superior to previous work under these conditions.

Our notion of asymmetric sensitivities is inherent to a range of problems, and we first instantiate
our method upon variance, a fundamental property of a dataset that is widely used in statistical
analysis. Likewise, this property will also apply to commonly used machine learning performance
metrics: cross-entropy loss, mean squared error (MSE), and mean absolute error (MAE). Model
performance evaluation is an essential part of a machine learning pipeline, particularly for iterative
improvement, so accurate and private evaluation is critical. We instantiate our method upon these
functions as well, and give an extensive empirical study for each instantiation across a variety of
datasets and privacy parameters. We show that our method significantly improves performance
of private estimation for these important problems. We further complement our results with an
approximate method that allows for more efficient implementations of general functions while still
preserving the asymmetry that we exploit for improved estimations. This will allow us to give 𝑂(𝑛)
time implementations for each invocation of our method.
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1.2 Additional related works

While the most closely related literature was discussed in more detail previously, we provide
additional related works here. Recent work considered instance-optimality but for estimators
population quantities McMillan et al. (2022), which differ from the empirical quantities studied here
and in the other previously mentioned work. Additional work formally considered the bias-variance-
privacy trade-off particularly for mean estimation Kamath et al. (2023), but considers bias in the
more classical sense. Interestingly, it’s also been seen in the work for obtaining (asymptotically)
optimal mean estimation for subgaussian distributions Karwa & Vadhan (2018); Bun & Steinke
(2019) and distributions satisfying bounded moment conditions Barber & Duchi (2014); Kamath
et al. (2020), that adding bias was necessary. This fits with our results where bias, albeit a different
type, was needed to improve instance-specific differential privacy.

1.3 Our contributions

We summarize our primary contributions as the following:

1. We introduce a new algorithmic framework for private estimation of general functions,
which we refer to as the asymmetric sensitivity mechanism, along with a more computa-
tionally efficient approximate variant (see Section 3).

2. We provide theoretical utility guarantees that asymptotically confirm our method’s ad-
vantage when the sensitivities are asymmetric and further give intuition and empirical
support of this asymmetric advantage (see Section 4)

3. We efficiently instantiate our method for private variance estimation, and provide an
extensive empirical study showing significantly improved accuracy (see Section 5).

4. We further invoke our method upon model evaluation for both classification and regres-
sion tasks with corresponding efficient implementations and empirical studies showing
improved estimations (see Section 6).

Additional and supplemental analysis, results and empirical studies are pushed to the appendix.

2 Preliminaries

For simplicity and ease of comparison we borrow much of the notation from Asi & Duchi (2020a,b).
Definition 2.1. Let 𝒙, 𝒙′ be datasets of our data universe 𝑛. We define 𝑑ham(𝒙, 𝒙′) = |{𝑖 ∶ 𝒙𝑖 ≠ 𝒙′

𝑖 }|
to be the Hamming distance between datasets. If 𝑑ham(𝒙, 𝒙′) ≤ 1 then 𝒙, 𝒙′ are neighboring datasets.

Note that we assume the swap definition of neighboring datasets but will also discuss how our results
apply to the add-subtract definition in Appendix B.3. We further define the (global) sensitivity.
Definition 2.2. 𝑓 ∶ 𝑛 → ℝ has sensitivity Δ if for any neighboring datasets |𝑓 (𝒙) − 𝑓 (𝒙′)| ≤ Δ

We will be using the classical (pure) differential privacy definition, but will also discuss how our
methods apply to other definitions with improved guarantees.
Definition 2.3. Dwork et al. (2006b,a) A mechanism 𝑀 ∶ 𝑛 →  is (𝜀, 𝛿)-differentially-private
(DP) if for any neighboring datasets 𝒙, 𝒙′ ∈  and measurable 𝑆 ⊆  :

Pr[𝑀(𝒙) ∈ 𝑆] ⩽ 𝑒𝜀Pr[𝑀(𝒙′) ∈ 𝑆] + 𝛿.
If 𝛿 = 0 then 𝑀 is 𝜀-DP.

2.1 Sparse vector technique

We define the fundamental sparse vector technique introduced in Dwork et al. (2009) and often
considered to apply Laplacian noise Lyu et al. (2017). However, recent work showed the noise
can instead be added from the exponential distribution at the same parameter for improved utility
Durfee (2023). Let Expo(𝑏) denote a draw from the exponential distribution with scale parameter 𝑏.
The sparse vector technique iteratively calls the following algorithm.

This technique can further see improvement when the queries are monotonic which will apply to
most of our instantiations of our method.
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Algorithm 1 AboveThreshold

Require: Input dataset 𝒙, a stream of queries {𝑓𝑖 ∶ 𝑛 → ℝ} with sensitivity Δ, and a threshold 𝑇
1: Set �̂� = 𝑇 + Expo(Δ/𝜀1)
2: for each query 𝑖 do
3: Set 𝜈𝑖 = Expo(Δ/𝜀2)
4: if 𝑓𝑖(𝒙) + 𝜈𝑖 ≥ �̂� then
5: Output ⊤ and halt
6: else
7: Output ⊥
8: end if
9: end for

Definition 2.4. We say that stream of queries {𝑓𝑖 ∶ 𝑛 → ℝ} with sensitivity Δ is monotonic if for
any neighboring 𝒙, 𝒙′ ∈ 𝑛 we have either 𝑓𝑖(𝒙) ≤ 𝑓𝑖(𝒙′) for all 𝑖 or 𝑓𝑖(𝒙) ≥ 𝑓𝑖(𝒙′) for all 𝑖.

This allows for the following differential privacy guarantees from Durfee (2023).
Proposition 2.5. Algorithm 1 is (𝜀1 + 2𝜀2)-DP in general and (𝜀1 + 𝜀2)-DP for monotonic queries

2.2 Inverse sensitivity mechanism

The inverse sensitivity mechanism had seen several previous instantiations but was introduced in
it’s full generality in Asi & Duchi (2020b). We first introduce the exponential mechanism.
Definition 2.6. McSherry & Talwar (2007) The Exponential Mechanism is a randomized mapping
𝑀 ∶ 𝑛 →  such that

Pr [𝑀(𝒙) = 𝑡] ∝ exp(
𝜀 ⋅ 𝑞(𝒙, 𝑡)

2Δ )

where 𝑞 ∶ 𝑛 ×  → ℝ has sensitivity Δ.
Proposition 2.7. McSherry & Talwar (2007) The exponential mechanism is 𝜀-DP

We then define the distance of a potential output from the underlying dataset to be the Hamming
distance required to change the data such that the new data matches the output.
Definition 2.8. For a function 𝑓 ∶ 𝑛 →  and 𝒙 ∈ 𝑛, let the inverse sensitivity of 𝑡 ∈  be

len𝑓 (𝒙; 𝑡)
def= inf

𝒙′
{𝑑ham(𝒙, 𝒙′)|𝑓 (𝒙′) = 𝑡}

By construction this distance metric for any output cannot change by more than one between
neighboring datasets due to the triangle inequality for Hamming distance.
Corollary 2.9. For any neighboring datasets 𝒙, 𝒙′ ∈ 𝑛 and 𝑡 ∈ im(𝑓 ) where im(𝑓 ) ⊆  is the image
of the function, we have |len𝑓 (𝒙; 𝑡) − len𝑓 (𝒙′; 𝑡)| ≤ 1

The inverse sensitivity mechanism then draws from the exponential mechanism instantiated upon
the distance metric giving the density function

𝜋𝑀inv(𝒙)(𝑡) =
𝑒−len𝑓 (𝒙;𝑡)𝜀/2

∫ 𝑒−len𝑓 (𝒙;𝑠)𝜀/2𝑑𝑠
(M.1)

and mechanism M.1 is 𝜀-DP by Proposition 2.7 and Corollary 2.9.

3 Asymmetric Sensitivity Mechanism

In this section we introduce our general methodology for instance-specific differentially private
estimation, which we term the asymmetric sensitivity mechanism. We first give the exact formu-
lation which will fit an extensive class of functions focused upon in Asi & Duchi (2020b). Next
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we provide a simple framework by which our method can be implemented. The efficiency of this
implementation is highly dependent upon the function of interest, but we supplement these results
with an approximate method. This can allow for broader efficient implementations and also extends
our methodology to general functions. While this section will set up and provide the necessary
rigor for our techniques, we also point the reader to Appendix C for a more intuitive explanation of
our approach compared to the inverse sensitivity mechanism.

3.1 Exact asymmetric sensitivity mechanism

Our method will similarly consider the distance for each output from the underlying data with the
goal being to select an output with distance close to zero. The inverse sensitivity mechanism does
this through the exponential mechanism, but we will instead apply the sparse vector technique. In
order to better apply the sparse vector technique, we will first modify the inverse sensitivity such
that it is negative for outputs that are less than output from the underlying data.
Definition 3.1. For 𝑓 ∶ 𝑛 → ℝ and 𝒙 ∈ 𝑛, let the reflective inverse sensitivity of 𝑡 ∈ ℝ be

s𝑓 (𝒙; 𝑡)
def= sgn(𝑡 − 𝑓 (𝒙))(len𝑓 (𝒙; 𝑡) −

1
2)

Intuitively, the goal of applying the sparse vector technique will be to identify when the reflective
inverse sensitivity crosses the threshold from negative to positive. While there are reasonable
methods of extending our approach to higher dimensions, it will both become computationally
inefficient and the notion of asymmetry, which gives our method the most significant improvement,
is less inherent in higher dimensions. Initially, we focus upon a general class of functions considered
in Asi & Duchi (2020b) that was shown to include all continuous functions from a convex domain.
Definition 3.2 (Definition 4.1 in Asi & Duchi (2020b)). Let 𝑓 ∶ 𝑛 → ℝ. Then 𝑓 is sample-
monotone if for every 𝒙 ∈ 𝑛 and 𝑠, 𝑡 ∈ ℝ satisfying 𝑓 (𝒙) ≤ 𝑠 ≤ 𝑡 or 𝑡 ≤ 𝑠 ≤ 𝑓 (𝒙), we have
len𝑓 (𝒙; 𝑠) ≤ len𝑓 (𝒙; 𝑡)

For this class of functions, we show that the reflective inverse sensitivity of an output maintains
closeness between neighboring datasets. Accordingly, we can apply the sparse vector technique to
a stream of potential outputs in order to (noisily) identify when the reflective inverse sensitivity
crosses the threshold from negative to positive. This gives the asymmetric sensitivity mechanism for
a stream of potential outputs {𝑡𝑖} that calls AboveThreshold and returns 𝑡𝑘 when

AboveThreshold(𝒙, {s𝑓 (𝒙; 𝑡𝑖)}, 𝑇 = 0) = {⊥𝑘−1, ⊤} (M.2)

To be effective, this stream of potential outputs should be increasing (or decreasing if we flip
the sign of s𝑓 ) but will still achieve the desired privacy guarantees regardless which is shown in
Appendix A.2.
Theorem 3.3. Given sample-monotone 𝑓 ∶ 𝑛 → ℝ and any stream of potential outputs {𝑡𝑖}, we have
that mechanism M.2 is (𝜀1 + 2𝜀2)-DP in general and (𝜀1 + 𝜀2)-DP if s𝑓 is monotonic.

We further detail in Appendix B a simple, general, and robust strategy for selecting potential outputs
that provides a reasonable limit on the number of queries.

