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Abstract

Video-text large language models (video-text
LLMs) have shown remarkable performance in
answering questions and holding conversations
on videos. However, without targeted training,
they perform almost the same as random on
time-sensitive tasks like temporal grounding,
as these models have not learned to use num-
bers to represent the start and end timestamps
of video segments. In this paper, we investigate
using a verbal reference method, such as "at
the beginning" or "in the end," as alternatives
to timestamps for referencing video segments.
We demonstrate that video-text LLMs, even
those not trained on video-segment level anno-
tations, possess a substantial capability to per-
form temporal video grounding tasks with the
proposed verbal reference method. To further
demonstrate its efficacy and robustness, we pro-
pose HawkEye, a video-text LLM that has not
only state-of-the-art performance on zero-shot
temporal grounding, but also comparable per-
formance with existing video-text LLMs across
a spectrum of other video-text tasks. To train
HawkEye, we propose InternVid-G, a large-
scale video-text corpus with segment-level an-
notations for temporal grounding training. We
also explore some practical training techniques
such as mining grounding context spans from
whole videos, and data augmentation by ran-
dom cropping videos.

1 Introduction

Video-text large language models (LLMs) have
developing rapidly in recent years to help people
process videos more easily and faster. This de-
velopment process includes the emergence of a
number of new training corpora and models. How-
ever, most of the training corpora only include
short videos with simple contents, in which a sin-
gle keyframe often retains almost all the semantic
information of the entire video. As a result, though
models trained on these corpora can hold conver-
sations and answer questions regarding short and

simple videos, they do little to help us understand
long-form videos like movies, tutorials, and docu-
mentaries that play an integral role in our daily lives
and convey a wealth of information, knowledge,
opinions, and emotions. In fact, understanding
long-form videos can be very difficult for comput-
ers: they first have to understand the basic content
and then the sequence of occurrence of multiple
events that appear in the video.

However, existing LLMs perform far from satis-
factory. For example, MVBench (Li et al., 2023c)
and VITATECS (Li et al., 2023d) point out that
even state-of-the-art video-text LLMs perform like
chance on localizing actions or determining the
order of events in videos, showing that though be-
ing the most substantial difference between videos
and images, the ability to understand temporal in-
formation in videos still lags far behind for most
video-text LLMs.

Recently there have been some works that focus
on training video-text LLMs to reference video
segments, such as TimeChat (Ren et al., 2023)
and VTimeLLM (Huang et al., 2023). These
approaches train models to reference video seg-
ments using numbers or special tokens to gen-
erate start and end timestamps. However, these
models require extensive training on deliberately
constructed instruction-tuning datasets to establish
the correlation between the numbers and the cor-
responding video segments. We also found that
the above-mentioned models did not perform well
on common video understanding benchmarks like
MVBench (Li et al., 2023¢) and STAR (Wu et al.,
2021).

To tackle this problem, in this paper we in-
vestigate enhancing the ability of temporal video
grounding, a basic task for long-form video un-
derstanding, of video-text LL.Ms, with minimum
hindrance to their performance on other video un-
derstanding tasks. We make improvements in the
following two aspects: (1) designing better refer-



ence methods for LLMs to refer to video segments
in text, and (2) constructing a large-scale instruc-
tion tuning dataset with segment-level annotations,
and jointly train video-text LLMs on it as well as
other instruction datasets. To improve aspect (1)
we let LLMs use time verbals, such as “at the begin-
ning”, “at the middle”, “at the end” or “throughout
the entire video”, to represent segments in videos.
With our proposed recursive grounding technique,
this reference method can also be used to refer to
shorter and finer-grained video segments through
multiple rounds of judgments. We show that com-
pared to directly generating timestamps, the pro-
posed verbal reference method enables video-text
LLMs that have not been trained on any segment-
level data to exhibit substantial capabilities of re-
ferring video segments, and is more effective and
robust than its alternatives after fine-tuning. To
improve aspect (2), we build InternVid-G, a large-
scale video corpus with 715k segment-level cap-
tions and negative spans, which is suitable for con-
structing temporal video grounding training sam-
ples.

Based on the stage 2 checkpoint of VideoChat2
(Li et al., 2023c), by implementing the above
improvements we train HawkEye, a video-text
LLM with the ability to accomplish temporal video
grounding task in a text-to-text manner. We evalu-
ate its performance on various downstream bench-
marks including temporal video grounding, ques-
tion grounding, and video question answering. Ex-
perimental results show that HawkEye performs
substantially better than VideoChat2 on temporal
video grounding in a fully text-to-text manner with-
out hurting the performance on other video-text
tasks.

2 Related Works

With the development of image-text LLMs (Li
et al., 2023a; Dai et al., 2023; Liu et al., 2023),
many works aim to combine LLMs with video en-
coders to leverage the comprehension and genera-
tion capabilities of LLMs for video-related tasks
(Zhang et al., 2023; Maaz et al., 2023; Li et al.,
2023b,c; Wang et al., 2022, 2024b; Zhang et al.,
2024). However, in most of the works the training
data only contains captions or dialogues about the
content of the entire video, which is not designed
for LLMs to learn to reference certain parts of the
video.

Recently there have been some attempts to train

multi-modal LLMs to refer to parts of the visual
input and enhance their localization abilities. For
image-text LLMs, Kosmos-2 (Peng et al., 2023),
Pink (Xuan et al., 2023), and the Qwen-VL series
(Bai et al., 2023; Wang et al., 2024a) shows that
LLMs can accomplish a wider variety of down-
stream tasks if they possess the ability to refer to
regions of the image input in text.

