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Abstract001

Video-text large language models (video-text002
LLMs) have shown remarkable performance in003
answering questions and holding conversations004
on videos. However, without targeted training,005
they perform almost the same as random on006
time-sensitive tasks like temporal grounding,007
as these models have not learned to use num-008
bers to represent the start and end timestamps009
of video segments. In this paper, we investigate010
using a verbal reference method, such as "at011
the beginning" or "in the end," as alternatives012
to timestamps for referencing video segments.013
We demonstrate that video-text LLMs, even014
those not trained on video-segment level anno-015
tations, possess a substantial capability to per-016
form temporal video grounding tasks with the017
proposed verbal reference method. To further018
demonstrate its efficacy and robustness, we pro-019
pose HawkEye, a video-text LLM that has not020
only state-of-the-art performance on zero-shot021
temporal grounding, but also comparable per-022
formance with existing video-text LLMs across023
a spectrum of other video-text tasks. To train024
HawkEye, we propose InternVid-G, a large-025
scale video-text corpus with segment-level an-026
notations for temporal grounding training. We027
also explore some practical training techniques028
such as mining grounding context spans from029
whole videos, and data augmentation by ran-030
dom cropping videos.031

1 Introduction032

Video-text large language models (LLMs) have033

developing rapidly in recent years to help people034

process videos more easily and faster. This de-035

velopment process includes the emergence of a036

number of new training corpora and models. How-037

ever, most of the training corpora only include038

short videos with simple contents, in which a sin-039

gle keyframe often retains almost all the semantic040

information of the entire video. As a result, though041

models trained on these corpora can hold conver-042

sations and answer questions regarding short and043

simple videos, they do little to help us understand 044

long-form videos like movies, tutorials, and docu- 045

mentaries that play an integral role in our daily lives 046

and convey a wealth of information, knowledge, 047

opinions, and emotions. In fact, understanding 048

long-form videos can be very difficult for comput- 049

ers: they first have to understand the basic content 050

and then the sequence of occurrence of multiple 051

events that appear in the video. 052

However, existing LLMs perform far from satis- 053

factory. For example, MVBench (Li et al., 2023c) 054

and VITATECS (Li et al., 2023d) point out that 055

even state-of-the-art video-text LLMs perform like 056

chance on localizing actions or determining the 057

order of events in videos, showing that though be- 058

ing the most substantial difference between videos 059

and images, the ability to understand temporal in- 060

formation in videos still lags far behind for most 061

video-text LLMs. 062

Recently there have been some works that focus 063

on training video-text LLMs to reference video 064

segments, such as TimeChat (Ren et al., 2023) 065

and VTimeLLM (Huang et al., 2023). These 066

approaches train models to reference video seg- 067

ments using numbers or special tokens to gen- 068

erate start and end timestamps. However, these 069

models require extensive training on deliberately 070

constructed instruction-tuning datasets to establish 071

the correlation between the numbers and the cor- 072

responding video segments. We also found that 073

the above-mentioned models did not perform well 074

on common video understanding benchmarks like 075

MVBench (Li et al., 2023c) and STAR (Wu et al., 076

2021). 077

To tackle this problem, in this paper we in- 078

vestigate enhancing the ability of temporal video 079

grounding, a basic task for long-form video un- 080

derstanding, of video-text LLMs, with minimum 081

hindrance to their performance on other video un- 082

derstanding tasks. We make improvements in the 083

following two aspects: (1) designing better refer- 084
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ence methods for LLMs to refer to video segments085

