Under review as a conference paper at ICLR 2021

BASISNET: TWO-STAGE MODEL SYNTHESIS FOR EF-
FICIENT INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

We present BasisNet which combines recent advancements in efficient neural net-
work architectures, conditional computation, and early termination in a simple
new form. Our approach uses a lightweight model to preview an image and gen-
erate input-dependent combination coefficients, which are later used to control
the synthesis of a specialist model for making more accurate final prediction. The
two-stage model synthesis strategy can be used with any network architectures and
both stages can be jointly trained end to end. We validated BasisNet on ImageNet
classification with MobileNets as backbone, and demonstrated clear advantage on
accuracy-efficiency trade-off over strong baselines such as EfficientNet (Tan &
Le, 2019), FBNetV3 (Dai et al., [2020) and OFA (Cai et al.l [2019). Specifically,
BasisNet-MobileNetV 3 obtained 80.3% top-1 accuracy with only 290M Multiply-
Add operations (MAdds), halving the computational cost of previous state-of-the-
art without sacrificing accuracy. Besides, since the first-stage lightweight model
can independently make predictions, inference can be terminated early if the pre-
diction is sufficiently confident. With early termination, the average cost can be
further reduced to 198M MAdds while maintaining accuracy of 80.0%.

1 INTRODUCTION

High-accuracy yet low-latency convolutional neural networks enable opportunities for on-device
machine learning, and are playing increasingly important roles in various mobile applications, in-
cluding but not limited to intelligent personal assistants, AR/VR and real-time voice translations.
Designing efficient convolutional neural networks especially for edge devices has received signifi-
cant research attention. Prior research attempted to tackle this challenge from different perspectives,
such as novel network architectures (Howard et al., 2017; |Sandler et al.l 2018; Ma et al., 2018;
Zhang et al., 2018} Howard et al.,[2019), better incorporation with hardware accelerators (Lee et al.|
2019), or conditional computation and adaptive inference algorithms (Bolukbasi et al., 2017; |[Fig-
urnov et al.,|2017; |[Leroux et al., 2017; Wang et al., [2018}; | Marquez et al.,|2018)). However, focusing
on one perspective in isolation may have side effects. For example, novel network architectures may
introduce custom operators that are not well-supported by hardware accelerators, thus a promising
new model may have limited practical improvements on real devices due to a lack of hardware sup-
port. We believe that these three perspectives should be better integrated to form a more holistic
general approach that ensures the broader applicability of the resulting system.

In this paper, we present BasisNet, which takes advantage of progress in all these perspectives and
combines several key ideas in a simple new form. The core idea behind BasisNet is dynamic model
synthesis, which aims at efficiently generating sample-dependent specialist model from a collection
of bases, so the resultant model is specialized at handling the given input and can give more accurate
predictions. This concept is flexible and can be applied to any novel network architectures. On
the hardware side, the two-stage model synthesis strategy allows the execution of the lightweight
and synthesized specialist model on different processing units (e.g., CPU, mobile GPUs, dedicated
accelerators, etc.) in parallel to better handle streaming data. The BasisNet design is naturally
compatible with early termination, and can easily balance between computation budget and accuracy
with a single hyperparameter (prediction confidence).

An overview of the BasisNet is shown in Fig. [T} Using image classification as an example, our
BasisNet has two stages: the first stage relies on a lightweight model to preview the input image

Under review as a conference paper at ICLR 2021

Early
Termination

Initial Prediction confident

Input Imag ‘

v

Spseyc::‘:::sts ‘;‘f,‘i.e. w Model Synthesis {W" n=1,..N Basis Models
y = M(z; W) W=a'Ww!+aWw?+..-+a"wh {y = M(z; W")}net,.N
&

l

Final Prediction |————— Alaskan
Malamute Retriever

Figure 1: An overview of the BasisNet and more details can be found in Sec.[3.2] For easy images
(e.g., distinguishing cat from dogs), lightweight model can give sufficiently accurate predictions thus
the second stage could be bypassed. For more difficult images (e.g., distinguishing different breeds
of dogs), a specialist model is synthesized following guidance from lightweight model, which is
good at recognizing subtle differences to make more accurate predictions about the given images.

Table 1: Comparison with selected efficient networks on ImageNet. Statistics on referenced base-
lines are cited from original papers. See Appendix [C|for detailed comparison incl. training recipes.

MAdds (FLOPs) Top-1 Acc./%

MobileNetV2 1.0x (Sandler et al., [2018) 300M 72.0
MobileNetV3-Large (Howard et al.,|2019) 219M 75.2
ShuffleNetV2 1.5x (Ma et al.,|2018) 299M 72.6
ProxylessNas (Cai et al.| [2018)) 320M 74.6
MnasNet-A1l (Tan et al.,[2019) 312M 75.2
EfficientNet-B2 (Tan & Le, [2019) 1.0B 80.1
EfficientNet-B1 (Noisy Student) (Xie et al.,2019) ¢ ® 700M 80.2
FBNetV3-E (Dai et al.,[2020) & 752M 80.4
OFA (Cai et al., 2019) ¢ 595M 80.0
BasisNet-MV3 (Ours) ¢ O 290M 80.3
BasisNet-MV3 + Early Termination (Ours) ¢ # O 198M (Avg.) 80.0

and produce both an initial prediction and a group of combination coefficients. In the second stage,
the coefficients are used to combine a set of models, which we call basis models, into a single one
to process the image and generate the final classification result. The second stage could be skipped
if the initial prediction is sufficiently confident. The basis models share the same architecture but
differ in some weight parameters, while other weights are shared to avoid overfitting and reduce the
total model size.

We validated BasisNet with different generations and sizes of MobileNets and observed signifi-

cant improvements in inference efficiency. In Table |l| we show comparisonsﬂ with recent efficient
networks on ImageNet classification benchmark. Notably, without using early termination, our Ba-
sisNet with 16 basis models of MobileNetV3-large only requires 290M Multiply-Adds (MAdds) to
achieve 80.3% top-1 accuracy, halving the computation cost of previous state-of-the-art (Cai et al.,
2019) without sacrificing accuracy. If we enable early termination, the average cost can be further

reduced to 198M MAdds with the top-1 accuracy remaining 80.0% on ImageNetE|

"Listed models may use different training recipes (e.g., knowledge distillation#, extra data®, custom data
augmentation®, and AutoML-based training hyperparameters searché, etc.)

2Avg cost is reduced since easy inputs are only handled by lightweight model; max remains 290M MAdds.

Under review as a conference paper at ICLR 2021

Our main contributions are summarized below:

* We propose a two-stage model synthesis strategy that combines efficient neural nets, conditional
computation, and early termination in a simple new form. Our BasisNet achieves state-of-the-
art performance of accuracy with respect to computation budget on ImageNet even without early
termination; if enabling early termination, the average computation cost can be further reduced.

* We propose an accompanying training procedure for the new BasisNet, which is also effective to
improve the performance for some other models (e.g., MobileNets).

2 RELATED WORK

Efficient neural networks Different approaches for building efficient networks have been studied.
Early effort includes knowledge distillation (Hinton et al.| 2015)), post-training pruning (Han et al.,
2015 Hu et al} [2016) and quantization (Courbariaux et al., 2016} Jacob et al.| |2018). Later work
distinguishes model complexity (size) and run-time latency (speed) and optimizes for them either
with human expertise (Howard et al.|[2017;|Sandler et al.,|2018; Ma et al., 2018} Zhang et al.| [2018))
and/or neural architecture search (Cai et al.l 2018} [Tan et al.| |2019; [Howard et al., [2019; |Tan &
Le, 2019; |Cai et al., 2019; |Dai et al., [2020). All these approaches aim at producing a static model
that is generally efficient but agnostic to inputs. On the contrary, our BasisNet is built on top of
any efficient network architectures, and is dynamically adaptive based on specific inputs. Also we
optimize for model inference speed rather than model size.