For video-text LLMs, SeViLA (Yu et al., 2023)
proposes a localizer to assign a relevance score to
each frame in the video, which is then used to filter
the relevant frames for video question answering.
VTimeLLM (Huang et al., 2023), TimeChat (Ren
et al., 2023) and VTG-LLM (Guo et al., 2024)
explores to accomplish temporal video grounding
in a fully text-to-text manner by using percentages,
second numbers or special tokens to denote the start
and end timestamps of video segments, and fine-
tunes video-text LLMs on data reformatted from
existing temporal grounding or dense captioning
datasets.

Our work differs from theirs at: (1) using the
the proposed verbal format to reference video seg-
ments, thus achieving better and more robust perfor-
mance in temporal video grounding even without
fine-tuning on segment-level data; (2) proposing a
large-scale dataset InternVid-G with segment an-
notations that are especially suitable for temporal
grounding training; and (3) existing works specif-
ically target video grounding tasks by leveraging
LLMs while our motivation is to train a general
video-text LLM that still owns versatility on var-
ious tasks, so we also pay efforts on formatting
visual grounding similar to other tasks and thus
jointly training with many other video-text tasks.

3 Verbal Reference Method

When designing reference methods for LLMs to
represent a video segment with text, an intuitive
method is to tell the LLM in prompt how many
frames are there in total and the timestamp of
each frame. For example, “The video contains
%d frames sampled at %.1f, %.1f,

seconds”, where %d is an integer representing the
number of input frames, and %.1f is a float num-
ber representing the timestamp of each frame in
seconds. This prompt can guide LLMs to out-
put the start and end frames with a format like
“From frame 3 to frame 5, or seconds with
a format like “4.0 - 12.2 seconds”. However,
these frame or second reference methods are sub-



optimal, probably due to the numbers and times-
tamps in the prompt are difficult for LLMs to un-
derstand and analyze precisely (Schwartz et al.,
2024). It also requires extensive training to make
video-text LLMs to learn the correlation between
the numbers and the corresponding video segments.

To alleviate these problems we propose verbal
reference method. We categorize segments of a
video into four classes represented by four different
time verbs: “beginning”, “middle”, “end” and
“throughout”. If the length of a video segment is
larger than half the length of the entire video, we
categorize this segment as “throughout the entire
video”. If the entire segment is in the first half of
the video, we categorize this segment as “at the
beginning of the video”. If the entire segment is
in the second half of the video, we categorize this
segment as “at the end of the video”. Otherwise,
we categorize this segment as “in the middle of
the video”. An illustration of this categorization is
shown in Appendix A. On the contrary, if the LLM
generates a time verbal such as “at the beginning
of the video” or “throughout the entire video”, we
will know that it is referring to the first half of the
video or the entire video.

However, by solely using this reference method,
an LLM can only represent a segment with full
length or half-length of the video. Motivated by
the idea of binary search, we propose recursive
grounding, which enables the model to represent
shorter video segments via multiple rounds of ex-
pression. The pseudo-code and a real case of re-
cursive grounding are shown in Appendix A. In-
tuitively, the model first watches the entire video
by sampling frames and determining an approxi-
mate time interval of the segment of interest. In the
next round, the model focuses on the time interval
found in the previous round, and further narrow
down the range of the interval again, serving like a
video binary search. This process is repeated until
the model outputs "throughout the entire video" to
break the loop or a maximum number of rounds
is reached. Though recursive grounding may not
cover all corner cases, In Sec. 6.1 we will show that
its theoretical performance upper bound is much
higher than the performance of all existing models,
and it shows better and more robust performance
than its alternatives of using second or frame num-
bers, which serves as a good trade-off between
precision and expression difficulty.

4 InternVid-G Dataset

4.1 Dataset Construction

The pressing matter for improving LLMs’ ability
on temporal video grounding is to construct a large-
scale training dataset. Different from existing large-
scale video-text datasets like WebVid (Bain et al.,
2021) which only contains short videos and corre-
sponding captions, the dataset we plan to use for
temporal video grounding training needs to meet
the following requirements: (1) The videos should
be long and contain multiple events; (2) Captions
are annotated at segment level, i.e., each caption
should be paired with a segment of the video with
a certain start position and end position; (3) Cap-
tions need to correspond to the semantic content
of video scenes, instead of simply using ASR re-
sults of the corresponding audio like HowTo100M
(Miech et al., 2019), and (4) The content of each
caption only describes one segment (its paired seg-
ment) in the video input to the model. We con-
struct InternVid-G (G for Grounding), a dataset
that meets all of the above requirements with di-
verse topics and backgrounds. Fig. 1 shows an
overview of InternVid-G with 8 consecutive video
segments. This dataset is constructed through the
following steps:

Scene Segmentation. We randomly download
100k (1%) videos from InternVid-10M-FLT (Wang
et al.,, 2023), as these videos cover diverse
categories and cultural backgrounds. We use
PySceneDetect! to split video into scenes. How-
ever, PySceneDetect splits the video by detecting
abrupt changes in pixels of adjacent frames. In
contrast, as we aim to segment videos into scenes
with different semantic content, this toolkit results
in a number of false positive segmentations (e.g.,
splitting the video of the same event from different
camera angles into different scenes, which is not
what we expect). To tackle with this problem, we
use CLIP (Radford et al., 2021) to calculate the
semantic similarity between each pair of adjacent
scenes, and merge the adjacent scenes if the similar-
ity score between them is higher than a threshold.