in text, and (2) constructing a large-scale instruc-086

tion tuning dataset with segment-level annotations,087

and jointly train video-text LLMs on it as well as088

other instruction datasets. To improve aspect (1)089

we let LLMs use time verbals, such as “at the begin-090

ning”, “at the middle”, “at the end” or “throughout091

the entire video”, to represent segments in videos.092

With our proposed recursive grounding technique,093

this reference method can also be used to refer to094

shorter and finer-grained video segments through095

multiple rounds of judgments. We show that com-096

pared to directly generating timestamps, the pro-097

posed verbal reference method enables video-text098

LLMs that have not been trained on any segment-099

level data to exhibit substantial capabilities of re-100

ferring video segments, and is more effective and101

robust than its alternatives after fine-tuning. To102

improve aspect (2), we build InternVid-G, a large-103

scale video corpus with 715k segment-level cap-104

tions and negative spans, which is suitable for con-105

structing temporal video grounding training sam-106

ples.107

Based on the stage 2 checkpoint of VideoChat2108

(Li et al., 2023c), by implementing the above109

improvements we train HawkEye, a video-text110

LLM with the ability to accomplish temporal video111

grounding task in a text-to-text manner. We evalu-112

ate its performance on various downstream bench-113

marks including temporal video grounding, ques-114

tion grounding, and video question answering. Ex-115

perimental results show that HawkEye performs116

substantially better than VideoChat2 on temporal117

video grounding in a fully text-to-text manner with-118

out hurting the performance on other video-text119

tasks.120

2 Related Works121

With the development of image-text LLMs (Li122

et al., 2023a; Dai et al., 2023; Liu et al., 2023),123

many works aim to combine LLMs with video en-124

coders to leverage the comprehension and genera-125

tion capabilities of LLMs for video-related tasks126

(Zhang et al., 2023; Maaz et al., 2023; Li et al.,127

2023b,c; Wang et al., 2022, 2024b; Zhang et al.,128

2024). However, in most of the works the training129

data only contains captions or dialogues about the130

content of the entire video, which is not designed131

for LLMs to learn to reference certain parts of the132

video.133

Recently there have been some attempts to train134

multi-modal LLMs to refer to parts of the visual 135

input and enhance their localization abilities. For 136

image-text LLMs, Kosmos-2 (Peng et al., 2023), 137

Pink (Xuan et al., 2023), and the Qwen-VL series 138

(Bai et al., 2023; Wang et al., 2024a) shows that 139

LLMs can accomplish a wider variety of down- 140

stream tasks if they possess the ability to refer to 141

regions of the image input in text. 142

For video-text LLMs, SeViLA (Yu et al., 2023) 143

proposes a localizer to assign a relevance score to 144

each frame in the video, which is then used to filter 145

the relevant frames for video question answering. 146

VTimeLLM (Huang et al., 2023), TimeChat (Ren 147

et al., 2023) and VTG-LLM (Guo et al., 2024) 148

explores to accomplish temporal video grounding 149

in a fully text-to-text manner by using percentages, 150

second numbers or special tokens to denote the start 151

and end timestamps of video segments, and fine- 152

tunes video-text LLMs on data reformatted from 153

existing temporal grounding or dense captioning 154

datasets. 155

Our work differs from theirs at: (1) using the 156

the proposed verbal format to reference video seg- 157

ments, thus achieving better and more robust perfor- 158

mance in temporal video grounding even without 159

fine-tuning on segment-level data; (2) proposing a 160

large-scale dataset InternVid-G with segment an- 161

notations that are especially suitable for temporal 162

grounding training; and (3) existing works specif- 163

ically target video grounding tasks by leveraging 164

LLMs while our motivation is to train a general 165

video-text LLM that still owns versatility on var- 166

ious tasks, so we also pay efforts on formatting 167

visual grounding similar to other tasks and thus 168

jointly training with many other video-text tasks. 169

3 Verbal Reference Method 170

When designing reference methods for LLMs to 171

represent a video segment with text, an intuitive 172

method is to tell the LLM in prompt how many 173

frames are there in total and the timestamp of 174

each frame. For example, “The video contains 175

%d frames sampled at %.lf, %.lf, ... 176

seconds”, where %d is an integer representing the 177

number of input frames, and %.lf is a float num- 178

ber representing the timestamp of each frame in 179

seconds. This prompt can guide LLMs to out- 180

put the start and end frames with a format like 181

“From frame 3 to frame 5”, or seconds with 182

a format like “4.0 - 12.2 seconds”. However, 183

these frame or second reference methods are sub- 184
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optimal, probably due to the numbers and times-185

tamps in the prompt are difficult for LLMs to un-186

derstand and analyze precisely (Schwartz et al.,187

2024). It also requires extensive training to make188

video-text LLMs to learn the correlation between189

the numbers and the corresponding video segments.190

To alleviate these problems we propose verbal191

reference method. We categorize segments of a192

video into four classes represented by four different193

time verbs: “beginning”, “middle”, “end” and194

“throughout”. If the length of a video segment is195

larger than half the length of the entire video, we196

categorize this segment as “throughout the entire197

video”. If the entire segment is in the first half of198

the video, we categorize this segment as “at the199

beginning of the video”. If the entire segment is200

in the second half of the video, we categorize this201

segment as “at the end of the video”. Otherwise,202

we categorize this segment as “in the middle of203

the video”. An illustration of this categorization is204

shown in Appendix A. On the contrary, if the LLM205

generates a time verbal such as “at the beginning206

of the video” or “throughout the entire video”, we207

will know that it is referring to the first half of the208

video or the entire video.209

However, by solely using this reference method,210

an LLM can only represent a segment with full211

length or half-length of the video. Motivated by212

the idea of binary search, we propose recursive213

grounding, which enables the model to represent214

shorter video segments via multiple rounds of ex-215

pression. The pseudo-code and a real case of re-216

cursive grounding are shown in Appendix A. In-217

tuitively, the model first watches the entire video218

by sampling frames and determining an approxi-219

mate time interval of the segment of interest. In the220

next round, the model focuses on the time interval221

found in the previous round, and further narrow222

down the range of the interval again, serving like a223

video binary search. This process is repeated until224

the model outputs "throughout the entire video" to225

break the loop or a maximum number of rounds226

is reached. Though recursive grounding may not227

cover all corner cases, In Sec. 6.1 we will show that228

its theoretical performance upper bound is much229

higher than the performance of all existing models,230

and it shows better and more robust performance231

than its alternatives of using second or frame num-232

bers, which serves as a good trade-off between233

precision and expression difficulty.234

4 InternVid-G Dataset 235

4.1 Dataset Construction 236

The pressing matter for improving LLMs’ ability 237

on temporal video grounding is to construct a large- 238

scale training dataset. Different from existing large- 239

scale video-text datasets like WebVid (Bain et al., 240

2021) which only contains short videos and corre- 241

sponding captions, the dataset we plan to use for 242

temporal video grounding training needs to meet 243

the following requirements: (1) The videos should 244

be long and contain multiple events; (2) Captions 245

are annotated at segment level, i.e., each caption 246

should be paired with a segment of the video with 247

a certain start position and end position; (3) Cap- 248

tions need to correspond to the semantic content 249

of video scenes, instead of simply using ASR re- 250

sults of the corresponding audio like HowTo100M 251

(Miech et al., 2019), and (4) The content of each 252

caption only describes one segment (its paired seg- 253

ment) in the video input to the model. We con- 254

struct InternVid-G (G for Grounding), a dataset 255

that meets all of the above requirements with di- 256

verse topics and backgrounds. Fig. 1 shows an 257

overview of InternVid-G with 8 consecutive video 258

segments. This dataset is constructed through the 259

following steps: 260

Scene Segmentation. We randomly download 261

100k (1%) videos from InternVid-10M-FLT (Wang 262

et al., 2023), as these videos cover diverse 263

categories and cultural backgrounds. We use 264

PySceneDetect1 to split video into scenes. How- 265

ever, PySceneDetect splits the video by detecting 266

abrupt changes in pixels of adjacent frames. In 267

contrast, as we aim to segment videos into scenes 268

with different semantic content, this toolkit results 269

in a number of false positive segmentations (e.g., 270

splitting the video of the same event from different 271

camera angles into different scenes, which is not 272

what we expect). To tackle with this problem, we 273

use CLIP (Radford et al., 2021) to calculate the 274

semantic similarity between each pair of adjacent 275

scenes, and merge the adjacent scenes if the similar- 276

ity score between them is higher than a threshold. 277

Scene Captioning and Filtering. As the internal 278

differences of the segments obtained through the 279

above segmentation are subtle, for each video seg- 280

ment we sample the center frame and use BLIP-2 281

(Li et al., 2023a) to generate a caption due to its 282

1https://github.com/Breakthrough/PySceneDetect

3



28.80s-32.68s
A person is flying a kite in 
a field

……
533.80s

0.00s
……

Similar Segments

0.00s-36.64s

32.68s-34.68s
Sign for snow camp is hanging 
on the side of a building

0.00s-533.80s

34.68s-36.64s
A car parked in front of a 
black barn

0.00s-533.80s

36.64s-38.64s 
A lake surrounded by trees 
and a small island

32.68s-533.80s

38.64s-40.60s
A man with dreadlocks holding 
a snowboard

0.00s-45.92s

41.20s-44.44s
A man is walking up a set of 
stairs with skis

0.00s-533.80s

44.44s-45.92s
A pair of skis with green and 
black boots

0.00s-114.96s

45.92s-47.52s
A man with long hair wearing 
helmet and shirts

40.60s-128.24s

Target Span
Caption

Context Span

seg 3

seg 4

seg 5

seg 6

seg 7

seg 8

seg 9

seg 10

Figure 1: An overview of the InternVid-G dataset. Segment 3 is discarded due to its similarity with the given
caption is lower than a threshold. Segment 10’s context span starts from 40.60s (in blue) as this timestamp is the
end position of its similar segment 7, which should not be included since the caption “A man with long hair
wearing helmet and shirts” of segment 10 also owns a high similarity with segment 7. Conversely, the end
position of the context span of segment 7 is also the start position of segment 10.