Conditional computation Several prior work have explored accelerating inference by skipping
part of computation graph based on input-dependent signals. For example, Figurnov et al.| (2017)
propose a ResNet extension that dynamically adjusts the number of executed layers based on image
regions. [Teja Mullapudi et al.| (2018) propose HydraNet which creates multiple parallel branches
across the network, and adopts a soft gating module to selectively activate few branches to reduce
inference cost. |Shazeer et al.| (2017) use mixture of experts with a gating network to choose from
thousands of candidates. Recently, [Yang et al.| (2019) propose conditionally parameterized con-
volution (CondConv), which applies weighted combinations of convolution kernels. This idea is
adopted by several later work (Zhang et al.| 2019;|2020; |Chen et al., |2020), because it has equivalent
expressive power as linear mixture of experts, but requires much fewer computations than combin-
ing feature maps. However, one common characteristic of these approaches is that their conditioning
modules are inserted before each configurable component (e.g., layer or branch), thus they can only
rely on local information (i.e., outputs from previous layer) to make dynamic adjustments (Chen
et al., 2019). Lacking global knowledge may be less ideal because shallower layers cannot benefit
from semantic knowledge which is only available from deeper layers. This conceptual distinction
is suggested by [Chen et al.|(2019), and some other work also identified similar issues and have at-
tempted to leverage global knowledge in dynamic modulation, in order to ultimately improve model
performance. For example, in SkipNet (Wang et al., 2018)) a gating network is built to condition-
ally skip certain layers in the backbone, and the authors report that the best performance comes
from a RNN-based gating network because it can access feature maps across multiple layers. (Chen
et al.| (2019) introduce GaterNet where a dedicated deep neural network is used to analyze the in-
puts before generating input-dependent masks for the filters in backbone network. BasisNet use a
lightweight but fully-fledged model to process the inputs and produce dynamic combination signals,
thus the model synthesis is relying on semantic-aware global knowledge. But different from SkipNet
and GaterNet, our lightweight model can synthesize new kernels that do not exist beforehand, rather
than simply selecting from available candidates. Another distinction is that by separating condition-
ing model from backbone, our BasisNet is more flexible and easier to adapt to different architectures
and hardware constraints.

Cascading networks and early exiting Since input samples are naturally of varying difficulty,
using a single model to equally process all inputs with a fixed computation budget is wasteful. This
observation has been leveraged by prior work, e.g., the famous Viola-Jones face detector (Viola &
Jones| [2001)) built a cascade of increasingly more complex classifiers to achieve real-time execution.
Similar ideas were also used in deep learning, e.g., reducing unnecessary inference computations
for easy cases in a cascaded system (Gama & Brazdil, 2000; [Venkataramani et al.,2015)), attaching
multiple classification heads on different layers (Teerapittayanon et al., |2016; |Leroux et al., 2017;

Under review as a conference paper at ICLR 2021

Marquez et al.,|2018;|Huang et al.| [2018)), or cascading multiple models (Park et al., 2015} Bolukbasi
et al., [2017). One common limitation in previous work is that only the exit point adapts to the
samples but the underlying models remain static. Instead, our BasisNet dynamically adjusts the
convolution kernel weights based on the guidance from lightweight model, thus the synthesized
specialist can better handle the more difficult cases.

3 APPROACH

In general, our BasisNet has two stages: the first stage lightweight model, and the second stage
model synthesis from a set of basis models. Given a specific input, the lightweight model generates
two outputs, an initial prediction and a group of basis combination coefficients. If the initial predic-
tion is of high confidence, the input is presumably easy and BasisNet could directly return the initial
prediction and terminate early. But if the initial prediction is less confident (implying the input is
difficult), the coefficients will be used to guide the synthesis of a specialist model in the second stage.
The synthesized specialist will be used for generating a final prediction.

3.1 LIGHTWEIGHT MODEL

The lightweight model is a fully-fledged network handling two tasks: (1) generating initial clas-
sification prediction and (2) generating combination coefficients for second stage model synthesis.
The first is a standard classification thus we only elaborate on the second below. A more complete
description is provided in Appendix Assuming there are /N basis models for the second stage

and each has K layers, the lightweight model will predict combination coefficients o € RN

a = ¢(LM(f(x))) (1

where LM stands for lightweight model and ¢ represents a non-linear activation function. We use
softmax by default because it enforces convexity, which promotes sparsity and can lead to more
efficient implementations. f(x) represents a transformation of the input image, and we use f(x) =
z or f(z) = DownSampling(z).

3.2 BASIS MODEL SYNTHESIS

Our basis models are a collection of model candidates, which share the same architecture but differ
in model parameters. By combining basis models with different weights, a specialist network can
be synthesized. Various strategies can be used for building basis models, such as mixture of experts
or using multiple parameter-efficient patches (Mudrakarta et al.l 2018)). We explored a few options
and found that the recently proposed CondConv (Yang et al.|[2019)) best fits our needs for building a
low-inference cost but high-capacity model.

Specifically, consider a regular deep network with image input x. Assume the output of the k-th
convolutional layer is Oy, (x), which could be obtained by

O(z) = d(Wy *), ifk=0
RE =1 6(Wy * Oy (), itk >0

where W), represents the convolution kernel at the k-th layer and * represents a convolution opera-
tion. For simplicity some operations like batch normalization and squeeze-and-excitation are omit-
ted from the notation. In BasisNet, different inputs will be processed by different, input-dependent
kernel W, at k-th layer, which is obtained by linearly combining the kernels from N basis models
at k-th layer, denoted by {W}.'},,21 n:

2

Wi =g Wi+ +ap - W 3)

where aj, represents the weight for the k-th layer of the n-th basis. We use W and @ to emphasize
their dependency on x. This design allows us to increase model capacity effectively but retain the
same number of convolution operations. Besides, since the number of parameters is much less
than number of MAdds in a single basis architecture, the combination only marginally increase the
computation cost. Using sparse convex coefficients further reduces the combination overhead.

We generally consider convex coefficients, but also studied two special cases in Appendix

Under review as a conference paper at ICLR 2021

* qy is the same for all layers. In this case, the combination is per-model instead of per-layer.
* oy as an N-dimension vector is one-hot encoded. In this case, synthesis becomes model selection.

Key difference from CondConv Our model synthesis mechanism is inspired by CondConv (Yang
et al., 2019) but there exists many distinctions. In CondConv the combination coefficients for k-th
layer are computed following

ay, = ¢(FullyConnected(Global AveragePooling(O,_1(x)))) 4)

which means the dynamic kernel can only be synthesized layer by layer, because the combination
coefficients for next layer depend on output of previous layer. This complicates scheduling of com-
putation thus is not hardware friendly (Zhang et al.|[2019). In BasisNet, the coefficients are obtained
from the lightweight model, therefore the entire specialist model can be synthesized all at once.
This enables BasisNet to be easily deployed to (or even across) different hardware accelerators on
edge devices. Besides, BasisNet naturally supports early termination which is infeasible for Cond-
Conv. We measured the latency on real device and show that applying model synthesis in a separate
stage is more efficient than the layer-by-layer synthesis strategy (See Sec 7). Lastly, BasisNet is
complementary to CondConv, as we find (in Sec. that combining CondConv and BasisNet can
further boost prediction accuracy.

3.3 TRAINING BASISNET PROPERLY

BasisNet significantly increases model capacity, but the risk of overfitting also increases. We found
the standard training procedures used to train MobileNets lead to overfitting on BasisNet. Here we
describe a few regularization techniques that are crucial for training BasisNet successfully.

* Basis model dropout (BMD) Inspired by |Gastaldi|(2017), we experimented with randomly shut-
ting down certain basis model candidates during training. It is equivalent to applying DropCon-
nect (Wan et al.| 2013)) on the predicted coefficient matrix from the lightweight model. We found
this approach is extremely effective against “experts degeneration” (Eigen et al., 2013; |Shazeer
et al.| 2017)) where the controlling model always picks the same few candidates (“experts”).