Scene Captioning and Filtering. As the internal
differences of the segments obtained through the
above segmentation are subtle, for each video seg-
ment we sample the center frame and use BLIP-2
(Li et al., 2023a) to generate a caption due to its

"https://github.com/Breakthrough/PySceneDetect
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Figure 1: An overview of the InternVid-G dataset. Segment 3 is discarded due to its similarity with the given
caption is lower than a threshold. Segment 10’s context span starts from 40.60s (in blue) as this timestamp is the
end position of its similar segment 7, which should not be included since the caption “A man with long hair
wearing helmet and shirts” of segment 10 also owns a high similarity with segment 7. Conversely, the end
position of the context span of segment 7 is also the start position of segment 10.

ability of generating short and low-hallucination
text. To ensure the quality of the captions, we use
CLIP to calculate the similarity between the cap-
tion and the video segment, and only keep half
of all the captions that has higher similarity than
a threshold to the video segment. For example,
In Fig. 1 the caption of segment 3 owns a rela-
tively lower similarity score with the video so it
is discarded. Note that this does not indicate the
video segment of this sample has lost its value, as
it still can be included in the context span of other
samples.

Context Span Mining. Temporal video ground-
ing requires a model to reference a video segment
which is relevant to the given text query from a
long video context. To construct samples for this
task, in addition to the video segment and its cor-
responding caption as query, we also need several
other segments before and after this segment as the
video context to retrieve from. We term the video
segment corresponding to the query as the rarget
span of an example, and (the context segments be-
fore & after it + target span) as the context span,
and models are required to locate the target span
inside the context span to perform video grounding.

One notable issue is the context span should
not contain other video segments that are too
similar to the target span, otherwise these seg-
ments can also correspond to the query and will
introduce noises. To prevent this, we calculate the

similarity with CLIP between the target span and
all other segments in the video, and label the seg-
ments with a similarity score above a threshold as
similar segments. Thus, for a particular text query
paired with its target span, the start position of its
paired context span should be the end position of
the last similar segment before its target span. Sim-
ilarly, the end position of its context span should
be the start position of the first similar segment
after its target span. We term these two positions as
ctx_start and ctx_end, and the start & end posi-
tion of the target span as tar_start and tar_end.
If there are no similar segments before or after the
target span, then the ctx_start or ctx_end will
be set to 0 (i.e., the beginning of the video) or the
end position of the last segment in the video. The
context span mining are also shown in Fig. 1. For
example, as segment 3 is a similar segment of seg-
ment 6, the ctx_start of segment 6 is set as the
tar_end as segment 3 to ensure that the video of
segment 3 is not included in the context span of
segment 6.

4.2 Data Statistics and Features

Table 1 shows the dataset statistics. Our InternVid-
G is the largest dataset in size compared to other
temporal grounding datasets, and has the strongest
diversity in video as they are sourced from the
largest video platform YouTube. For detailed video
statistics such as video categories, please refer to
(Wang et al., 2023), as the videos used in InternVid-
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Table 1: Dataset Statistics compared with several tem-
poral grounding datasets.
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Figure 2: The length ratio of target spans in context
spans of InternVid-G.

G are an unbiased-sampled subset of InternVid-
10M-FLT.

5 HawkEye

In this section, we describe the training process of
HawkEye, a video-text LLM that is fine-tuned with
the verbal reference method to refer to video seg-
ments. Note that our aim is not to train a state-of-
the-art video-text LLM, as performance improve-
ments can always be achieved by using better ini-
tialization LLMs and training data. Instead, we
aim to demonstrate the performance and robust-
ness of the verbal reference method with a limited
computation budget.

We initialize HawkEye with the stage 2 check-
point of VideoChat2 (Li et al., 2023c). We
make modifications to the instruction tuning data
(VideoChat2-IT) used in stage 3. Due to limited
computation budget and targeting at video segmen-
tation representation, we only use video instruction
data and remove image data from VideoChat2-IT.
Unless otherwise specified, we sample 12 frames
from the video as visual input. We fine-tune the
Q-Former, query tokens and use LoRA (Hu et al.,
2022) to fine-tune the LLM, while keep the visual
encoder frozen. Details of datasets used in the
training process are listed in Appendix B.

We add two time-aware tasks based on InternVid-
G to VideoChat2-IT: temporal video grounding
and video segment captioning. When training on
the temporal video grounding task with verbal ref-
erence method, each training sample is formatted

as a multiple-choice question. We use the query
as input and ask the model to choose one of the
following 4 temporal statements: “At the beginning
of the video.”, “In the middle of the video.”, “At
the end of the video.” and “Throughout the entire
video”.

Random Cropping as Data Augmentation.
There are 2 problems that prevent us from directly
applying InternVid-G for training. The first prob-
lem is the length proportion of target spans in con-
text spans is very unevenly distributed. As shown in
Fig. 2, for most of the examples the target span only
takes up a very small portion of the context span, as
videos from YouTube usually have tens of minutes
in length and many segments only last for a few
seconds. The second problem is since the position
of target span in the context span is fixed for each
example, the model may tend to overfit on short-
cut relations between the text description and this
position if it sees the same example multiple times
in different epochs, especially when the amount
of training data is small (e.g., fine-tuning on small
temporal grounding datasets like Charades-STA
(Gao et al., 2017)). To solve the above problems
and perform data augmentation, we propose a ran-
dom cropping method: we crop the video input by
sampling the start position of the video input in the
interval of [ctx_start, tar_start] and end posi-
tion in the interval of [tar_end, ctx_end]. Note
that after which, the cropped video input always
include the target span. This cropping method en-
ables the same text query to have different answers
in different epochs, and can also make the four tem-
poral categories of video segments have roughly
the same probability to occur in each epoch. A
demonstration of the cropping process is shown
in Fig. 3. Random cropped sample 1 and 2 both
include the targeted video segment from 38s to 40s
(in red rectangle) but with different start and end
positions (31s to 40s in purple for sample 1, 36s to
42s in green for sample 2) from the original video,
thus their video inputs and the answers are different
from each other.