ability of generating short and low-hallucination283

text. To ensure the quality of the captions, we use284

CLIP to calculate the similarity between the cap-285

tion and the video segment, and only keep half286

of all the captions that has higher similarity than287

a threshold to the video segment. For example,288

In Fig. 1 the caption of segment 3 owns a rela-289

tively lower similarity score with the video so it290

is discarded. Note that this does not indicate the291

video segment of this sample has lost its value, as292

it still can be included in the context span of other293

samples.294

Context Span Mining. Temporal video ground-295

ing requires a model to reference a video segment296

which is relevant to the given text query from a297

long video context. To construct samples for this298

task, in addition to the video segment and its cor-299

responding caption as query, we also need several300

other segments before and after this segment as the301

video context to retrieve from. We term the video302

segment corresponding to the query as the target303

span of an example, and (the context segments be-304

fore & after it + target span) as the context span,305

and models are required to locate the target span306

inside the context span to perform video grounding.307

One notable issue is the context span should308

not contain other video segments that are too309

similar to the target span, otherwise these seg-310

ments can also correspond to the query and will311

introduce noises. To prevent this, we calculate the312

similarity with CLIP between the target span and 313

all other segments in the video, and label the seg- 314

ments with a similarity score above a threshold as 315

similar segments. Thus, for a particular text query 316

paired with its target span, the start position of its 317

paired context span should be the end position of 318

the last similar segment before its target span. Sim- 319

ilarly, the end position of its context span should 320

be the start position of the first similar segment 321

after its target span. We term these two positions as 322

ctx_start and ctx_end, and the start & end posi- 323

tion of the target span as tar_start and tar_end. 324

If there are no similar segments before or after the 325

target span, then the ctx_start or ctx_end will 326

be set to 0 (i.e., the beginning of the video) or the 327

end position of the last segment in the video. The 328

context span mining are also shown in Fig. 1. For 329

example, as segment 3 is a similar segment of seg- 330

ment 6, the ctx_start of segment 6 is set as the 331

tar_end as segment 3 to ensure that the video of 332

segment 3 is not included in the context span of 333

segment 6. 334

4.2 Data Statistics and Features 335

Table 1 shows the dataset statistics. Our InternVid- 336

G is the largest dataset in size compared to other 337

temporal grounding datasets, and has the strongest 338

diversity in video as they are sourced from the 339

largest video platform YouTube. For detailed video 340

statistics such as video categories, please refer to 341

(Wang et al., 2023), as the videos used in InternVid- 342
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#videos #queries
tar./ctx.

avg. span
len (s)

video
source

DiDeMo 10642 41206 6.9/29.3 Flickr
Charades-STA 9848 16124 8.1/30.6 Activity
ANet-Captions 14926 71957 37.1/117.6 Activity
InternVid-G 83614 715489 4.4/203.4 YouTube

Table 1: Dataset Statistics compared with several tem-
poral grounding datasets.

0.0 0.2 0.4 0.6 0.8 1.0
len(target_span) / len(context_span)

0%

5%

10%

15%

20%

Figure 2: The length ratio of target spans in context
spans of InternVid-G.