* AutoAugment (AA) AutoAugment (Cubuk et al., 2019) is a search-based procedure for finding
specific data augmentation policy towards a target dataset. We find that replacing the original data
augmentation in MobileNets (Sandler et al., 2018} |[Howard et al.,2019) with the ImageNet policy
in AutoAugment can significantly improve the model generalizability.

* Knowledge distillation [Hinton et al. (2015) showed that using soft targets from a well-trained
teacher network can effectively prevent a student model from overfitting. We experimented using
EfficientNet-B2 with noisy student training (Xie et al., 2019)) as teacher to train our BasisNet.

In addition to stronger regularization, we applied a few other tricks in order to properly train Ba-
sisNet. Since the lightweight model directly controls how the specialist model is synthesized, any
slight changes in the combination coefficients will propagate to the parameter of the synthesized
model and finally affect the final prediction. Since we train the two stages from scratch, this is es-
pecially troublesome at the early phase when the lightweight model is still ill-trained. To deal with
the unstable training, we introduced ¢ € [0, 1] to balance between a uniform combination and a
predicted combination coefficients from the lightweight model,
I 1 kxn

a=e - 1 +(
When e = 1 all bases are combined equally while when e = 0 the synthesis is following the com-
bination coefficients. In practice e linearly decays from 1 to O in the early phase of training then
remains at 0, thus the lightweight model can gradually take over the control of model synthesis.
This approach effectively stabilizes training and accelerates convergence. A concurrent work (Chen
et al.,[2020) proposed a different strategy (temperature-controlled softmax) to achieve similar goal.

l-—€)-a (&)

All models in both stages are trained together in an end-to-end manner via back-propagation. In
other words, all basis models are trained from scratch by gradients from the synthesized model. The
total loss includes two cross-entropy losses for the synthesized model and the lightweight model,
respectively, and L2 regularization,

L = —log P(y|a; W) + A(=log P(y| f(2); Wim)) + QU{W " }nr v, Wim) (6)

Under review as a conference paper at ICLR 2021

where) is the weight for cross-entropy loss from lightweight model (A = 1 in our experiments),
and Q(-) is L2 regularization loss applied to all model parameters. The lightweight model receives
gradients from all terms, while basis models are only updated by the first term and regularization.

4 EXPERIMENTS

4.1 DATASET AND MODEL ARCHITECTURE SETUP

We evaluate BasisNet on the ImageNet ILSVRC 2012 classification dataset (Russakovsky et al.|
2015) consisting of 1.28M images for training and 50K for validation. We demonstrate the effec-
tiveness of model synthesis on both MobileNetV2 and MobileNetV3 architectures. In Appendix [A]
and [B] we give details about the network architectures and training hyperparameters.

For fair comparison, we retrained all models including BasisNet and baselines under the same con-
ditions, and reported the performance with early termination disabled except for Sec[4.6] Note that
the lightweight model introduces computation overhead for BasisNet, but unless stated otherwise,
our reported MAdds statistics for BasisNet always include the lightweight model overhead.

4.2 COMPARISON WITH MOBILENETS

80 #Bases=128 «
#Bases=64 «
#Bases=32 «

#Bases=16(s

1.5x, 224

78 2.5x, 128

#Bases=86 1.25x, 224
92.0x, 128

#Bases=4 ®

Top-1 Accuracy, %
Top-1 Accuracy, %

« i ~¥ MobileNetV2 78.5
72 = —¥— BasisNet-MV2
4 —r i » #B =2
e S FB40§II:‘Nte;\4/33 78.0 #Bases : MobileNetv3
—&— BasisNet-| . * #Bases= i
70 v 775 1.0x, 224 BasisNet-MV3
50 100 150 200 250 300 350 200 250 300 350 400 450 500

Multiply-adds (MAdds), Millions Multiply-adds (MAdds), Millions

Figure 2: Accuracy-MAdds trade-off compari-
son of the proposed BasisNet and MobileNet on
ImageNet validation set.

Figure 3: Prediction accuracy monotonically in-
creases when more bases are added to the basis
models. Details in Appendix

For both BasisNet-MV2 and BasisNet-MV3, we compute the accuracy-MAdds curves by varying
the input image resolution to the synthesized model from {128, 160, 192, 224}. We compute
the curves for the MobileNets by varying image resolutions in the same way. As shown in Fig.
even with the computation overhead of the lightweight model, our BasisNets consistently outperform
the MobileNets with large margins.

4.3 THE EFFECT OF REGULARIZATION FOR PROPER TRAINING

In Fig.] we show the performance improvements when different regularizations (basis model
dropout, AutoAugment, and distillation with EfficientNet-b2 as teacher) discussed in Sec. @] are
individually applied to BasisNet-M V2 training, as well as combined altogether. Each regularization
helps generalization, and the most effective single regularization is the knowledge distillation. By
combining all strategies the validation accuracy increases the most. In Fig. [5| we show the perfor-
mance curve for BasisNet-MV2 and MobileNetV2 under different regularizations with varied image
resolutions. We observe the proposed training procedures also boost performance for the original
MobileNet. However, applying the regularization is more effective for BasisNet training, as the
performance of BasisNet-MV2 (1.0x224) increases from 74.7% to 78.1% (+3.4).

4.4 NUMBER OF BASES IN BASIS MODELS

‘We varied the number of bases to understand their effect on the model size, inference cost and classi-
fication accuracy. Intuitively, the more bases, the more diverse domains the final synthesized model

Under review as a conference paper at ICLR 2021

Basis Model Dropout (BMD) + AutoAugment (AA) + EfficientNet-b2 Distillation (EfN-b2)
mmm Basis model dropout only (BMD)
== AutoAugment only (AA)
EfficientNet-b2 distillation only (EfN-b2)
Combined: BMD + AA + EfN-b2

. Al v

\

Accuracy Improvements, %

Top-1 Accuracy, %

®- MobileNetv2 . A+ MobileNetv2: AA
68 o BasisNet-MV2 A al BasisNet-MV2: AA MobileNetV2: AA + EfN-b2

- m - _l A —e— BasisNet-MV2: BMD —a— BasisNet-MV2: AA + BMD —v— BasisNet-MV2: AA + EfN-b2 + BMD

128 160 192

Image Resolution

224 100 150 200 250 300 350 100 150 00 250 300 350 100 150 20 250 300 350
Multiply-adds (MAdds), Millions Multiply-adds (MAdds), Millions Multiply-adds (MAdds), Millions

Figure 4: Performance boost Figure 5: MobileNet and BasisNet training using different regu-
with various regularizations larizations. BasisNet uses MV2-0.5x as its lightweight model and
on BasisNet-MV2. Combin- 8 MV2-1.0x for basis models. Input image resolutions vary from
ing them altogether gives the {128, 160, 192, 224}. Note that basis model dropout (BMD)
largest improvement. is not applicable to MobileNet because it has only one model.

can adapt to. We chose a fix-sized MV3-small (1.0x224) as our lightweight model, and use differ-
ent numbers of MV3-large (1.0x224) for basis. As shown in Fig.[3] the top-1 accuracy improves
monotonically with increased number of bases. With 16 bases, our BasisNet-MV3 achieved 80.3%
accuracy with 290M MAdds. The shaded area represents the relative model size (#Params). Note
that we explicitly trained a regular MobileNetV3-large with large multiplier and low image resolu-
tion (2.5x128), so it has similar model size with BasisNet. We show that BasisNet requires only 2/3
of computations to achieve the same accuracy with the MobileNetV3 counterpart.

