
Embedding principle of homogeneous neural network
for classification problem

Jiahan Zhang1, Yaoyu Zhang1,2∗, Tao Luo1,2,3†

1School of Mathematical Sciences, Shanghai Jiao Tong University,
2Institute of Natural Sciences, MOE-LSC, Shanghai Jiao Tong University, Shanghai, 200240, China

3CMA-Shanghai, Shanghai Jiao Tong University, Shanghai, 200240, China

Abstract

In this paper, we study the Karush-Kuhn-Tucker (KKT) points of the associ-
ated maximum-margin problem in homogeneous neural networks, including fully-
connected and convolutional neural networks. In particular, We investigates the
relationship between such KKT points across networks of different widths gener-
ated. We introduce and formalize the KKT point embedding principle, estab-
lishing that KKT points of a homogeneous network’s max-margin problem (PΦ)
can be embedded into the KKT points of a larger network’s problem (PΦ̃) via spe-
cific linear isometric transformations. We rigorously prove this principle holds for
neuron splitting in fully-connected networks and channel splitting in convolutional
neural networks. Furthermore, we connect this static embedding to the dynamics
of gradient flow training with smooth losses. We demonstrate that trajectories ini-
tiated from appropriately mapped points remain mapped throughout training and
that the resulting ω-limit sets of directions are correspondingly mapped, thereby
preserving the alignment with KKT directions dynamically when directional con-
vergence occurs. We conduct several experiments to justify that trajectories are
preserved. Our findings offer insights into the effects of network width, parameter
redundancy, and the structural connections between solutions found via optimiza-
tion in homogeneous networks of varying sizes.

1 Introduction

The optimization of neural networks remains a central challenge, with significant research dedicated
to understanding the training dynamics and the properties of converged solutions. For homoge-
neous networks, such as those using ReLU-like activations without biases, a particularly fruitful line
of inquiry connects optimization algorithms like gradient descent to the concept of margin maxi-
mization in classification tasks [Lyu and Li, 2019, Ji and Telgarsky, 2020]. In these settings, the
Karush-Kuhn-Tucker (KKT) conditions associated with a minimum-norm maximum-margin prob-
lem provide a theoretical characterization of optimal parameter configurations [Gunasekar et al.,
2018, Nacson et al., 2019b].

While much work focuses on the implicit bias and convergence properties within a single network
architecture, a fundamental question arises regarding the relationship between solutions found in
networks of different sizes. Specifically, how do the optimal solutions (characterized by KKT points)
of a smaller homogeneous network relate to those of a larger network, particularly one derived by
increasing width through operations like neuron splitting? Understanding this relationship is crucial

∗Corresponding author: zhyy.sjtu@sjtu.edu.cn
†Corresponding author: luotao41@sjtu.edu.cn

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

for insights into the effects of overparameterization, the structure of the solution space, and the
mechanisms underlying implicit regularization.

To address this question, this paper introduces the KKT Point Embedding Principle. The core
idea is that under specific, structure-preserving transformations corresponding to neuron splitting,
the KKT points of the max-margin problem associated with a smaller homogeneous network (Φ)
can be precisely mapped, via a linear isometry T , to KKT points of the analogous problem for a
larger network (Φ̃). This principle provides a concrete link between the optimization landscapes and
solution sets of related networks.

Specifically, our contributions include:

1. We formalize the KKT Point Embedding Principle (Theorem 4.2) and establishing condi-
tions under which a linear transformation preserves KKT points between the max-margin
problems PΦ and PΦ̃(Theorem 4.5).

2. We provide explicit constructions and rigorous proofs demonstrating that this principle
holds for neuron splitting in full-connected networks (Theorem 4.8) and channel splitting
in convolutional neural networks(Theorem 4.11), showing these transformations satisfy the
required conditions and are isometric.

3. We connect our static KKT embedding to the dynamics of training by proving a strong
trajectory preservation principle. Specifically, we show that the entire gradient flow path
of the wider network is a linear mapping of its narrower counterpart (η(t) = Tθ(t))
(Theorem 5.2). This dynamic correspondence directly implies that the asymptotic behav-
ior is also preserved, ensuring the set of directional limit points is mapped accordingly
(T (L(θ(0))) = L(η(0))) and preserving the convergence towards KKT-aligned solutions
(Theorem 5.4, Corollary 5.5).

The remainder of this paper is organized as follows. Section 2 discusses related work on implicit
bias, network embeddings, and KKT conditions. Section 3 introduces necessary notations and def-
initions. Section 4 develops the static KKT Point Embedding Principle and applies it to neuron
splitting and channl. Section 5 connects the static principle to gradient flow dynamics. Finally, Sec-
tion 6 concludes the paper. An overview of our theoretical contributions and their relationships is
provided in Figure 1.

2 Related work

Our work builds upon and contributes to several lines of research concerning neural network opti-
mization, implicit bias, network structure, and optimality conditions.

Optimization dynamics and implicit bias A significant body of research investigates the im-
plicit bias of gradient-based optimization in neural networks. Seminal work by Soudry et al. [2018]
showed that for linear logistic regression on separable data, gradient descent (GD) converges in
direction to the L2-max-margin solution. This finding was extended to various settings, including
stochastic GD [Nacson et al., 2019c], and generalized to deep linear networks [Ji and Telgarsky,
2018]. For non-linear homogeneous neural networks (e.g., ReLU networks without biases), studies
confirm that GD/GF with exponential-tailed losses also typically steer parameters towards margin
maximization [Lyu and Li, 2019, Ji and Telgarsky, 2020, Nacson et al., 2019a, Wei et al., 2019]. The
resulting solutions are frequently characterized as KKT points of an associated max-margin problem
[Gunasekar et al., 2018, Nacson et al., 2019c].

More recently, this line of inquiry has been extended to analyze the margin in non-homogeneous
models [Kunin et al., 2023, Cai et al., 2023] and to connect KKT conditions with the phenomenon
of benign overfitting [Frei et al., 2023]. These analyses, however, primarily focus on the dynamics
within a single, fixed-width network, with less exploration of how such KKT-characterized solutions
relate across networks of varying widths, such as those generated by neuron splitting.

Network embedding principles The idea that smaller network functionalities can be embedded
within larger ones has been explored, notably by Zhang et al. [2021] who proposed an “Embedding
Principle.” This concept is related to foundational ideas on hierarchical structures and singularities

2

Figure 1: Overview of Theoretical Contributions. This figure illustrates the logical flow of our
paper’s theoretical framework. The analysis begins with the static principles (top section), which
are then shown to apply to specific network architectures. These static results form the basis for the
dynamic analysis (bottom row), which shows the preservation of training trajectories and their limit
sets.

KKT Point Embedding
Principle (Thm. 4.2)

Equivalence
Conditions (Thm. 4.5)

Full-connected
Network neuron

Splitting (Thm. 4.8)

CNN Channel
Splitting (Thm. 4.11)

ω-limit Set
Mapping (Thm. 5.4)

Trajectory
Preservation
(Thm. 5.2)

Limit Direction
Embedding (Cor. 5.5)

Characterizes

Special case Special case

Preserves
Preserves

Implies Special case

Static Analysis: KKT
points of smaller network
embed into larger network

Dynamic Analysis: Train-
ing trajectories preserve

embedding structure

in the parameter space [Fukumizu and Amari, 2000], as well as more recent work exploring sym-
metries, such as permutation invariance, that connect different global minima [Simsek et al., 2021].
While general embedding principles focus on preserving the loss landscape, their specific appli-
cation to the mapping of KKT points within max-margin settings, or to the detailed embedding of
entire optimization trajectories, especially where parameter norms diverge, remains a less developed
area warranting further investigation.

KKT conditions in optimization and machine learning The KKT conditions [Kuhn and Tucker,
1951] are fundamental for constrained optimization, extending to non-smooth problems via tools
like the Clarke subdifferential [Clarke, 1975] (Definition 3.3), and famously characterizing SVM
solutions [Cortes and Vapnik, 1995]. In deep learning, KKT conditions are crucial for theoretically
characterizing network solutions. As highlighted, they are pivotal in understanding the implicit bias
of GD towards max-margin solutions in homogeneous networks [Gunasekar et al., 2018, Nacson
et al., 2019b]. These studies analyze KKT points of a specific minimum-norm, maximum-margin
problem (like PΦ in Definition 3.4) for a given network. While this establishes the nature of solutions
within a fixed architecture, the structural relationship and potential embedding of these KKT points
when transitioning between networks of different widths remains a complementary and important
area of study.

3 Preliminaries

Basic notations For n ∈ N, let [n] := {1, . . . , n}. The Euclidean (L2) norm of a vector v is
denoted by ∥v∥2. For a function f : Rd → R, ∇f(x) is its gradient if f is differentiable, and
∂◦f(x) denotes its Clarke subdifferential [Clarke, 1975] if f is locally Lipschitz (Definition A.1).
A function f : X → Rd is Ck-smooth if it is k-times continuously differentiable, and f : X → R
is locally Lipschitz if it is Lipschitz continuous on a neighborhood of every point in X . Vectors are
written in bold (e.g., x,θ). Furthermore, for a linear map T : Rm → Rm̃ and a set S ⊆ Rm, we

3

denote the image of S under T as TS := {Tx | x ∈ S}. Consequently, if S = ∂◦f(x), its image is
T∂◦f(x) := {Tg | g ∈ ∂◦f(x)}.
Definition 3.1 (Homogeneous neural network). A neural network Φ(θ;x) with parameters θ is
(positively) homogeneous of order L > 0 if: for all c > 0: Φ(cθ;x) = cLΦ(θ;x). Common
examples include networks composed of linear layers and positive 1-homogeneous activations like
ReLU (σ(z) = max(0, z)), potentially excluding bias terms.

Binary classification setup We consider a dataset D = {(xk, yk)}nk=1, where xk ∈ Rdx are input
features and yk ∈ {±1} are binary labels. The network Φ(θ;x) maps inputs to a scalar output, with
parameters θ ∈ Rm.
Definition 3.2 (Margin). The margin of the network Φ with parameters θ on data point k is qk(θ) :=
ykΦ(θ;xk). The margin on the dataset is qmin(θ) := mink∈[n] qk(θ). For an L-homogeneous
network Φ, the normalized margin is defined as γ̄(θ) := qmin(θ)/ ∥θ∥L2 .

Definition 3.3 (KKT conditions for non-smooth problems). Consider the optimization problem
minx∈Rdx f(x) subject to gk(x) ≤ 0 for all k ∈ [n], where f and gk are locally Lipschitz functions.
A feasible point x∗ is a Karush-Kuhn-Tucker (KKT) point if there exist multipliers λk ≥ 0, k ∈ [n],
such that:

1. Stationarity: 0 ∈ ∂◦f(x∗) +
∑n

k=1 λk∂
◦gk(x

∗).

2. Primal Feasibility: gk(x∗) ≤ 0, for all k ∈ [n].

3. Dual Feasibility: λk ≥ 0, for all k ∈ [n].

4. Complementary Slackness: λkgk(x
∗) = 0, for all k ∈ [n].

Definition 3.4 (Minimum-norm max-margin problem PΦ). Inspired by the implicit bias literature,
we consider the problem of finding minimum-norm parameters that achieve a margin of at least 1:

PΦ : f(θ) = min
θ∈Rm

1

2
∥θ∥22 subject to gk(θ) := 1− ykΦ(θ;xk) ≤ 0, for all k ∈ [n].

Here, the objective is f(θ) = 1
2 ∥θ∥

2
2 (so ∂◦f(θ) = {θ}) and the constraints involve gk(θ). Un-

der Assumption A.3, ∂◦gk(θ) = −yk∂
◦
θΦ(θ;xk). We denote the analogous problem for a different

network Φ̃ as PΦ̃. KKT points of this problem characterize directions associated with margin maxi-
mization.