3.2 Implementation framework

The primary bottleneck in efficiently implementing both our asymmetric sensitivity mechanism
and the inverse sensitivity mechanism is the computation of the inverse sensitivity. In particular, it
will require computing upper and lower output bounds for different Hamming distances from our
underlying data.
Definition 3.4. For a function 𝑓 ∶ 𝑛 → ℝ, we define the upper and lower output bounds for
Hamming distance 𝓁 as

𝑈 𝓁
𝑓 (𝒙)

def= sup
𝒙′

{𝑓 (𝒙′) ∶ 𝑑ham(𝒙, 𝒙′) ≤ 𝓁}

and
𝐿𝓁𝑓 (𝒙)

def= inf
𝒙′
{𝑓 (𝒙′) ∶ 𝑑ham(𝒙, 𝒙′) ≤ 𝓁}
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The complexity of computing these depends upon the function, but we can use the upper and lower
output bounds to get the inverse sensitivity with the following lemma proven in Appendix A.2.
Lemma 3.5. If 𝑓 is sample-monotone then len𝑓 (𝒙; 𝑡) = inf{𝓁 ∶ 𝐿𝓁𝑓 (𝒙) ≤ 𝑡 ≤ 𝑈 𝓁

𝑓 (𝒙)} for all 𝑡 ∈ ℝ

If we then assume access to the array 𝐿𝑛𝑓 (𝒙), ..., 𝐿1𝑓 (𝒙), 𝑓 (𝒙), 𝑈 1
𝑓 (𝒙), ..., 𝑈 𝑛

𝑓 (𝒙), for any potential output
𝑡𝑖 we can compute len𝑓 (𝒙; 𝑡𝑖) in 𝑂(log(𝑛)) time with a simple binary search. Alternatively, we could
also take 𝑂(𝑛) amortized time by maintaining a pointer and iteratively increasing the index for
each new potential output if we assume the stream of potential outputs are non-decreasing. This
gives the general implementation framework:

1. Compute upper and lower output bounds 𝑈 𝓁
𝑓 (𝒙) and 𝐿𝓁𝑓 (𝒙) for all 𝓁 ∈ [𝑛]

2. Use the output bounds to efficiently run AboveThreshold(𝒙, {s𝑓 (𝒙; 𝑡𝑖)}, 𝑇 = 0)

3.3 Approximate asymmetric sensitivity mechanism

In Section A, we show how we can extend our asymmetric sensitivity mechanism to general
functions 𝑓 ∶ 𝑛 → ℝ and provide more efficient implementations. It will follow closely with our
exact version above.

4 Asymmetric Sensitivity Advantage

In this section, we first connect our definitions with the corresponding definitions in the previous
work, by which utility guarantees are provided. Then we discuss the notion of asymmetric sensi-
tivities and provide our utility guarantees that exploit this asymmetry to asymptotically improve
upon the previous work under those conditions.

4.1 Connection to previous work

An essential quantity for our method and both inverse and smooth sensitivity mechanisms is the
amount a function output can change if 𝑘 individuals change their data. This is quantified in
Equation 3 from Asi & Duchi (2020b) which can be translated to our definitions (in the case when
 = ℝ) as

𝜔𝑓 (𝒙; 𝑘)
def= max{|𝑓 (𝒙) − 𝐿𝑘𝑓 (𝒙)|, |𝑓 (𝒙) − 𝑈 𝑘

𝑓 (𝒙)|}

Note that if 𝑘 = 1 then this is the local sensitivity of the function. It’s then shown in Asi & Duchi
(2020b) (Corollary 4.2 and Equation 13, respectively) that the general utility guarantees of both
inverse sensitivity mechanism and smooth sensitivity mechanism are bounded with respect to this
quantity. More simply, the accuracy guarantees degrade as the local sensitivity increases and there
is no utility bound if local sensitivity is infinite.

4.2 Asymmetric accuracy guarantees

To understand the advantages of our method, we will consider the sensitivities to be asymmetric
if |𝑓 (𝒙) − 𝑈 𝑘

𝑓 (𝒙)| >> |𝑓 (𝒙) − 𝐿𝑘𝑓 (𝒙)| for most 𝑘 (or vice versa), which is to say that changing an
individual’s data can generally increase the function more than decrease it. In general, we expect
any lower bounded function to inherently limit the amount changing one individual’s data can
decrease the function compared to increasing the function. Each instantiation in our empirical
study is a non-negative function which then fits this characterization. For simplicity, we will restrict
our consideration to non-negative functions for our utility guarantees, but can easily apply these to
other settings.

The goal for our method is to exploit the asymmetric sensitivities by instead applying the sparse
vector technique. The iterative nature of this technique biases the output towards being less than
𝑓 (𝒙), but more importantly the 𝑈 𝑘

𝑓 (𝒙) values will have little effect upon the accuracy. Specifically,
once the threshold is crossed it becomes increasingly unlikely that the sparse vector technique
will proceed. Explicitly connecting this with our mechanism, even if 𝑈 𝑘

1 (𝒙) = ∞ and so the local
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sensitivity is infinite, we still have s𝑓 (𝒙; 𝑡𝑖) = 1/2 for all 𝑡𝑖 > 𝑓 (𝒙) and assuming 𝑡𝑖 is increasing it is
increasingly unlikely that we output larger 𝑡𝑖 > 𝑓 (𝒙).

We formalize this intuition by providing a theoretical utility guarantee that does not depend upon
the upper bound values. Essentially, we are able to replace the |𝑓 (𝒙) − 𝑈 𝑘

𝑓 (𝒙)| in 𝜔𝑓 (𝒙; 𝑘) with a
relative error bound based upon a parameter that we fix across all our empirical instantiations.
Accordingly, as 𝑈 1

𝑓 (𝒙) → ∞ and thereby asymmetry increases and also local sensitivity increases, our
utility guarantees are asymptotically superior to both inverse and smooth sensitivity mechanisms.
Lemma 4.1. Let𝑀 denote the mechanism fromM.2 with 𝑡𝑖 = 𝛽𝑖−1where 𝛽 > 1 and we let 𝜀 = 𝜀1+2𝜀2
with 𝜀1 = 𝜀2 in the call to Algorithm 1. Given non-negative sample monotone 𝑓 ∶ 𝑛 → ℝ we have

Pr [|𝑀(𝒙) − 𝑓 (𝒙)| < max{|𝑓 (𝒙) − 𝐿log 𝑘+1(𝒙)|, (𝛽𝑘 − 1)(𝑓 (𝒙) + 1)}] > 1 − 𝑂(
1

𝑘𝑒𝜀/6)

for any 𝒙 ∈ 𝑛 such that 𝑓 (𝒙) ≤ 𝛽𝑂(1).

We provide the proof in Appendix C along with further intuition and empirical evidence of our
asymmetric advantage. We also extend these results to general non-negative functions in Corol-
lary C.4 by applying our approximate variant to achieve the same guarantees. We set 𝛽 = 1.005
in all our empirical studies and also note that our method is robust to reasonable choices of the 𝛽
parameter (Appendix B.2).

5 Private Variance Estimation

In this section, we instantiate our asymmetric sensitivity mechanism upon variance, a fundamental
property of a dataset that is widely used in statistical analysis.
Definition 5.1. Let  = ℝ and for 𝒙 ∈ 𝑛 we let �̄� = 1

𝑛 ∑
𝑛
𝑖=1 𝒙𝑖 and define

Var [𝒙] def=
1
𝑛

𝑛

∑
𝑖=1

(𝒙𝑖 − �̄�)2

There has been extensive work in the privacy literature upon covariance estimation for univariate
and multivariate Gaussians with a focus upon optimizing asymptotic performance1. Our focus
here will be practical methods for general data, so a rigorous comparison to all these methods for
Gaussians is untenable and outside the scope of this work.

We first show how the variance instantiation of asymmetric sensitivity can be implemented effi-
ciently and give intuition upon why we expect asymmetric sensitivities for this function. Next
we give a detailed empirical study that confirms this intuition, showing that our method will
substantially outperform inverse sensitivity on the task of variance estimation.

5.1 Efficient variance instantiation

As seen in Section 3.2, we need to efficiently provide upper and lower output bounds in order to
achieve an efficient implementation. We first consider the lower output bounds and can provide the
exact bounds from Definition 3.4 which we prove in Appendix D.
Lemma 5.2. Given 𝒙 ∈ ℝ𝑛, if 𝒙1 ≤ ... ≤ 𝒙𝑛 are ordered then we have lower output bounds

𝐿𝓁Var(𝒙) =
𝑛 − 𝓁
𝑛

min
0≤𝑖≤𝓁

Var [𝒙[𝓁+1−𝑖∶𝑛−𝑖]]

where we let 𝒙[𝓁+1−𝑖∶𝑛−𝑖]
def= (𝒙𝓁+1−𝑖, ..., 𝒙𝑛−𝑖)

1See Karwa & Vadhan (2018); Du et al. (2020); Biswas et al. (2020); Kamath et al. (2019); Bun et al. (2019);
Aden-Ali et al. (2021); Ashtiani & Liaw (2022); Kothari et al. (2022); Tsfadia et al. (2022); Liu et al. (2022); Kamath
et al. (2022)
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While the formula above immediately suggests an 𝑂(𝑛2) time computation of all the lower output
bounds, we will further prove in Appendix D that we can use our approximation to get a more
efficient implementation. In particular, we consider a data independent fixed distance and only
compute the exact bounds outputs closer to the underlying data to still ensure accurate estimations.

Lemma 5.3. Given 𝒙 ∈ ℝ𝑛 and 𝑐 ≥ 0, we can compute all approximate output bounds 𝐿𝓁Var(𝒙) =
𝐿𝓁Var(𝒙) for 𝓁 ≤ 𝑐 and 𝐿𝓁Var(𝒙) = 0 for 𝓁 > 𝑐 in 𝑂(𝑛 + 𝑐2) time.

Next we consider the upper output bounds, but if the data is unbounded then we must have
𝑈 1
Var(𝒙) = ∞. It is precisely for this reason that asymmetric sensitivities are inherent for variance.

Our method can naturally handle this setting and we show in Appendix B.1 that unbounded upper
output bounds barely affects our accuracy. However, applying the inverse sensitivity mechanism re-
quires reasonable bounds upon each data point that should be data-independent and also sufficiently
loose to not add bias from clipping data points.
Lemma 5.4. If we restrict all values to the interval [𝑎, 𝑏] then given 𝒙 ∈ [𝑎, 𝑏]𝑛 we can give approximate
upper output bounds

𝑈 𝓁
Var(𝒙) = Var [𝒙] +

𝓁(𝑏 − 𝑎)2

𝑛

To our knowledge, there is no efficient method for computing the exact upper output bounds for
general data (contained in a range), so to maintain practicality we provide approximate bounds,
proven in Appendix D.

Algorithm 2 Variance instantiation of asymmetric sensitivity mechanism
Require: Input dataset 𝒙, and parameter 𝛽 > 1
1: Compute all 𝐿𝓁Var(𝒙) with 𝑐 = 100 (Lemma 5.3)
2: Compute all 𝑈 𝓁

Var(𝒙) if domain is restricted to [𝑎, 𝑏]𝑛 (Lemma 5.4)
3: {⊥𝑘−1, ⊤} ⟵ AboveThreshold(𝒙, {s𝑓 (𝒙; 𝛽𝑖 − 1)}, 𝑇 = 0)

output 𝛽𝑘 − 1

Theorem 5.5. Algorithm 2 is (𝜀1 + 2𝜀2)-DP and has a runtime of 𝑂(𝑛 + 𝑞) where 𝑞 is the number of
queries in AboveThreshold

Proof. If we assume the domain is restricted to [𝑎, 𝑏]𝑛 then the privacy guarantees follow from
Lemma 5.3 and Lemma 5.4 applied to Theorem A.4. If not then we apply Lemma 5.3 and 𝑈 1

Var(𝒙) =
∞ to Theorem A.4 to get our privacy guarantees.