4.5 COMPARISON WITH CONDCONV

We re-implemented CondCon to directly compare with our BasisNet. We choose MobileNetV3
as backbone, and selected N = 16 for both BasisNet and CondConv from layers 11 to 15. We chose
MV3-small(1.0x224) as the lightweight model, and disabled early termination for BasisNet. Both
models are trained using the same condition as described in Sec. It is worth noting that even
though the overall computation for BasisNet is larger due to overhead by lightweight model, the
synthesized specialist (which is directly responsible for image classification) consumes roughly the
same amount of computations for these two models.

The top-1 accuracy for CondConv-MV3 and BasisNet-MV3 is 79.9% and 80.3% respectively, show-
ing the advantage of BasisNet over CondConv. More importantly, we find that BasisNet is more
flexible than CondConv. CondConv reports that simultaneously activating multiple routes is neces-
sary for any single input, therefore sigmoid activation has to be used. For BasisNet, we find both
sigmoid and softmax work fine (80.0% and 80.3% accuracy respectively), and the latter can lead to
sparse and even one-hot combination coefficients (see Sec.[4.8). We also experimented to combine
CondConv with BasisNet, and the accuracy is further boosted to 80.5%. However this will prevent
model being synthesized all at once (Sec. [3.2) thus diminishing the purpose of developing BasisNet.

4.6 REDUCE AVERAGE INFERENCE COST VIA EARLY EXITING

The two stage design of BasisNet naturally supports early termination, since the lightweight model
can choose to skip the second stage and returns its prediction directly if confident. We verified
the effectiveness on ImageNet validation set with a well-trained BasisNet-MV3 (1.0x224,16 basis)
model. We chose the maximum value of softmax probability (Geifman & El-Yaniv} 2017; Huang
et al., |2018) as the criterion to measure initial prediction confidence. We split the 50K validation
images into multiple buckets according to the sorted top-1 probability, and in Fig. [6] (left) we show
the accuracy within each bucket by the lightweight model, synthesized specialist model and a refer-
ence MobileNetV3. We observe that for at least one third of images where lightweight model has
high prediction confidence, the accuracy gaps between these three models are negligible (< 1%).
The BasisNet has clear advantage over MobileNet in all buckets, especially for more difficult (low
confidence) cases. We also run a simulation by altering thresholds of prediction confidence: for all
images that show confidence higher than a threshold the second stage will be skipped, while for the

*Our re-implementation of CondConv-MV2 achieved 76.2% accuracy, better than the reported accuracy of
74.6% from|Yang et al| (2019). More details in Appendix[D.4}

Under review as a conference paper at ICLR 2021

High Confidence Low Confidence

o]
o

100

o]

o
~
©

(=)}

o
~
o

N
o

BasisNet-MV3: Lightweight Modzal
B BasisNet-MV3: Synthesized Specialist
B MobileNetV3
0 NN NN NN RN NN N NN SR NN NN RN NN SR RN S e
0 20 40 100 150 200 250 300
Percentile of Validat|on Data Average Multiply-adds (MAdds), Millions

~
N

—8— BasisNet-MV3
—o— Cascaded MobileNetV3

Top-1 Accuracy, %

N

o
]
o

Effective Top-1 Accuracy, %
~
=y

Figure 6: Early exiting can further reduce computation cost without sacrificing accuracy. (Left)
Prediction accuracy is comparable for more confident predictions (e.g. top 40%), and the synthe-
sized specialist consistently outperforms regular MobileNet in all buckets; (Right) Simulation of
BasisNet-MV3 with early exiting under varying threshold.

Table 2: Latency measurements on Google Pixel 3XL for different models.

Methods Accuracy(%) MAdds(M) Latency(ms)
BasisNet-MV3 8-routes 79.6 281 60.6
BasisNet-MV3 16-routes 80.3 290 62.9
— With early termination 80.0 198 (avg.) 43.6 (avg.)
MobileNetV3 (1.25x224) 79.7 356 66.3
MobileNetV3 (1.5x224) 80.6 489 86.2
CondConv-MobileNetV3 79.9 253 53.1

rest the specialist will be synthesized and used. With different thresholds the BasisNet has different
cost and accuracy. For fair comparison, we cascade two well-trained MobileNets of the same size
as the lightweight model and basis model respectively. Fig. [] (right) shows that BasisNet achieves
better results for the same cost, except when the computation budget is very limitedﬂ Particularly
for BasisNet, with a threshold of 0.7, 39.3% of all images will skip the second stage thus the average
computation cost reduces to 198M MAdds while the overall accuracy remains 80.0%.

4.7 ON-DEVICE LATENCY MEASUREMENTS

To validate the practical applicability, we measured the latency of the proposed BasisNet and other
baselines on physical mobile device. We choose Google Pixel 3XL and run floating-point models
on the big core of the phone’s CPU. In Table[2] we show that BasisNet can run efficiently on existing
mobile device. Our efficiency conclusion drawn from MAdds also applies to real latency. Specifi-
cally, MobileNetV3 with 1.25x and 1.5x multipliers have similar accuracy as BasisNet-MV3 with 8
and 16 routes, while the BasisNet has lower latency. Our two-stage model synthesis design enables
early termination, which offers even more efficient execution (as shown by the estimated average

latency of 43.6ms)E| We also measured the latency for CondConv in the same table. CondConv
has lower latency than BasisNet primarily because it does not use the first-stage lightweight model.
However, the first stage computes basis weights with better results (80.3% vs 79.9%), and gets early
termination for free. To more fairly compare with CondConv, one can add a first stage to CondConv
but that may lead to (1) extra computation; (2) the overall accuracy cannot go beyond 79.9% which
is the accuracy of CondConv. Lastly, BasisNet synthesizes a specialist that has the same architecture
as existing state-of-the-art mobile networks. So it has the potential to be supported by any accelera-
tors that are optimized for existing mobile network architectures. We leave exploring this direction
as future work.

*The accuracy of lightweight model prediction is slightly worse than the corresponding MobileNet, shown
as the data points on the left end of Fig. |§| (right), because the lightweight model needs to handle two tasks.

>With threshold of 0.7 on ImageNet, 39.3% of images can skip second stage thus the estimated average
latency is reduced to 0.393 X 13.7ms +(1 — 0.393) X 62.9ms = 43.6ms.

Under review as a conference paper at ICLR 2021

Norfolk terrier Norwich terrier French loaf seashore
o .

]
—— Norfolk terrier —— Norwich terrier %

otterhound — Dandie Dinmont & ﬁ#{ﬁ —

s E 75 \ <
] v \f .

: T A | g

oo . . L L L)aw}\b& 7

1 3

beach wagon
—— French loaf seashore L
—— beachwagon —— ibex

(B) ©)

Figure 7: (A,C) Sample images from visually similar or distinct categories. (B) Mean coefficient
weights at 15-th layer for selected categories. (D) t-SNE visualization of combination coefficients.

Table 3: Different disturbance applied to the combination coefficients.