Gradient flow We model the training dynamics using gradient flow (GF), which can be seen
as gradient descent with infinitesimal step size. The parameter trajectory θ(t) is an arc satis-
fying the differential inclusion dθ(t)

dt ∈ −∂◦L(θ(t)) for almost every t ≥ 0. Here L(θ) :=∑n
k=1 ℓ(ykΦ(θ;xk)) is the training loss, where ℓ is a suitable loss function (e.g., exponential loss).

We denote the analogous loss for network Φ̃ as L̃.

4 The KKT point embedding principle: Static setting

We first establish a general principle for mapping KKT points between constrained optimization
problems linked by a linear transformation. We then specialize this principle to the context of
homogeneous neural network classification via neuron splitting. Throughout this section, we operate
under the following assumptions regarding the networks involved.

Assumption 4.1 (Static setting). Let Φ(θ;x) (parameters θ ∈ Rm) and Φ̃(η;x) (parameters η ∈
Rm̃) be two neural networks. We assume:
(A1) (Regularity) For any fixed input x, the functions Φ(·;x) and Φ̃(·;x) mapping parameters to
output are locally Lipschitz. Furthermore, they admit the application of subdifferential chain rules
as needed (Assumption A.3).
(A2) (Homogeneity) Both Φ and Φ̃ are positively homogeneous of the same order L > 0 with respect
to their parameters (Definition 3.1).

4

4.1 The KKT point embedding principle: a general framework

Theorem 4.2 (General KKT mapping via linear transformation). Let f, gk : Rm → R and f̃ , g̃k :
Rm̃ → R be locally Lipschitz. Consider problems:

(P) min f(θ) s.t. gk(θ) ≤ 0, for all k ∈ [n].

(P̃) min f̃(η) s.t. g̃k(η) ≤ 0, for all k ∈ [n].

Let T : Rm → Rm̃ be linear. Suppose:

1. Constraint Preserving: g̃k(Tθ) = gk(θ), for all θ ∈ Rm and k ∈ [n].

2. Objective Subgradient Preserving: ∂◦f̃(Tθ) = T∂◦f(θ), for all θ ∈ Rm.

3. Constraint Subgradient Preserving: ∃tk > 0 s.t. ∂◦g̃k(Tθ) = tkT∂
◦gk(θ), for all θ ∈ Rm

and k ∈ [n].

If θ∗ is a KKT point of (P), then η∗ = Tθ∗ is a KKT point of (P̃).

Proof. Proof deferred to Appendix B.1.

We now specialize Theorem 4.2 to the minimum-norm max-margin problem PΦ (Definition 3.4).
Definition 4.3 (KKT point preserving transformation). Let Φ(θ;x) (with parameters θ ∈ Rm) and
Φ̃(η;x) (with parameters η ∈ Rl) be two neural networks, and let PΦ and PΦ̃ be their associated
minimum-norm max-margin problems (as defined in Definition 3.4). A linear transformation T :
Rm → Rl is called KKT point preserving from PΦ to PΦ̃ if:
For any dataset D = {(xk, yk)}Nk=1, if θ∗ is a KKT point of PΦ, then η∗ = T (θ∗) is a KKT point
of PΦ̃.

Proposition 4.4 (Composition of KKT point preserving transformations). Let Φ(θ;x) (parame-
ters θ ∈ Rm), Φ1(η1;x) (parameters η1 ∈ Rm1), and Φ2(η2;x) (parameters η2 ∈ Rm2) be
three neural networks, with inputs x ∈ Rdx . Let PΦ, PΦ1 , and PΦ2 be their respective associated
minimum-norm max-margin problems (Definition 3.4).

Suppose T1 : Rm → Rm1 is a linear transformation that is KKT Point Preserving from PΦ to PΦ1

(as per Definition 4.3). Suppose T2 : Rm1 → Rm2 is a linear transformation that is KKT Point
Preserving from PΦ1 to PΦ2 (as per Definition 4.3).

Then, the composite linear transformation T = T2 ◦T1 : Rm → Rm2 is KKT Point Preserving from
PΦ to PΦ2

. Furthermore, if T1 and T2 are isometries, then T = T2 ◦ T1 is also an isometry.

Proof. Proof deferred to Appendix B.2.

Theorem 4.5 (Equivalence conditions for KKT embedding). Let Φ(θ;x) (parameters θ ∈ Rm) and
Φ̃(η;x) (parameters η ∈ Rl) satisfy Assumptions 4.1 (A1, A2). Let PΦ and PΦ̃ be their associated
min-norm max-margin problems (Definition 3.4). Let T : Rm → Rl be a linear transformation. The
following conditions are equivalent:

1. Output and subgradient preserving: for all θ ∈ Rm and x ∈ Rdx ,

Φ̃(T (θ);x) = Φ(θ;x),

∃τ(θ,x) > 0 s.t. ∂◦
ηΦ̃(T (θ);x) = τ(θ,x)T (∂◦

θΦ(θ;x)).

2. The transformation T is KKT Point Preserving from PΦ to PΦ̃ (as per Definition 4.3).

Proof. Proof deferred to Appendix B.3.

5

4.2 Applications: KKT embedding via neuron and channel splitting

4.2.1 Neuron splitting in fully-connected networks

The principle extends naturally to splitting neurons in hidden layers of fully-connected homoge-
neous networks.
Definition 4.6 (Neuron splitting transformation in fully-connected networks). Let Φ be an α-
layer homogeneous network satisfying Assumptions 4.1(A1, A2), defined by weight matrices W (l)

for l ∈ [α + 1] and positive 1-homogeneous activations σl for hidden layers l ∈ [α]. Let
θ = (vec(W (1)), . . . , vec(W (α+1))) ∈ Rm be the parameter vector.

A neuron splitting transformation T : θ 7→ η constructs a new network Φ̃ (with parameters η ∈ Rm̃)
from Φ by splitting a single neuron j in a hidden layer k (1 ≤ k ≤ α) into msplit new neurons (using
msplit to avoid clash with parameter dimension m). This splitting is defined by coefficients ci ≥ 0
for i ∈ [msplit] such that

∑msplit

i=1 c2i = 1. The transformation T modifies the weights associated
with the split neuron as follows:

1. The j-th row of W (k) (weights into neuron j, denoted W
(k)
j,:) is replaced by msplit rows in

the corresponding weight matrix W ′(k) of Φ̃. For each i ∈ [msplit], the i-th of these new
rows is ciW

(k)
j,: .

2. The j-th column of W (k+1) (weights out of neuron j, denoted W
(k+1)
:,j) is replaced by

msplit columns in the corresponding weight matrix W ′(k+1) of Φ̃. For each i ∈ [msplit],
the i-th of these new columns is ciW

(k+1)
:,j .

3. All other weights, rows, and columns in all weight matrices remain unchanged when
mapped by T .

The resulting parameter vector for Φ̃ is η = Tθ.
Remark 4.7 (Specialization to a two-layer network). As a concrete example, the neuron splitting
transformation in Definition 4.6, when applied to an α = 2 layer network (i.e., a single hidden
layer, k = 1), specializes to the two-layer neuron splitting described in Theorem A.4. Specifically,
splitting hidden neuron j involves transforming its input weights W (1)

j,: (analogous to b⊤) to msplit

sets ciW
(1)
j,: , and its output weights W

(2)
:,j (analogous to a) to msplit sets ciW

(2)
:,j . This results in

effective parameters (cia, cib) for each i-th split part of the neuron, consistent with Theorem A.4.
Theorem 4.8 (Properties of deep neuron splitting transformation and KKT embedding). Let T be
the deep neuron splitting transformation defined in Definition 4.6. Let PΦ and PΦ̃ be the min-norm
max-margin problems (Definition 3.4) associated with the original network Φ (with parameters
θ ∈ Rm) and the split network Φ̃ (with parameters η ∈ Rm̃), respectively. Input data x ∈ Rdx . The
transformation T satisfies the following properties:

1. T is a linear isometry: ∥Tθ∥2 = ∥θ∥2, for all θ ∈ Rm.

2. Output preserving: Φ̃(Tθ;x) = Φ(θ;x) for all θ ∈ Rm and x ∈ Rdx .

3. Subgradient preserving: ∂◦
ηΦ̃(Tθ;x) = T (∂◦

θΦ(θ;x)) for all θ ∈ Rm and x ∈ Rdx .
(This implies τ(θ,x) = 1 in the context of Theorem 4.5).

Consequently, since T satisfies the conditions (specifically, condition 1 with τ = 1) of Theorem 4.5,
this deep neuron splitting transformation T is a KKT point preserving from PΦ to PΦ̃.

Proof. The proof proceeds by verifying the three listed properties of T . Isometry (1) follows from
comparing the squared Euclidean norms of the parameter vectors. Output Preservation (2) is demon-
strated by tracing the signal propagation through the forward pass of both networks. Subgradient
Equality (3) is established via a careful analysis of the backward pass using chain rules for Clarke
subdifferentials. The preservation of KKT points is then a direct consequence of Theorem 4.5,
given that T fulfills its required conditions. The complete proof of properties (1) - (3) is provided in
Appendix B.4.

6

Remark 4.9 (Iterative splitting and KKT preservation). Theorem 4.8 establishes that a single deep
neuron splitting operation (Definition 4.6) is KKT Point Preserving (Definition 4.3). Since the com-
position of KKT Point Preserving transformations also yields a KKT Point Preserving transfor-
mation (Proposition 4.4), it follows directly that any finite sequence of such deep neuron splitting
operations results in a composite transformation that is KKT Point Preserving.

4.2.2 Channel splitting in convolutional neural networks

To demonstrate the generality of our framework beyond fully-connected architectures, we now ex-
tend the KKT Point Embedding Principle to Convolutional Neural Networks (CNNs). Applying
our principle to CNNs presents a unique challenge: the transformation must respect the architec-
tural hallmarks of convolutions, namely weight sharing and locality. We address this by designing a
novel channel splitting transformation that preserves the network function and subgradient structure,
thereby satisfying the conditions of Theorem 4.5.
Definition 4.10 (Channel splitting transformation in deep CNNs). Let Φ be a deep homogeneous
CNN satisfying Assumptions 4.1(A1, A2), defined by a sequence of convolutional filters (weights)
{W (l)}. A channel splitting transformation T : θ 7→ η constructs a new network Φ̃ from Φ by
splitting a single output channel j of a hidden convolutional layer k into msplit new channels.

This transformation is defined by a set of coefficients ci ≥ 0 for i ∈ [msplit] that satisfy the isometric
condition

∑msplit

i=1 c2i = 1. The transformation modifies the filters associated with the split channel
as follows:

• At Layer k: The filter W (k)
j,: that produces output channel j is replaced by msplit new filters

in the corresponding weight tensor W̃ (k) of Φ̃. For each i ∈ [msplit], the i-th of these new
filters is defined as ciW

(k)
j,: .

• At Layer k+1: In every filter in the subsequent layer, W (k+1), the input slice corresponding
to the original channel j is replaced by msplit new input slices. For each i ∈ [msplit], the
i-th of these new input slices is scaled by the corresponding coefficient ci.

• Other Weights: All other filters and weights in the network remain unchanged when
mapped by T .

The resulting parameter vector for Φ̃ is η = Tθ.