For the runtime, computing all 𝐿𝓁Var(𝒙) is 𝑂(𝑛) time by Lemma 5.3 and fixing 𝑐 = 100, and
computing all 𝑈 𝓁

Var(𝒙) is 𝑂(𝑛) time. Finally, we can run AboveThreshold in 𝑂(𝑛 + 𝑞) time as seen
in Section 3.2

In our implementations we’ll more reasonably assume 𝛽 ≥ 1.001, so 𝛽50000 > 1021 and we’ll simply
terminate AboveThreshold after at most 50,000 queries for all datasets without affecting the privacy
guarantees. This then gives a runtime of 𝑂(𝑛).

5.2 Empirical study of variance estimation

For our instantiations of machine learning model evaluation we will be using the following datasets
for regression tasks: Diamonds dataset containing diamond prices and related features Wickham
(2016); Abalone dataset containing age of abalone and related features Nash et al. (1995); and Bike
dataset containing number of bike rentals and related features Fanaee-T (2013). We will also use the
labels from these datasets to test our variance invocation. We also use the Adult dataset, Becker &
Kohavi (1996), for model evaluation of classification tasks so we will borrow two of the features,
age and hours worked per week, to test our variance invocation.

While our method does not require any bounds on the data to still maintain high accuracy (see
Appendix B.1), it is necessary for the other mechanisms. All of our data is inherently non-negative
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Figure 1: Plots comparing each method for estimating variance. For each privacy parameter we
sample 1,000 datapoints from the dataset and call each mechanism 100 times, plotting the average
absolute error with 0.9 confidence intervals.

and some data has innate upper bounds. If not, we use reasonable upper bounds, which should
be data independent, to avoid adding bias from clipping the data. We use the following bounds:
[0,50000] for diamond prices; [0,50] for abalone ages; [0,5000] for city bike rentals; [0,168] for hours;
and [0,125] for age. Our algorithm (Algorithm 2 in Appendix D) will have a parameter 𝛽 which
we fix 𝛽 = 1.005 and will maintain this consistency across all experiments. We further show in
Appendix B.2 that our method is robustly accurate across reasonable 𝛽 choices.

For each privacy parameter, we repeat 100 times: sample 1,000 datapoints from the dataset and call
each mechanism on the sampled data for estimates. We plot the average absolute error for each
method along with confidence intervals of 0.9 in Figure 5.2. As expected, we see that our approach
of variance estimation sees substantially less error across privacy parameters and datasets.

6 Private Machine Learning Model Evaluation

In this section, we invoke our asymmetric sensitivity mechanism upon commonly used metrics
for machine learning model evaluation for both classification and regression tasks. In particular,
we consider cross-entropy loss for classification tasks, and mean squared error (MSE) and mean
absolute error (MAE) for regression tasks. Note that combining our improved estimation for variance
in Section 5 with the improved estimation for MSE also implies an improved estimation of the
coefficient of determination, 𝑅2, also commonly used for evaluating regression performance.

We provide full definitions along with technical analysis in Section E.

6.1 Empirical study of model evaluation for classification

For our empirical study of model evaluation for classification tasks we will consider two tabular
datasets with binary labels, the Adult dataset Becker & Kohavi (1996) and Diabetes dataset Efron
et al. (2004), along with two computer vision tasks with 10 classes, the mnist dataset LeCun et al.
(2010) and cifar10 dataset Krizhevsky et al. (2009). Our focus here is upon the accuracy of our
evaluation, not optimizing the quality of the model itself. As such, we will be using reasonable
choices for models for simplicity but certainly not state-of-the-art models .

For the tabular data, we partition into train and test with an 80/20 split and train with an xgboost
classifier with the default parameters. For the mnist data, which is already partitioned, we use a
simple MLP with one inner dense layer of 128 neurons and relu activation, and the final layer of 10
neurons has a softmax activation. We train this model for 5 epochs. For the cifar10 data, which is
already partitioned, we use a relatively small CNN with several pooling and convolutional layers,

9



Figure 2: Plots comparing each method for estimating cross entropy loss. For each privacy parameter
we both sample 1,000 datapoints from the test set and call each mechanism 100 times, plotting the
average absolute error with 0.9 confidence intervals.

and several dense layers at the end with relu activation and final layer with softmax activation. We
train this model for 10 epochs.

Again our method does not require any bounds on the data to maintain high accuracy, but it is
necessary for the inverse sensitivity mechanism. Given the softmax activation for our models, the
outputs are unbounded, but we will provide reasonable bounds. We will use the bounds [-10,10] of
the model output for binary classification tabular data, and bounds [−25, 25]10 of the model output
for the multi-classification vision data. Once again, we fix our parameter 𝛽 = 1.005.

6.2 Empirical study of model evaluation for regression

As discussed in Section 5, our machine learning model evaluations for regression will use the
following datasets: Diamonds dataset containing diamond prices and related features Wickham
(2016); Abalone dataset containing age of abalone and related feature Nash et al. (1995); and Bike
dataset containing number of bike rentals and related feature Fanaee-T (2013). We also use the same
parameters from Section 5 for these datasets. Once again, our goal here is to accurately assess the
quality of the model and not optimize performance. As such we simply train with xgboost regressor
under default parameters after partitioning each dataset into train and test with an 80/20 split.

We first consider mean squared error estimation and repeat 100 times for each privacy parameter:
draw 1,000 datapoints from the test set and call each mechanism 100 times for estimates. We then
plot the average absolute error along with confidence intervals of 0.9. We repeat this process for
mean absolute error.
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A Additional Analysis of Asymmetric Sensitivity Mechanism

In this section, we give full details upon extending our asymmetric sensitivity mechanism to general
functions 𝑓 ∶ 𝑛 → ℝ and provide more efficient implementations. We also provide all missing
proofs from Section 3.

A.1 Approximate asymmetric sensitivity mechanism

As noted in Section 3, computing the upper and lower outputs bounds can be inefficient or even
infeasible, which is necessary for our method, inverse sensitivity method, and smooth sensitivity
method. As such we provide an approximation of these bounds that is a slightly more granular
version of the approximation method provided in Asi & Duchi (2020a) and also applies to the inverse
sensitivity mechanism.
Definition A.1. For a function 𝑓 ∶ 𝑛 → ℝ, we define approximate upper and lower sensitivity
bounding functions of Hamming distance 𝓁 to be 𝑈 𝓁

𝑓 ∶ 𝑛 → ℝ and 𝐿𝓁𝑓 ∶ 𝑛 → ℝ, if for all 𝓁 ≥ 0
and any neighboring datasets 𝒙, 𝒙′ ∈ 𝑛 we have 𝑈 𝓁

𝑓 (𝒙) ≥ 𝑈 𝓁
𝑓 (𝒙) and 𝑈 𝓁

𝑓 (𝒙) ≤ 𝑈 𝓁+1
𝑓 (𝒙′) along with

𝐿𝓁𝑓 (𝒙) ≤ 𝐿𝓁𝑓 (𝒙) and 𝐿𝓁𝑓 (𝒙) ≥ 𝐿𝓁+1𝑓 (𝒙′)

In particular, this definition separates the approximation for the upper vs lower bounds as opposed
to treating them symmetrically. This maintains asymmetry which is precisely where our technique
excels most. We then define a variant of closeness for each output to the underlying data which
utilizes these approximate upper and lower bounds.
Definition A.2. For a function 𝑓 ∶ 𝑛 → ℝ along with 𝑈 𝓁

𝑓 ∶ 𝑛 → ℝ and 𝐿𝓁𝑓 ∶ 𝑛 → ℝ, for any
𝑡 ∈ ℝ, we let

len𝑓 (𝒙; 𝑡)
def= inf{𝓁 ∶ 𝐿𝓁𝑓 (𝒙) ≤ 𝑡 ≤ 𝑈 𝓁

𝑓 (𝒙)}

Outputs can only be closer to the underlying data under this approximate definition which could
hurt accuracy, but will still give the desired privacy for inverse sensitivity mechanism. We then
extend this definition equivalently for our reflective inverse sensitivity.
Definition A.3. For a function 𝑓 ∶ 𝑛 → ℝ along with 𝑈 𝓁

𝑓 ∶ 𝑛 → ℝ and 𝐿𝓁𝑓 ∶ 𝑛 → ℝ, for any
𝑡 ∈ ℝ, we let

s𝑓 (𝒙; 𝑡)
def= sgn(𝑡 − 𝑓 (𝒙))(len𝑓 (𝒙; 𝑡) −

1
2)

We will then be able to show in general that the approximate reflective inverse sensitivity of an
output maintains closeness between neighboring datasets. This gives the approximate asymmetric
sensitivity mechanism for a stream of potential outputs {𝑡𝑖} that calls AboveThreshold and returns
𝑡𝑘 when

AboveThreshold(𝒙, {s𝑓 (𝒙; 𝑡𝑖)}, 𝑇 = 0) = {⊥𝑘−1, ⊤} (M.3)

This will then achieve the same privacy guarantees which is shown in Appendix A.3.
Theorem A.4. Given 𝑓 ∶ 𝑛 → ℝ and any stream of potential outputs {𝑡𝑖}, we have that mechanism
M.3 is (𝜀1 + 2𝜀2)-DP in general and (𝜀1 + 𝜀2)-DP if s𝑓 is monotonic.

A.2 Analysis for exact asymmetric sensitivity mechanism

We first prove a helper lemma regarding the closeness of the reflective inverse sensitivities for
neighboring datasets.
Lemma A.5. Given sample-monotone 𝑓 ∶ 𝑛 → ℝ, we must have im(𝑓 ) is a convex set, and for any
neighboring datasets 𝒙, 𝒙′ ∈ 𝑛 and 𝑡 ∈ im(𝑓 ) we have |s𝑓 (𝒙; 𝑡) − s𝑓 (𝒙′; 𝑡)| ≤ 1

Proof. We first show the image is convex. For any 𝑎, 𝑏 ∈ im(𝑓 ), there must be datasets 𝒙𝑎, 𝒙𝑏 ∈ 𝑛

such that 𝑓 (𝒙𝑎) = 𝑎 and 𝑓 (𝒙𝑏) = 𝑏. Furthermore, by Definition 2.1 we know 𝑑ham(𝒙𝑎, 𝒙𝑏) ≤ 𝑛, so
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len𝑓 (𝒙𝑎; 𝑏) ≤ 𝑛. Without loss of generality assume 𝑎 ≤ 𝑏, then by Definition 3.2 for any 𝑐 ∈ [𝑎, 𝑏]
we must have len𝑓 (𝒙𝑎; 𝑐) ≤ 𝑛 which implies 𝑐 ∈ im(𝑓 ).

Next we show the closeness between neighboring datasets. First consider the case when 𝑡 >
max{𝑓 (𝒙), 𝑓 (𝒙′)} or 𝑡 < min{𝑓 (𝒙), 𝑓 (𝒙′)}. This implies sgn(𝑡 − 𝑓 (𝒙)) = sgn(𝑡 − 𝑓 (𝒙′)) and the
bound follows from Corollary 2.9. Without loss of generality, assume 𝑓 (𝒙) ≥ 𝑓 (𝒙′) and consider
the other case when 𝑓 (𝒙) ≥ 𝑡 ≥ 𝑓 (𝒙′). Due to the fact that they’re neighboring len𝑓 (𝒙; 𝑓 (𝒙′)) ≤ 1
and len𝑓 (𝒙′; 𝑓 (𝒙)) ≤ 1. Applying Definition 3.2, len𝑓 (𝒙; 𝑡) ≤ 1 and len𝑓 (𝒙′; 𝑡) ≤ 1 which implies
|s𝑓 (𝒙; 𝑡)| ≤ 1/2 and |s𝑓 (𝒙′; 𝑡)| ≤ 1/2 giving the desired bound.