G are an unbiased-sampled subset of InternVid-343

10M-FLT.344

5 HawkEye345

In this section, we describe the training process of346

HawkEye, a video-text LLM that is fine-tuned with347

the verbal reference method to refer to video seg-348

ments. Note that our aim is not to train a state-of-349

the-art video-text LLM, as performance improve-350

ments can always be achieved by using better ini-351

tialization LLMs and training data. Instead, we352

aim to demonstrate the performance and robust-353

ness of the verbal reference method with a limited354

computation budget.355

We initialize HawkEye with the stage 2 check-356

point of VideoChat2 (Li et al., 2023c). We357

make modifications to the instruction tuning data358

(VideoChat2-IT) used in stage 3. Due to limited359

computation budget and targeting at video segmen-360

tation representation, we only use video instruction361

data and remove image data from VideoChat2-IT.362

Unless otherwise specified, we sample 12 frames363

from the video as visual input. We fine-tune the364

Q-Former, query tokens and use LoRA (Hu et al.,365

2022) to fine-tune the LLM, while keep the visual366

encoder frozen. Details of datasets used in the367

training process are listed in Appendix B.368

We add two time-aware tasks based on InternVid-369

G to VideoChat2-IT: temporal video grounding370

and video segment captioning. When training on371

the temporal video grounding task with verbal ref-372

erence method, each training sample is formatted373

as a multiple-choice question. We use the query 374

as input and ask the model to choose one of the 375

following 4 temporal statements: “At the beginning 376

of the video.”, “In the middle of the video.”, “At 377

the end of the video.” and “Throughout the entire 378

video”. 379

Random Cropping as Data Augmentation. 380

There are 2 problems that prevent us from directly 381

applying InternVid-G for training. The first prob- 382

lem is the length proportion of target spans in con- 383

text spans is very unevenly distributed. As shown in 384

Fig. 2, for most of the examples the target span only 385

takes up a very small portion of the context span, as 386

videos from YouTube usually have tens of minutes 387

in length and many segments only last for a few 388

seconds. The second problem is since the position 389

of target span in the context span is fixed for each 390

example, the model may tend to overfit on short- 391

cut relations between the text description and this 392

position if it sees the same example multiple times 393

in different epochs, especially when the amount 394

of training data is small (e.g., fine-tuning on small 395

temporal grounding datasets like Charades-STA 396

(Gao et al., 2017)). To solve the above problems 397

and perform data augmentation, we propose a ran- 398

dom cropping method: we crop the video input by 399

sampling the start position of the video input in the 400

interval of [ctx_start, tar_start] and end posi- 401

tion in the interval of [tar_end, ctx_end]. Note 402

that after which, the cropped video input always 403

include the target span. This cropping method en- 404

ables the same text query to have different answers 405

in different epochs, and can also make the four tem- 406

poral categories of video segments have roughly 407

the same probability to occur in each epoch. A 408

demonstration of the cropping process is shown 409

in Fig. 3. Random cropped sample 1 and 2 both 410

include the targeted video segment from 38s to 40s 411

(in red rectangle) but with different start and end 412

positions (31s to 40s in purple for sample 1, 36s to 413

42s in green for sample 2) from the original video, 414

thus their video inputs and the answers are different 415

from each other. 416

As the training data size of temporal grounding is 417

significantly larger than other tasks in VideoChat2- 418

IT, to prevent the distribution of training data from 419

being too biased against this multiple-choice task 420

which may hurt the model’s versatility, we also 421

add a video segment captioning task: the model 422

is asked to generate a caption of the target span 423

given the video clip cropped from the context span 424
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Sample 1 Sample 2

40s 42s38s36s34s32s 44s30s

Watch the video and respond to the question. 
###Human: <Video></Video> The video contains 12 
frames sampled at 0.3, 0.7, …, 8.7 secs. 
Question: When does the event ‘A man with 
dreadlocks holding a snowboard’ occur in the 
video?
###Assistant: At the end of the video. ###

From second 7 to second 9. ###

From frame 9 to frame 11. ###

Watch the video and make a selection that aligns 
with the content depicted in the video. ###Human: 
<Video></Video> The video contains 12 frames sampled 
at 0.2, 0.6, …, 5.8 secs. Question: During which 
part of the video does ‘A man with dreadlocks 
holding a snowboard’ take place?
###Assistant: In the middle of the video. ###

From second 2 to second 4. ###

From frame 4 to frame 7. ###

tar_start tar_end ctx_endctx_start

A man with dreadlocks 
holding a snowboard

0s-44s38s-40s
31s 40s

36s 42s

Figure 3: A demonstration of random cropping when training on temporal video grouding. The differences between
two samples (sample 1 in purple and sample 2 in green) are emphasized with underlines, they share the same
query and target video segment but not the same answers. The frame-level and second-level representation are also
presented in red.

with random cropping data augmentation method425

and the verbal statement (which is the ground truth426

answer in temporal video grounding task).427

6 Experiments428

6.1 Temporal Video Grounding429

We validate the temporal video grounding abil-430

ity of HawkEye and other models on two popular431

benchmarks: Charades-STA (Gao et al., 2017) and432

ActivityNet-Captions (Krishna et al., 2017).433

6.1.1 Comparison of Reference Methods434

Verbal method enables models not trained ex-435

plicitly on temporal video grounding to ref-436

erence video segments better. We compare437

temporal grounding results of VideoChat2 (Li438

et al., 2023c), LLaVA-OneVision 7B (LLaVA-OV)439

(Li et al., 2024) and InternLM-XComposer 2.5440

(IXC2.5) (Zhang et al., 2024) using second and441

verbal reference method in Table 2. For the verbal442

reference method, we tried setting the max num-443

ber of recursive grounding rounds in {1,2,3} and444

the best result (1 round for Charades-STA and 2445

rounds for ActivityNet-Captions) is reported. The446

“random” baseline denotes randomly choosing a447

span with the average length of ground truth spans448

from the train set. The “verb. upbound” baseline is449

the best result that running recursive grounding for450

3 rounds can achieve. It is obtained by choosing451

the best result of 43 = 64 possible answers.452

Though the verbal reference method may not453

sound very precise for representing time spans, its454

potential precision is sufficient for temporal video455

grounding tasks, especially when the IoU threshold456

Table 2: Zero-shot performance on temporal video
grounding for video-text LLMs that have never trained
on any segment-level annotations. Four metrics reported
are mIoU/R@IoU>0.3/0.5/0.7, the higher the better. †:
training data of this model contains videos from the
training set of this benchmark, thus this is not under a
strict zero-shot setting. ∗: ActivityNet-Captions is used
when training TimeChat thus the authors did not report
this performance.

Charades-STA ActivityNet-Captions
Baselines
random 20.1/30.0/18.8/6.2 23.0/29.0/15.1/6.1
verb. upbound 74.8/100.0/97.0/69.2 71.9/91.5/84.6/68.4
VTimeLLM 31.2/51.0/27.5/11.4 30.4/44.0/27.8/14.3
TimeChat - / - /32.2/13.4 Not Applicable∗
VideoChat2
second 15.2/20.2/8.0/2.9 12.6/16.9/9.3/4.5
verbal 24.6/38.0/14.3/3.8 27.9/40.8/27.8/9.3
LLaVA-OV
second 13.1/18.4/6.7/2.0† 14.6/18.3/8.6/3.7†

verbal 34.6/53.1/34.0/13.2† 32.2/45.0/29.6/14.5†

IXC 2.5
second 13.9/19.7/8.2/3.0 22.8/33.2/14.5/6.0†

verbal 31.2/46.2/31.5/11.7 34.1/47.4/27.2/13.5†

is not very high. For instance, the accuracy upper- 457

bound of R@IoU>0.5 on Charades-STA reaches 458

97.0 after 3 recursive turns, which is nearly perfect 459

and is already much higher than the performance 460

of all state-of-the-art temporal grounding methods. 461

Given the substantial differences in base LLMs as 462

initialization and the training data, the performance 463

across different models can not be compared di- 464

rectly. However, it is clearly shown that all models 465

achieve significantly better performance when 466

using verbal instead of second reference method. 467
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Ref. Method IT only (zero-shot) FT only IT+FT
Frame 24.8/40.3/23.7/8.8 27.5/44.7/21.2/6.3∗ 47.2/72.7/53.0/25.3
Second 20.6/35.7/14.0/2.1 42.3/63.0/47.0/24.6 49.0/72.1/54.5/29.6
Verbal 33.2/54.1/23.8/9.1 42.4/71.9/37.0/13.9 43.1/72.7/38.2/14.4
Verbal+RG. 33.7/50.6/31.4/14.5 48.2/72.2/55.8/27.1 50.3/74.8/60.3/29.5

Table 3: Performance of different video segment reference methods
on the testset of Charades-STA. IT denotes adding InternVid-G into
stage 3 instruction tuning data, FT denotes fine-tuning on the train set
of Charades-STA before testing, and RG. denotes recursive grounding.
All models are initialized with stage 2 checkpoint of VideoChat2. Four
metrics reported are mIoU and R@IoU >0.3/0.5/0.7, where the higher
the better. ∗ fails to generate well-formatted outputs for almost half
samples, so we can only take the correctly formatted ones into account.