This meticulously constructed transformation preserves the functional output of the network while
allowing for an isometric embedding of the parameter space. We now state the main result for this
section, which shows that this transformation satisfies our core theory.
Theorem 4.11 (Properties of CNN channel splitting and KKT embedding). Let T be the deep CNN
channel splitting transformation defined in Definition 4.10. Let PΦ and PΦ̃ be the min-norm max-
margin problems associated with the original network Φ and the split network Φ̃, respectively. The
transformation T satisfies the following properties:

1. T is a linear isometry: ∥Tθ∥2 = ∥θ∥2 for all θ.

2. Output preserving: Φ̃(Tθ;x) = Φ(θ;x) for all θ and input x.

3. Subgradient preserving: ∂◦
ηΦ̃(Tθ;x) = T (∂◦

θΦ(θ;x)) for all θ and input x.

Consequently, since T satisfies the conditions of Theorem 4.5, this channel splitting transformation
is a KKT point preserving from PΦ to PΦ̃.

Proof. The proof is analogous to the one for fully-connected networks (Theorem 4.8) and pro-
ceeds by verifying the three listed properties of T . Isometry (1) is confirmed by comparing the
squared Frobenius norms of the filter tensors. Output Preservation (2) is demonstrated by tracing
the feature map computations through the forward pass, showing that the split signals perfectly re-
combine at layer k + 1. Subgradient Preservation (3) is established by applying the chain rule for
Clarke subdifferentials to the backward pass. The complete mathematical details are provided in
Appendix B.5.

7

The successful extension of our principle to CNNs validates our framework as a flexible blueprint
applicable to a broad class of homogeneous networks.

5 Connection to training dynamics via gradient flow

Having established the static KKT Point Embedding Principle, we now investigate its implications
for the dynamics of training homogeneous networks using gradient flow. We focus on the scenario
where gradient flow converges towards max-margin solutions, a phenomenon linked to specific loss
functions. We connect the parameter trajectories and limit directions of the smaller network Φ and
the larger network Φ̃ related by the neuron splitting transformation T .

We analyze the asymptotic directional behavior using the concept of the ω-limit set from dynamical
systems theory. Recall that for a trajectory z(t) evolving in some space, its ω-limit set, denoted
ω(z0) (where z0 is the initial point), is the set of all points y such that z(tk) → y for some sequence
of times tk → ∞. Intuitively, it’s the set of points the trajectory approaches infinitely often as
t → ∞.

For our dynamic setting, we make the following assumptions, building upon the static ones (A1, A2
from Assumption 4.1):
Assumption 5.1 (Dynamic setting). In addition to Assumptions 4.1(A1, A2), we assume:
(A3) (Loss Smoothness) The per-sample loss function ℓ : R → R is C1-smooth and non-increasing.

Building on this, we first demonstrate that the neuron splitting transformation T preserves the gra-
dient flow trajectory itself. This result relies only on the smoothness of the loss and the network
properties.

Theorem 5.2 (Trajectory preserving for neuron splitting). Let Φ, Φ̃ be homogeneous networks re-
lated by a neuron splitting transformation T (as defined in Theorem A.4 or 4.8), satisfying As-
sumptions 4.1(A1, A2) and 5.1(A3). Consider the gradient flow dynamics for the respective losses
L(θ) and L̃(η). If the initial conditions are related by η(0) = Tθ(0), then the trajectories satisfy
η(t) = Tθ(t) for all t ≥ 0 (assuming solutions exist and norms diverge for normalization where
needed, e.g., as per an implicit Assumption (A4) mentioned in dependent definitions/theorems).

Proof. The proof relies on showing that the subdifferential of the loss function transforms according
to T (∂◦L(θ)) = ∂◦L̃(Tθ), which follows from the output Preservation and subgradient equality
properties of T (verified in Theorems A.4, 4.8) and the chain rule applied with the C1-smooth loss ℓ
(Assumption A3 from 5.1). Full details are in Appendix C.1.

This trajectory mapping allows us to relate the asymptotic directional behavior. We first define the
set of directional limit points.
Definition 5.3 (ω-limit set of the normalized trajectory). For a given gradient flow trajectory θ(t)
starting from θ(0) (with θ ∈ Rm) under Assumptions 4.1(A1, A2) and 5.1(A3) (and implicitly
assuming trajectory properties like norm divergence for normalization, often denoted as (A4) in
related theorems), let θ̄(t) = θ(t)/ ∥θ(t)∥2 be the normalized trajectory. The ω-limit set [see,
e.g., Hirsch et al., 2013, for the general theory and properties] of this normalized trajectory θ̄(t) is
defined as

ω(θ̄) :=
{
x ∈ Sm−1 | ∃{tk}∞k=1 s.t. tk → ∞ and θ̄(tk) → x as k → ∞

}
,

where Sm−1 is the unit sphere in the parameter space Rm of θ. This set ω(θ̄) contains all directional
accumulation points of the trajectory θ(t). Since θ̄(t) lies in the compact set Sm−1, L(θ(0)) is non-
empty and compact. If the direction θ̄(t) converges to a unique limit θ

∗
, then ω(θ̄) = {θ∗}.

The following theorem shows that the transformation T provides an exact mapping between the
ω-limit sets of the normalized trajectories. This relies on the trajectory mapping (Theorem 5.2) and
the properties of T .

Theorem 5.4 (Mapping of ω-limit sets of normalized trajectories). Let Φ, Φ̃ be homogeneous net-
works related by a neuron splitting transformation T (Theorem A.4 or 4.8), satisfying Assump-
tions 4.1(A1, A2), Assumption 5.1(A3), and further assuming trajectory properties (A4: unique

8

solution existence and norm divergence for θ(t) when data is classifiable). Let θ(t) (in Rm) and
η(t) (in Rm̃) be gradient flow trajectories starting from θ(0) and η(0) = Tθ(0) respectively. Let
L(θ(0)) ⊆ Sm−1 and L(η(0)) ⊆ Sl−1 be the ω-limit sets of the respective normalized trajectories
(Definition 5.3). Then, these sets are related by T :

T (L(θ(0))) = L(η(0))

where T (L(θ(0))) = {Tx | x ∈ L(θ(0))}.

Proof. The proof shows inclusions in both directions using the continuity of T , the trajectory map-
ping η̄(t) = T (θ̄(t)) (derived from Theorem 5.2 and isometry of T), and compactness arguments. It
relies on Assumption (A4) for the existence and divergence of trajectories needed for normalization.
The proof does not require the uniqueness of limits. The full proof is in Appendix C.2.

Corollary 5.5 (Embedding of unique limit directions). Let Φ, Φ̃ be homogeneous networks re-
lated by a neuron splitting transformation T (Theorem A.4 or 4.8), satisfying Assumptions 4.1(A1,
A2), Assumption 5.1(A3). Let θ(t) and η(t) be gradient flow trajectories starting from θ(0) and
η(0) = Tθ(0) respectively. If the normalized trajectory θ̄(t) = θ(t)/ ∥θ(t)∥2 converges to a unique
limit direction θ

∗
as t → ∞, then the corresponding normalized trajectory η̄(t) = η(t)/ ∥η(t)∥2

converges to the unique limit direction Tθ
∗
.

Proof. Proof deferred to Appendix C.3.

Corollary 5.5, which shows the embedding of unique limit directions (Tθ
∗
), is particularly rele-

vant given the optimization dynamics observed in homogeneous neural networks. As established
in prior work (e.g., [Lyu and Li, 2019, Ji and Telgarsky, 2020]), when training such homogeneous
models (including fully-connected and convolutional networks with ReLU-like activations) with
common classification losses such as logistic or cross-entropy loss, methods like gradient descent
or gradient flow often steer the parameter direction θ(t) to align with solutions that maximize the
(normalized) classification margin. These margin-maximizing directions are typically characterized
as KKT points of an associated constrained optimization problem, akin to PΦ discussed earlier (Def-
inition 3.4). Therefore, our corollary, by demonstrating that the transformation T preserves unique
limit directions, implies that this neuron splitting mechanism effectively embeds the structure of
these significant, KKT-aligned, margin-maximizing directions from a smaller network into a larger
one. This preservation of margin-related properties through embedding is also noteworthy due to
the well-recognized connection between classification margin and model robustness.

Empirical Validation and Implications 3 A key prediction of our theoretical results is the prin-
ciple of trajectory preservation (Theorem 5.2). To justify this claim empirically, we conducted ex-
periments verifying this principle using discrete-time gradient descent. We trained pairs of narrow
and wide homogeneous MLPs on a 2D linearly separable dataset (Exp. 1), with full implementation
details deferred to Appendix D.

Figure 2 presents the results. As shown in the left panel of Figure 2, the trajectory error,
∥η(t)− Tθ(t)∥2, remains at the level of machine precision (∼ 10−13) throughout training. Con-
currently, the right panel shows the training loss converging towards zero, indicating a successful
learning process. These results provide strong empirical validation for our theoretical claim under
standard GD. Appendix D summarizes further experiments demonstrating robustness to SGD (with
identical batch sequences) and non-separable data.

A direct practical implication of trajectory preservation is that the function learned by the wider
network, Φ̃, is identical to that of its narrower counterpart, Φ, at every training step (Φ̃(η(t); ·) =
Φ(θ(t); ·)). This suggests that widening a network via our proposed splitting transformation can cre-
ate significant parameter redundancy without altering the optimization path in function space. This
result empirically supports the idea that solutions from simpler models are structurally embedded
within their overparameterized counterparts.

3Code available: https://github.com/Silentmoonlight/kkt-embedding-principle

9

https://github.com/Silentmoonlight/kkt-embedding-principle

0 20000 40000 60000 80000 100000
Training Steps (t)

10 15

10 14

10 13

Eu
cli

de
an

 E
rro

r
(t)

T
(t)

2

Trajectory Error (Log-Y Scale)

0 20000 40000 60000 80000 100000
Training Steps (t)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ex
po

ne
nt

ia
l L

os
s

Training Loss (Linear Scale)

Figure 2: Empirical validation using MLP with GD on 2D toy data (Exp. 1). (Left) The trajectory
error remains near machine precision throughout training. (Right) The training loss converges to-
wards zero, indicating successful training.

6 Conclusion

This paper introduced the KKT Point Embedding Principle for homogeneous neural networks in
max-margin classification. We established that specific neuron splitting transformations T , which
are linear isometries, map KKT points of the associated min-norm problem PΦ for a smaller network
to those of an augmented network PΦ̃ (Theorems 4.5, 4.8, 4.11.) This static embedding was then
connected to training dynamics: we proved that T preserves gradient flow trajectories and maps the
ω-limit sets of parameter directions (T (L(θ(0))) = L(η(0))) (Theorems 5.2, 5.4). Consequently,
this framework allows for the dynamic preservation of KKT directional alignment through the em-
bedding when such convergence occurs

Our work establishes a foundational KKT point embedding principle and its dynamic implications,
leading to several natural further questions:

• What are the conditions for transformations T to preserve KKT point structures in other ho-
mogeneous network architectures, such as Convolutional Neural Networks (CNNs)? This
would likely involve designing transformations T that respect architectural specificities
(e.g., locality, weight sharing in CNNs) while satisfying the necessary isometric and out-
put/subgradient mapping properties identified in our current work.

• Can the KKT Point Embedding Principle be generalized to non-homogeneous neural net-
works, for instance, those incorporating bias terms or employing activation functions that
are not positively 1-homogeneous? This presents a significant challenge as homogeneity is
central to the current analysis, and new theoretical approaches might be required to define
and analyze analogous embedding phenomena.

Acknowledgments and Disclosure of Funding

This work is sponsored by the National Key R&D Program of China (Grant No. 2022YFA1008200,
T. L., Y. Z.), the Natural Science Foundation of China (No. 1257010106, Y. Z.), and the Natural
Science Foundation of Shanghai (No. 25ZR1402280, Y. Z.). We also thank Shanghai Institute for
Mathematics and Interdisciplinary Sciences (SIMIS) for their financial support. This research was
funded by SIMIS under grant number SIMIS-ID-2025-ST (T. L.). The authors are grateful for the
resources and facilities provided by SIMIS, which were essential for the completion of this work.