With this lemma we can prove Theorem 3.3.

Proof of Theorem 3.3. For 𝑡𝑖 ∈ im(𝑓 ) we know the sensitivity is at most 1 from Lemma A.5. Further
if 𝑡𝑖 ∉ im(𝑓 ) then by the convexity of im(𝑓 ) from Lemma A.5 we know that either 𝑡𝑖 < 𝑓 (𝒙) and so
s𝑓 (𝒙, 𝑡) = −∞ for all 𝒙 ∈ 𝑛 or 𝑡𝑖 > 𝑓 (𝒙) and so s𝑓 (𝒙, 𝑡) = ∞ for all 𝒙 ∈ 𝑛. The privacy guarantees
then follow from Proposition 2.5.

We also provide a proof of Lemma 3.5 connecting the inverse sensitivities to the upper and lower
output bounds for sample-monotone functions.

Proof of Lemma 3.5. First consider the case when 𝑡 < 𝐿𝑛𝑓 (𝒙) or 𝑡 > 𝑈 𝑛
𝑓 (𝒙), which implies inf{𝓁 ∶

𝐿𝓁𝑓 (𝒙) ≤ 𝑡 ≤ 𝑈 𝓁
𝑓 (𝒙)} = ∞ because the infimum of the empty set is infinity. This also implies that 𝑡 ∉

im(𝑓 ) so len𝑓 (𝒙; 𝑡) = ∞ for the same reason. Next, consider the other case when 𝐿𝑛𝑓 (𝒙) ≤ 𝑡 ≤ 𝑈 𝑛
𝑓 (𝒙)

and let 𝑘 = inf{𝓁 ∶ 𝐿𝓁𝑓 (𝒙) ≤ 𝑡 ≤ 𝑈 𝓁
𝑓 (𝒙)}. If there exists 𝒙′ such that 𝑓 (𝒙′) = 𝑡 and 𝑑ham(𝒙, 𝒙′) = 𝑘′ < 𝑘,

then this would imply 𝐿𝑘′𝑓 (𝒙) ≤ 𝑡 ≤ 𝑈 𝑘′
𝑓 (𝒙), so inf{𝓁 ∶ 𝐿𝓁𝑓 (𝒙) ≤ 𝑡 ≤ 𝑈 𝓁

𝑓 (𝒙)} < 𝑘 giving a contradiction.
Thus we must have len𝑓 (𝒙; 𝑡) ≥ 𝑘. Furthermore, the sample-monotone definition implies that
len𝑓 (𝒙; 𝑡) ≤ 𝑘 because 𝐿𝑘𝑓 (𝒙) ≤ 𝑡 ≤ 𝑈 𝑘

𝑓 (𝒙). Therefore, we also have len𝑓 (𝒙; 𝑡) = 𝑘.

A.3 Analysis for approximate asymmetric sensitivity mechanism

We again prove a helper lemma regarding the closeness of the approximate inverse sensitivities for
neighboring datasets.
Lemma A.6. Given 𝑓 ∶ 𝑛 → ℝ, for any neighboring datasets 𝒙, 𝒙′ ∈ 𝑛 and inf𝒙{𝑓 (𝒙)} ≤ 𝑡 ≤
sup𝒙{𝑓 (𝒙)} we have ||len𝑓 (𝒙; 𝑡) − len𝑓 (𝒙′; 𝑡)|| ≤ 1

Proof. By construction, 𝐿𝑛𝑓 (𝒙) = inf𝒙{𝑓 (𝒙)} and 𝑈 𝑛
𝑓 (𝒙) = sup𝒙{𝑓 (𝒙)} because the Hamming distance

between any datasets is always at most 𝑛. Thus we must have len𝑓 (𝒙; 𝑡) ≤ 𝑛 and len𝑓 (𝒙′; 𝑡) ≤ 𝑛.
Without loss of generality, assume len𝑓 (𝒙; 𝑡) ≤ len𝑓 (𝒙′; 𝑡) and len𝑓 (𝒙; 𝑡) = 𝓁. By Definition A.1
we then have 𝐿𝓁+1𝑓 (𝒙′) ≤ 𝑡 ≤ 𝑈 𝓁+1

𝑓 (𝒙′) so len𝑓 (𝒙′; 𝑡) ≤ 𝓁 + 1, which implies our desired inequality.

We then extend this closeness to the approximate reflective inverse sensitivities for neighboring
datasets.
Lemma A.7. Given 𝑓 ∶ 𝑛 → ℝ, for any neighboring datasets 𝒙, 𝒙′ ∈ 𝑛 and inf𝒙{𝑓 (𝒙)} ≤ 𝑡 ≤
sup𝒙{𝑓 (𝒙)} we have |s𝑓 (𝒙; 𝑡) − s𝑓 (𝒙′; 𝑡)| ≤ 1

Proof. First consider the case when 𝑡 > max{𝑓 (𝒙), 𝑓 (𝒙′)} or 𝑡 < min{𝑓 (𝒙), 𝑓 (𝒙′)}. This implies
sgn(𝑡 − 𝑓 (𝒙)) = sgn(𝑡 − 𝑓 (𝒙′)) and the bound follows from Lemma A.6. Without loss of generality,
assume 𝑓 (𝒙) ≥ 𝑓 (𝒙′) and consider the other case when 𝑓 (𝒙) ≥ 𝑡 ≥ 𝑓 (𝒙′). Due to the fact that
they’re neighboring and Definition A.2 we have len𝑓 (𝒙; 𝑡) ≤ 1 and len𝑓 (𝒙′; 𝑡 ≤ 1. This implies
|s𝑓 (𝒙; 𝑡)| ≤ 1/2 and |s𝑓 (𝒙′; 𝑡)| ≤ 1/2 giving the desired bound.

With these lemmas we can now prove our Theorem A.4.
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Proof of Theorem A.4. For 𝑡 such that inf𝒙{𝑓 (𝒙)} ≤ 𝑡 ≤ sup𝒙{𝑓 (𝒙)} we know the sensitivity is at
most 1 from Lemma A.7. Otherwise either 𝑡𝑖 < 𝑓 (𝒙) and so s𝑓 (𝒙, 𝑡) = −∞ for all 𝒙 ∈ 𝑛 or 𝑡𝑖 > 𝑓 (𝒙)
and so s𝑓 (𝒙, 𝑡) = ∞ for all 𝒙 ∈ 𝑛. The privacy guarantees then follow from Proposition 2.5.

B Supplemental Results

In this section we provide supplemental results and experiments to our main results. We first show
that the asymmetric sensitivity mechanism naturally handles unbounded data for our instantiations
with negligible accuracy loss. Next we provide a simple, general, and robust strategy for selecting
potential outputs for our method and provide a corresponding empirical study. Finally, we discuss
how our methods can also apply to the add-subtract definition of neighboring datasets.

B.1 Naturally handling unbounded data

As previously discussed in our instantiations from Sections 5 and 6, the functions considered will
have infinite upper output bounds if the data is unbounded. Given the iterative nature of the
sparse vector technique, we will be able to naturally handle this setting with negligible accuracy
loss. In particular, Algorithm 1 outputs the first query above the threshold, and we see from our
Definition A.3 that even if 𝑈 𝓁

𝑓 (𝒙) = ∞ then we will have that the reflective inverse sensitivity is 1/2
for all possible outputs greater than 𝑓 (𝒙). Thus each query of potential outputs greater than 𝑓 (𝒙)
is more likely than not to terminate the algorithm. The probability of termination increases even
more if the reflective inverse sensitivity is greater than 1/2 but will have minimal effect.

We test this upon our variance instantion by using the bounds from Section 5 and also considering
the unbounded case. We also use the same parameters and datasets from Section 5. From Figure 3,
we see that the difference in performance for the unbounded setting is slim and thus our method
can inherently consider unbounded data.

Figure 3: Plots of the absolute error for variance estimation with both reasonable bounds on the
data and unbounded data.

While this works for our instantiations, this is aided by each function being non-negative by
construction, and applying our method generally to unbounded data will often require an innate
lower or upper bound on the function output. In contrast, efficient implementations of the inverse
sensitivity mechanism require both upper and lower bounds on the function output, and often
further require bounded data for reasonable accuracy such as in our instantiations. More specifically,
the inverse sensitivity mechanism uses the upper and lower output bounds from Definition 3.4 to
construct intervals and draws an interval from the exponential mechanism and uniformly selects
a point from the chosen interval. But this requires setting a data independent upper and lower
bound from the function for efficient implementation. This efficient approach was first seen in
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an instantiation of a close variant of the inverse sensitivity mechanism for privately computing
quantiles Smith (2011).

B.2 Robust and efficient potential output selection

In order to handle both fully unbounded and partially unbounded functions, we provide an efficient
and robust potential output selection method that also borrows from the private quantile literature
Durfee (2023), which instantiates a close variant of our asymmetric sensitivity mechanism. In
Algorithm 2, we provided the explicit approach for selecting potential outputs when the outputs
are non-negative. This same approach can be shifted to handle any other lower bounded functions
and symmetrically applied to upper bounded functions. The exponential nature of the potential
outputs implies that they will become incredibly large or small within a reasonable number of
queries which limits the running time. Specifically, if we set reasonably assume 𝛽 ≥ 1.001, then
𝛽50000 > 1021 and we can simply terminate AboveThreshold after at most 50,000 queries for all
datasets without affecting the privacy guarantees.

If the function has no innate bounds then we can call sparse vector technique with two iterations,
searching through the positive numbers first, and then searching through the negatives if the first
iteration immediately terminated. If the function has both innate upper and lower bounds then we
can uniformly select the potential outputs from these bounds.

Figure 4: Plot of variance estimation using our method for different 𝛽 parameters

While this methodology introduces a new parameter 𝛽 that must be selected independent of the
underlying data, we were able to fix 𝛽 = 1.005 as a default and still see high performance across
different invocations and datasets. Furthermore, we show here that we could consider other
reasonable settings of 𝛽 and still see robustly accurate performance from our methodology. In fact,
from our experiments we can see that our empirical results could have been further improved by
setting 𝛽 = 1.01

B.3 Add-subtract neighboring

In Definition 2.1, we made the notion of neighboring datasets follow the swap definition. Another
commonly used notion of neighboring datasets in the differential privacy literature is the add-
subtract definition where a users data is added or removed between neighbors. Our asymmetric
sensitivity mechanism can naturally extend to this notion of Hamming distance as well.

The primary difference would be that all datasets in the data universe would no longer be at most
distance 𝑛 from one another as the size of the dataset could vary. As such, the list of upper and
lower output bounds could be infinite, but we can circumvent this with minimal practical impact.
Potential outputs far from the underlying data are already incredibly unlikely to be selected so
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relaxing the bounds will barely affect the output distribution. As such, we can set the approximate
upper and lower bounds to be positive and negative infinity, respectively, which is essentially
identical to what was done in Lemma 5.3. To account for this changed definition we would also
need to update the upper and lower output bounds for our instantiations.

C Intuition and Asymmetric Advantage

In this section, we first give a more visual explanation of our methodology compared to the inverse
sensitivity mechanism. We then provide strong intuition upon why our method will substantially
improve the estimation accuracy when the sensitivities are asymmetric by more naturally balancing
the bias-variance tradeoff. We further supplement this intuition with a formal metric that quantifies
the asymmetry of the sensitivities, and we empirically validate that increased asymmetry directly
corresponds to improved relative performance of our method. Finally, we give the missing analysis
of Lemma 4.1, our theoretical utility guarantees.