SODAc CIDEr METEOR
VideoChat 0.9 2.2 0.9
VideoLLaMA 1.9 5.8 1.9
VideoChatGPT 1.9 5.8 2.1
HawkEye 5.8 8.8 4.6

Table 4: Performance of dense video cap-
tioning on ActivityNet-Captions.
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Figure 4: Temporal video grounding with
and without random cropping.

Charades-STA ActivityNet-Captions
VideoChat2 24.6/38.0/14.3/3.8 27.9/40.8/27.8/9.3
VideoChat2 † 23.4/35.4/12.6/3.0 28.2/41.7/28.7/9.4
SeViLA 18.3/27.0/15.0/5.8 23.0/31.6/19.0/10.1
VTimeLLM 31.2/51.0/27.5/11.4 30.4/44.0/27.8/14.3
TimeChat - / - /32.2/13.4 Not Applicable∗
HawkEye 33.7/50.6/31.4/14.5 32.7/49.1/29.3/10.7

Table 5: Zero-shot performance of temporal video
grounding. Four metrics reported are mIoU and R@IoU
>0.3/0.5/0.7, where the higher the better. ∗ActivityNet-
Captions is used when training TimeChat, and thus the
authors did not report this performance. †: Our Imple-
mentation.

Verbal method is more robust and data-efficient468

for training. For models that are explicitly469

trained on temporal video grounding task, we in-470

vestigate models trained with three reference meth-471

ods: verbal (with and without recursive ground-472

ing), frame, and second reference method. Table473

3 shows though the performances of all reference474

methods after IT+FT are comparable, verbal ref-475

erence method performs significantly better than476

other alternatives when only IT or FT is applied,477

which shows that our verbal reference method is478

more robust in zero-shot manner across the dif-479

ferent distributions of videos (IT only) and much480

easier to be understood by the LLM especially481

when the amount of training data is small (FT only).482

We also conduct experiments with different num-483

ber of input frames, maximum recursive ground-484

ing rounds and test the inference speed to further485

demonstrate the robustness and efficiency of Hawk-486

Eye, which are elaborated in Appendix C.487

6.2 Comparison with Baseline Models 488

We compare zero-shot temporal video grounding 489

performance of HawkEye with other video-text 490

LLMs, as shown in Table 5. SeViLA Localizer 491

(Yu et al., 2023) is a BLIP2-based LLM that gen- 492

erates a float number as the score for each frame. 493

Following their original implementation, we use 494

64 frames as input, and uses their method of ag- 495

gregation for video moment retrieval. TimeChat 496

(Ren et al., 2023) and VTimeLLM (Huang et al., 497

2023) are two video-text LLMs that are also able to 498

perform temporal video grounding in a text-to-text 499

manner with using either seconds or the percentage 500

of the video. For VideoChat2 and HawkEye, we 501

use 12 frames as video input. To provide a fair 502

comparison with HawkEye, in order to reveal the 503

role of using InternVid-G in instruction tuning, we 504

also re-implement VideoChat2 by reperforming the 505

training stage 3. Our implementation only uses the 506

video instruction data of VideoChat2-IT, and sim- 507

ilarly we only fine-tune query tokens, Q-Formers 508

and LoRA of LLMs. In a word, the only difference 509

between our implemented VideoChat2 and Hawk- 510

Eye is the use of InternVid-G in stage 3 instruction 511

tuning. To evaluate VideoChat2 and HawkEye, we 512

use recursive grounding and report results with the 513

best maximum number of recursive rounds. 514

Compared to other video-text LLMs, HawkEye 515

achieves the best performance on zero-shot tem- 516

poral video grounding, despite having a con- 517

servative training plan by not training on any 518

human-annotated temporal video grounding 519

data and using only 12 frames as video input 520

(in contrast, 100 frames for VTimeLLM, 96 frames 521

for TimeChat and 64 frames for SeViLA Local- 522

izer). We also conducted experiments of fine-tuned 523
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mIoU/R@IoU >0.3/0.5
Fine-Tuned Models
Temp[CLIP] NG+ 12.1/17.5/8.9
FrozenBiLM NG+ 9.6/13.5/6.1
Zero-Shot LLMs
SeViLA Localizer 21.7/29.2/13.8
VideoChat2 24.1/36.3/16.2
VideoChat2 † 18.7/26.6/13.5
HawkEye 25.7/37.0/19.5

Table 6: Performance of temporal video grounding of
questions on the NExT-GQA. †: Our implementation

MVBench NExT-QA∗ TVQA STAR
TimeChat 35.93 43.59 31.33 37.97
VideoChat2 51.10 66.50 40.60 59.00
VideoChat2† 49.75 66.91 40.15 55.24
HawkEye 47.55 67.93 41.10 56.59

Table 7: Performance on various video question an-
swering benchmarks without fine-tuning. ∗: As the
instruction tuning dataset VideoChat2-IT contains train-
ing data from NExT-QA, therefore this benchmark is
not tested under a strict zero-shot setting for HawkEye
and VideoChat2. †: Our implementation.