References
Jérôme Bolte and Edouard Pauwels. Conservative set valued fields, automatic differentiation, stochastic gradi-

ent methods and deep learning. Mathematical Programming, 188:19–51, 2021.

Yuanhao Cai, Yuanzhi Li, and Zhao Song. Large stepsize gradient descent for non-homogeneous two-layer
networks: Margin improvement and fast optimization. arXiv preprint arXiv:2305.18366, 2023.

10

Frank H Clarke. Generalized gradients and applications. Transactions of the American Mathematical Society,
205:247–262, 1975.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20:273–297, 1995.

Damek Davis, Dmitriy Drusvyatskiy, Sham Kakade, and Jason D Lee. Stochastic subgradient method converges
on tame functions. Foundations of Computational Mathematics, 20(1):119–154, 2020.

Spencer Frei, Gal Vardi, Peter Bartlett, and Nathan Srebro. Benign overfitting in linear classifiers and leaky relu
networks from kkt conditions for margin maximization. In The Thirty Sixth Annual Conference on Learning
Theory, pages 3173–3228. PMLR, 2023.

Kenji Fukumizu and Shun-ichi Amari. Local minima and plateaus in hierarchical structures of multilayer
perceptrons. Neural Networks, 13(3):317–327, 2000.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in terms of
optimization geometry. In International Conference on Machine Learning, pages 1832–1841. PMLR, 2018.

Morris W Hirsch, Stephen Smale, and Robert L Devaney. Differential equations, dynamical systems, and an
introduction to chaos. Academic Press, 2013.

Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. arXiv preprint
arXiv:1810.02032, 2018.

Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. Advances in Neural
Information Processing Systems, 33:17176–17186, 2020.

Harold W Kuhn and Albert W Tucker. Nonlinear programming. In Proceedings of the second Berkeley sympo-
sium on mathematical statistics and probability, volume 5, pages 481–492, Berkeley, Calif., 1951. University
of California Press.

Daniel Kunin, Levent Sagun, Roman Novak, Soufiane Jelassi, Surya Ganguli, and Alexander D’Amour.
The asymmetric maximum margin bias of quasi-homogeneous neural networks. arXiv preprint
arXiv:2307.03051, 2023.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks. arXiv
preprint arXiv:1906.05890, 2019.

Mor Shpigel Nacson, Suriya Gunasekar, Jason Lee, Nathan Srebro, and Daniel Soudry. Lexicographic and
depth-sensitive margins in homogeneous and non-homogeneous deep models. In International Conference
on Machine Learning, pages 4683–4692. PMLR, 2019a.

Mor Shpigel Nacson, Jason Lee, Suriya Gunasekar, Pedro Henrique Pamplona Savarese, Nathan Srebro, and
Daniel Soudry. Convergence of gradient descent on separable data. In The 22nd International Conference
on Artificial Intelligence and Statistics, pages 3420–3428. PMLR, 2019b.

Mor Shpigel Nacson, Nathan Srebro, and Daniel Soudry. Stochastic gradient descent on separable data: Exact
convergence with a fixed learning rate. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 3051–3059. PMLR, 2019c.

Berfin Simsek, François Ged, Arthur Jacot, Francesco Spadaro, Clément Hongler, Wulfram Gerstner, and
Johanni Brea. Geometry of the loss landscape in overparameterized neural networks: Symmetries and
invariances. In International Conference on Machine Learning, pages 9722–9732. PMLR, 2021.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit bias of
gradient descent on separable data. Journal of Machine Learning Research, 19(70):1–57, 2018.

Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and optimization
of neural nets vs their induced kernel. Advances in Neural Information Processing Systems, 32, 2019.

Yaoyu Zhang, Zhongwang Zhang, Tao Luo, and Zhiqin J Xu. Embedding principle of loss landscape of deep
neural networks. Advances in Neural Information Processing Systems, 34:14848–14859, 2021.

11

A Mathematical preliminaries and illustrative example

Definition A.1 (Clarke’s subdifferential). For a locally Lipschitz function f : X → R, the Clarke
subdifferential[Clarke, 1975] at x ∈ X is

∂◦f(x) := conv

{
lim
k→∞

∇f(xk) : xk → x, f is differentiable at xk

}
,

where conv denotes the convex hull. If f is C1 near x, ∂◦f(x) = {∇f(x)}.

Definition A.2 (Arc and admissible chain rule). We say that a function z : I → Rd on the interval
I is an arc if z is absolutely continuous for any compact sub-interval of I . For an arc z, ż(t)
(or d

dtz(t)) stands for the derivative at t if it exists. Following the terminology in Davis et al.
[2020], we say that a locally Lipschitz function f : Rd → R admits a chain rule if for any arc
z : [0,+∞) → Rd, for all h ∈ ∂◦f , the equality (f ◦ z)′(t) = ⟨h, ż(t)⟩ holds for a.e. t > 0.

Assumption A.3 (Admissibility of subdifferential chain rule). We assume throughout that the
neural networks and loss functions involved are such that standard chain rules for Clarke sub-
differentials apply as needed for backpropagation. Specifically, for compositions like L(θ) =∑n

k=1 ℓ(ykΦ(θ;xk)), we assume the subdifferential ∂◦L(θ) can be computed by propagating sub-
gradients layer-wise. Conditions ensuring this are discussed in, e.g., Davis et al. [2020], Bolte and
Pauwels [2021].

Theorem A.4 (Two-layer neuron splitting preserves KKT points). Consider a single hidden
neuron network Φ(θ;x) = aσ(b⊤x) with parameters θ = (a, b⊤) ∈ R1+dx (where a ∈
R, b ∈ Rdx), and σ is a positive 1-homogeneous activation function (e.g., ReLU) satisfying
Assumption 4.1(A1). Consider a network Φ̃(η;x) =

∑k
i=1 aiσ(b

⊤
i x) with parameters η =

(a1, . . . , ak, b
⊤
1 , . . . , b

⊤
k) ∈ Rk(1+dx). Define the linear transformation T : R1+dx → Rk(1+dx)

by T (a, b⊤) = (c1a, . . . , cka, c1b
⊤, . . . , ckb

⊤), where ci ≥ 0 are splitting coefficients satisfying∑k
i=1 c

2
i = 1. Then T satisfies:

1. Output preserving: Φ̃(Tθ;x) = Φ(θ;x), for all θ ∈ R1+dx and x ∈ Rdx .

2. Subgradient preserving: ∂◦
ηΦ̃(Tθ;x) = T (∂◦

θΦ(θ;x)), for all θ ∈ R1+dx and x ∈ Rdx .

3. Isometry: T is a linear isometry (∥Tθ∥2 = ∥θ∥2 for all θ ∈ R1+dx).

Consequently, by Theorem 4.5, this neuron splitting transformation T is a KKT point preserving
from PΦ and PΦ̃.

Proof. The proof involves directly verifying the three properties using the definitions of Φ, Φ̃, T ,
and subdifferential calculus. Let θ = (a, b⊤)⊤.

12

1. Output Preservation: We compute Φ̃ at η = Tθ:

Φ̃(Tθ;x) =

k∑
i=1

aiσ(b
⊤
i x)

=

k∑
i=1

(cia)σ((cib)
⊤x) (Substituting transformed parameters)

=

k∑
i=1

(cia)σ(ci(b
⊤x))

=

k∑
i=1

(cia)(ciσ(b
⊤x)) (Using 1-homogeneity of σ)

=

(
k∑

i=1

c2i

)
aσ(b⊤x)

= 1 · aσ(b⊤x) (Since
∑

c2i = 1)
= Φ(θ;x)

Thus, the network output is preserved.

2. Subgradient Preservation: Let z = b⊤x. The Clarke subdifferential of Φ w.r.t. θ is
∂◦
θΦ(θ;x) = (∂◦

aΦ, ∂
◦
bΦ), where ∂◦

aΦ = {σ(z)} and ∂◦
bΦ = {a · g · x | g ∈ ∂◦σ(z)}. Applying T

to an element of ∂◦
θΦ(θ;x) yields a vector with components corresponding to (c1σ(z), . . . , ckσ(z))

for the ’a’ parts and (c1agx, . . . , ckagx) for the ’b’ parts. Next, we compute the subdifferential of
Φ̃ at η = Tθ. For each component j ∈ [k]:

• ∂◦
aj
Φ̃ = {σ(b⊤j x)} = {σ(cjz)} = {cjσ(z)}

• ∂◦
bj
Φ̃ = {aj · gj · x | gj ∈ ∂◦σ(b⊤j x)} = {cja · g · x | g ∈ ∂◦σ(z)}

The equalities follow from the 1-homogeneity of σ and the 0-homogeneity of its subdifferential ∂◦σ.
Assembling these partials for a chosen g ∈ ∂◦σ(z) shows that any element of ∂◦

ηΦ̃(Tθ;x) matches
the structure of an element in T (∂◦

θΦ(θ;x)). Thus, the sets are identical.

3. Isometry: We compute the squared Euclidean norm of Tθ:

∥Tθ∥22 =

k∑
i=1

(cia)
2 +

k∑
i=1

∥cib∥22

=

(
k∑

i=1

c2i

)
a2 +

(
k∑

i=1

c2i

)
∥b∥22

= 1 · (a2 + ∥b∥22) (Since
∑

c2i = 1)

= ∥θ∥22
Since ∥Tθ∥2 = ∥θ∥2 for all θ, T is a linear isometry.

B Proofs from section 4

B.1 Proof of theorem 4.2

Let θ∗ be a KKT point of (P). We aim to show that η∗ = Tθ∗ satisfies the KKT conditions
(Def. 3.3) for problem (P̃).

1. Primal Feasibility (for P̃): By definition, θ∗ is feasible for (P), meaning gk(θ
∗) ≤ 0 for all

k ∈ [n]. Using Condition 1, we have g̃k(η
∗) = g̃k(Tθ

∗) = gk(θ
∗) ≤ 0 for all k ∈ [n]. Thus, η∗ is

feasible for (P̃).

13

2. Stationarity and Dual Variables (for P̃): Since θ∗ is a KKT point of (P), there exist dual variables
λk ≥ 0, k ∈ [n], satisfying complementary slackness (λkgk(θ

∗) = 0) and the stationarity condition:
0 ∈ ∂◦f(θ∗) +

∑n
k=1 λk∂

◦gk(θ
∗). This means there exist specific subgradient vectors h0 ∈

∂◦f(θ∗) and hk ∈ ∂◦gk(θ
∗) for k ∈ [n] such that h0 +

∑n
k=1 λkhk = 0.

Applying the linear transformation T to this equation yields: T (h0 +
∑n

k=1 λkhk) = Th0 +∑n
k=1 λkThk = T0 = 0.

Now, we relate these transformed subgradients to the subgradients of f̃ and g̃k at η∗ = Tθ∗. From
Condition 2, since h0 ∈ ∂◦f(θ∗), we have Th0 ∈ T∂◦f(θ∗) = ∂◦f̃(Tθ∗) = ∂◦f̃(η∗). Let
h′
0 := Th0. From Condition 3, let t∗k = tk(θ

∗) > 0 for each k ∈ [n]. Since hk ∈ ∂◦gk(θ
∗),

we have Thk ∈ T∂◦gk(θ
∗). Using Condition 3, T∂◦gk(θ

∗) = (1/t∗k)∂
◦g̃k(Tθ

∗). Therefore,
Thk ∈ (1/t∗k)∂

◦g̃k(η
∗). This implies that h′

k := t∗kThk is an element of ∂◦g̃k(η
∗).