C.1 Visualization of both methods

Recall that the inverse sensitivity method considered the distance metric of any output from the
underlying data in Definition 2.8. We then proposed a variant of that definition better suited to
applying the sparse vector technique in Definition 3.1.

Figure 5: We provide here an informal visualization of
the inverse sensitivity and reflective inverse sensitivity. For
most functions of interest we can just plot these as step
functions using the upper and lower output bounds from
Definition 3.4. In the plot, we denote 𝐿𝜅𝑓 (𝒙) and 𝑈 𝜅

𝑓 (𝒙) with
𝐿𝜅 and 𝑈𝜅, respectively. We will go into further detail in
the next section but note that the sensitivities are perfectly
symmetric in this example.

Both of these functions essentially shift between neighboring datasets which allows for maintaining
closeness between outputs for each metric. We further note that unlike the inverse sensitivity, a
shift in the reflective inverse sensitivity will be monotonic because of it’s increasing nature, allowing
for improved privacy guarantees for many instantiations. Given the closeness between outputs
for neighboring datasets, we can apply the exponential mechanism or sparse vector technique.
Applying our method entails considering an increasing stream of potential output {𝑡𝑖} and (noisily)
identifying when the reflective inverse sensitivity crosses from negative to positive by calling the
sparse vector technique.

Figure 6: We provide here an informal visualization of the
approximate PDFs for inverse sensitivity mechanism (ISM)
and our asymmetric sensitivity mechanism (ASM) when the
sensitivities are perfectly symmetric. We slightly alter our
mechanism M.3 to uniformly draw an output in [𝑡𝑘−1, 𝑡𝑘] for
easier visualization, which implies our PDF will be a step
function between the potential outputs.

The iterative nature of the sparse vector technique will most often lead to our method being slightly
more likely to find an output less than the true output. This introduces bias into our mechanism
but we still remain competitive with inverse sensitivity even in the perfectly symmetric setting.

C.2 Naturally navigating the bias-variance tradeoff

In Figure 6 we assumed that the sensitivities were perfectly symmetric. More specifically, for
𝓁 > 0 we let Δ𝓁

𝐿(𝑓 ; 𝒙)
def= 𝐿𝓁−1𝑓 (𝒙) − 𝐿𝓁𝑓 (𝒙) and Δ𝓁

𝑈 (𝑓 ; 𝒙)
def= 𝑈 𝓁

𝑓 (𝒙) − 𝑈 𝓁−1
𝑓 (𝒙), which are the amount

the function can marginally decrease and increase, respectively, by changing the 𝓁th individual’s
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data. Note that for 𝓁 = 1 these quantities correspond to the local sensitivity. We then say that the
sensitivities are perfectly symmetric if Δ𝓁

𝐿(𝑓 ; 𝒙) = Δ𝓁
𝑈 (𝑓 ; 𝒙) for all 𝓁 > 0, which held by construction

for our examples in the previous section.

Informally, we will say that the sensitivities are asymmetric if Δ𝓁
𝐿(𝑓 ; 𝒙) << Δ𝓁

𝑈 (𝑓 ; 𝒙) (or the reverse)
for most 𝓁 particularly those closer to 0. We now consider an example in which the upper and
lower outputs bounds imply asymmetric sensitivities and compare the approximate PDFs for each
method.

Figure 7: We provide here an informal visualization of the
approximate PDFs but with asymmetric sensitivities. We re-
move the labels for 𝐿1𝑓 (𝒙), 𝐿2𝑓 (𝒙), and 𝐿3𝑓 (𝒙) as they become
too condensed around 𝑓 (𝒙) but we keep their tick marks
on the x-axis. We again slightly alter our mechanism M.3
to uniformly draw an output in [𝑡𝑘−1, 𝑡𝑘] for easier visualiza-
tion, which implies our PDF will be a step function between
the potential outputs.

For a more encompassing discussion on the bias-variance trade-off, we first consider applying the
smooth sensitivity framework to this example. Smooth sensitivity is unbiased in the classical sense
(the expected output matches the underlying data) but the noise is added proportional to at least
the local sensitivity which would be Δ1

𝑈 (𝑓 ; 𝒙) here. The inverse sensitivity mechanism weakens
the unbiased definition to better take advantage of the asymmetry from Δ𝓁

𝐿(𝑓 ; 𝒙) << Δ𝓁
𝑈 (𝑓 ; 𝒙) and

we see in Figure 7 that the probability mass of outputs less than 𝑓 (𝒙) becomes much more closely
concentrated around 𝑓 (𝒙). However, using their notion of unbiased still limits the extent that it can
improve the private estimation. In contrast, a variant of the preprocessing method from Cummings
& Durfee (2020) could be applied here and potentially be both unbiased and have low variance if the
a priori sensitivity parameter closely matches the Δ𝓁

𝐿(𝑓 ; 𝒙) for 𝓁 close to zero. However, applying
this same reduced sensitivity parameter, which essentially fixes the variance and must be data
independent, would lead to significant bias in Figure 6.

By adding the slight bias towards early stopping from the iterative nature of the sparse vector
technique, we can take full advantage of the tighter grouping of the lower output bound to signif-
icantly reduce the variance. More specifically, if we map Figure 5 to these lower output bounds,
then the reflective inverse sensitivity will be much steeper right below 𝑓 (𝒙), which has the biggest
impact upon when sparse vector technique terminates. In fact, we could set the upper output
bounds to be infinite and this would only slightly decay the accuracy of our method. This allows
us to naturally consider unbounded data for a variety functions, and we specifically examine the
effects upon variance estimation in Appendix B.1 with empirical results showing negligible impact
upon accuracy. While our method does still have dependence upon the data-independent stream of
potential outputs {𝑡𝑖}, we provide a simple and general strategy for this selection in Appendix B
that robustly maintains accuracy across different invocations and datasets. As a result, the slight
bias from our method can utilize the asymmetry for significant improvement while also remaining
competitive under perfect symmetry, giving a more inherent optimization of the bias-variance
trade-off.

C.3 Formalizing asymmetry of sensitivities

We previously defined asymmetric sensitivity to informally be a consistent mismatch between
Δ𝓁
𝐿(𝑓 ; 𝒙) and Δ𝓁

𝑈 (𝑓 ; 𝒙) for most 𝓁. Additionally, this mismatch has the highest impact when 𝓁 is
closest to 0, as the outputs farther away from the underlying data are far less likely to be selected.
However, the level of privacy further affects this likelihood where smaller 𝜀 implies mismatched
Δ𝓁
𝐿(𝑓 ; 𝒙) and Δ𝓁

𝑈 (𝑓 ; 𝒙) have a higher impact upon symmetry for larger 𝓁. Therefore, to obtain a
formal measurement of asymmetry, we should consider an averaging of Δ𝓁

𝐿(𝑓 ; 𝒙) vs Δ𝓁
𝑈 (𝑓 ; 𝒙) over all

𝓁 but with higher weight given to smaller 𝓁 and this weighting should be further scaled by the privacy
parameter. We observe that the inverse sensitivity mechanism uniformly draws from [𝐿𝓁𝑓 , 𝐿

𝓁−1
𝑓 ]

and [𝑈 𝓁−1
𝑓 , 𝑈 𝓁

𝑓 ] with probability proportional to Δ𝓁
𝐿(𝑓 ; 𝒙) ⋅ exp(−𝓁 ⋅ 𝜀/2) and Δ𝓁(𝑓 ; 𝒙) ⋅ exp(−𝓁 ⋅ 𝜀/2),

respectively, by construction of the exponential mechanism. This then precisely fits with our desired
weighting and the probability that the inverse sensitivity mechanism selects an output greater than
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𝑓 (𝒙) is simply a normalization of ∑𝓁 Δ𝓁
𝑈 (𝑓 ; 𝒙) ⋅ exp(−𝓁 ⋅ 𝜀/2). With this connection of our informal

notion to the inverse sensitivity mechanism, we then give a formal definition for measuring the
asymmetry of the sensitivities.
Definition C.1. Given a function 𝑓 ∶ 𝑛 → ℝ, we measure the asymmetry of the sensitivities by

||||
Pr [𝑀inv(𝒙) > 𝑓 (𝒙)] −

1
2
||||

based upon the probability distribution from M.1.

Accordingly, we have that the sensitivities are symmetric if 𝑓 (𝒙) is the median of the inverse
sensitivity mechanism. But this property does not imply accurate estimation as the variance could
still be quite large. However, it is not surprising that it will perform relatively worse than our
method for more asymmetric sensitivities. We empirically test this conjecture across different levels
of sensitivity symmetry, which we also vary by toggling the level of privacy.

Figure 8: We consider a range of randomly sam-
pled output bounds and privacy parameters and
compute the absolute error of our asymmetric
sensitivity mechanism (ASM) and the inverse sen-
sitivity mechanism (ISM) over a small number of
random draws. We plot the (error ISM) / (error
ASM) corresponding to the asymmetry of the sen-
sitivities for the given output bounds and privacy
parameter.

For our simulations we uniformly distribute the lower and upper output bounds and we toggle
the range of the upper output bounds to vary the level of asymmetry. We also consider upper
output bounds that are more heavy tailed and toggle the level of privacy, thereby determining the
impact of the tail, to vary the asymmetry of the sensitivities. For each simulated output bounds and
privacy parameter, we compute the asymmetry of the sensitivities and we make several calls to
both methods for private estimations and compute the average absolute error of each. While these
simulations are not all-encompassing, they empirically validate our provided intuition, and we will
further see in our instantiations of functions with inherent asymmetry that our methodology gives
substantially improved estimates.

C.4 Analysis of theoretical utility guarantees

In this section we provide the proof of Lemma 4.1. Our proof will first bound the probability that
we output a value that’s too small and then bound the probability that we output a value that’s
too large. As a result, we provide two helper lemmas for each direction that are close variants of
Theorem 3.24 in Dwork et al. (2014).
Lemma C.2. For any sequence of m queries 𝑓1, ..., 𝑓𝑚 with sensitivity 1 such that |{𝑖 ≤ 𝑚 ∶ 𝑓𝑖(𝑥) ≥
𝑇 − 𝛼}| = 0, then Algorithm 1 (where we set 𝜀1 = 𝜀2 and 𝜀 = 𝜀1 + 2𝜀2) will terminate during these
queries with probability at most 𝑚 ⋅ 𝑒−𝛼𝜀/3

Proof. We know that exponential noise is non-negative, so to terminate at query 𝑖, the noisy result
must exceed the threshold. By the CDF of the exponential distribution and our assumption, we
have Pr𝜈𝑖∼Expo(3/𝜀) [𝑓𝑖(𝒙) + 𝜈𝑖 > 𝑇 ] ≤ 𝑒−𝛼𝜀/3. Applying a union bound over all 𝑚 queries gives our
desired result.