temporal video grounding to further demonstrate524

HawkEye’s outstanding performance in Appendix525

C.526

6.3 Temporal Video Grounding of Questions527

In addition to retrieving video segments with de-528

scriptive statements, grounding questions in videos529

is a more difficult yet important problem, as it is a530

crucial step towards explainable video QA. Table531

6 shows experiments on temporal video ground-532

ing of questions from the testset of NExT-GQA533

(Xiao et al., 2023), where models are required to534

find out a segment from the video that addresses535

the given question. HawkEye outperforms baseline536

methods, both fine-tuned models (Xiao et al., 2023;537

Yang et al., 2022) and zero-shot LLMs, with a large538

margin.539

6.4 Video Question Answering540

As HawkEye is trained by adding two time-aware541

tasks from InternVid-G to stage 3 of VideoChat2,542

one may wonder whether introducing such a large543

amount of training examples from InternVid-G may544

lead to an unbalanced distribution of instruction545

tuning dataset, which will eventually impair the546

model’s performance on other video-text tasks. Re-547

sults in Table 7 show that HawkEye has compara-548

ble performance with VideoChat2 (our implemen-549

tation) on a variety of video question answering550

tasks (Li et al., 2023c; Xiao et al., 2021; Lei et al.,551

2018; Wu et al., 2021), which shows that intro- 552

ducing InternVid-G in instruction tuning does 553

not impair the model’s versatility. In contrast, 554

TimeChat only focuses on time-aware tasks and 555

wasn’t instruction-tuned on diverse tasks does not 556

have this versatility as it performs poorly on QA 557

tasks. 558

6.5 Dense Video Captioning 559

Though HawkEye was not trained on any dense 560

video caption data, we also tested it on ActivityNet 561

by generating 3 captions for the beginning, the mid- 562

dle, and the end of the video. The results are listed 563

in Table 4, which shows that HawkEye outperforms 564

all other video-text LLMs that are also not trained 565

on dense video captioning. 566

6.6 Ablation Studies 567

Random cropping is useful for all reference 568

methods. As explained earlier when introducing 569

random cropping in Sec. 5, random cropping is 570

essential when instruction-tuning on InternVid-G, 571

so we perform ablation studies of random cropping 572

by fine-tuning on Charades-STA after instruction 573

tuning. As shown in Fig. 4, using random crop- 574

ping consistently leads to better performance for 575

all reference methods. 576

7 Conclusion 577

In this paper, we propose a simple and efficient 578

method to enhance temporal video grounding of 579

video-text LLMs, with minimal affections to other 580

abilities. We propose time verbal representation 581

method that refers to video segments with time ver- 582

bals instead of numbers for timestamps, which is 583

easier for LLMs to follow even without targeted 584

training on segment-level annotations. We con- 585

struct InternVid-G, a large-scale video-text cor- 586

pus with segment-level captions and context spans, 587

which is very suitable for training on temporal 588

video grounding tasks. We propose a set of fea- 589

sible practices, including the determination of con- 590

text spans, the random cropping data augmentation 591

method, and two time-aware training objectives 592

(i.e., temporal video grounding and video segment 593

captioning), to train video-text and enhance their 594

temporal video grounding abilities. Based on the 595

above efforts we train HawkEye, a video-text LLM 596

that is able to perform temporal video grounding 597

with time verbal representation format, and evalu- 598

ate on a variety of temporal video grounding and 599

video QA benchmarks. 600
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Limitations601

A potential limitation is that it is hard to represent602

multiple video segments within one response, such603

as when performing tasks like highlight detection604

(Lei et al., 2021), with verbal reference method.605

Instruction data used for training HawkEye is606

also relatively simple. Adding some multi-round607

conversations or replies involving multiple video608

segments can make the model more useful and609

better need real-word needs.610
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A More Details of the Verbal Reference 797

Method 798

An illustration of the conversion between video 799

segments and time verbal categories is shown in 800

Fig. 6. 801

An real example of the recursive grounding pro- 802

cess is shown in Fig. 5. The pseudo-code of the 803

recursive grounding process is as follow: 804

1 def recursive_grounding(video , query , 805
max_rounds): 806

2 start , end = 0, get_length(video) 807
3 for round_i in range(max_rounds): 808
4 clip_length = end - start 809
5 res = choice(video[start: end 810

], query) 811
6 if res == 'throughout ': 812
7 break 813
8 elif res == 'beginning ': 814
9 end -= clip_length / 2 815

10 elif res == 'end': 816
11 start += clip_length / 2 817
12 elif res == 'middle ': 818
13 start += clip_length / 4 819
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Watch the video and respond to the question. ###Human: <Video></Video> The video contains 12 
frames sampled at 2.3, 4.7, 7.0, 9.3, 11.7, 14.0, 16.3, 18.7, 21.0, 23.3, 25.7, 28.0 secs. 
Question: In which part of the video does ‘Person turn the light switch on’ occur?
###Assistant: At the end of the video. ###        Round 1: 15.5s-31.0s, IoU=0.39

Watch the video and respond to the question. ###Human: <Video></Video> The video contains 12 
frames sampled at 1.2, 2.3, 3.5, 4.7, 5.8, 7.0, 8.2, 9.3, 10.5, 11.7, 12.8, 14.0 secs. 
Question: In which part of the video does ‘Person turn the light switch on’ occur?
###Assistant: At the end of the video. ### Round 2: 23.3s-31.0s, IoU=0.79

Watch the video and respond to the question. ###Human: <Video></Video> The video contains 12 
frames sampled at 0.6, 1.2, 1.8, 2.4, 3.0, 3.6, 4.2, 4.8, 5.4, 6.0, 6.6, 7.2 secs.    
Question: In which part of the video does ‘Person turn the light switch on’ occur?
###Assistant: Throughout the entire video. ###         Round 3 (Final): 23.3s-31.0s, IoU=0.79

0.0s 31.0s

31.0s

31.0s

15.5s

23.3s

ground truth

ground truth

ground truth

Query: “Person turn the light switch on”

31s

23.3s-31.0s.

Recursive Grounding

Figure 5: An example of the recursive grounding process of HawkEye. After receving the video and the query
from the user, HawkEye automatically performs the grounding process with recursive grounding in the background,
and converts the target span into a user-friendly start_sec - end_sec format. The four choices of the verbal
reference method are also described in the prompt, but here we omit them to make the presentation simpler.

14 end -= clip_length / 4820
15 return start , end821

B Training and Experiment Details822

B.1 Datasets Used823

We list the datasets used in the training process of824

HawkEye in Fig. 7. We train HawkEye for 1M825

steps, which takes about 7 days with 8 V100 GPUs.826

B.2 Prompts used in training HawkEye827

When training HawkEye on temporal video ground-828

ing task, we use the following prompt:829

<Instruction>

###Human: <Video></Video> The video contains 12 frames

sampled from %.1f, %.1f, %.1f, %.1f, %.1f, %.1f, %.1f,

%.1f, %.1f, %.1f, %.1f, %.1f seconds.

###Human: Question: <Question> Options: <Options>

###Assistant: <Answer> ###

830

Where %.1f denotes the timestamp of a frame831

rounded to 1 decimal places, <Instruction> is832

randomly sampled from the following 10 instruc- 833

tions: 834
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0 sec. N sec.N/2 sec.

throughout

beginning

middle

end

Figure 6: Illustration of the mapping from video segments to the categories of choices in our verbal reference
method.