Define new candidate dual variables for (P̃) as µn := λk/t
∗
k for k ∈ [n]. Since λk ≥ 0 and t∗k > 0,

we have µk ≥ 0 (Dual Feasibility for P̃ holds). Substitute Thk = (1/t∗k)h
′
k into the transformed

stationarity equation:

Th0 +

n∑
k=1

λk

(
1

t∗k
h′
k

)
= 0 =⇒ h′

0 +

n∑
k=1

(
λk

t∗k

)
h′
k = 0 =⇒ h′

0 +

n∑
k=1

µkh
′
k = 0.

Since h′
0 ∈ ∂◦f̃(η∗) and h′

k ∈ ∂◦g̃k(η
∗) for each n, this demonstrates that 0 ∈ ∂◦f̃(η∗) +∑n

k=1 µk∂
◦g̃k(η

∗). The stationarity condition holds for η∗ with multipliers µk.

3. Complementary Slackness (for P̃): We need to verify µkg̃k(η
∗) = 0 for all k ∈ [n]. Case 1:

If λk = 0, then µk = λk/t
∗
k = 0, so µkg̃k(η

∗) = 0. Case 2: If λk > 0, then by complementary
slackness for (P), we must have gk(θ

∗) = 0. By Condition 1, g̃k(η∗) = g̃k(Tθ
∗) = gk(θ

∗) = 0.
Thus, µkg̃k(η

∗) = µk · 0 = 0. In both cases, complementary slackness holds for (P̃).

Since η∗ is feasible for (P̃) and satisfies stationarity, dual feasibility, and complementary slackness
with multipliers µk, it is a KKT point of (P̃).

B.2 Proof of proposition 4.4

Let PΦ, PΦ1
, PΦ2

be the minimum-norm max-margin problems, and let the linear transformations
T1 : Rm → Rm1 and T2 : Rm1 → Rm2 be as defined in Proposition 4.4. We assume T1 is
KKT Point Preserving from PΦ to PΦ1

, and T2 is KKT Point Preserving from PΦ1
to PΦ2

(as per
Definition 4.3). Let T = T2 ◦ T1. Our goal is to show T is KKT Point Preserving from PΦ to PΦ2

.

Consider an arbitrary dataset D and an arbitrary KKT point θ∗ ∈ Rm of PΦ. Since T1 is KKT
Point Preserving, T1(θ

∗) is a KKT point of PΦ1
. Subsequently, since T2 is KKT Point Preserving

and T1(θ
∗) is a KKT point of PΦ1

, T2(T1(θ
∗)) is a KKT point of PΦ2

. As T2(T1(θ
∗)) = (T2 ◦

T1)(θ
∗) = T (θ∗), it follows that T (θ∗) is a KKT point of PΦ2

. This fulfills the condition in
Definition 4.3 for T to be KKT Point Preserving from PΦ to PΦ2

.

Isometry Property: If T1 and T2 are linear isometries, then T = T2 ◦ T1 is also a linear isometry.
This follows directly: for any θ ∈ Rm,

∥T (θ)∥2 = ∥(T2 ◦ T1)(θ)∥2 = ∥T2(T1(θ))∥2 = ∥T1(θ)∥2 = ∥θ∥2 .

The third equality holds due to T2 being an isometry, and the final equality due to T1 being an
isometry.

B.3 Proof of theorem 4.5

We apply Theorem 4.2 with f(θ) = 1
2 ∥θ∥

2
2, gk(θ) = 1 − ykΦ(θ;xk) for problem (P) ≡ PΦ, and

f̃(η) = 1
2 ∥η∥

2
2, g̃k(η) = 1− ykΦ̃(η;xk) for problem (P̃) ≡ PΦ̃.

Proof of (1) =⇒ (2): Assume condition (1) holds. We verify the premises of Theorem 4.2.
1. Constraint preserving: g̃k(Tθ) = 1 − ykΦ̃(Tθ;xk). By assumption Φ̃(Tθ;xk) = Φ(θ;xk), so
g̃k(Tθ) = 1− ykΦ(θ;xk) = gk(θ). This holds.

14

2. Objective Subgradient preserving: ∂◦f(θ) = {θ} and ∂◦f̃(η) = {η}. We require ∂◦f̃(Tθ) =
T∂◦f(θ), which translates to {Tθ} = T{θ} = {Tθ}. This holds trivially because T is linear.
3. Constraint Subgradient preserving: We need ∂◦g̃k(Tθ) = tk(θ)T∂

◦gk(θ) for some tk > 0. Us-
ing the definition of gk and properties of subdifferentials (including Assumption A.3): ∂◦gk(θ) =

∂◦
θ(1 − ykΦ(θ;xk)) = −yk∂

◦
θΦ(θ;xk). Similarly, ∂◦g̃k(Tθ) = ∂◦

η(1 − ykΦ̃(η;xk))|η=Tθ =

−yk∂
◦
ηΦ̃(Tθ;xk). From assumption (1), we have ∂◦

ηΦ̃(Tθ;xk) = τ(θ,xk)T (∂
◦
θΦ(θ;xk)). Sub-

stituting this into the expression for ∂◦g̃k(Tθ): ∂◦g̃k(Tθ) = −yk [τ(θ,xk)T (∂
◦
θΦ(θ;xk))] Since T

is linear and τ > 0, −yk can be moved inside the transformation T : = τ(θ,xk)T [−yk∂
◦
θΦ(θ;xk)]

= τ(θ,xk)T∂
◦gk(θ). Thus, Condition 3 of Theorem 4.2 holds with tk(θ) = τ(θ,xk) > 0.

Since all conditions of Theorem 4.2 are satisfied, (2) follows: if θ∗ is a KKT point for PΦ, then Tθ∗

is a KKT point for PΦ̃.

Proof of (2) =⇒ (1): Assume (2) holds: KKT points are preserved for any dataset D.
1.Output Preservation: The preservation of KKT points implies the preservation of primal feasibility
and complementary slackness. For any active constraint n at a KKT point θ∗ (i.e., gk(θ∗) = 0),
we must have g̃n(Tθ

∗) = 0 for Tθ∗ to be a KKT point of PΦ̃. This means 1 − ykΦ(θ
∗;xk) = 0

implies 1 − ykΦ̃(Tθ
∗;xk) = 0. This requires Φ(θ∗;xk) = Φ̃(Tθ∗;xk) whenever constraint n is

active at a KKT point. Assuming KKT points are sufficiently distributed, this suggests the general
identity Φ(θ;x) = Φ̃(Tθ;x).
2. Subgradient Proportionality: Comparing the stationarity conditions 0 ∈ {θ∗} +∑n

k=1 λk(−yk∂
◦
θΦ(θ

∗;xk)) and 0 ∈ {Tθ∗} +
∑n

k=1 µn(−yk∂
◦
ηΦ̃(Tθ

∗;xk)) for corresponding
KKT points θ∗ and Tθ∗ leads to

∑n
k=1 µnykh

′
n = T (

∑n
k=1 λkykhn), where h′

n ∈ ∂◦
ηΦ̃ and

hn ∈ ∂◦
θΦ. For this equality and the relationship between multipliers (µn = λk/τn) to hold univer-

sally across datasets and active sets, it necessitates a structural relationship between the subdifferen-
tial sets themselves, namely ∂◦

ηΦ̃(Tθ
∗;xk) = τnT (∂

◦
θΦ(θ

∗;xk)) for some τn > 0.

The final statement regarding τ = 1 and isometry for the specific neuron splitting transformations
T is proven directly in Theorems A.4 and 4.8.

B.4 Proof of theorem 4.8

The theorem states that the neuron splitting transformation T for deep networks (as defined in Def-
inition 4.6, leading to Theorem 4.8) (1) is an isometry, (2) preserves the network function, and (3)
maps subgradients accordingly, i.e., ∂◦

ηΦ̃(Tθ;x) = T (∂◦
θΦ(θ;x)). We prove each claim.

(1) Isometry The squared Euclidean norm of the parameters θ = (vec(W (1)), . . . , vec(W (α+1)))

is ∥θ∥22 =
∑α+1

l=1

∥∥W (l)
∥∥2
F

=
∑α+1

l=1

∑
r,s(W

(l)
r,s)2. The transformation T : θ 7→ η only modifies

weights related to the split neuron j in layer k. Specifically, it affects the j-th row of W (k) (denoted
W

(k)
j,:) and the j-th column of W (k+1) (denoted W

(k+1)
:,j). All other weight matrix elements are

unchanged.

The contribution of W (k)
j,: to ∥θ∥22 is

∥∥∥W (k)
j,:

∥∥∥2
2
. Under T , this row is effectively replaced by m rows

in W ′(k), where the i-th such row (corresponding to the i-th split of neuron j) has its weights scaled
by ci compared to W

(k)
j,: (i.e., W ′(k)

(j,i),s = ciW
(k)
j,s). The total contribution of these m new rows to

∥η∥22 is
∑m

i=1

∑
s(ciW

(k)
j,s)

2 =
∑m

i=1 c
2
i

∑
s(W

(k)
j,s)

2 = (
∑m

i=1 c
2
i)
∥∥∥W (k)

j,:

∥∥∥2
2
= 1 ·

∥∥∥W (k)
j,:

∥∥∥2
2
, since∑m

i=1 c
2
i = 1. Thus, the contribution from weights leading into the split neuron (or its parts) is

preserved.

Similarly, the contribution of W (k+1)
:,j to ∥θ∥22 is

∥∥∥W (k+1)
:,j

∥∥∥2
2
. Under T , this column is effectively

replaced by m columns in W ′(k+1), where the i-th such column (weights from the i-th split of
neuron j) has its weights scaled by ci (i.e., W ′(k+1)

r,(j,i) = ciW
(k+1)
r,j). Their total contribution to ∥η∥22

is
∑m

i=1

∑
r(ciW

(k+1)
r,j)2 = (

∑m
i=1 c

2
i)
∥∥∥W (k+1)

:,j

∥∥∥2
2
= 1 ·

∥∥∥W (k+1)
:,j

∥∥∥2
2
. This contribution is also

preserved.

15

Since the norms of the modified parts are preserved and all other weights are identical, ∥η∥22 =

∥Tθ∥22 = ∥θ∥22. Thus, T is a linear isometry.

(2) Output preserving We trace the forward signal propagation. Let x(l) and z(l) denote the
activation and pre-activation vectors at layer l for network Φ(θ; ·), and x′(l), z′(l) for Φ̃(Tθ; ·). The
relations are z(l) = W (l)x(l−1) and x(l) = σl(z

(l)) (with x(0) = xinput and σα+1 being the identity
for the output layer).

For layers l < k: W ′(l) = W (l). Since x′(0) = x(0), by induction, z′(l) = z(l) and x′(l) = x(l) for
l < k.

At layer k: The input is x′(k−1) = x(k−1). The pre-activation is z′(k) = W ′(k)x(k−1). For an unsplit
neuron p′ in Φ̃ (corresponding to neuron p ̸= j in Φ), the p′-th row of W ′(k) is W (k)

p,: . So, z′(k)p′ =

W
(k)
p,: x(k−1) = z

(k)
p . For the i-th new neuron (j, i) in Φ̃ (resulting from splitting neuron j in Φ), its

corresponding row in W ′(k) is ciW
(k)
j,: . So, z′(k)(j,i) = (ciW

(k)
j,:)x

(k−1) = ci(W
(k)
j,: x

(k−1)) = ciz
(k)
j .

The activation x′(k) = σk(z
′(k)) is then: For p′ ̸= j (unsplit), x′(k)

p′ = σk(z
′(k)
p′) = σk(z

(k)
p) = x

(k)
p .