Lemma C.3. For any sequence of m queries 𝑓𝑗 , ..., 𝑓𝑗+𝑚 with sensitivity 1 such that |{𝑖 ∈ (𝑗 , 𝑗 + 𝑚) ∶
𝑓𝑖(𝑥) < 𝑇 + 𝛼}| = 0, then Algorithm 1 (where we set 𝜀1 = 𝜀2 and 𝜀 = 𝜀1 + 2𝜀2) will terminate at query
𝑗 + 𝑚 or later with probability at most 𝑒−𝛼𝜀/3/𝑚
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Proof. In order to terminate at query 𝑗 + 𝑚 or later we need that the noisy threshold is above all
previous noisy queries. Let 𝜈𝑇 ∼ Expo(3/𝜀) and 𝜈𝑖 ∼ Expo(3/𝜀). There are 𝑚−1 indices in (𝑗 , 𝑗 +𝑚)
so by independence we have

1
𝑚

= Pr [𝜈𝑇 > max
𝑖∈(𝑗 ,𝑗+𝑚)

𝜈𝑖]

and furthermore by change of variable and the PDF of the exponential distribution

Pr [𝜈𝑇 > max
𝑖∈(𝑗 ,𝑗+𝑚)

𝜈𝑖] = 𝑒𝛼𝜀/3Pr [𝜈𝑇 − 𝛼 > max
𝑖∈(𝑗 ,𝑗+𝑚)

𝜈𝑖]

Due to our assumption that 𝑓𝑖(𝑥) ≥ 𝑇 +𝛼 for all 𝑖 ∈ (𝑗 , 𝑗+𝑚), we see that Pr [𝜈𝑇 − 𝛼 > max𝑖∈(𝑗 ,𝑗+𝑚) 𝜈𝑖]
is an upper bound on the probability of still continuing at step 𝑗 +𝑚. This implies our desired claim.

Proof of Lemma 4.1. We first show Pr [𝑀(𝒙) < 𝐿ln 𝑘(𝒙)] < 𝐶/𝑘𝑒𝜀/6 for a constant 𝐶. By Defini-
tion 3.1 and Lemma 3.5 we know that for any 𝑡𝑖 < 𝐿ln 𝑘+1(𝒙)we have s𝑓 (𝒙; 𝑡𝑖) < 𝑇 −ln 𝑘. Furthermore,
we assumed that 𝑓 (𝒙) ≤ 𝛽𝐶 for a constant 𝐶 and 𝑡𝑖 = 𝛽𝑖 −1 so 𝑡𝐶 > 𝑓 (𝒙) ≥ 𝐿ln 𝑘+1(𝒙). We then apply
Lemma C.2 with 𝛼 = ln 𝑘 and 𝑚 = 𝐶, which implies Pr [𝑀(𝒙) < 𝐿ln 𝑘(𝒙)] < 𝐶/𝑘𝑒𝜀/6 for a constant
𝐶 as desired.

Next, we want to show that Pr [𝑀(𝒙) > 𝛽𝑘(𝑓 (𝒙) + 1)] < 𝐶/𝑘𝑒𝜀/6 for a constant 𝐶. Using the fact
that 𝑓 (𝒙)+1 ≥ 1 there are at least 𝑘−1 values of 𝑡𝑖 such that 𝑡𝑖 ∈ [𝑓 (𝒙), 𝛽𝑘(𝑓 (𝒙)+1)]. By Definition 3.1
and Lemma 3.5 we know that for any 𝑡𝑖 ∈ [𝑓 (𝒙), 𝛽𝑘(𝑓 (𝒙) + 1)] we have s𝑓 (𝒙; 𝑡𝑖) ≥ 𝑇 + 1/2. We
then apply Lemma C.3 with 𝛼 = 1/2 and 𝑚 = 𝑘 to get that Pr [𝑀(𝒙) > 𝛽𝑘(𝑓 (𝒙) + 1)] ≤ 1/𝑘𝑒𝜀/6 as
desired.

Combining these inequalities gives our desired

Pr [|𝑀(𝒙) − 𝑓 (𝒙)| < max{|𝑓 (𝒙) − 𝐿log 𝑘+1(𝒙)|, (𝛽𝑘 − 1)(𝑓 (𝒙) + 1)}] > 1 − 𝑂(
1

𝑘𝑒𝜀/6)

Corollary C.4. Let 𝑀 denote the mechanism from M.3 with 𝑡𝑖 = 𝛽𝑖 − 1 where 𝛽 > 1 and we let
𝜀 = 𝜀1 + 2𝜀2 with 𝜀1 = 𝜀2 in the call to Algorithm 1. Given non-negative 𝑓 ∶  → ℝ we have

Pr [|𝑀(𝒙) − 𝑓 (𝒙)| < max{|𝑓 (𝒙) − 𝐿log 𝑘+1(𝒙)|, (𝛽𝑘 − 1)(𝑓 (𝒙) + 1)}] > 1 − 𝑂(
1

𝑘𝑒𝜀/6)

when 𝑓 (𝒙) ≤ 𝛽𝑂(1).

Proof. The proof follows identically but instead of applying Lemma 3.5 we can directly use Defini-
tion A.2 and note that setting 𝐿𝓁𝑓 ≡ �̄�𝓁𝑓 satisfies Definition A.1

D Additional Analysis of Variance Invocation

In this section we provide the necessary proofs for the efficient variance instantiation of our method.
Most of the analysis could be considered folklore properties of variance as it is such a well-studied
statistical property, but we duplicate some of these properties for completeness. We first provide a
known alternative definition of variance.
Definition D.1. Let  = ℝ and for 𝒙 ∈ 𝑛, we can equivalently define variance as

Var [𝒙] def=
1
𝑛2

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

1
2
(𝑥𝑖 − 𝑥𝑗 )2
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We will also add some helpful notation where for any 𝑆 ⊆ [𝑛] we let 𝒙𝑆 = {𝒙𝑖 ∶ 𝑖 ∈ 𝑆} and similarly
for any 1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑛 we let 𝒙[𝑎∶𝑏] = (𝒙𝑎, ..., 𝒙𝑏).

D.1 Analysis for Lemma 5.2

We first prove a helper lemma that if 𝓁 individuals data is changed in order to minimize variance,
then those values should be set to be the mean of the remaining values.
Lemma D.2. For any 𝒙 ∈ 𝑛 and any 𝑆 ⊂ [𝑛], we have that

inf
𝒙𝑆

Var [𝒙] =
𝑛 − |𝑆|
𝑛

Var [𝒙[𝑛]⧵𝑆]

Proof. By least squares minimization we know that ∑𝑖∈[𝑛]⧵𝑆(𝒙𝑖 − 𝑦)2 is minimized by setting

𝑦 =
1

𝑛 − |𝑆|
∑

𝑖∈[𝑛]⧵𝑆
𝒙𝑖

def= �̄�[𝑛]⧵𝑆

If we set 𝒙𝑖 = �̄�[𝑛]⧵𝑆 for all 𝑖 ∈ 𝑆, then we have �̄� = �̄�[𝑛]⧵𝑆 and we have∑𝑖∈𝑆(𝒙𝑖 − �̄�)2 = 0 which must
be minimal by the non-negativity of squared error. Combining these properties we get

inf
𝒙𝑆

Var [𝒙] =
1
𝑛

∑
𝑖∈[𝑛]⧵𝑆

(𝒙𝑖 − �̄�[𝑛]⧵𝑆)2

We can then apply our Definition 5.1 to get our desired result.

With this helper lemma we can then provide the proof of our lower output bounds through a proof
by contradiction.

Proof of Lemma 5.2. By Lemma D.2 we have that

𝐿𝓁Var(𝒙) = min
𝑆⊂[𝑛]∶|𝑆|=𝓁

𝑛 − 𝓁
𝑛

Var [𝒙[𝑛]⧵𝑆]

We will then give our desired claim through a proof by contradiction. Suppose this is minimized by
𝑆 ⊂ [𝑛] with some 𝑖 ∈ 𝑆 such that there exists 𝑗 , 𝑘 ∉ 𝑆 where 𝒙𝑗 < 𝒙𝑖 < 𝒙𝑘 . Let 𝑆𝑗 = (𝑆 ⧵ 𝑖) ∪ 𝑗 and
𝑆𝑘 = (𝑆 ⧵ 𝑖) ∪ 𝑘. To obtain our contradiction it then suffices to show that

min
{
Var [𝒙[𝑛]⧵𝑆𝑗 ] ,Var [𝒙[𝑛]⧵𝑆𝑘]

}
< Var [𝒙[𝑛]⧵𝑆]

Applying our alternative formulation of variance from Definition D.1 we have

Var [𝒙[𝑛]⧵𝑆] =
1

𝑛 − 𝓁
∑

𝑎∈[𝑛]⧵𝑆

∑
𝑏∈[𝑛]⧵𝑆

1
2
(𝒙𝑎 − 𝒙𝑏)2

Through cancellation of like terms we have

Var [𝒙[𝑛]⧵𝑆𝑗 ] < Var [𝒙[𝑛]⧵𝑆] ⟺ ∑
𝑎∈[𝑛]⧵(𝑆𝑗∪𝑖)

(𝒙𝑎 − 𝒙𝑖)2 < ∑
𝑎∈[𝑛]⧵(𝑆∪𝑗)

(𝒙𝑎 − 𝒙𝑗 )2

By construction we have (𝑆𝑗 ∪ 𝑖) = (𝑆 ∪ 𝑗), so by the convexity of least squares minimization and
the fact that 𝒙𝑗 < 𝒙𝑖, we have that this inequality holds if 𝒙𝑖 ≤ �̄�[𝑛]⧵(𝑆∪𝑗). Equivalently, we have

𝒙𝑖 ≥ �̄�[𝑛]⧵(𝑆∪𝑘) ⇒ Var [𝒙[𝑛]⧵𝑆𝑘] < Var [𝒙[𝑛]⧵𝑆]
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Further, we know that �̄�[𝑛]⧵(𝑆∪𝑗) > �̄�[𝑛]⧵(𝑆∪𝑘) because 𝒙𝑗 < 𝒙𝑘 . Therefore we must have either
𝒙𝑖 ≤ �̄�[𝑛]⧵(𝑆∪𝑗) or 𝒙𝑖 ≥ �̄�[𝑛]⧵(𝑆∪𝑘) which implies

min
{
Var [𝒙[𝑛]⧵𝑆𝑗 ] ,Var [𝒙[𝑛]⧵𝑆𝑘]

}
< Var [𝒙[𝑛]⧵𝑆]

and gives our desired contradiction.

D.2 Analysis for Lemma 5.3

In this section we prove that the approximate lower output bounds fit Definition A.1 and can be
efficiently computed. We note that these lower output bounds will still maintain high accuracy
because the bounds further away from the underlying data have far less effect upon the mechanism
and accordingly, loose bounds will have little effect.

Proof of Lemma 5.3. Recall that we assumed a fixed constant, 𝑐 and defined 𝐿𝓁Var(𝒙) = 𝐿𝓁Var(𝒙) for
𝓁 ≤ 𝑐 and 𝐿𝓁Var(𝒙) = 0 for 𝓁 > 𝑐. By construction, we know that variance is non-negative, so we
must have 𝐿𝓁Var(𝒙) ≥ 0 for all 𝓁. This then implies 𝐿𝓁𝑓 (𝒙) ≤ 𝐿𝓁𝑓 (𝒙) for all 𝓁. Furthermore, if 𝓁 > 𝑐
then we immediately have 𝐿𝓁𝑓 (𝒙) ≥ 𝐿𝓁+1𝑓 (𝒙′). Otherwise 𝐿𝓁𝑓 (𝒙) = 𝐿𝓁𝑓 (𝒙) and we know by definition
that 𝐿𝓁𝑓 (𝒙) ≥ 𝐿𝓁+1𝑓 (𝒙′) which implies 𝐿𝓁𝑓 (𝒙) ≥ 𝐿𝓁+1𝑓 (𝒙′)

For the runtime, by Lemma 5.2 we see that it suffices to compute Var [𝒙[𝓁+1−𝑖∶𝑛−𝑖]] for all 0 ≤ 𝑖 ≤
𝓁 ≤ 𝑐, where we assume 𝒙1 ≤ ... ≤ 𝒙𝑛. However, this ordering only matters the largest and smallest
𝑐 values, so we compute these in 𝑂(𝑛 + 𝑐 log(𝑐)) time. Further, we compute∑𝑛

𝑖=1 𝒙𝑖 and∑𝑛
𝑖=1 𝒙2

𝑖 in
𝑂(𝑛) time and will utilize the well-known fact that variance can be computed in 𝑂(1) time with
these quantities. We can then just iterate through all 𝑖, 𝓁 such that 0 ≤ 𝑖 ≤ 𝓁 ≤ 𝑐 updating the sum of
variables and squares to compute each Var [𝒙[𝓁+1−𝑖∶𝑛−𝑖]] in 𝑂(1) time taking a total of 𝑂(𝑐2) time.