As the training data size of temporal grounding is
significantly larger than other tasks in VideoChat2-
IT, to prevent the distribution of training data from
being too biased against this multiple-choice task
which may hurt the model’s versatility, we also
add a video segment captioning task: the model
is asked to generate a caption of the target span
given the video clip cropped from the context span
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Figure 3: A demonstration of random cropping when training on temporal video grouding. The differences between
two samples (sample 1 in purple and sample 2 in green) are emphasized with underlines, they share the same
query and target video segment but not the same answers. The frame-level and second-level representation are also

presented in red.

with random cropping data augmentation method
and the verbal statement (which is the ground truth
answer in temporal video grounding task).

6 Experiments

6.1 Temporal Video Grounding

We validate the temporal video grounding abil-
ity of HawkEye and other models on two popular
benchmarks: Charades-STA (Gao et al., 2017) and
ActivityNet-Captions (Krishna et al., 2017).

6.1.1 Comparison of Reference Methods

Verbal method enables models not trained ex-
plicitly on temporal video grounding to ref-
erence video segments better. We compare
temporal grounding results of VideoChat2 (Li
et al., 2023c¢), LLaVA-OneVision 7B (LLaVA-OV)
(Li et al., 2024) and InternLM-XComposer 2.5
(IXC2.5) (Zhang et al., 2024) using second and
verbal reference method in Table 2. For the verbal
reference method, we tried setting the max num-
ber of recursive grounding rounds in {1,2,3} and
the best result (1 round for Charades-STA and 2
rounds for ActivityNet-Captions) is reported. The
“random” baseline denotes randomly choosing a
span with the average length of ground truth spans
from the train set. The “verb. upbound” baseline is
the best result that running recursive grounding for
3 rounds can achieve. It is obtained by choosing
the best result of 43 = 64 possible answers.
Though the verbal reference method may not
sound very precise for representing time spans, its
potential precision is sufficient for temporal video
grounding tasks, especially when the IoU threshold

Table 2: Zero-shot performance on temporal video
grounding for video-text LLMs that have never trained
on any segment-level annotations. Four metrics reported
are mloU/R@IoU>0.3/0.5/0.7, the higher the better. f:
training data of this model contains videos from the
training set of this benchmark, thus this is not under a
strict zero-shot setting. *: ActivityNet-Captions is used
when training TimeChat thus the authors did not report
this performance.

Charades-STA ActivityNet-Captions
Baselines
random 20.1/30.0/18.8/6.2 23.0/29.0/15.1/6.1
verb. upbound | 74.8/100.0/97.0/69.2 | 71.9/91.5/84.6/68.4
VTimeLLM 31.2/51.0/27.5/11.4 | 30.4/44.0/27.8/14.3
TimeChat -/-1/32.2/13.4 Not Applicable™
VideoChat2
second 15.2/20.2/8.0/2.9 12.6/16.9/9.3/4.5
verbal 24.6/38.0/14.3/3.8 27.9/40.8/27.8/9.3
LLaVA-OV
second 13.1/18.4/6.7/2.0" | 14.6/18.3/8.6/3.7"
verbal 34.6/53.1/34.0/13.2" | 32.2/45.0/29.6/14.51
IXC 2.5
second 13.9/19.7/8.2/3.0 22.8/33.2/14.5/6.01
verbal 31.2/46.2/31.5/11.7 | 34.1/47.4/27.2/13.5"

is not very high. For instance, the accuracy upper-
bound of R@IoU>0.5 on Charades-STA reaches
97.0 after 3 recursive turns, which is nearly perfect
and is already much higher than the performance
of all state-of-the-art temporal grounding methods.
Given the substantial differences in base LLMs as
initialization and the training data, the performance
across different models can not be compared di-
rectly. However, it is clearly shown that all models
achieve significantly better performance when
using verbal instead of second reference method.



| SODA. | CIDEr | METEOR

VideoChat 09 22 0.9
Ref. Method | IT only (zero-shot) | FT only IT+FT VideoLLaMA 1.9 58 1.9
Frame 24.8/40.3/23.7/8.8 | 27.5/44.77/21.2/6.3% | 47.2772.7/53.0/25.3 VideoChatGPT| 1.9 5.8 2.1
Second 20.6/35.7/14.0/2.1 |42.3/63.0/47.0/24.6 | 49.0/72.1/54.5/29.6 HawkEye 58 8.8 4.6
Verbal 33.2/54.1/23.8/9.1 |42.4/71.9/37.0/13.9 | 43.1/72.7/38.2/14.4

Verbal+RG. | 33.7/50.6/31.4/14.5 | 48.2/72.2/55.8/27.1 | 50.3/74.8/60.3/29.5

Table 3: Performance of different video segment reference methods
on the testset of Charades-STA. IT denotes adding InternVid-G into ~ §*°| =, o ——
stage 3 instruction tuning data, FT denotes fine-tuning on the train set £,
of Charades-STA before testing, and RG. denotes recursive grounding. g1 “revess e
All models are initialized with stage 2 checkpoint of VideoChat2. Four
metrics reported are mloU and R@IoU >0.3/0.5/0.7, where the higher S0
the better. * fails to generate well-formatted outputs for almost half
samples, so we can only take the correctly formatted ones into account.