Disturbance CORRECT Top-1 MEAN UNIFORM SHUFFLED
BasisNet-MV2 78.2 73.9(-43) 672(-11.0) 672(-11.0) 56.5(-21.7)
BasisNet-MV3 79.8 77.8(-20) 69.5(-103) 69.7(-10.1) 58.1(-21.7)

4.8 UNDERSTANDING THE LEARNED BASISNET MODELS

Visualizing the specialization of basis models. We visualized the combination coefficient vectors
on ImageNet validation set to better understand the effectiveness of model synthesis. In Fig. [7]
we show visually similar and distinct categories, as well as the combination coefficients of 15-th
layer. The lightweight model chooses the same specialist to better handle the subtleties between dog
breeds, but for visually distinct categories the synthesized models are very different (curves in (B)
bottom do not coincide). In Fig.[7] (D) we show the coefficients for all images using t-SNE. The
dog categories form a single cluster while the others reside in very different clusters. We also find
different bases are activated by fine-grained visual patterns, e.g. fluffy dogs mainly activate 2nd base
and short-haired dogs use 14th base. More qualitative examples are shown in Appendix [E]

The importance of optimal basis model synthesis. To verify the importance of model synthesis,
we add disturbances to the predicted combination coefficients. The specialist should be most effec-
tive for the corresponding image, and a disturbed synthesis signal would hurt performance. We train
BasisNet-MV2 (Accuracy 78.2%) and BasisNet-MV3 (Accuracy 79.8%), and share only the first 7
layers in the basis, then disturb the coefficients « as follows: (1) preserving the highest probable
basis model only (TOP-1), (2) uniformly combining all basis models (UNIFORM), (3) using mean
weights over entire validation set (MEAN), or (4) randomly shuffling the coefficients within each
layer (SHUFFLED). As shown in Table [3] all disturbances lead to inferior performance validating
that basis models have varied expertise. SHUFFLED leads to a totally mismatched specialist thus
performance drops over 20%. Choosing TOP-1 has the smallest accuracy drop, showing potential
for learning model selection which we leave for future work. We also applied the disturbance to
individual layers and observed some interesting patterns, as detailed in Appendix [D.6

5 CONCLUSION

We present BasisNet, which combines the recent advancements in multiple perspectives such as ef-
ficient model design and dynamic inference. With a standalone lightweight model, the unnecessary
computation on easy examples can be saved and the information extracted by the lightweight model
help synthesizing a specialist network for better prediction. With extensive experiments on Ima-
geNet we show the proposed BasisNet is particularly effective on efficient inference, and BasisNet-
MV3 achieves 80.3% top-1 accuracy with only 290M MAdds even without early termination.

Under review as a conference paper at ICLR 2021

REFERENCES

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-
scale machine learning. In 12th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 16), pp. 265-283, 2016.

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural networks for
efficient inference. In Proceedings of the 34th International Conference on Machine Learning,
2017.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. arXiv preprint arXiv:1812.00332, 2018.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and Zicheng Liu. Dynamic
convolution: Attention over convolution kernels. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11030-11039, 2020.

Zhourong Chen, Yang Li, Samy Bengio, and Si Si. You look twice: Gaternet for dynamic fil-
ter selection in cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation strategies from data. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2019.

Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zijian He, Zhen Wei, Kan Chen, Yuandong
Tian, Matthew Yu, Peter Vajda, et al. Fbnetv3: Joint architecture-recipe search using neural
acquisition function. arXiv preprint arXiv:2006.02049, 2020.

David Eigen, Marc’ Aurelio Ranzato, and Ilya Sutskever. Learning factored representations in a deep
mixture of experts. arXiv preprint arXiv:1312.4314,2013.

Michael Figurnov, Maxwell D Collins, Yukun Zhu, Li Zhang, Jonathan Huang, Dmitry Vetrov, and
Ruslan Salakhutdinov. Spatially adaptive computation time for residual networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1039-1048, 2017.

Joao Gama and Pavel Brazdil. Cascade generalization. Machine learning, 41(3):315-343, 2000.
Xavier Gastaldi. Shake-shake regularization. arXiv preprint arXiv:1705.07485, 2017.

Yonatan Geifman and Ran El-Yaniv. Selective classification for deep neural networks. In Advances
in neural information processing systems, 2017.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Pro-
ceedings of the IEEE International Conference on Computer Vision, 2019.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

10

Under review as a conference paper at ICLR 2021

Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250,
2016.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Weinberger.
Multi-scale dense networks for resource efficient image classification. In International Confer-
ence on Learning Representations, 2018.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018.

Juhyun Lee, Nikolay Chirkov, Ekaterina Ignasheva, Yury Pisarchyk, Mogan Shieh, Fabio Riccardi,
Raman Sarokin, Andrei Kulik, and Matthias Grundmann. On-device neural net inference with
mobile gpus. arXiv preprint arXiv:1907.01989, 2019.

Sam Leroux, Steven Bohez, Elias De Coninck, Tim Verbelen, Bert Vankeirsbilck, Pieter Simoens,
and Bart Dhoedt. The cascading neural network: building the internet of smart things. Knowledge
and Information Systems, 2017.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines
for efficient cnn architecture design. In Proceedings of the European Conference on Computer
Vision (ECCV), 2018.

Enrique S Marquez, Jonathon S Hare, and Mahesan Niranjan. Deep cascade learning. IEEE trans-
actions on neural networks and learning systems, 29(11):5475-5485, 2018.

Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, and Hassan Ghasemzadeh. Improved knowl-
edge distillation via teacher assistant. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, 2020.

Pramod Kaushik Mudrakarta, Mark Sandler, Andrey Zhmoginov, and Andrew Howard. K for the
price of 1: Parameter-efficient multi-task and transfer learning. arXiv preprint arXiv:1810.10703,
2018.

Eunhyeok Park, Dongyoung Kim, Soobeom Kim, Yong-Deok Kim, Gunhee Kim, Sungroh Yoon,
and Sungjoo Yoo. Big/little deep neural network for ultra low power inference. In 2015 Inter-
national Conference on Hardware/Software Codesign and System Synthesis (CODES+ ISSS), pp.
124-132. IEEE, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018.

Mark Sandler, Jonathan Baccash, Andrey Zhmoginov, and Andrew Howard. Non-discriminative
data or weak model? on the relative importance of data and model resolution. In Proceedings of
the IEEE International Conference on Computer Vision Workshops, 2019.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International Conference on Machine Learning, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2019.

11

Under review as a conference paper at ICLR 2021

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference via
early exiting from deep neural networks. In 23rd International Conference on Pattern Recognition
(ICPR), 2016.

Ravi Teja Mullapudi, William R Mark, Noam Shazeer, and Kayvon Fatahalian. Hydranets: Spe-
cialized dynamic architectures for efficient inference. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018.

Swagath Venkataramani, Anand Raghunathan, Jie Liu, and Mohammed Shoaib. Scalable-effort
classifiers for energy-efficient machine learning. In Proceedings of the 52nd Annual Design Au-
tomation Conference, pp. 1-6, 2015.

Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple features.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2001.

Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie, Bichen Wu,
Matthew Yu, Tao Xu, Kan Chen, Peter Vajda, and Joseph E. Gonzalez. Fbnetv2: Differentiable
neural architecture search for spatial and channel dimensions. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of neural
networks using dropconnect. In International conference on machine learning, 2013.

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. Skipnet: Learning dy-
namic routing in convolutional networks. In Proceedings of the European Conference on Com-
puter Vision (ECCV), 2018.

Longhui Wei, An Xiao, Lingxi Xie, Xin Chen, Xiaopeng Zhang, and Qi Tian. Circumventing
outliers of autoaugment with knowledge distillation. arXiv preprint arXiv:2003.11342, 2020.

Qizhe Xie, Eduard Hovy, Minh-Thang Luong, and Quoc V Le. Self-training with noisy student
improves imagenet classification. arXiv preprint arXiv:1911.04252, 2019.

Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan Ngiam. Condconv: Conditionally parameter-
ized convolutions for efficient inference. In Advances in Neural Information Processing Systems,
2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Tianyuan Zhang, Bichen Wu, Xin Wang, Joseph Gonzalez, and Kurt Keutzer. Domain-aware dy-
namic networks. arXiv preprint arXiv:1911.13237,2019.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018.

Yikang Zhang, Jian Zhang, Qiang Wang, and Zhao Zhong. Dynet: Dynamic convolution for accel-
erating convolutional neural networks. arXiv preprint arXiv:2004.10694, 2020.

12

Under review as a conference paper at ICLR 2021

APPENDICES

A DETAILED MODEL ARCHITECTURE OF BASISNET

In this section we describe in details about the proposed BasisNet, including the lightweight model
and basis models.

A.1 LIGHTWEIGHT MODEL

For BasisNet-MV2, the lightweight model follows the architecture described in Table 2 of |[Sandler
et al.[(2018)), and we use multiplier of 0.5 and input image resolution of 128. The lightweight model
has a computation overhead of 30.3M MAdds and a model size of 1.2M parameters.