D.3 Analysis for Lemma 5.4

Proof of Lemma 5.4. We first show that for any neighboring datasets 𝒙, 𝒙′ we have 𝑈 𝓁
Var(𝒙) ≤

𝑈 𝓁+1
Var(𝒙

′). By construction, this reduces to showing that Var [𝒙] ≤ Var [𝒙′] + (𝑏 − 𝑎)2/𝑛. Let 𝑖 be
the index such that 𝒙𝑖 ≠ 𝒙′

𝑖 . Applying the alternative variance formulation in Definition D.1 and
cancelling like terms reduces this to showing

1
𝑛2

∑
𝑗≠𝑖

(𝒙𝑖 − 𝒙𝑗 )2 ≤
1
𝑛2

∑
𝑗≠𝑖

(𝒙′
𝑖 − 𝒙𝑗 )2 +

(𝑏 − 𝑎)2

𝑛

We assumed that all datasets were restricted to [𝑎, 𝑏]𝑛 so wemust then have∑𝑗≠𝑖(𝒙𝑖−𝒙𝑗 )2 ≤ 𝑛(𝑏−𝑎)2,
which then implies our desired inequality by the non-negativity of squared error.

Next we show that 𝑈 𝓁
Var(𝒙) ≤ 𝑈 𝓁

Var(𝒙). It suffices to show that for an arbitrary 𝒙′ such that
𝑑ham(𝒙, 𝒙′) = 𝓁we haveVar [𝒙′] ≤ Var [𝒙]+ 𝓁(𝑏−𝑎)2

𝑛 . We previously showed thatVar [𝒙] ≥ Var [𝒙′]+
(𝑏 − 𝑎)2/𝑛 for any 𝒙, 𝒙′ such that 𝑑ham(𝒙, 𝒙′) = 1, so our claim then follows inductively.

Therefore, our construction of 𝑈 𝓁
Var satisfies Definition A.1 as desired.

E Additional Analysis of Model Evaluation Invocations

In this section, we provide the definitions and implementation details for applying our method
to machine learning model evaluation functions. We further unify this analysis by considering
applying our methodology to linearly separable functions.
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We now define our datasets as (𝒙, 𝑦) ∈ 𝑛 ×ℝ𝑛 and we set 𝑑ham((𝒙, 𝑦), (𝒙′, 𝑦′)) = |{𝑖 ∶ 𝒙𝑖 ≠ 𝒙′
𝑖 or 𝑦𝑖 ≠

𝑦′𝑖 }| to be the Hamming distance between datasets. We will be considering binary classification and
multi-class classification, so we define cross-entropy loss for both.
Definition E.1. Given machine learning model for binary-classification 𝜔 ∶  → ℝ and assume
all 𝑦𝑖 ∈ {0, 1}, let

BCE𝜔(𝒙, 𝑦) =
𝑛

∑
𝑖=1

−𝑦𝑖 log(
1

1 + 𝑒−𝜔(𝒙𝑖)) − (1 − 𝑦𝑖) log(
𝑒−𝜔(𝒙𝑖)

1 + 𝑒−𝜔(𝒙𝑖))

Similarly, given machine learning model for multi-classification 𝜔 ∶  → ℝ𝑐 with 𝑐 classes and
assume all 𝑦𝑖 ∈ [𝑐], let

CE𝜔(𝒙, 𝑦) = −
𝑛

∑
𝑖=1

log(
𝑒𝜔(𝒙𝑖)𝑦𝑖

∑𝑐
𝑗=1 𝑒𝜔(𝒙𝑖)𝑗 )

We also define the mean squared error and mean absolute error.
Definition E.2. Given a dataset (𝒙, 𝑦) and machine learning model 𝜔 ∶  → ℝ, we define

MSE𝜔(𝒙, 𝑦) =
∑𝑛

𝑖=1(𝜔(𝒙𝑖) − 𝑦𝑖)2

𝑛
and

MAE𝜔(𝒙, 𝑦) =
∑𝑛

𝑖=1 |𝜔(𝒙𝑖) − 𝑦𝑖|
𝑛

E.1 Application to linearly separable functions

In this section we consider all linearly separable functions 𝑓 ∶ 𝑛 → ℝ such that

𝑓 (𝒙) =
𝑛

∑
𝑖=1

(𝒙𝑖)

where  ∶  → ℝ. We could also extend our results here to  that are specific to the index, but
for simplicity we will restrict our consideration. Without loss of generality assume the indices are
ordered such that (𝒙𝑖) ≤ (𝒙𝑖+1). We first provide lower output bounds for these functions.
Lemma E.3. Given a linearly separable function 𝑓 ∶  → ℝ, then

𝐿𝓁𝑓 (𝒙) =
𝑛−𝓁

∑
𝑖=1

(𝒙𝑖) + 𝓁 ⋅ inf
𝒙𝑘∈

{(𝒙𝑘)}

Proof. Changing any individual’s data can only change their contribution to the sum by the linearly
separable property. Therefore, decreasing the 𝓁 individuals with the highest contribution to the sum
must minimize the function for datasets with Hamming distance 𝓁 from the underlying data.

Similarly, we provide upper output bounds for linearly separable functions.
Lemma E.4. Given a linearly separable function 𝑓 ∶  → ℝ, then

𝑈 𝓁
𝑓 (𝒙) =

𝑛

∑
𝑖=𝓁

(𝒙𝑖) + 𝓁 ⋅ sup
𝒙𝑘∈

{(𝒙𝑘)}

Proof. Follows equivalently to the proof of Lemma E.3

We then provide approximate relaxations of these bounds that will allow for easier application.
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Lemma E.5. Given a linearly separable function 𝑓 ∶  → ℝ, then approximate upper and lower
sensitivity bounding functions 𝑈 𝓁

𝑓 ∶ 𝑛 → ℝ and 𝐿𝓁𝑓 ∶ 𝑛 → ℝ satisfy Definition A.1 for

𝐿𝓁𝑓 (𝒙) =
𝑛−𝓁

∑
𝑖=1

(𝒙𝑖) + 𝓁 ⋅ 𝑎 and 𝑈 𝓁
𝑓 (𝒙) =

𝑛

∑
𝑖=𝓁

(𝒙𝑖) + 𝓁 ⋅ 𝑏

if 𝑎 ≤ inf𝒙𝑘∈ {(𝒙𝑘)} and 𝑏 ≥ sup𝒙𝑘∈ {(𝒙𝑘)}

Proof. We show this the approximate lower output bounds and the upper follow equivalently. We
first have 𝐿𝓁𝑓 (𝒙) ≤ 𝐿𝓁𝑓 (𝒙) by construction. Next, for neighboring 𝒙, 𝒙′, let 𝑗 be the index at which
𝒙𝑗 ≠ 𝒙′

𝑗 . We assumed an ordering to the indices for simplicity, but we equivalently have

𝐿𝓁𝑓 (𝒙) = min
𝑆⊆[𝑛]∶|𝑆|=𝑛−𝓁

{
∑
𝑖∈𝑆

(𝒙𝑖)
}
+ 𝓁 ⋅ 𝑎

For some given 𝓁, let 𝑆𝒙 be the subset of indices that minimizes this for 𝐿𝓁𝑓 (𝒙). If 𝑗 ∉ 𝑆𝒙 then we
have 𝐿𝓁𝑓 (𝒙) ≥ 𝐿𝓁𝑓 (𝒙

′), so 𝐿𝓁𝑓 (𝒙) ≥ 𝐿𝓁+1𝑓 (𝒙′). Otherwise, we know that

𝐿𝓁+1𝑓 (𝒙′) = min
𝑆⊆[𝑛]∶|𝑆|=𝑛−(𝓁+1

{
∑
𝑖∈𝑆

(𝒙′
𝑖 )
}
+ (𝓁 + 1) ⋅ 𝑎 ≤ ∑

𝑖∈𝑆𝒙⧵𝑗
(𝒙𝑖) + (𝓁 + 1) ⋅ 𝑎

and because 𝑎 ≤ (𝒙𝑗 ) then this implies 𝐿𝓁𝑓 (𝒙) ≥ 𝐿𝓁+1𝑓 (𝒙′).

We further show that our approximate bounds allow for monotonic reflective inverse sensitivities
which implies improved privacy guarantees.
Lemma E.6. Given a linearly separable function 𝑓 ∶  → ℝ, along with approximate upper and
lower sensitivity bounding functions 𝑈 𝓁

𝑓 ∶ 𝑛 → ℝ and 𝐿𝓁𝑓 ∶ 𝑛 → ℝ such that

𝐿𝓁𝑓 (𝒙) =
𝑛−𝓁

∑
𝑖=1

(𝒙𝑖) + 𝓁 ⋅ 𝑎 and 𝑈 𝓁
𝑓 (𝒙) =

𝑛

∑
𝑖=𝓁

(𝒙𝑖) + 𝓁 ⋅ 𝑏

where 𝑎 ≤ inf𝒙𝑘∈ {(𝒙𝑘)} and 𝑏 ≥ sup𝒙𝑘∈ {(𝒙𝑘)}. For any neighboring datasets 𝒙, 𝒙′ we have that
either s𝑓 (𝒙; 𝑡) ≤ s𝑓 (𝒙′; 𝑡) for all 𝑡 ∈ ℝ or s𝑓 (𝒙; 𝑡) ≥ s𝑓 (𝒙′; 𝑡) for all 𝑡 ∈ ℝ

Proof. Without loss of generality, assume 𝑓 (𝒙) ≤ 𝑓 (𝒙′) and we will show s𝑓 (𝒙; 𝑡) ≥ s𝑓 (𝒙′; 𝑡) for all
𝑡 ∈ 𝑅.

We first consider 𝑡 ∈ [𝑓 (𝒙), 𝑓 (𝒙′)]. Given that the datasets are neighboring, we must have 𝐿1𝑓 (𝒙) ≤
𝑡 ≤ 𝑈 1

𝑓 (𝒙) and 𝐿1𝑓 (𝒙′) ≤ 𝑡 ≤ 𝑈 1
𝑓 (𝒙′). By Definition A.1 and Definition A.2, we have that len𝑓 (𝒙; 𝑡) ≤ 1

and len𝑓 (𝒙′; 𝑡) ≤ 1. Given that 𝑡 ∈ [𝑓 (𝒙), 𝑓 (𝒙′)] this then implies s𝑓 (𝒙; 𝑡) ∈ {1/2, 0} and s𝑓 (𝒙′; 𝑡) ∈
{−1/2, 0}. Therefore s𝑓 (𝒙; 𝑡) ≥ s𝑓 (𝒙′; 𝑡).

Next consider the case when 𝑡 < 𝑓 (𝒙). This implies sgn(𝑡 − 𝑓 (𝒙)) = sgn(𝑡 − 𝑓 (𝒙′)) = −1 and also
that len𝑓 (𝒙; 𝑡) ≥ 1 and len𝑓 (𝒙′; 𝑡) ≥ 1. By Lemma E.7 we have that 𝐿𝓁𝑓 (𝒙) ≤ 𝐿𝓁𝑓 (𝒙

′) for all 𝓁 ≥ 0,
which implies len𝑓 (𝒙; 𝑡) ≤ len𝑓 (𝒙′; 𝑡) and therefore s𝑓 (𝒙; 𝑡) ≥ s𝑓 (𝒙′; 𝑡).