Video

Instruction

Instruction
Question

Answer

Query Tokens

Q-Former

Linear

LLM
LoRA

Visual
Encoder

Conversation Num

VideoChat 13884

VideoChatGPT 13303

Classification Num

Kinetics-710 40000

SthSthV2 40000

Reasoning Num

NExTQA 34132

CLEVRER-MC 42620

CLEVRER-QA 40000

Captioning Num

WebVid 400000

VideoChat 6905

YouCook2 8760

TextVR 39648

VQA Num

TGIF-trans 39149

TGIF-frame 52696

WebVidQA 10000

EgoQA 7813

Time-Aware Num

InternVid-G
Grounding

715489

InternVid-G
Captioning

715489

NewExisting

Figure 7: Datasets used and parameters trained in the instruction tuning of HawkEye.

Evaluate the video content and select the most suitable

option based on what is presented in the video.

Examine the video and choose the most appropriate choice

in accordance with the video’s content.

Watch the video and make a selection that aligns with

the content depicted in the video.

Analyze the video and opt for the choice that best

corresponds to the content captured in the footage.

Assess the video content and choose the option that

aligns most closely with what is presented in the video.

Evaluate the video, then select the most fitting choice

based on the content portrayed.

Examine the video and make a decision based on the content

presented in the footage.

Watch the video and choose the most fitting option based

on the observed content.

Assess the video content and choose a suitable option

based on what is portrayed in the video.

Analyze the video and select the most appropriate choice

in relation to the content featured in the video.

835

<Question> is randomly sampled from the fol-836

lowing 10 questions (%s denotes the query):837

When does ’%s’ happen in the video?

At what time does the occurrence of ’%s’ take place in

the video?

During which part of the video does ’%s’ occur?

At what point in the video does the event ’%s’ happen?

When in the video does the ’%s’ incident occur?

At which moment does ’%s’ take place in the video?

During which phase of the video does ’%s’ happen?

When does the ’%s’ event occur in the video?

At what time does ’%s’ occur in the video sequence?

When does the ’%s’ situation take place in the video?

838

<Options> are the following 4 statements ran- 839

domly shuffled (Of course the letters will also be 840

modified accordingly): 841

(A) At the beginning of the video.

(B) At the middle of the video.

(C) At the end of the video.

(D) Throughout the entire video.

842

and <Answer> is the ground truth statement. 843

When training HawkEye on video segment cap- 844

tioning task, we use the following prompt: 845
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<Instruction>

###Human: <Video></Video> The video contains 12 frames

sampled from %.1f, %.1f, %.1f, %.1f, %.1f, %.1f, %.1f,

%.1f, %.1f, %.1f, %.1f, %.1f seconds.

###Human: <Statement>

###Assistant: <Answer> ###

846

where <Instruction> is randomly sampled847

from the following 10 instructions:848

Analyze the video content within the specified time frame

and provide a detailed description of the scenes during

that period.

Given a specific time span, describe the activities or

events taking place in the corresponding section of the

video.

Examine the scenes within the indicated time range and

generate a textual overview of the objects, actions, and

context.

Provide a comprehensive narrative of the content depicted

in the video during the given time span, emphasizing key

elements and notable occurrences.

For the specified video duration, outline the main themes

and subjects present.

Annotate the content within the indicated time interval,

focusing on the details of people, objects, and actions

captured in the video during that specific duration.

Describe the visual and contextual aspects of the video

scenes within the provided time range.

Summarize the content of the video within the specified

time span.

Examine the video scenes within the given time frame and

provide a detailed description of that segment.

Offer a textual analysis of the video content

corresponding to the specified time duration.

849

<Statement> is randomly sampled from the850

following 4 temporal statements:851

At the beginning of the video.

At the middle of the video.

At the end of the video.

Throughout the entire video.

852

and <Answer> is the ground truth caption (text853

query).854

Only <Answer> ### is calculated in the train-855

ing loss.856

C More Experiments about the verbal857

reference method858

C.1 Robustness across Different Input Frames859

It is a good feature if the number of input frames860

can be adjusted according to computing constraints861

or accuracy requirements. In this experiment we 862

train all models using IT+FT with 12 frames, and 863

test with 8, 12 or 16 frames from the video as in- 864

put. Fig. 8 shows that though the number of input 865

frames and timestamps of all frames are provided 866

in the prompt, the performance of using frame 867

numbers or seconds to represent video segments 868

tends to drop drastically when the number of input 869

frames changes, probably due to the numbers and 870

timestamps in the prompt are difficult for LLMs 871

to understand and analyze. In contrast, our verbal 872

reference method is robust to different numbers of 873

input frames. 874

C.2 Affect of Maximun Recursive Grounding 875

Rounds 876

we take a deeper look at how the max_rounds 877

hyper-parameter of recursive grounding affects 878

the grounding performance, as shown in Fig. 9. 879

When HawkEye is not fine-tuned, using smaller 880

max_rounds hyper-parameter is more likely to 881

achieve better grounding results, as the more 882

rounds there are, the more likely it is for the model 883

to make mistakes on judging the location of the seg- 884

ment related to a query. However, after fine-tuned 885

on the training set of the benchmark, the grounding 886

performance hardly drops when the max_rounds 887

hyper-parameter goes larger. This is probably be- 888

cause the model has already gained a good under- 889

standing of the video content, so it is less likely 890

to make mistakes and knows in which round the 891

video is already trimmed to the targeted segment 892

relevant to the query, and then the model can reply 893

a “throughout” to break the loop. 894

Comparing the performance of using only one 895

and more than one round, we find that when only 896

one round of localization is available (e.g., refer- 897

ring to a video segment in the middle of a con- 898

versation), fine-tuned HawkEye can not achieve 899

its optimal performance. However, for the non- 900

fine-tuned HawkEye which can be used under the 901

majority of zero-shot conditions, this performance 902

loss is less severe. 903

C.3 Fine-Tuned Temporal Video Grounding 904

Experiments 905

We also compare the performance of fine-tuned 906

HawkEye with SOTA specialist models and other 907

LLMs. As shown in Table 8, HawkEye out- 908

performs VideoChat2 (our implementation) and 909

TimeChat, while still underperforms SOTA special- 910

ists. This indicates that though training with a large 911
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Figure 8: Performance of HawkEye on the test set
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Figure 9: Performance of HawkEye on the test set of
Charades-STA with different maximum rounds of recur-
sive grounding.