For split components (j, i), x′(k)
(j,i) = σk(z

′(k)
(j,i)) = σk(ciz

(k)
j). Since ci ≥ 0 and σk is positive

1-homogeneous, this equals ciσk(z
(k)
j) = cix

(k)
j .

At layer k + 1: The input is x′(k). The pre-activation is z′(k+1) = W ′(k+1)x′(k). Consider the p-th
component z′(k+1)

p :

z′(k+1)
p =

∑
q′ unsplit

W
′(k+1)
p,q′ x

′(k)
q′ +

m∑
i=1

W
′(k+1)
p,(j,i) x

′(k)
(j,i)

=
∑
q ̸=j

W (k+1)
p,q x(k)

q +

m∑
i=1

(ciW
(k+1)
p,j)(cix

(k)
j) (by definition of T and results from layer k)

=
∑
q ̸=j

W (k+1)
p,q x(k)

q +

(
m∑
i=1

c2i

)
W

(k+1)
p,j x

(k)
j

=
∑
q ̸=j

W (k+1)
p,q x(k)

q +W
(k+1)
p,j x

(k)
j =

∑
q

W (k+1)
p,q x(k)

q = z(k+1)
p .

Thus, z′(k+1) = z(k+1), which implies x′(k+1) = x(k+1).

For layers l > k + 1: Since inputs x′(l−1) = x(l−1) and weights W ′(l) = W (l) are identical, all
subsequent activations and pre-activations z′(l),x′(l) will be identical to z(l),x(l). Therefore, the
final output is preserved: Φ̃(Tθ;x) = Φ(θ;x).

(3) Subgradient preserving We aim to show that ∂◦
ηΦ̃(Tθ;x) = T (∂◦

θΦ(θ;x)). This means
that any element g′ ∈ ∂◦

ηΦ̃(Tθ;x) can be written as T (g) for some g ∈ ∂◦
θΦ(θ;x), and vice

versa. We use backpropagation for Clarke subdifferentials (Assumption A.3). Let δ(l) be an element
from ∂◦

z(l)Φ (subgradient of final output Φ w.r.t. pre-activations z(l)), e(l) from ∂◦
x(l)Φ, and G(l)

from ∂◦
W (l)Φ. Primed versions (δ′(l), e′(l), G′(l)) are for Φ̃. The backpropagation rules are: e(l) =

(W (l+1))⊤δ(l+1) (for an element choice). δ
(l)
s ∈ ∂◦σl(z

(l)
s)e

(l)
s for each component s. G(l) =

δ(l)(x(l−1))⊤ (outer product).

Step 3.1: For layers l ≥ k + 1 (above the split output) Starting from the output layer α + 1:
δ′(α+1) = δ(α+1) (e.g., {1} if taking subgradient of scalar Φ w.r.t. itself, or the initial error signal
from a loss). Since z′(l) = z(l) and W ′(l+1) = W (l+1) for l ≥ k + 1, by backward induction,
δ′(l) = δ(l) and e′(l) = e(l) for all l ≥ k + 1.

Step 3.2: For layer k (the layer of the split neuron) The error w.r.t. activations x′(k) is e′(k) =

(W ′(k+1))⊤δ′(k+1). Since δ′(k+1) = δ(k+1):

16

• For an unsplit neuron p′ in Φ̃ (corresponding to p ̸= j in Φ): The p′-th row of (W ′(k+1))⊤

(i.e., p′-th column of W ′(k+1)) is W (k+1)
:,p . So, e′(k)p′ = (W

(k+1)
:,p)⊤δ(k+1) = e

(k)
p .

• For a split neuron component (j, i) in Φ̃: The (j, i)-th row of (W ′(k+1))⊤ (i.e.,
(j, i)-th column of W ′(k+1)) is ciW

(k+1)
:,j . So, e

′(k)
(j,i) = (ciW

(k+1)
:,j)⊤δ(k+1) =

ci((W
(k+1)
:,j)⊤δ(k+1)) = cie

(k)
j .

Thus, e′(k) has components e
(k)
p for unsplit neurons and cie

(k)
j for split neurons. Now, for errors

w.r.t. pre-activations z′(k), where δ
′(k)
s ∈ ∂◦σk(z

′(k)
s)e

′(k)
s :

• For p′ ̸= j: z
′(k)
p′ = z

(k)
p and e

′(k)
p′ = e

(k)
p . So, δ′(k)p′ ∈ ∂◦σk(z

(k)
p)e

(k)
p , meaning δ

′(k)
p′ =

δ
(k)
p . (Assuming a consistent choice of subgradient element from ∂◦σk).

• For (j, i): z
′(k)
(j,i) = ciz

(k)
j and e

′(k)
(j,i) = cie

(k)
j . Since σk is 1-homogeneous, ∂◦σk is 0-

homogeneous (i.e., ∂◦σk(cz) = ∂◦σk(z) for c > 0; this property extends to ci ≥ 0

appropriately for ReLU-like activations). Thus, ∂◦σk(ciz
(k)
j) = ∂◦σk(z

(k)
j). So, δ′(k)(j,i) ∈

∂◦σk(z
(k)
j)(cie

(k)
j) = ci(∂

◦σk(z
(k)
j)e

(k)
j). This implies δ′(k)(j,i) = ciδ

(k)
j .

So, δ′(k) has components δ(k)p for unsplit neurons and ciδ
(k)
j for split neurons.

Step 3.3: For layers l < k (below the split neuron) The error w.r.t. activations at layer k − 1,
e′(k−1), is (W ′(k))⊤δ′(k). A component s of e′(k−1) is:

e′(k−1)
s =

∑
p′ unsplit

(W ′(k))p′,sδ
′(k)
p′ +

m∑
i=1

(W ′(k))(j,i),sδ
′(k)
(j,i)

=
∑
p̸=j

W (k)
p,s δ

(k)
p +

m∑
i=1

(ciW
(k)
j,s)(ciδ

(k)
j) (using definitions of W ′(k) and results for δ′(k))

=
∑
p̸=j

W (k)
p,s δ

(k)
p +

(
m∑
i=1

c2i

)
W

(k)
j,s δ

(k)
j

=
∑
p̸=j

W (k)
p,s δ

(k)
p +W

(k)
j,s δ

(k)
j =

∑
p

W (k)
p,s δ

(k)
p = e(k−1)

s .

Thus, e′(k−1) = e(k−1). Since W ′(l) = W (l) for l < k, and x′(l−1) = x(l−1) for l ≤ k − 1, by
backward induction, δ′(l) = δ(l) and e′(l) = e(l) for all l < k.

Step 3.4: Parameter Subgradients G′(l) and G(l) The subgradient G(l) is δ(l)(x(l−1))⊤ and G′(l)

is δ′(l)(x′(l−1))⊤.

• For l /∈ {k, k + 1}: Since δ′(l) = δ(l) and x′(l−1) = x(l−1), it follows that G′(l) = G(l).
This matches the action of T on these unchanged weight matrices.

• For l = k (weights W (k) into the split layer): x′(k−1) = x(k−1). For rows p′ ̸= j in W ′(k)

(unsplit neurons), G′(k)
p′,: = δ

′(k)
p′ (x(k−1))⊤ = δ

(k)
p (x(k−1))⊤ = G

(k)
p,: . For rows corre-

sponding to split neuron (j, i) in W ′(k), G′(k)
(j,i),: = δ

′(k)
(j,i)(x

(k−1))⊤ = (ciδ
(k)
j)(x(k−1))⊤ =

ciG
(k)
j,: . This means the subgradient matrix G′(k) has rows G(k)

p,: for p ̸= j, and m blocks of

rows ciG
(k)
j,: (where G

(k)
j,: is the subgradient for original row W

(k)
j,: , corresponding to how

T transforms G(k).
• For l = k+1 (weights W (k+1) out of the split layer): δ′(k+1) = δ(k+1). For columns p′ ̸=
j in W ′(k+1) (unsplit neurons), G′(k+1)

:,p′ = δ(k+1)(x
′(k)
p′)⊤ = δ(k+1)(x

(k)
p)⊤ = G

(k+1)
:,p .

For columns corresponding to split neuron (j, i) in W ′(k+1), G′(k+1)
:,(j,i) = δ(k+1)(x

′(k)
(j,i))

⊤ =

17

δ(k+1)(cix
(k)
j)⊤ = ciG

(k+1)
:,j . This means G′(k+1) has columns G(k+1)

:,p for p ̸= j, and m

blocks of columns ciG
(k+1)
:,j , corresponding to how T transforms G(k+1).

Step 3.5: Conclusion on Subgradient Sets The above derivations show that for any choice of
subgradient path (i.e., selection of elements from ∂◦σl at each gate) in calculating an element g =
{G(l)} ∈ ∂◦

θΦ, the corresponding path in Φ̃ yields an element g′ = {G′(l)} ∈ ∂◦
ηΦ̃ such that its

components G′(l) are precisely those obtained by applying the structural transformation T to the
components G(l) of g. Specifically, G′(l) = G(l) for l /∈ {k, k + 1}; G′(k) has its rows transformed
as T acts on rows of W (k) (scaled by ci for split parts); G′(k+1) has its columns transformed as T
acts on columns of W (k+1) (scaled by ci for split parts). This structural correspondence for arbitrary
elements implies the equality of the entire sets: ∂◦

ηΦ̃(Tθ;x) = T (∂◦
θΦ(θ;x)). The operator T (·) on

the set ∂◦
θΦ(θ;x) is understood as applying the described transformation to each element (collection

of subgradient matrices) in the set.

B.5 Proof of Theorem 4.11

The theorem states that the channel splitting transformation T for deep CNNs (as defined in Defini-
tion 4.10, leading to Theorem 4.11) (1) is an isometry, (2) preserves the network function, and (3)
maps subgradients accordingly, i.e., ∂◦

ηΦ̃(Tθ;x) = T (∂◦
θΦ(θ;x)). We prove each claim.

Notation for CNNs. We denote feature maps (tensors) with capital letters. Let X(l) and Z(l) be
the activation and pre-activation feature maps at layer l. The p-th output channel of the activation
map is X(l)

p . The forward pass is defined by Z
(l)
p =

∑
q W

(l)
p,q ∗X(l−1)

q and X
(l)
p = σl(Z

(l)
p), where

∗ denotes convolution. The parameters θ are the vectorized collection of all filter tensors {W (l)}.
We use primed versions for the split network Φ̃.

(1) Isometry The squared Euclidean norm of the parameters θ = (vec(W (1)), . . . , vec(W (α+1)))

is ∥θ∥22 =
∑α+1

l=1

∥∥W (l)
∥∥2
F

. The transformation T only modifies filters related to the split output
channel j of layer k and the corresponding input slices of filters at layer k + 1.

The contribution of the filter W
(k)
j,: (all filters producing output channel j) to ∥θ∥22 is

∥∥∥W (k)
j,:

∥∥∥2
F

.

Under T , this is replaced by msplit new filters ciW
(k)
j,: . The total contribution of these new filters

to ∥η∥22 is
∑msplit

i=1

∥∥∥ciW (k)
j,:

∥∥∥2
F

= (
∑msplit

i=1 c2i)
∥∥∥W (k)

j,:

∥∥∥2
F

= 1 ·
∥∥∥W (k)

j,:

∥∥∥2
F

, since
∑msplit

i=1 c2i = 1.
This part of the norm is preserved.

Similarly, for any filter W (k+1)
p,: at layer k+1, its j-th input slice W (k+1)

p,j contributes
∥∥∥W (k+1)

p,j

∥∥∥2
F

to

the norm. Under T , this is replaced by msplit new slices ciW
(k+1)
p,j . Their total contribution to ∥η∥22

across all filters p at layer k + 1 is
∑

p

∑msplit

i=1

∥∥∥ciW (k+1)
p,j

∥∥∥2
F
= (
∑msplit

i=1 c2i)
∑

p

∥∥∥W (k+1)
p,j

∥∥∥2
F
=

1 ·
∑

p

∥∥∥W (k+1)
p,j

∥∥∥2
F

. This contribution is also preserved.