Charades-STA | ActivityNet-Captions
VideoChat2 | 24.6/38.0/14.3/3.8 | 27.9/40.8/27.8/9.3
VideoChat2 | 23.4/35.4/12.6/3.0 | 28.2/41.7/28.7/9.4
SeVILA 18.3/27.07/15.0/5.8 | 23.0/31.6/19.0/10.1
VTimeLLM |31.2/51.0/27.5/11.4| 30.4/44.0/27.8/14.3
TimeChat -1-132.2/13.4 Not Applicable”
HawkEye 33.7/50.6/31.4/14.5 | 32.7/49.1/29.3/10.7

Table 5: Zero-shot performance of temporal video
grounding. Four metrics reported are mloU and R @IoU
>0.3/0.5/0.7, where the higher the better. * ActivityNet-
Captions is used when training TimeChat, and thus the
authors did not report this performance. ': Our Imple-
mentation.

Verbal method is more robust and data-efficient
for training. For models that are explicitly
trained on temporal video grounding task, we in-
vestigate models trained with three reference meth-
ods: verbal (with and without recursive ground-
ing), frame, and second reference method. Table
3 shows though the performances of all reference
methods after IT+FT are comparable, verbal ref-
erence method performs significantly better than
other alternatives when only IT or FT is applied,
which shows that our verbal reference method is
more robust in zero-shot manner across the dif-
ferent distributions of videos (IT only) and much
easier to be understood by the LLM especially
when the amount of training data is small (FT only).
We also conduct experiments with different num-
ber of input frames, maximum recursive ground-
ing rounds and test the inference speed to further
demonstrate the robustness and efficiency of Hawk-
Eye, which are elaborated in Appendix C.

Table 4: Performance of dense video cap-
tioning on ActivityNet-Captions.

second-w/ aug
second-w/o aug
% ~o- frame-w I aug

Figure 4: Temporal video grounding with
and without random cropping.

6.2 Comparison with Baseline Models

We compare zero-shot temporal video grounding
performance of HawkEye with other video-text
LLMs, as shown in Table 5. SeViLA Localizer
(Yu et al., 2023) is a BLIP2-based LLM that gen-
erates a float number as the score for each frame.
Following their original implementation, we use
64 frames as input, and uses their method of ag-
gregation for video moment retrieval. TimeChat
(Ren et al., 2023) and VTimeLLM (Huang et al.,
2023) are two video-text LLMs that are also able to
perform temporal video grounding in a text-to-text
manner with using either seconds or the percentage
of the video. For VideoChat2 and HawkEye, we
use 12 frames as video input. To provide a fair
comparison with HawkEye, in order to reveal the
role of using InternVid-G in instruction tuning, we
also re-implement VideoChat2 by reperforming the
training stage 3. Our implementation only uses the
video instruction data of VideoChat2-IT, and sim-
ilarly we only fine-tune query tokens, Q-Formers
and LoRA of LLMs. In a word, the only difference
between our implemented VideoChat2 and Hawk-
Eye is the use of InternVid-G in stage 3 instruction
tuning. To evaluate VideoChat2 and HawkEye, we
use recursive grounding and report results with the
best maximum number of recursive rounds.
Compared to other video-text LLMs, HawkEye
achieves the best performance on zero-shot tem-
poral video grounding, despite having a con-
servative training plan by not training on any
human-annotated temporal video grounding
data and using only 12 frames as video input
(in contrast, 100 frames for VTimeLLM, 96 frames
for TimeChat and 64 frames for SeViLA Local-
izer). We also conducted experiments of fine-tuned



| mIoU/R@IoU >0.3/0.5
Fine-Tuned Models

Temp[CLIP] NG+ 12.1/17.578.9
FrozenBiLM NG+ 9.6/13.5/6.1
Zero-Shot LLMs

SeViLA Localizer 21.7/29.2/13.8
VideoChat2 24.1/36.3/16.2
VideoChat2 ' 18.7/26.6/13.5
HawkEye 25.7/37.0/19.5

Table 6: Performance of temporal video grounding of
questions on the NEXT-GQA. T: Our implementation

| MVBench NExT-QA® TVQA STAR

TimeChat 3593 43.59 31.33 37.97
VideoChat2 51.10 66.50 40.60 59.00
VideoChat2' |  49.75 66.91 40.15 55.24
HawkEye 47.55 67.93 41.10 56.59

Table 7: Performance on various video question an-
swering benchmarks without fine-tuning. *: As the
instruction tuning dataset VideoChat2-IT contains train-
ing data from NEXT-QA, therefore this benchmark is
not tested under a strict zero-shot setting for HawkEye
and VideoChat2. : Our implementation.

temporal video grounding to further demonstrate
HawkEye’s outstanding performance in Appendix
C.

6.3 Temporal Video Grounding of Questions

In addition to retrieving video segments with de-
scriptive statements, grounding questions in videos
is a more difficult yet important problem, as it is a
crucial step towards explainable video QA. Table
6 shows experiments on temporal video ground-
ing of questions from the testset of NExT-GQA
(Xiao et al., 2023), where models are required to
find out a segment from the video that addresses
the given question. HawkEye outperforms baseline
methods, both fine-tuned models (Xiao et al., 2023;
Yang et al., 2022) and zero-shot LLMs, with a large
margin.