For BasisNet-MV3, we use MobileNet v3-small for our lightweight model as described in Table 2
of Howard et al.|(2019)), and we use multiplier of 1.0 and input resolution of 128 or 224 for different
experiments. The model size for the lightweight model is 2.5M parameters regardless of input image
resolutions. With 128 X 128 image, the lightweight model has 19.9M MAdds computation overhead,
and with 224 X 224 image the computation overhead is 56.5M MAdds.

As described in Sec[3.1] the lightweight model has two tasks, one for initial classification prediction
and the other for combination coefficients prediction. The first task is similar with any regular
classification task, and can be formally described as:

g =LM(f(z); WLm) (7

Note that the two tasks share all but the final classification layer, thus the extra computation for
predicting the combination coefficients is negligible.

A.2 LAYER NUMBERING IN BASIS MODELS

For BasisNet-MV2, the basis models follow the architecture described in Table 2 of [Sandler et al.
(2018). For simplicity in notation, we sequentially number all the layers starting from LO until
the final k-way classification layer as L.20, e.g. the first conv2d layer in Table 2 is LO and the
avgpool, 7x7 layer is L19.

For BasisNet-MV3, the basis models follow the MobileNet v3-large architecture described in Ta-
ble 1 of Howard et al.|(2019). We also sequentially number all the layers starting from LO until the
final k-way classification layer as .19, e.g. the first conv2d layer is LO and the pool, 7x7 layer
isL17.

A.3 DETAILED ARCHITECTURES FOR DIFFERENT EXPERIMENTS

Here we describe in detail the models that used in different experiments. Unless stated otherwise,
we use the following settings as default for BasisNet-MV2 and BasisNet-MV3:

» For MobileNetV2 experiments, the first-stage lightweight model is MobileNetV2 with 0.5x mul-
tiplier and input image resolution of 128 (MV2, 0.5x128) and the second stage has 8§ basis models
of MobileNetV2 1.0x with image resolution of 224 (MV2, 1.0x224). Basis models share param-
eters in layers from 1 to 10 and final classification layer, and differ in parameters in layers 11 to
17.

* For MobileNetV3, the lightweight model is MobileNetV3-small with 1.0x multiplier and in-
put image resolution of 128 (MV3-small, 1.0x128). The second stage has 16 basis models of
MobileNetV3-large with 1.0x multiplier and resolution of 224 (MV3-large, 1.0x224), and they
share parameters in first 7 and last 2 layers, and differ in parameters in layers 8 to 15.

Comparison with MobileNets (Sec.d.2) We use BasisNet-MV2 with 8 bases and the lightweight
model is MV2 (0.5x128). Each basis model is a MV2 (1.0x224) and they only differ in parameters
from L11-17. The basis models dropout rate is 1/8.

For BasisNet-MV3, we use 16 bases each of a MV3-large (1.0x224), and the lightweight model
is MV3-small (1.0x128). All basis models share parameters except for in layers L8-15. The basis
model dropout rate is 1/16.

13

Under review as a conference paper at ICLR 2021

The effect of regularization for proper training (Sec. We use the same model architectures
for BasisNet-MV2 and BasisNet-MV3 with Sec. £.21

Number of bases in basis models (Sec.[d.4d) We use BasisNet-MV3 with different number of
basis models, but each is a MV3-large (1.0x224). The lightweight model is MV3-small (1.0x224)
and all basis models share parameters except for layers L11-15. For BasisNet with no more than
8 bases we use basis model dropout rate of 1/8 and for all others (16 to 128 bases) we use a basis
model dropout rate of 1/16.

Comparison with CondConv (Sec. For BasisNet-MV3, we use 16 basis models each of a
MV3-large (1.0x224), and the lightweight model is MV3-small (1.0x224). All basis models share
parameters except for layers L11-15. The basis model dropout rate is 1/16.

Reducing average inference cost via early exiting (Sec.[d.6) We use the same BasisNet-MV3
model as in Sec.

B IMPLEMENTATIONS AND TRAINING HYPERPARAMETERS

Our project is implemented with TensorFlow (Abadi et al.| 2016)). Following Sandler et al.| (2018))
and|/Howard et al.| (2019), we train all models using synchronous training setup on 8x8 TPU Pod, and
we use standard RMSProp optimizer with both decay and momentum set to 0.9. The initial learning
rate is set to 0.006 and linearly warms up within the first 20 epochs. The learning rate decays every
6 epochs for BasisNet-MV2 (4.5 epochs for BasisNet-MV3) by a factor of 0.99. The total batch
size is 16384 (i.e. 128 images per chip). For stabilizing the training, as described in Section 3.3 we
keep epsilon = 1 for the first 10K training steps then linearly decays to O in the next 40K steps. We
also used gradients clipping with clip norm of 0.1 for BasisNet-MV3. In general, all BasisNet and
reference baseline models are trained for 400K steps. We set the L2 weight decay to le-5, and used
the data augmentation policy for ImageNet from AutoAugment (Cubuk et all 2019). We choose
the checkpoint from (Xie et al.,|2019) as our EfficientNet-b2 teacher model for distillation, and for
BasisNet-MV3 both lightweight model and all basis models are trained with teacher supervision.
For BasisNet-MV2, we only distill the basis models but use the groundtruths labels without label
smoothing for training the lightweight model. For basis models dropout, we use dropout rate of 1/8
for all BasisNets with no more than 8 bases, and use 1/16 for the rest which has 16 or more bases.
Following Howard et al.| (2019), we also use exponential moving average with decay 0.9999 and set
the dropout keep probability to 0.8.

C COMPARISON WITH OTHER EFFICIENT NETWORKS

In Table 4] we show a more complete comparison with recent efficient neural networks on Ima-
geNet classification benchmark. For baselines we directly use the statistics from the correspond-
ing original papers, even though the training procedures could be very different. Some common
tricks in literature include knowledge distillation®, training with extra data®, applying custom
data augmentation®, or using AutoML-based learned training recipes (hyperparameters). Dif-
ferent models may choose subsets of these tricks in their training procedure. For example, Xie
et al.|(2019) use 3.5B weakly labeled images as extra data and use knowledge distillation to itera-
tively train better student models. CondConv (Yang et al., [2019) use AutoAugment (Cubuk et al.,
2019) and mixup (Zhang et al., [2017) as custom data augmentation. Wei et al.| (2020) reported in
a concurrent work that combining AutoAugment and knowledge distillation can have even stronger
performance boost, because soft-labels from knowledge distillation helps alleviating label misalign-
ment during aggressive data augmentation. In FBNetV3 (Dai et al., [2020) the training hyperpa-
rameters are treated as components in the search space and are obtained from AutoML-based joint
architecture-recipe search. OFA (Cai et al., 2019)) use the largest model as teacher to perform knowl-
edge distillation to improve the smaller models. Notably, in our main paper, unless stated otherwise,
we always reported the statistics from our re-implementations, thus the comparison in our ablation
studies are fair, but some results might be inconsistent with this table. It is also worth mentioning
that even though we did not explicitly use extra data for training BasisNet, the teacher model check-

14

Under review as a conference paper at ICLR 2021

Table 4: Complete comparison of different efficient networks on ImageNet classification. For base-
lines, we cite statistics on ImageNet from original papers. Our results are bolded.