Since the norms of the modified parts are preserved and all other weights are identical, ∥η∥22 =

∥Tθ∥22 = ∥θ∥22. Thus, T is a linear isometry.

(2) Output preserving We trace the forward signal propagation. For layers l < k, weights and
inputs are identical, thus X′(l) = X(l) for l < k by induction.

At layer k: The input is X′(k−1) = X(k−1). For an unsplit output channel p ̸= j, Z ′(k)
p =

∑
q W

(k)
p,q ∗

X
(k−1)
q = Z

(k)
p . For the i-th new channel (j, i), the filter is ciW

(k)
j,: . So, Z ′(k)

(j,i) =
∑

q(ciW
(k)
j,q) ∗

X
(k−1)
q = ciZ

(k)
j . The activation X′(k) is then: For p ̸= j, X ′(k)

p = σk(Z
′(k)
p) = X

(k)
p . For

18

split components (j, i), X ′(k)
(j,i) = σk(ciZ

(k)
j) = ciσk(Z

(k)
j) = ciX

(k)
j , since σk is positive 1-

homogeneous.

At layer k + 1: The input is X′(k). The pre-activation for any output channel p is:

Z ′(k+1)
p =

∑
q′ unsplit

W
′(k+1)
p,q′ ∗X ′(k)

q′ +

msplit∑
i=1

W
′(k+1)
p,(j,i) ∗X ′(k)

(j,i)

=
∑
q ̸=j

W (k+1)
p,q ∗X(k)

q +

msplit∑
i=1

(ciW
(k+1)
p,j) ∗ (ciX(k)

j) (by definition of T)

=
∑
q ̸=j

W (k+1)
p,q ∗X(k)

q +

(msplit∑
i=1

c2i

)
(W

(k+1)
p,j ∗X(k)

j)

=
∑
q ̸=j

W (k+1)
p,q ∗X(k)

q +W
(k+1)
p,j ∗X(k)

j = Z(k+1)
p .

Thus, Z′(k+1) = Z(k+1), which implies X′(k+1) = X(k+1). For layers l > k + 1, all subsequent
activations are identical. Therefore, the final output is preserved: Φ̃(Tθ;x) = Φ(θ;x).

(3) Subgradient preserving We use backpropagation for Clarke subdifferentials. Let ∆(l) ∈
∂◦
Z(l)Φ and E(l) ∈ ∂◦

X(l)Φ. Primed versions are for Φ̃. The backpropagation rules involve convolu-
tions with spatially-flipped filters.

Step 3.1: For layers l ≥ k + 1 Since the forward pass is identical for l ≥ k + 1, by backward
induction, the subgradient error signals are also identical: ∆′(l) = ∆(l) and E′(l) = E(l) for all
l ≥ k + 1.

Step 3.2: For layer k The error w.r.t. activations X′(k) is E′(k), backpropagated from ∆′(k+1) =

∆(k+1) through W ′(k+1).

• For an unsplit channel p ̸= j, the error is sourced from unchanged filter slices, so E
′(k)
p =

E
(k)
p .

• For a split channel (j, i), the error is sourced from the scaled input slices ciW
(k+1)
:,j . By

linearity of the backprop operation, E′(k)
(j,i) = ciE

(k)
j .

The error w.r.t. pre-activations Z′(k) is ∆′(k).

• For p ̸= j, Z ′(k)
p = Z

(k)
p and E

′(k)
p = E

(k)
p , thus ∆′(k)

p = ∆
(k)
p .

• For (j, i), Z
′(k)
(j,i) = ciZ

(k)
j and E

′(k)
(j,i) = ciE

(k)
j . Since ∂◦σk is 0-homogeneous,

∂◦σk(ciZ
(k)
j) = ∂◦σk(Z

(k)
j). So, an element of ∂◦

Z
′(k)

(j,i)

Φ is given by an element from

(ciE
(k)
j) ◦ ∂◦σk(Z

(k)
j), which implies ∆′(k)

(j,i) = ci∆
(k)
j .

Step 3.3: For layers l < k The error E′(k−1) is backpropagated from ∆′(k) through W ′(k). The
error contribution from unsplit channels p ̸= j is preserved. The contribution from the split channels
is a sum over the new filters (ciW

(k)
j,:) and new errors (ci∆

(k)
j). The backprop operation results in

a sum over c2i , which equals 1. Thus, the total error is preserved: E′(k−1) = E(k−1). By backward
induction, all errors for l < k are identical.

Step 3.4: Parameter Subgradients G′(l) and G(l) The subgradient G(l) is computed from ∆(l)

and X(l−1).

• For l /∈ {k, k + 1}, since errors and activations are identical, G′(l) = G(l).
• For l = k: The subgradient for the new filter producing channel (j, i) is computed from in-

put X′(k−1) = X(k−1) and error ∆′(k)
(j,i) = ci∆

(k)
j . This yields G′(k)

(j,i),: = ciG
(k)
j,: , matching

how T transforms the filter subgradients.

19

• For l = k + 1: The subgradient for the new input slice (j, i) of any filter W
′(k+1)
p,: is

computed from input X′(k)
(j,i) = ciX

(k)
j and error ∆′(k+1)

p = ∆(k+1)
p . This yields G′(k+1)

p,(j,i) =

ciG
(k+1)
p,j , matching how T transforms the subgradients of the filter input slices.

Step 3.5: Conclusion on Subgradient Sets The derivations show that for any choice of subgradient
path, the resulting subgradient tensor collection {G′(l)} is precisely the transformation T applied to
the original subgradient collection {G(l)}. This structural correspondence implies the equality of
the entire sets: ∂◦

ηΦ̃(Tθ;x) = T (∂◦
θΦ(θ;x)).

C Proofs from section 5

C.1 Proof of theorem 5.2

We aim to show that if θ(t) solves dθ
dt ∈ −∂◦L(θ), then η(t) = Tθ(t) solves dη

dt ∈ −∂◦L̃(η(t)).
We have dη

dt = T dθ
dt . We need to show T (−∂◦L(θ(t))) = −∂◦L̃(Tθ(t)), which is equivalent to

T (∂◦L(θ)) = ∂◦L̃(Tθ).
Using the chain rule (valid under Assumption 5.1(A3) as ℓ is C1-smooth) and properties of T (net-
work equivalence Φ̃(Tθ;x) = Φ(θ;x) and subgradient equality ∂◦

ηΦ̃(Tθ;x) = T (∂◦
θΦ(θ;x))

from Theorem 4.8 (which relies on Assumptions 4.1(A1, A2)) or Theorem A.4 as appropriate):

∂◦L̃(Tθ) =
n∑

k=1

ℓ′(ykΦ̃(Tθ;xk))yk∂
◦
ηΦ̃(Tθ;xk)

=

n∑
k=1

ℓ′(ykΦ(θ;xk))yk[T (∂
◦
θΦ(θ;xk))] (Using Thm. 4.8 or A.4 properties)

= T

[
n∑

k=1

ℓ′(ykΦ(θ;xk))yk∂
◦
θΦ(θ;xk)

]
(by linearity of T and sum rule)

= T (∂◦L(θ)).

Thus T (−∂◦L(θ)) = −∂◦L̃(Tθ). If dθ
dt ∈ −∂◦L(θ(t)), then dη

dt = T dθ
dt ∈ T (−∂◦L(θ(t))) =

−∂◦L̃(Tθ(t)) = −∂◦L̃(η(t)). With matching initial conditions η(0) = Tθ(0), and assuming
unique solutions exist for the gradient flow (as per Assumption 5.1(A4)), the trajectories coincide:
η(t) = Tθ(t) for all t ≥ 0.

C.2 Proof of theorem 5.4

We need to show two inclusions: T (L(θ(0))) ⊆ L(η(0)) and L(η(0)) ⊆ T (L(θ(0))). This proof
requires Assumptions 4.1(A1, A2) and 5.1(A3, A4).

1. Show T (L(θ(0))) ⊆ L(η(0)): Let x ∈ L(θ(0)). By Definition 5.3, there exists a sequence
tk → ∞ such that the normalized trajectory θ̄(tk) = θ(tk)/ ∥θ(tk)∥2 converges to x. Note
that ∥θ(tk)∥2 → ∞ by Assumption 5.1(A4), so normalization is well-defined for large k. From
Theorem 5.2, we have η(t) = Tθ(t). Since T is an isometry (proven in Theorems A.4, 4.8),
∥η(t)∥2 = ∥Tθ(t)∥2 = ∥θ(t)∥2. Therefore, the normalized trajectories are related by:

η̄(t) =
η(t)

∥η(t)∥2
=

Tθ(t)

∥θ(t)∥2
= T

(
θ(t)

∥θ(t)∥2

)
= T (θ̄(t)).

Now consider the sequence η̄(tk) = T (θ̄(tk)). Since T is a linear transformation in finite-
dimensional spaces, it is continuous. As k → ∞, θ̄(tk) → x implies T (θ̄(tk)) → T (x). So,
we have found a sequence tk → ∞ such that η̄(tk) → T (x). By the definition of the ω-limit
set, this means T (x) ∈ L(η(0)). Since this holds for any arbitrary x ∈ L(θ(0)), we conclude
T (L(θ(0))) ⊆ L(η(0)).

2. Show L(η(0)) ⊆ T (L(θ(0))): Let y ∈ L(η(0)). By Definition 5.3, there exists a sequence
t′k → ∞ such that η̄(t′k) → y. We know η̄(t′k) = T (θ̄(t′k)). The sequence {θ̄(t′k)}∞k=1 lies on

20

the unit sphere Sm−1 in Rm, which is a compact set. By the Bolzano-Weierstrass theorem, there
must exist a convergent subsequence. Let {t′kj

}∞j=1 be the indices of such a subsequence, so that
θ̄(t′kj

) → x′ for some x′ ∈ Sm−1 as j → ∞. Since t′kj
→ ∞ as j → ∞, the limit point x′

must belong to the ω-limit set of the original trajectory θ̄(t), i.e., x′ ∈ L(θ(0)). Now consider the
corresponding subsequence for η̄: {η̄(t′kj

)}∞j=1. Since T is continuous, as j → ∞, θ̄(t′kj
) → x′

implies T (θ̄(t′kj
)) → T (x′). So, η̄(t′kj

) → T (x′). However, the original sequence η̄(t′k) converges
to y. Any subsequence of a convergent sequence must converge to the same limit. Therefore, we
must have y = T (x′). Since y was an arbitrary element of L(η(0)), and we found an element
x′ ∈ L(θ(0)) such that y = T (x′), this demonstrates that every element in L(η(0)) is the image
under T of some element in L(θ(0)). Hence, L(η(0)) ⊆ T (L(θ(0))).

Combining both inclusions yields T (L(θ(0))) = L(η(0)).

C.3 Proof of corollary 5.5

If the normalized trajectory θ̄(t) converges to a unique limit θ
∗
, then by Definition 5.3, its ω-

limit set is L(θ(0)) = {θ∗}. Under the specified assumptions in Corollary 5.5 (which include
Assumptions 4.1(A1, A2), Assumption 5.1(A3), and trajectory properties (A4)), Theorem 5.4 states
that T (L(θ(0))) = L(η(0)). Substituting L(θ(0)), we have L(η(0)) = T ({θ∗}) = {Tθ∗}. Since
the ω-limit set L(η(0)) consists of the single point Tθ

∗
, this implies that the normalized trajectory

η̄(t) converges to Tθ
∗

as t → ∞.