6.4 Video Question Answering

As HawkEye is trained by adding two time-aware
tasks from InternVid-G to stage 3 of VideoChat2,
one may wonder whether introducing such a large
amount of training examples from InternVid-G may
lead to an unbalanced distribution of instruction
tuning dataset, which will eventually impair the
model’s performance on other video-text tasks. Re-
sults in Table 7 show that HawkEye has compara-
ble performance with VideoChat2 (our implemen-
tation) on a variety of video question answering
tasks (Li et al., 2023c; Xiao et al., 2021; Lei et al.,

2018; Wu et al., 2021), which shows that intro-
ducing InternVid-G in instruction tuning does
not impair the model’s versatility. In contrast,
TimeChat only focuses on time-aware tasks and
wasn’t instruction-tuned on diverse tasks does not
have this versatility as it performs poorly on QA
tasks.

6.5 Dense Video Captioning

Though HawkEye was not trained on any dense
video caption data, we also tested it on ActivityNet
by generating 3 captions for the beginning, the mid-
dle, and the end of the video. The results are listed
in Table 4, which shows that HawkEye outperforms
all other video-text LLMs that are also not trained
on dense video captioning.

6.6 Ablation Studies

Random cropping is useful for all reference
methods. As explained earlier when introducing
random cropping in Sec. 5, random cropping is
essential when instruction-tuning on InternVid-G,
so we perform ablation studies of random cropping
by fine-tuning on Charades-STA after instruction
tuning. As shown in Fig. 4, using random crop-
ping consistently leads to better performance for
all reference methods.

7 Conclusion

In this paper, we propose a simple and efficient
method to enhance temporal video grounding of
video-text LLMs, with minimal affections to other
abilities. We propose time verbal representation
method that refers to video segments with time ver-
bals instead of numbers for timestamps, which is
easier for LLMs to follow even without targeted
training on segment-level annotations. We con-
struct InternVid-G, a large-scale video-text cor-
pus with segment-level captions and context spans,
which is very suitable for training on temporal
video grounding tasks. We propose a set of fea-
sible practices, including the determination of con-
text spans, the random cropping data augmentation
method, and two time-aware training objectives
(i.e., temporal video grounding and video segment
captioning), to train video-text and enhance their
temporal video grounding abilities. Based on the
above efforts we train HawkEye, a video-text LLM
that is able to perform temporal video grounding
with time verbal representation format, and evalu-
ate on a variety of temporal video grounding and
video QA benchmarks.



Limitations

A potential limitation is that it is hard to represent
multiple video segments within one response, such
as when performing tasks like highlight detection
(Lei et al., 2021), with verbal reference method.

Instruction data used for training HawkEye is
also relatively simple. Adding some multi-round
conversations or replies involving multiple video
segments can make the model more useful and
better need real-word needs.
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A More Details of the Verbal Reference
Method

An illustration of the conversion between video
segments and time verbal categories is shown in
Fig. 6.

An real example of the recursive grounding pro-
cess is shown in Fig. 5. The pseudo-code of the
recursive grounding process is as follow:

1 def recursive_grounding(video, query,
max_rounds) :

2 start, end = 0, get_length(video)

3 for round_i in range(max_rounds):

4 clip_length = end - start

5 res = choice(video[start: end
1, query)

6 if res == 'throughout':

7 break

8 elif res == 'beginning':

9 end -= clip_length / 2

10 elif res == 'end':

11 start += clip_length / 2

12 elif res == 'middle':

13 start += clip_length / 4
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Figure 5: An example of the recursive grounding process of HawkEye. After receving the video and the query
from the user, HawkEye automatically performs the grounding process with recursive grounding in the background,
and converts the target span into a user-friendly start_sec - end_sec format. The four choices of the verbal
reference method are also described in the prompt, but here we omit them to make the presentation simpler.

14 end -= clip_length / 4 randomly sampled from the following 10 instruc-
15 return start, end tions:

B Training and Experiment Details

B.1 Datasets Used

We list the datasets used in the training process of
HawkEye in Fig. 7. We train HawkEye for 1M
steps, which takes about 7 days with 8 V100 GPUs.

B.2 Prompts used in training HawkEye

When training HawkEye on temporal video ground-
ing task, we use the following prompt:

<Instruction>
###Human: <Video></Video> The video contains 12 frames
sampled from %.1f, %.1f, %.1f, %.1f, %.1f, %.1f, %.1f,
%.1f, %.1f, %.1f, %.1f, %.1f seconds.
###Human: Question: <Question> Options: <Options>
#i##Assistant: <Answer> #it#

Where %.1f denotes the timestamp of a frame
rounded to 1 decimal places, <Instruction> is
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Figure 6: Illustration of the mapping from video segments to the categories of choices in our verbal reference

method.
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Figure 7: Datasets used and parameters trained in the instruction tuning of HawkEye.

Evaluate the video content and select the most suitable
option based on what is presented in the video.

Examine the video and choose the most appropriate choice
in accordance with the video’s content.

Watch the video and make a selection that aligns with
the content depicted in the video.

Analyze the video and opt for the choice that best
corresponds to the content captured in the footage.
Assess the video content and choose the option that
aligns most closely with what is presented in the video.
Evaluate the video, then select the most fitting choice
based on the content portrayed.

Examine the video and make a decision based on the content
presented in the footage.

Watch the video and choose the most fitting option based
on the observed content.

Assess the video content and choose a suitable option
based on what is portrayed in the video.

Analyze the video and select the most appropriate choice

in relation to the content featured in the video.

<Question> is randomly sampled from the fol-
lowing 10 questions (%s denotes the query):

When does ’%s’ happen in the video?

At what time does the occurrence of ’%s’ take place in
the video?

During which part of the video does ’%s’ occur?

At what point in the video does the event ’%s’ happen?
When in the video does the ’%s’ incident occur?

At which moment does ’%s’ take place in the video?
During which phase of the video does ’%s’ happen?
When does the ’%s’ event occur in the video?

At what time does ’%s’ occur in the video sequence?