MAdds (FLOPs) ~ Top-1 Acc./%

MobileNetV2 1.0x (Sandler et al., 2018) 300M 72.0
CondConv-MobileNetV2 1.0x (Yang et al.,[2019)# 329M 74.6
DY-MobileNetV2 1.0x (Chen et al., 2020)# 313M 75.2
MobileNetV3-Large (Howard et al.,|2019) 219M 75.2
Dy-MobileNetV3-Large (Zhang et al.,[2020) 228M 77.1
ShuffleNetV2 1.5x (Ma et al.,|2018) 299M 72.6
EfficientNet-BO (Tan & Le, [2019) 390M 77.1
EfficientNet-BO (Noisy Student) (Xie et al.,2019) ¢ @ 390M 78.1
EfficientNet-BO (AA + KD) (Wei et al.|[2020) ¢ & 390M 78.0
CondConv-EfficientNet-BO (Yang et al.,[2019)# 413M 78.3
ProxylessNas (Cai et al.| 2018)) 320M 74.6
FBNetV2-L1 (Wan et al., |2020) 325M 77.2
FBNetV3-A (Dai et al.| [2020) & 343M 78.0
MnasNet-A1l (Tan et al.,[2019)) 312M 75.2
CondConv-MnasNet-A1 (Yang et al., 2019)# 325M 76.2
EfficientNet-B2 (Tan & Le, [2019) 1.0B 80.1
EfficientNet-B1 (Noisy Student) (Xie et al.,2019) ¢ ® 700M 80.2
FBNetV3-E (Dai et al.,[2020) & 752M 80.4
OFA (Cai et al., 2019) ¢ 595M 80.0
BasisNet-MV3 (Ours) ¢ O 290M 80.3
BasisNet-MV3 + Early Termination (Ours) ¢ # O 198M (Avg.) 80.0

©: Training with extra data

4: Knowledge distillation

&: AutoML-based training hyperparameters
#: Custom data augmentation

point that we used for knowledge distillation is from noisy student training (Xie et al., |2019)), thus
our model may indirectly benefit from the extra data.

D MORE QUANTITATIVE EXPERIMENTS

D.1 CONVEX COMBINATION: SPECIAL CASES

Per-model model synthesis We experiment with BasisNet-MV3 for per-model synthesis and per-
layer synthesis. Specifically, when lightweight model predicts a single vector of combination coef-

ficients for all layers, i.e. oy =g = -+ = ai € R™ it can be seen as a per-model synthesis.

Note that per-model synthesis of BasisNet is still different from HydraNets (Teja Mullapudi et al.,
2018), as the branches in HydraNets span across multiple layers and do not fuse in the middle;
instead, in BasisNet the convolution kernels are obtained from linear combination of basis models
for each layer.

We use BasisNet-MV3 with 8 bases and a lightweight model of MV3-small (1.0x224), and share
all layers in basis models except for L11-15. Interestingly both per-model BasisNet and per-layer
BasisNet have the same performance, 79.6% top-1 accuracy on ImageNet validation set, implying
the combination coefficients across layers may have high correlations for BasisNet-MV3.

However, we also experiment with per-model variation of BasisNet-MV2 with 8 bases and using
a lightweight model of MV2 (0.5x128), and share all layers in basis models except for L11-17. It
turns out training per-model BasisNet-MV2 is more challenging as the model always collapses after
roughly 30K steps in our multiple attempts. We suspect that training per-model model synthesis is
generally more difficult as it has stronger constraints on the basis models, and it may depend on the

15

Under review as a conference paper at ICLR 2021

base architectures (MobileNetV2 or MobileNetV3). We leave further analysis as future work, and
recommend per-layer combination as the default choice.

Model selection instead of model synthesis When the predicted combination coefficients are
one-hot encoded, the model synthesis can be simplified as model selection as only one basis model
will be selected for a particular layer. We experimented with BasisNet-MV3 with 8 bases, and the
lightweight model is MV3-small (1.0x128). Basis models share all layers except for L8-15, and the
original BasisNet-MV3 has an accuracy of 79.8% under this setting. After training for 100K steps
we froze the lightweight model and transformed the predicted combination coefficients into one-hot
embedding, then continued training the basis models. The resulting BasisNet finally achieved 78.5%
accuracy. This is +0.7% better than post-processing a well-trained BasisNet (77.8%) implying the
potential for training model selection end-to-end.

We leave more careful finetuning for the model selection as future work, but emphasize that model
selection has potential to further reduce latency in practice from a model loading I/O perspective.

D.2 DETAILED COMPARISON WITH MOBILENETS (SEC.[4£.2)

Table 5: Detailed comparison of BasisNet-MV2 with MobileNetV2.

Model Preprocess Distillation # Bases (BMD) 128 160 192 224
MobileNetV2 regular None N/A 66.6 695 715 729
MobileNetV2 AA None N/A 67.8 70.7 727 73.7
MobileNetV2 AA MV2 1.4x N/A 68.8 714 724 73.1
MobileNetV2 AA EfN-b2 N/A 69.8 72.6 73.8 749
BasisNet-MV2 regular None 8 (0) 68.6 714 733 747
BasisNet-MV2 AA None 8 (0) 704 728 746 75.6
BasisNet-MV2 regular EfN-b2 8 (0) 71.8 748 762 77.2
BasisNet-MV2 regular None 8 (1/8) 69.1 719 737 75.0
BasisNet-MV2 AA None 8 (1/8) 709 732 751 759
BasisNet-MV2 AA MV2 1.4x 8 (1/8) 723 738 747 754
BasisNet-MV2 AA EfN-b2 8 (1/8) 735 759 77.0 78.1

Here we show original data of Fig. [4] so readers can get the exact accuracy numbers more easily.
Specifically we show the model performance with different regularizations at 4 different image res-
olutions {128, 160, 192, 224} in the last four columns. We compare the data augmentation
(Preprocess, regular represents the Inception preprocess as in Sandler et al.| (2018); Howard et al.
(2019), and AA represents AutoAugment from|Cubuk et al.[(2019)), distillation with different teach-
ers (MV2 1.4x represents MobileNetV2 with 1.4x multiplier, EfN-b2 represents EfficientNet-b2
model from Xie et al.| (2019)), and basis model dropout.

We experimented with different teacher network to distill the BasisNet. Note that the MobileNetV2
1.4x teacher we used is from [Sandler et al.|(2018) and has accuracy of 74.9%, and our BasisNet
achieves even higher accuracy of 75.4% than the teacher. We also experimented different variations
of EfficientNet (b0, b2, b4, b7) and find that models trained with EfficientNet-b2 has the best per-
formance, and using even better teacher network does not bring performance gain to the BasisNet.
We suspect this is related to the gap between teacher and student network as reported in Mirzadeh
et al.[(2020).

D.3 DETAILED EXPERIMENTS FOR NUMBER OF BASES IN BASIS MODELS (SEC. [4.4))

Here we presents the original data for Fig. [3| so readers can get the exact accuracy numbers more
easily. Notably, we find that BasisNet-MV3 with 16 bases is a good balance between model accuracy
and computation budget, achieving 80.3% top-1 accuracy with 290\ Madds. This table also shows
that BasisNet technique optimizes MAdds at the expense of model size.

16

Under review as a conference paper at ICLR 2021

Table 6: Detailed comparison of BasisNets with different number of bases.

Model #MAdds/M #Params/M Accuracy/%
MV3 (1.0x224) 217 545 717
MV3 (1.25x224) 356 8.22 79.7
MV3 (1.5x224) 489 11.3 80.6
MV3 (2.0x128) 276 19.1 79.2
MV3 (2.5x128) 435 29.0 80.4
#Bases=1 273 8.07 77.7
#Bases=2 274 9.19 78.0
#Bases=4 277 11.4 78.8
#Bases=8 281 15.9 79.6
#Bases=16 290 24.9 80.3
#Bases=32 308 42.8 80.5
#Bases=064 344 78.6 80.7
#Bases=128 416 150.3 80.9

D.4 DETAILED COMPARISON WITH CONDCONV (SEC.[4.3))

In Sec.[4.5]we show a comparison of the proposed BasisNet with CondConv. Specifically, we imple-
ment the CondConv routing function as described in|Yang et al.|(2019) for MobileNetV2 and Mo-
bileNetV3. We first compare our re-implementation of CondConv-MobileNetV?2 with the original
paper to validate the correctness of our implementation. Note that with slightly different hyperpa-
rameter choices (for example, we enabled exponential moving average, we used AutoAugment only
but not mixup (Zhang et al.,|2017) for data augmentation, and our model is trained 8x8 TPU, etc.),
our re-implementation achieves better accuracy than reported in the original paper.