Finally consider 𝑡 > 𝑓 (𝒙′). This implies sgn(𝑡−𝑓 (𝒙)) = sgn(𝑡−𝑓 (𝒙′)) = 1 and also that len𝑓 (𝒙; 𝑡) ≥
1 and len𝑓 (𝒙′; 𝑡) ≥ 1. By Lemma E.7 we have that 𝑈 𝓁

𝑓 (𝒙) ≤ 𝑈 𝓁
𝑓 (𝒙

′) for all 𝓁 ≥ 0, which implies
len𝑓 (𝒙; 𝑡) ≥ len𝑓 (𝒙′; 𝑡) and therefore s𝑓 (𝒙; 𝑡) ≥ s𝑓 (𝒙′; 𝑡).

We will also require the following helper lemma in order prove Lemma E.6.
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Lemma E.7. Given a linearly separable function 𝑓 ∶  → ℝ, along with approximate upper and
lower sensitivity bounding functions 𝑈 𝓁

𝑓 ∶ 𝑛 → ℝ and 𝐿𝓁𝑓 ∶ 𝑛 → ℝ such that

𝐿𝓁𝑓 (𝒙) =
𝑛−𝓁

∑
𝑖=1

(𝒙𝑖) + 𝓁 ⋅ 𝑎 and 𝑈 𝓁
𝑓 (𝒙) =

𝑛

∑
𝑖=𝓁

(𝒙𝑖) + 𝓁 ⋅ 𝑏

where 𝑎 ≤ inf𝒙𝑘∈ {(𝒙𝑘)} and 𝑏 ≥ sup𝒙𝑘∈ {(𝒙𝑘)}. For any neighboring datasets 𝒙, 𝒙′, if 𝑓 (𝒙) ≤ 𝑓 (𝒙′)
then 𝐿𝓁𝑓 (𝒙) ≤ 𝐿𝓁𝑓 (𝒙

′) and 𝑈 𝓁
𝑓 (𝒙) ≤ 𝑈 𝓁

𝑓 (𝒙
′) for all 𝓁 ≥ 0

Proof. Let 𝑗 be the index at which 𝒙𝑗 ≠ 𝒙′
𝑗 , which implies (𝒙𝑗 ) ≤ (𝒙′

𝑗 ) because of our linearly
separable property. We assumed an ordering to the indices for simplicity, but we equivalently have

𝐿𝓁𝑓 (𝒙) = min
𝑆⊆[𝑛]∶|𝑆|=𝑛−𝓁

{
∑
𝑖∈𝑆

(𝒙𝑖)
}
+ 𝓁 ⋅ 𝑎

For a given 𝓁 let 𝑆𝒙′ denote the set of indices that minimizes 𝐿𝓁𝑓 (𝒙′). If 𝑗 ∈ 𝑆𝒙′ then we have

𝐿𝓁𝑓 (𝒙
′) = (𝒙′

𝑗 ) + ∑
𝑖∈𝑆𝒙′⧵𝑗

(𝒙𝑖) + 𝓁 ⋅ 𝑎 ≥ (𝒙𝑗 ) + ∑
𝑖∈𝑆𝒙′⧵𝑗

(𝒙𝑖) + 𝓁 ⋅ 𝑎 = ∑
𝑖∈𝑆𝒙′

(𝒙𝑖) + 𝓁 ⋅ 𝑎 ≥ 𝐿𝓁𝑓 (𝒙)

Similarly, if 𝑗 ∉ 𝑆𝒙′ then
𝐿𝓁𝑓 (𝒙

′) = ∑
𝑖∈𝑆𝒙′

(𝒙𝑖) + 𝓁 ⋅ 𝑎 ≥ 𝐿𝓁𝑓 (𝒙)

The proof for 𝑈 𝓁
𝑓 (𝒙) ≤ 𝑈 𝓁

𝑓 (𝒙
′) follows equivalently.

E.2 Efficient cross-entropy loss instantiation

We will provide the efficient instantiation for multi-class cross entropy loss as this can easily be
extended to binary cross entropy loss. Without loss of generality, assume the indices are ordered
such that

− log(
𝑒𝜔(𝒙𝑖)𝑦𝑖

∑𝑐
𝑗=1 𝑒𝜔(𝒙𝑖)𝑗 ) ≤ − log(

𝑒𝜔(𝒙𝑖+1)𝑦𝑖+1

∑𝑐
𝑗=1 𝑒𝜔(𝒙𝑖+1)𝑗 )

We can then provide the lower output bounds for cross entropy loss
Lemma E.8. Given a dataset (𝒙, 𝑦) and machine learning model 𝜔 ∶  → ℝ𝑐 , then

𝐿𝓁CE𝜔(𝒙, 𝑦) = −
𝑛−𝓁

∑
𝑖=1

log(
𝑒𝜔(𝒙𝑖)𝑦𝑖

∑𝑐
𝑗=1 𝑒𝜔(𝒙𝑖)𝑗 )

Proof. We apply Lemma E.3 and Lemma E.5 and we observe that

inf
𝒙𝑖 ,𝑦𝑖

{

− log(
𝑒𝜔(𝒙𝑖)𝑦𝑖

∑𝑐
𝑗=1 𝑒𝜔(𝒙𝑖)𝑗 )

}

≥ 0

As seen with variance in Section 5, we have that 𝑈 1
CE𝜔(𝒙, 𝑦) = ∞ which implies that cross-entropy

loss has inherently asymmetric sensitivities. Similarly, we will need to restrict the range of these
values in order to apply inverse sensitivity mechanism even though our method could easily handle
the unbounded setting. We provide a proof for these upper output bounds in Appendix E.
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Lemma E.9. Given a dataset (𝒙, 𝑦) and machine learning model 𝜔 ∶  → ℝ𝑐 where we restrict
𝜔(𝒙𝑖) ∈ [𝑎, 𝑏]𝑐 for all 𝑖, then

𝑈 𝓁
CE𝜔(𝒙, 𝑦) = −

(
𝓁 ⋅ log(

𝑒𝑎−𝑏

𝑒𝑎−𝑏 + 𝑐 − 1)
+

𝑛

∑
𝑖=𝓁+1

log(
𝑒𝜔(𝒙𝑖)𝑦𝑖

∑𝑐
𝑗=1 𝑒𝜔(𝒙𝑖)𝑗 ))

Proof. We apply Lemma E.4 and Lemma E.5, and we observe that with our restricted bounds we
have

sup
𝒙𝑖 ,𝑦𝑖

{

− log(
𝑒𝜔(𝒙𝑖)𝑦𝑖

∑𝑐
𝑗=1 𝑒𝜔(𝒙𝑖)𝑗 )

}

≤ − log(
𝑒𝑎−𝑏

𝑒𝑎−𝑏 + 𝑐 − 1)

The corresponding algorithm for instantiating cross-entropy loss with our method is similar to
Algorithm 2. The privacy guarantees from Theorem 5.5 also follow equivalently, but we can
additionally improve the privacy to be (𝜀1 + 𝜀2)-DP by applying Lemma E.6 to achieve monotonicity.
We can also achieve 𝑂(𝑛 log(𝑛) + 𝑞) runtime by computing all of our approximate upper and lower
bounds, but we could also easily employ the same strategy of setting these bounds to be infinity
and zero, respectively, for all 𝓁 > 𝑐 where we set 𝑐 = 100. This then gives the linear runtime, where
we also utilize the fact that we will never run AboveThreshold from more than 50,000 queries.

E.3 Efficient implementation for regression evaluation

We will only provide the efficient implementation for MSE in this section as MAE will follow
identically. Without loss of generality, assume the indices are ordered such that (𝜔(𝒙𝑖) − 𝑦𝑖)2 ≤
(𝜔(𝒙𝑖+1) − 𝑦𝑖+1)2.
Lemma E.10. Given a dataset (𝒙, 𝑦) and machine learning model 𝜔 ∶  → ℝ, then

𝐿𝓁MSE𝜔(𝒙, 𝑦) =
∑𝑛−𝓁

𝑖=1 (𝜔(𝒙𝑖) − 𝑦𝑖)2

𝑛

Proof. We apply Lemma E.3 and Lemma E.5, and we observe that

inf
𝒙𝑖 ,𝑦𝑖

{𝜔(𝒙𝑖) − 𝑦𝑖)2} ≥ 0

As seen with variance in Section 5, we have that 𝑈 1
MSE𝜔(𝒙, 𝑦) = ∞ which implies that MSE has

inherently asymmetric sensitivities. Similarly, we will need to restrict the range of these values
in order to apply inverse sensitivity mechanism even though our method could easily handle the
unbounded setting.
Lemma E.11. Given a dataset (𝒙, 𝑦) and machine learning model 𝜔 ∶  → ℝ where we restrict
𝜔(𝒙𝑖) ∈ [𝑎, 𝑏] and 𝑦𝑖 ∈ [𝑎, 𝑏] for all 𝑖, then

𝑈 𝓁
MSE𝜔(𝒙, 𝑦) =

𝓁(𝑏 − 𝑎)2 +∑𝑛
𝑖=𝓁+1(𝜔(𝒙𝑖) − 𝑦𝑖)2

𝑛

Proof. We apply Lemma E.4 and Lemma E.5, and we observe that for our bounded setting

sup
𝒙𝑖 ,𝑦𝑖

{𝜔(𝒙𝑖) − 𝑦𝑖)2} ≤ (𝑏 − 𝑎)2
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The corresponding algorithm for instantiating MSE with our method is identical to Algorithm 2.
The privacy guarantees from Theorem 5.5 also follow equivalently, but we can additionally improve
the privacy to be (𝜀1 + 𝜀2)-DP by applying Lemma E.6 to achieve monotonicity. We can also achieve
𝑂(𝑛 log(𝑛) + 𝑞) runtime by computing all of our approximate upper and lower bounds, but we could
also easily employ the same strategy of setting these bounds to be infinity and zero, respectively,
for all 𝓁 > 𝑐 where we set 𝑐 = 100. This then gives the linear runtime, where we also utilize the fact
that we will never run AboveThreshold from more than 50,000 queries.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We enumerate the main claims made in the abstract and introduction at the
end of the introduction with pointers to each section that contains their support.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide an approximate variant of our method to overcome the limitations
of the exact method which are discussed. We also give theoretical and empirical details
upon when our method is advantageous.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions
and a complete (and correct) proof?
Answer: [Yes]
Justification: All assumptions for each theoretical claim is contained in the claim and all
proofs are in the appendix.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide full details on datasets, parameters, and experimental setup for
all empirical results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The data is open source and the code is straightforward to reproduce as all
algorithms are simple, but we have not open sourced the code. We’d be happy to provide
all code used upon request.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: For each empirical study and dataset we specify all parameters, training/test
splits and models used from open source packages.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appro-
priate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All figures from our empirical results contain confidence interval error bars.

8. Experiments Compute Resources
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Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?
Answer: [No]
Justification: Our algorithms are lightweight so we just used basic colab notebooks to run
the different empirical studies, but this was not specified in the paper.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We believe this work conforms to the Code of Ethics

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work only provides improved methods in differential privacy to give
improved estimation for the same level of privacy.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We don’t propose any algorithms or models that could be considered high
risk

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide citations for all datasets used.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: We don’t introduce new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the
paper include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: This paper doesn’t involve crowdsourding or research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with
Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper doesn’t involve crowdsourding or research with human subjects.
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