When does the ’%s’ situation take place in the video?
<Options> are the following 4 statements ran-

domly shuffled (Of course the letters will also be
modified accordingly):

(A) At the beginning of the video.
(B) At the middle of the video.
(C) At the end of the video.
(D) Throughout the entire video.
and <Answer> is the ground truth statement.

When training HawkEye on video segment cap-
tioning task, we use the following prompt:

12



<Instruction>
###Human: <Video></Video> The video contains 12 frames
sampled from %.1f, %.1f, %.1f, %.1f, %.1f, %.1f, %.1f,
%.1f, %.1f, %.1f, %.1f, %.1f seconds.
#i##Human: <Statement>
#i##Assistant: <Answer> #it#

where <Instruction> is randomly sampled

from the following 10 instructions:

Analyze the video content within the specified time frame
and provide a detailed description of the scenes during
that period.

Given a specific time span, describe the activities or
events taking place in the corresponding section of the
video.

Examine the scenes within the indicated time range and
generate a textual overview of the objects, actions, and
context.

Provide a comprehensive narrative of the content depicted
in the video during the given time span, emphasizing key
elements and notable occurrences.

For the specified video duration, outline the main themes
and subjects present.

Annotate the content within the indicated time interval,
focusing on the details of people, objects, and actions
captured in the video during that specific duration.
Describe the visual and contextual aspects of the video
scenes within the provided time range.

Summarize the content of the video within the specified
time span.

Examine the video scenes within the given time frame and
provide a detailed description of that segment.

of fer textual of the video content

a analysis

corresponding to the specified time duration.

<Statement> is randomly sampled from the
following 4 temporal statements:

At the beginning of the video.
At the middle of the video.
At the end of the video.

Throughout the entire video.
and <Answer> is the ground truth caption (text

query).
Only <Answer> ### is calculated in the train-
ing loss.

C More Experiments about the verbal
reference method
C.1 Robustness across Different Input Frames

It is a good feature if the number of input frames
can be adjusted according to computing constraints
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or accuracy requirements. In this experiment we
train all models using IT+FT with 12 frames, and
test with 8, 12 or 16 frames from the video as in-
put. Fig. 8 shows that though the number of input
frames and timestamps of all frames are provided
in the prompt, the performance of using frame
numbers or seconds to represent video segments
tends to drop drastically when the number of input
frames changes, probably due to the numbers and
timestamps in the prompt are difficult for LLMs
to understand and analyze. In contrast, our verbal
reference method is robust to different numbers of
input frames.

C.2 Affect of Maximun Recursive Grounding
Rounds

we take a deeper look at how the max_rounds
hyper-parameter of recursive grounding affects
the grounding performance, as shown in Fig. 9.
When HawkEye is not fine-tuned, using smaller
max_rounds hyper-parameter is more likely to
achieve better grounding results, as the more
rounds there are, the more likely it is for the model
to make mistakes on judging the location of the seg-
ment related to a query. However, after fine-tuned
on the training set of the benchmark, the grounding
performance hardly drops when the max_rounds
hyper-parameter goes larger. This is probably be-
cause the model has already gained a good under-
standing of the video content, so it is less likely
to make mistakes and knows in which round the
video is already trimmed to the targeted segment
relevant to the query, and then the model can reply
a “throughout” to break the loop.

Comparing the performance of using only one
and more than one round, we find that when only
one round of localization is available (e.g., refer-
ring to a video segment in the middle of a con-
versation), fine-tuned HawkEye can not achieve
its optimal performance. However, for the non-
fine-tuned HawkEye which can be used under the
majority of zero-shot conditions, this performance
loss is less severe.

C.3 Fine-Tuned Temporal Video Grounding
Experiments

We also compare the performance of fine-tuned
HawkEye with SOTA specialist models and other
LLMs. As shown in Table 8, HawkEye out-
performs VideoChat2 (our implementation) and
TimeChat, while still underperforms SOTA special-
ists. This indicates that though training with a large
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Figure 9: Performance of HawkEye on the test set of
Charades-STA with different maximum rounds of recur-
sive grounding.

Model Charades-STA ActivityNet-Captions
SOTA Specialist -/-157.3/32.5 44.2/63.2/43.8/27.1
TimeChat -/-146.7/23.7 -
VideoChat2 48.3/71.8/56.4/27.7 | 38.9/55.5/34.7/17.7
HawkEye 49.3/72.5/58.3/28.8 | 39.1/55.9/34.7/17.9

Table 8: Fine-tuned performance of temporal video grounding. Four metrics reported are mloU and R@IoU
>0.3/0.5/0.7, where the higher the better. ActivityNet-Captions is again not applicable for TimeChat as mentioned
in Table 5. The SOTA specialists are (Moon et al., 2023; Nan et al., 2021). . Our implementation.

amount of time-aware samples from InternVid-G
is effective, some task-specific approaches such as
contrastive learning and finer-grained visual-text
alignment might be required to further improve
grounding performance. The results also show that
our verbal reference method is easy for LLMs to
learn and follow, as VideoChat2 without specif-
ically instruction-tuned on time-related data
have already outperformed TimeChat after fine-
tuning on only thousands of examples.

C.4 Inference Speed

We compare the inference speed of zero-shot Hawk-
Eye and TimeChat on Charades-STA. We first pre-
process the videos into densely-extracted frames,
and directly read the frames from hard disk during
inference. We use AMD EPYC 7763 CPU and
NVIDIA A100 GPU, and set batch size as 1. We
use the default prompt of TimeChat and HawkEye
respectly.