To compare with our BasisNet, we select a BasisNet-MV3 with 16 bases and run experiments
with a CondConv-MobileNetV3. As shown in Table [7} the CondConv-MobileNetV3 has 17.9M
MAdds computation overhead and with sigmoid activation the overall accuracy is 79.9%. For our
BasisNet-MV3, the lightweight model is MV3-small (1.0x224) which has 55.6M MAdds compu-
tation overhead, and with softmax activation the final model achieves 80.3% accuracy. We also
changed the activation function for our BasisNet-MV3 system to sigmoid, but find that the accuracy
drops slightly to 80.0%. For the experiments that combines CondConv and lightweight model, we
calculate the summation of the predicted pre-activation logits from both CondConv routing function
and the lightweight model, then apply softmax activation to the sum to get the coefficients for syn-
thesizing basis models. This combination strategy has the same computation overhead with using a
lightweight model only (55.6 M), but the final performance increases to 80.5%.

Table 7: Comparison of BasisNet with CondConv.

Model type CondConv- BasisNet-MV3 BasisNet-MV3 BasisNet-MV3
MobileNetV3 + CC-MV3
Activation Sigmoid Softmax Sigmoid Softmax
Computation overhead 179M 55.6 M 55.6 M 55.6 M
Top-1 accuracy 79.9% 80.3% 80.0% 80.5%

D.5 MODEL SYNTHESIS WITH VARYING SIZED LIGHTWEIGHT MODEL

We studied the performance of BasisNet with lightweight model of different size. Here the size is
measured by the Multiply-adds (MAdds) as we pay more attention to the inference cost. We ex-
perimented with a BasisNet-MV3 of MV3-large (1.0x224) with 8 bases. The lightweight model
is MV3-small, and we experimented with two hyperparameters, i.e. the input image resolution to
lightweight model ({128, 160, 192, 224}) and the multiplier ({0.35, 0.5, 0.75, 1.0}).
As shown in Figure[§] even an extremely efficient lightweight model (MV3-small (0.35x128), com-
putation overhead of 13.8M Madds) can lead to a performance boost from 77.7% to 78.9% (+1.2%).

17

Under review as a conference paper at ICLR 2021

80.0
i Multiplier=1.25
A A
79.5 X
\Y
X
> N
)
© 79.0 -
=}
(&)
)
<
—~ 78.5 -
& MobileNetV3
2 Multiplier=0.35x, Various Resolution
78.0 A Multiplier=1.0x, Various Resolution
V Resolution=128, Various Multiplier
Multiplier=1.0 Resolution=224, Various Multiplier
77.5

220 240 260 280 300 320 340 360
Multiply-adds (MAdds), Millions

Figure 8: BasisNet-MV3 with lightweight model of different sizes (#MAdds).

This experiment shows that resolution and multiplier can have an equivalent effect as reported in
Sandler et al.| (2019) and a lightweight model with a smaller computation overhead can bring most
of the performance gain. Thus it might be more beneficial to scale the model multiplier and resolu-
tion coordinately (Tan & Lel 2019).

D.6 EFFECT OF MODEL SYNTHESIS AT DIFFERENT LAYERS

Table 8: Performance drop when SHUFFLED disturbance was applied at different layer.
Disturbed Layer 8 9 10 11 12 13 14 15 16 17 18 Ref.

BasisNetMV2 78.1 78.1 780 780 777 714 1772 760 760 761 772 782
0.1) (-0.1) (-02) (-02) (-0.5) (-0.8) (-1.0) (-2.2) (-2.2) (-2.1) (-1.0)

BasisNetMV3 79.6 79.6 79.6 794 790 783 779 764 791 - 766 798
(-0.2) (-0.2) (-0.2) (-0.4) (-0.8) (-1.5) (-1.9) (-3.4) (-0.7) (-3.2)

We also apply disturbances as described in Sec. [#.8|on each individual layer. As shown in Table|[8]
we find the layers closer to the final classification layer have more impacts, as the accuracy drop
is more significant. Interestingly, the regular convolutional layer right after the residual bottleneck
layers Sandler et al.|(2018));[Howard et al.|(2019)) (e.g. the 18-th layer of MobileNetV2 and the 16-th
layer of MobileNetV3) seems less sensitive towards inputs.

E MORE QUALITATIVE VISUALIZATIONS

E.1 ToOP CATEGORIES HANDLED BY DIFFERENT BASIS MODELS

In Figure [9] we show several most strongly activated categories for four different basis models on
ImageNet validation set. Specifically we trained BasisNet-MV3 with 16 bases, and checked the
mean weights at the last non-sharing layer (L15) and show the categories that have the highest mean
weights. It is clear that the lightweight model captures the fine-grained visual similarity, for example
the base 2 seems to handle the fluffy dogs while the base 14 is more about short-haired dogs. Another
example is for base 13 that a clear grid pattern can be found in the images, but semantically these
categories are loosely related.

E.2 COMBINATION COEFFICIENTS FOR VISUALLY SIMILAR CATEGORIES

In Figure[T0]we show 10 categories regarding different types of cars and the mean predicted combi-
nation coefficients for these categories in all layers. Obviously the lightweight model assigns similar

18

Under review as a conference paper at ICLR 2021

coefficients for various cars, implying the effectiveness of the lightweight model. For example, we
see that in Layer 14 almost all cars are relying on base 8, and in L15 all cars use a combination of
base 3 and base 6. Quantitatively BasisNet over these 10 categories have an accuracy of 76.6%, but
a corresponding regular MobileNetV3 has only 73.2%.

19

Under review as a conference paper at ICLR 2021

Dandie Dinmont silky terrier
(o}
o
7]
ZE
22l
=1
=
Q
173
<
m
2]
—
Q
7
<
m
< Rhodesian ridgeback Walker hound redbone bull mastiff basenji
= - o "
Q
17}
<
m

Figure 9: Categories with highest mean coefficients for different basis models.

pickup beach wagon convertible sports car tow truck Model T minibus

minivan cab police van
H 2

—— pickup -~ beach wagon —— convertible —— sports car ~—— minivan —— cab ~——— policevan —— tow truck Model T ~—— minibus

nos - - -

5

@ 06

=

°

£ 04 J

s

3 !

001) R e e — - ———
2 4 6 8 10 12 14 1 2 4 6 8 10 12 14 2 4 6 0 12 1 0 12 4 16
Layer 11 Layer 12 Layer 13 Layer 14 Layer 15

Figure 10: Visualization of predicted combination coefficients for similar categories over all layers.

20

	Introduction
	Related Work
	Approach
	Lightweight model
	Basis model synthesis
	Training BasisNet properly

	Experiments
	Dataset and model architecture setup
	Comparison with MobileNets
	The effect of regularization for proper training
	Number of bases in basis models
	Comparison with CondConv
	Reduce average inference cost via early exiting
	On-device Latency Measurements
	Understanding the learned BasisNet models

	Conclusion
	Detailed model architecture of BasisNet
	Lightweight model
	Layer numbering in basis models
	Detailed architectures for different experiments

	Implementations and training hyperparameters
	Comparison with other efficient networks
	More quantitative experiments
	Convex combination: special cases
	Detailed comparison with MobileNets (Sec. 4.2)
	Detailed experiments for number of bases in basis models (Sec. 4.4)
	Detailed comparison with CondConv (Sec. 4.5)
	Model synthesis with varying sized lightweight model
	Effect of model synthesis at different layers

	More qualitative visualizations
	Top categories handled by different basis models
	Combination coefficients for visually similar categories