Model Charades-STA ActivityNet-Captions
SOTA Specialist - / - /57.3/32.5 44.2/63.2/43.8/27.1
TimeChat - / - /46.7/23.7 -
VideoChat2 † 48.3/71.8/56.4/27.7 38.9/55.5/34.7/17.7
HawkEye 49.3/72.5/58.3/28.8 39.1/55.9/34.7/17.9

Table 8: Fine-tuned performance of temporal video grounding. Four metrics reported are mIoU and R@IoU
>0.3/0.5/0.7, where the higher the better. ActivityNet-Captions is again not applicable for TimeChat as mentioned
in Table 5. The SOTA specialists are (Moon et al., 2023; Nan et al., 2021). †: Our implementation.

amount of time-aware samples from InternVid-G912

is effective, some task-specific approaches such as913

contrastive learning and finer-grained visual-text914

alignment might be required to further improve915

grounding performance. The results also show that916

our verbal reference method is easy for LLMs to917

learn and follow, as VideoChat2 without specif-918

ically instruction-tuned on time-related data919

have already outperformed TimeChat after fine-920

tuning on only thousands of examples.921

C.4 Inference Speed922

We compare the inference speed of zero-shot Hawk-923

Eye and TimeChat on Charades-STA. We first pre-924

process the videos into densely-extracted frames,925

and directly read the frames from hard disk during926

inference. We use AMD EPYC 7763 CPU and927

NVIDIA A100 GPU, and set batch size as 1. We928

use the default prompt of TimeChat and HawkEye929

respectly.930

Though a maximum of 2 rounds of recursive931

grounding are conducted to achieve optimal perfor-932

mance, HawkEye only takes an average of 1.54 sec-933

onds for each example, while TimeChat takes an934

average of 1.63 seconds as it needs to load and pre-935

process more frames (96 frames for TimeChat), and936

its prompt is much longer to record the prcecise and 937

miscellaneous timestamps of all the frames. Note 938

that the speed may vary depending on the perfor- 939

mance of hard disk, CPU and GPU, but the general 940

conclusion is it takes about the same amount of 941

time to run HawkEye for two rounds or TimeChat 942

for 1 round, which confirms the efficiency of the 943

verbal reference method used by HawkEye even it 944

uses recursive grounding that requires more than 945

one round of model inference. 946

D Case Studies 947

We provide more examples of comparison between 948

HawkEye and VideoChat2 in the appendix. In- 949

correct contents are marked in red. Hawkeye has 950

similar abilites on answering factual questions, but 951

performs much better on time-aware questions and 952

understanding long-form videos. 953
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<Video></Video> The video contains 12 frames sampled at 1.3, 3.8, 6.4, 8.9, 
11.5, 14.0, 16.6, 19.2, 21.7, 24.2, 26.8, 29.4 seconds. Watch the video and 
choose the most fitting option based on the observed content.

What is the woman doing in the middle of the video?

In the middle of the video, the woman is seen typing on her laptop.

The woman in the middle of the video is using a laptop computer.

And at the end of the video?

At the end of the video, the woman is seen typing on her laptop.

At the end of the video, a woman is opening a door with a key.

And at the beginning of the video?

At the beginning of the video, the woman is seen typing on her laptop.

At the beginning of the video, a woman is standing in front of a mirror.

VideoChat2

HawkEye

Figure 10: A Conversation using VideoChat2 and HawkEye about a daily activity video.
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<Video></Video> The video contains 12 frames sampled at 5.4, 16.3, 27.3, 
38.2, 49.1, 60.0, 70.9, 81.8, 92.7, 103.6, 114.5, 125.4 seconds. Watch the 
video and choose the most fitting option based on the observed content.

What is this video about?

The video is about a weather forecast.

The video is about a weather forecast for the next few days.

What will the weather be like according to the video?

According to the video, the weather will be sunny.

The video shows a forecast for the next few days, including a tropical storm 
and a heavy rain event.

At which segment of the video is the temperature shown, and how will it be?

The temperature is shown in the segment that starts at 00:00 and ends at 
00:03. The temperature is expected to be 77 degrees Fahrenheit.

The temperature is shown at the end of the video, and it is expected to be 
around 70 degrees.

VideoChat2

HawkEye

YouTube Video ID: _-5vXZfppKE

Figure 11: A Conversation using VideoChat2 and HawkEye about a news video.

<Video></Video> The video contains 20 frames sampled at 3.7, 11.2, 18.7, 
26.2, 33.7, 41.2, 48.7, 56.2, 63.7, 71.2, 78.7, 86.2, 93.7, 101.2, 108.7, 
116.2, 123.7, 131.2, 138.7, 146.2 seconds. Examine the video and make a 
decision based on the content presented in the footage.

During which part of the video does 'the woman shows different dishes' occur, 
at the beginning, the middle or the end of the video?

The woman shows different dishes at the end of the video.

The woman shows different dishes at the beginning of the video.

What happens at the end of the video?

At the end of the video, the woman is seen eating a meal.

At the end of the video, a person is shown cutting a piece of food on a plate.

VideoChat2

HawkEye

YouTube Video ID: _4tpo4pUN3k

Figure 12: A Conversation using VideoChat2 and HawkEye about a vlog video.
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<Video></Video> The video contains 20 frames sampled at 3.7, 11.2, 18.7, 
26.2, 33.7, 41.2, 48.7, 56.2, 63.7, 71.2, 78.7, 86.2, 93.7, 101.2, 108.7, 
116.2, 123.7, 131.2, 138.7, 146.2 seconds. Examine the video and make a 
decision based on the content presented in the footage.

What is this video about?

The video is about a woman who is cooking noodles and talking to the camera.

The video is about a girl who is using a laptop and a phone to make a video 
call.

What happens at the beginning of the video?

At the beginning of the video, a woman is seen talking to the camera while 
holding a bowl of noodles. She then proceeds to cook the noodles in a pot of 
boiling water.

At the beginning of the video, a girl is shown with a cat on her phone.

In which part of the video does a pot of noodles appear?

A pot of noodles appears in the video when the woman is cooking noodles in a 
pot of boiling water.

A pot of noodles appears in the video at the end.

VideoChat2

HawkEye

YouTube Video ID: _2mgEMfnYzw

Figure 13: A Conversation using VideoChat2 and HawkEye about a vlog video.
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