Though a maximum of 2 rounds of recursive
grounding are conducted to achieve optimal perfor-
mance, HawkEye only takes an average of 1.54 sec-
onds for each example, while TimeChat takes an
average of 1.63 seconds as it needs to load and pre-
process more frames (96 frames for TimeChat), and
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its prompt is much longer to record the prcecise and
miscellaneous timestamps of all the frames. Note
that the speed may vary depending on the perfor-
mance of hard disk, CPU and GPU, but the general
conclusion is it takes about the same amount of
time to run HawkEye for two rounds or TimeChat
for 1 round, which confirms the efficiency of the
verbal reference method used by HawkEye even it
uses recursive grounding that requires more than
one round of model inference.

D Case Studies

We provide more examples of comparison between
HawkEye and VideoChat2 in the appendix. In-
correct contents are marked in red. Hawkeye has
similar abilites on answering factual questions, but
performs much better on time-aware questions and
understanding long-form videos.



<Video></Video> The video contains 12 frames sampled at 1.3, 3.8, 6.4, 8.9,
11.5, 14.0, 16.6, 19.2, 21.7, 24.2, 26.8, 29.4 seconds. Watch the video and
choose the most fitting option based on the observed content.

What is the woman doing in the middle of the video?

In the middle of the video, the woman is seen typing on her laptop.

The woman in the middle of the video is using a laptop computer.

And at the end of the video?

At the end of the video, the woman is seen typing on her laptop.

At the end of the video, a woman is opening a door with a key.

And at the beginning of the video?

At the beginning of the video, the woman is seen typing on her laptop.

At the beginning of the video, a woman is standing in front of a mirror.

VideoChat2

iEEE;

#

3

HawkEye

4

4

Figure 10: A Conversation using VideoChat2 and HawkEye about a daily activity video.
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DELTA - WHAT I'M WATCHING

'DELTA - WHAT TO EXPECT 'DELTA - WHAT TO EXPECT ALogKMAD

+ COASTAL FLODDING/STORM SURGE © ¢ + COASTAL FLOCONGSTORM SURGE - = s 84"
- WINDS INCREASE TONGHT - VONDS SCREASE TONGHT 80"

- HEAVY RAN THU PM - SAT AV o:mwmwmvuvn e ¥ 77|77

- FEW TORNADOES TOMGHTIFROAY < POW TORNAGOS TOMGHTIEWDAY 3 FYYIESES
*LANDFALL FRL AFTERNOONEVENIN + LANDFALL FRI AFTERNOONEVENS . S % | = |

<Video></Video> The video contains 12 frames sampled at 5.4, 16.3, 27.3,
f— 38.2, 49.1, 60.0, 70.9, 81.8, 92.7, 103.6, 114.5, 125.4 seconds. Watch the
video and choose the most fitting option based on the observed content.

What is this video about?

VideoChat2
. . P A
The video is about a weather forecast. %
The video is about a weather forecast for the next few days. o
~ '
What will the weather be like according to the video? HawkEye
PR
. . . A
According to the video, the weather will be sunny. %
The video shows a forecast for the next few days, including a tropical storm o

and a heavy rain event. 6—‘\
N

At which segment of the video is the temperature shown, and how will it be?

The temperature is shown in the segment that starts at ©0:00 and ends at P A
00:03. The temperature is expected to be 77 degrees Fahrenheit. w

The temperature is shown at the end of the video, and it is expected to be o
around 70 degrees. -

¢

Figure 11: A Conversation using VideoChat2 and HawkEye about a news video.

m <Video></Video> The video contains 20 frames sampled at 3.7, 11.2, 18.7,
e 26.2, 33.7, 41.2, 48.7, 56.2, 63.7, 71.2, 78.7, 86.2, 93.7, 101.2, 108.7,
116.2, 123.7, 131.2, 138.7, 146.2 seconds. Examine the video and make a
decision based on the content presented in the footage.

During which part of the video does 'the woman shows different dishes' occur,

at the beginning, the middle or the end of the video? VideoChat2
HN

The woman shows different dishes at the end of the video. %
o

The woman shows different dishes at the beginning of the video.

L

=
Q
=
=
m
<
(]

—" What happens at the end of the video?
o8
At the end of the video, the woman is seen eating a meal. w
o

At the end of the video, a person is shown cutting a piece of food on a plate.

e

Figure 12: A Conversation using VideoChat2 and HawkEye about a vlog video.
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<Video></Video> The video contains 20 frames sampled at 3.7, 11.2, 18.7,
frm— 26.2, 33.7, 41.2, 48.7, 56.2, 63.7, 71.2, 78.7, 86.2, 93.7, 101.2, 108.7,
116.2, 123.7, 131.2, 138.7, 146.2 seconds. Examine the video and make a
decision based on the content presented in the footage.

What is this video about?
VideoChat2
. . . . . @i
The video is about a woman who is cooking noodles and talking to the camera. %

The video is about a girl who is using a laptop and a phone to make a video

1 <
ca . Q
~ X

What h t the beginni f the video? HawkEye
at happens a e beginning o e video?
(R— PP ginning
At the beginning of the video, a woman is seen talking to the camera while P A
holding a bowl of noodles. She then proceeds to cook the noodles in a pot of %
boiling water.
o
At the beginning of the video, a girl is shown with a cat on her phone. ('1‘ e
e hich f th deo d i d1 ?
In which part of the video does a pot of noodles appear?
)
A pot of noodles appears in the video when the woman is cooking noodles in a P A
pot of boiling water. %
A pot of noodles appears in the video at the end. (5‘?7\

Figure 13: A Conversation using VideoChat2 and HawkEye about a vlog video.
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