D Experimental Details

To validate our theoretical results on trajectory preservation (Theorem 5.2), we conduct a series of
experiments corresponding to the results summarized in Table 1 and Table 2. We use PyTorch for
all implementations. The core methodology involves training a pair of networks—a narrow network
Φ and its wider counterpart Φ̃ constructed via our transformation T—and measuring the trajectory
error ∥η(t)− Tθ(t)∥2 at each step.

D.1 Experiments on 2D Toy Datasets

Dataset Generation. We use a two-dimensional toy dataset consisting of 100 samples from two
classes (±1). For the separable case (Exp. 1, 3, 4, 5), the data points are generated from two
Gaussian distributions centered at (2,−2) and (−2, 2), ensuring they are separable by a line passing
through the origin. For the non-separable case (Exp. 2), the distributions are centered closer to the
origin at (1,−1) and (−1, 1) to create overlap.

Model Architectures. We test both fully-connected (MLP) and convolutional (CNN) networks.
All models are homogeneous, using Leaky ReLU with a negative slope of α = 0.01 as the activation
function. Weights are initialized using Kaiming Normal/Uniform initialization as detailed in the
code.

• MLP (Exp. 1-4): The narrow network is a 2-layer MLP with a single hidden neuron
(Input(2) → Hidden(1) → Output(1)). The wide network splits this to two hidden neurons
(Input(2) → Hidden(2) → Output(1)).

• CNN (Exp. 5): The narrow network takes a 1× 5× 5 input and consists of a convolutional
layer with 2 output channels (3x3 kernel, stride 1, no padding), followed by an average
pooling layer (2x2 kernel, stride 2), a flatten operation, and a final linear layer to produce a
single output. The wide network splits the convolutional layer to 4 channels, adjusting the
subsequent linear layer input dimension accordingly.

Training Setup. Networks are trained for 100, 000 steps using an exponential loss function. The
learning rate is 0.1 for MLP experiments and 0.001 for the CNN experiment. For Gradient Descent
(GD, Exp. 1, 2, 5), the full batch is used in each step. For Stochastic Gradient Descent (SGD, Exp.
3, 4), we use a batch size of 16. Crucially, for the identical batch experiment (Exp. 3), both networks

21

are fed the exact same sequence of mini-batches, whereas for the different batch experiment (Exp.
4), they use independent data loaders. The initial parameters of the wide network are always set to
η(0) = Tθ(0) using splitting coefficients ci = 1/

√
msplit.

Results. The numerical results for maximum trajectory error are summarized in Table 1. Figures 3,
4, and 5 provide visual confirmation and further details. The error remains near machine precision
(∼ 10−13) in all cases where the theory predicts preservation (Exp. 1, 2, 3, 5), regardless of data
separability or the use of SGD (with identical batches). In contrast, when the SGD batch order
differs (Exp. 4), the error grows substantially, confirming the necessity of identical training paths.
The slightly higher error floor for the CNN (Exp. 5, ∼ 10−10) is consistent with the expected
accumulation of floating-point errors due to the higher computational complexity of convolutions.

Table 1: Complete results for maximum trajectory error on 2D toy datasets.
Exp. Model Optimizer Data Condition Max Trajectory Error

1 MLP GD Separable 4.46× 10−13

2 MLP GD Non-Separable 5.57× 10−13

3 MLP SGD (Identical batches) Separable 4.35× 10−13

4 MLP SGD (Different batches) Separable 1.53× 10−1

5 CNN GD Separable 2.36× 10−10

0 20000 40000 60000 80000 100000
Training Steps (t)

10 15

10 14

10 13

Eu
cli

de
an

 E
rro

r
(t)

T
(t)

2

Exp 1: Separable Data

0 20000 40000 60000 80000 100000
Training Steps (t)

10 16

10 15

10 14

10 13

Exp 2: Non-Separable Data

Trajectory Error Comparison (MLP, GD)

Figure 3: Trajectory error comparison for MLP experiments using Gradient Descent (GD). (Left)
Exp. 1 on separable data shows error near machine precision. (Right) Exp. 2 on non-separable data
also shows error remaining near machine precision, demonstrating robustness to data conditions.

0 20000 40000 60000 80000 100000
Training Steps (t)

10 17

10 16

10 15

10 14

10 13

Eu
cli

de
an

 E
rro

r
(t)

T
(t)

2

Exp 3: Identical Batches

Instantaneous Error
Moving Average (Window=500)

0 20000 40000 60000 80000 100000
Training Steps (t)

0.0

0.2

0.4

0.6

0.8

Exp 4: Different Batches

Trajectory Error Comparison (MLP, SGD)

Figure 4: Trajectory error comparison for MLP experiments using Stochastic Gradient Descent
(SGD). (Left) Exp. 3, using identical mini-batches for both networks, maintains error near machine
precision (moving average shown). (Right) Exp. 4, using different mini-batches, shows substantial
error growth, highlighting the necessity of identical data sequences.

22

0 20000 40000 60000 80000 100000
Training Steps (t)

10 16

10 15

10 14

10 13

10 12

10 11

10 10

Eu
cli

de
an

 E
rro

r
(t)

T
(t)

2

Trajectory Error vs. Steps

0 20000 40000 60000 80000 100000
Training Steps (t)

100

7 × 10 1

8 × 10 1

9 × 10 1

Ex
po

ne
nt

ia
l L

os
s

Training Loss vs. Steps

Experiment 5: CNN, GD, Separable Data

Figure 5: Results for the CNN experiment using GD on separable data (Exp. 5). (Left) The trajec-
tory error remains small (< 10−9) but exhibits a slight upward trend, consistent with accumulated
precision errors. (Right) The training loss converges successfully.

D.2 Experiment on the MNIST Dataset

Dataset and Models. To test our principle on a more realistic task, we use the MNIST dataset,
focusing on the binary classification of digits ’3’ versus ’5’. We use larger homogeneous models: an
MLP splitting from 128 to 256 hidden units, and a CNN splitting from 10 to 20 channels (detailed
architectures follow standard practices, similar to the toy CNN but scaled appropriately for MNIST
image size).

Training Setup. Both models are trained for 1000 epochs using SGD with a learning rate of 0.001
and a batch size of 64. Data is normalized. Identical mini-batches are used for the narrow and wide
networks at each step.

Results. The trajectory preservation principle continues to hold with remarkable precision on this
practical task. The maximum trajectory errors, summarized in Table 2, remain close to machine
precision for both architectures. Figures 6 and 7 provide a visual representation of the dynamics. The
left panels show the trajectory error remaining consistently low throughout the 1000 epochs. The
right panels display the corresponding training loss (evaluated on the full training set), confirming
that both models learned effectively, achieving high final classification accuracies (MLP: 99.99%,
CNN: 99.82%). These results demonstrate the principle’s validity on a standard dataset with larger
models.

Table 2: Maximum trajectory error on the MNIST dataset.
Model Configuration Max Trajectory Error

MLP (128 → 256 units) 2.19× 10−13

CNN (10 → 20 channels) 1.28× 10−13

23

0 200 400 600 800 1000
Epoch

10 14

10 13
Eu

cli
de

an
 E

rro
r

(t)
T

(t)
2

Trajectory Error vs. Epochs

0 200 400 600 800 1000
Epoch

10 2

10 1

Ex
po

ne
nt

ia
l L

os
s (

Fu
ll-

ba
tc

h)

Training Loss vs. Epochs

MNIST Experiment Results (MLP)

Figure 6: MNIST results for MLP (128 → 256 units). (Left) Trajectory error per epoch remains
near machine precision. (Right) Training loss (full-batch evaluation) converges successfully.

0 200 400 600 800 1000
Epoch

10 14

10 13

Eu
cli

de
an

 E
rro

r
(t)

T
(t)

2

Trajectory Error vs. Epochs

0 200 400 600 800 1000
Epoch

10 1

Ex
po

ne
nt

ia
l L

os
s (

Fu
ll-

ba
tc

h)

Training Loss vs. Epochs

MNIST Experiment Results (CNN)

Figure 7: MNIST results for CNN (10 → 20 channels). (Left) Trajectory error per epoch remains
near machine precision. (Right) Training loss (full-batch evaluation) converges successfully.

24

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately summarize the paper’s main contri-
butions: formalizing the KKT Point Embedding Principle (Theorems 4.2 and 4.5), proving
its validity for neuron splitting in fully-connected networks and channel splitting in CNNs
(Theorems 4.8 and 4.11), connecting it to gradient flow dynamics (Theorems 5.2 and 5.4),
and providing empirical validation for the dynamic preservation principle.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are primarily addressed through the stated assumptions (Assump-
tions 4.1 and 5.1, e.g., network homogeneity, smooth losses). The Conclusion (Section 6)
also discusses future work, implying current scope limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

25

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Each theoretical result is presented with its necessary assumptions. Proofs are
provided either as sketches in the main text or with full versions deferred to the appendices
(Appendices B and C).
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes. The main text describes the experimental setup and key findings. A dedi-
cated appendix (Appendix D) provides comprehensive details on dataset generation, model
architectures, training hyperparameters, and the exact procedure for measuring trajectory
error, which are sufficient to reproduce all results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

26

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes. The paper provides open access to the implementation code. A footnote
provide a link to a public GitHub repository containing the code to reproduce all experi-
ments and figures.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes. The main text provides a high-level overview of the experimental setting.
The appendix (Appendix D) contains a detailed breakdown of all settings, including model
architectures, dataset generation procedures, optimizers, learning rates, batch sizes, and
total training steps.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [NA]

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: The experiments presented are deterministic numerical simulations designed
to verify a theoretical principle (i.e., showing an error term is close to zero). They are not
stochastic experiments comparing performance between methods, so statistical significance
reporting such as error bars is not applicable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes. The experiments are conducted on small-scale 2D toy datasets and the
MNIST dataset. They are computationally inexpensive and designed to be reproducible in
minutes on a standard consumer laptop or desktop computer. The appendix specifies the
software framework (PyTorch) used.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research is theoretical and involves numerical simulations on public
datasets. It does not involve human subjects, PII, collection of sensitive data, or high-risk
applications that would raise concerns under the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

28

https://neurips.cc/public/EthicsGuidelines

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is foundational theoretical research into the mathematical proper-
ties of neural network optimization. Direct or immediate societal impacts are not a primary
focus, and the paper does not propose deployable systems.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release any new data or models, particularly those with a
high risk for misuse. The code provided is for reproducing theoretical experiments.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

29

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper’s experiments use the public MNIST dataset and a custom-
generated toy dataset. The use of standard libraries like PyTorch is implicit. No other
external assets are used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduce or release new assets such as datasets or models
for public use, other than the code for reproducibility.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The research does not involve crowdsourcing or experiments with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

30

paperswithcode.com/datasets

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The research does not involve human subjects, so IRB approval or equivalent
is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Large Language Models were not used as a component of the core research
methodology. Any LLM usage was limited to ancillary tasks such as assisting with writing
and editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

31

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related work
	Preliminaries
	The KKT point embedding principle: Static setting
	The KKT point embedding principle: a general framework
	Applications: KKT embedding via neuron and channel splitting
	Neuron splitting in fully-connected networks
	Channel splitting in convolutional neural networks

	Connection to training dynamics via gradient flow
	Conclusion
	Mathematical preliminaries and illustrative example
	Proofs from section 4
	Proof of theorem 4.2
	Proof of proposition 4.4
	Proof of theorem 4.5
	Proof of theorem 4.8
	Proof of Theorem 4.11

	Proofs from section 5
	Proof of theorem 5.2
	Proof of theorem 5.4
	Proof of corollary 5.5

	Experimental Details
	Experiments on 2D Toy Datasets
	Experiment on the MNIST Dataset

