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ABSTRACT

Spiking neural networks (SNNs) provide a low-power, energy-efficient solution by
utilizing the spike-based and sparse nature of biological systems. Since the advent
of Transformers, SNNs have struggled to compete with artificial networks on long
sequential tasks, until the recent emergence of state space models (SSMs), which
offer superior computational efficiency and modeling capability. However, apply-
ing the highly capable SSMs to SNNs for long sequences learning poses three
major challenges: ❶ The membrane potential is determined by the past spiking
history of the neuron, leading to reduced efficiency for sequence modeling in par-
allel computing scenarios. ❷ Complex dynamics of biological spiking neurons are
crucial for functionality but challenging to simulate and exploit effectively in large
networks. ❸ It is arduous to maintain high sparsity while achieving high accuracy
for spiking neurons without resorting to dense computing, as utilized in artificial
neuron-based SSMs. To address these challenges, we propose a sparse, precise
and efficient spiking SSM framework, termed SPikE-SSM. For ❶, we propose a
boundary compression strategy (PMBC) to accelerate the inference of the spiking
neuron model, enabling parallel processing for long sequence learning. For ❷, we
propose a novel and concise neuron model incorporating reset-refractory mech-
anism to leverage the inherent temporal dimension for dynamic computing with
biological interpretability. For ❸, we hierarchically integrate the proposed neuron
model to the original SSM block, and enhance the dynamics of SPikE-SSM by
incorporating trainable thresholds and refractory magnitudes to balance accuracy
and sparsity. Extensive experiments illustrate the effectiveness and robustness
of SPikE-SSM on the long range arena benchmarks and large language dataset
WikiText-103, showing the potential of dynamic spiking neurons in efficient long
sequence learning. The code will be publicly available.

1 INTRODUCTION

Spiking neural networks (SNNs) recently emerged as a competitive paradigm to improve AI en-
ergy efficiency. SNNs transmit information as binary spikes between synapses to perform sparse
and event-driven computation. Despite being increasingly more competitive with artificial neural
networks (ANNs) in vision tasks, SNNs still struggle with long-sequence modeling – a critical task
for a wide range of temporal or sequential data-driven machine learning applications, such as text
comprehending (Zhou et al., 2023), electroencephalograms spanning (Tang et al., 2023), etc.

Transformer (Vaswani et al., 2017) and its variants (Kitaev et al., 2020; Zaheer et al., 2020;
Katharopoulos et al., 2020) have been developed for sequential tasks. However, their architectures
are not suitable for SNN-based long sequence learning as SNN requires a time window-based sim-
ulation to enhance spike-based representation, resulting in slow inference compared to their ANN
counterparts (Zhou et al., 2022; Yao et al., 2024). Moreover, the self-attention mechanisms (Vaswani
et al., 2017) in Transformers are computationally intensive, contrasting with the energy-efficient
properties of event-based representations and the sparse computation inherent to SNNs. As a com-
petitive alternative to Transformer, state space models (SSMs) have garnered significant attention
due to their long sequence modeling capabilities, such as S4 (Gu et al., 2021), DSS (Gupta et al.,
2022), S5 (Smith et al., 2022) and Mamba (Gu & Dao, 2023). Notably, SSMs can achieve fast in-
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SPikE-SSMs: Michael Jordan, born on February 17, 1963, is widely regarded as one

                of the greatest basketball players of all time.  He gained prominence

                after leading the University of North Carolina to an NCAA 

championship. Known for his incredible scoring ability, agility, and unmatched 

competitive spirit, Jordan led the Bulls to six NBA championships and earned 

five regular-season MVP awards in his career.

How many regular-season MVP awards has Michael Jordan won?

Michael Jordan has won 5 regular-season MVP awards in his career . 

Figure 1: Main ideas of SPikE-SSM for long-sequence modeling. (Left) Overview: A parallel
max-min boundary compression (PMBC) strategy is proposed to address ❶ (§ 3.2); a new refractory
neuron model with trainable dynamics is developed to address ❷ (§ 3.3). We integrate the proposed
refractory neuron with soft reset within SSMs to address ❸ (§ 3.4). (Right) An example showing
that the relevant information for the task at hand is often sparse in long-sequence inputs.

ference and parallel training by incorporating dynamic hidden states for handling long-range depen-
dencies (LRDs), inspired by the low-complexity inference mechanism of recurrent neural networks
(RNNs) (Sherstinsky, 2020; Schuster & Paliwal, 1997). Meanwhile, the sequential computing nature
of SSMs is also more compatible with SNNs as the dynamics of spiking neurons can be inherently
exploited in the temporal dimension. Furthermore, for tasks with long-sequence inputs, it is often
the case that the relevant information to the problem at hand is inherently sparse (see Figure 1 Right
for an example), aligning well with the sparse representation of SNNs.

Therefore, spiking SSMs naturally emerge as a promising paradigm for efficient long-sequence
modeling. Recent works have highlighted notable advancements in capturing LRDs using spiking
SSMs (Stan & Rhodes, 2023; Bal & Sengupta, 2024; Shen et al., 2024). However, these exist-
ing methods are still inadequate in addressing the following challenges when applying spike-based
computation to SSMs: ❶ The membrane potential of a neuron in SNNs depends on its past spik-
ing history, making parallel processing infeasible and, in turn, hindering the efficiency of sequence
modeling. ❷ Biological neuron models exhibit complex dynamics that are essential for function-
ality (Urbanczik & Senn, 2014; Mikulasch et al., 2021; Capone et al., 2023) but challenging to
simulate efficiently in large networks – an issue often overlooked by existing methods. ❸ Sparse
representation is key for efficient computation in SNNs (Olshausen & Field, 2004; Jiao et al., 2022;
Raposo et al., 2024); however, balancing the trade-off between sparsity (i.e., spiking rate) and ac-
curacy remains challenging for spiking SSMs, as SSMs were originally designed on top of artificial
neurons with dense computations.

In this work, we propose a novel spiking SSM model, termed SPikE-SSM, to exploit the intri-
cate dynamics of Leaky Integrate-and-Fire (LIF) neuron (Gerstner et al., 2014) in SSMs for sparse,
parallel, and efficient long-sequence modeling. First, to address ❶, we propose a parallel max-min
boundary compression strategy (PMBC) to accelerate the inference of the LIF neuron, enabling par-
allel processing for long sequence modeling. Second, to address ❷, we propose a refined LIF neuron
model incorporating a reset-refractory dynamics to fully utilize the inherent temporal dimension for
dynamic computing with biological interpretability; in the meantime, the hyperparameters of the
proposed neuron model are trained efficiently and explicitly based on PMBC, enabling a systematic
study of their functional impacts on the network. Third, to address ❸, we integrate the refractory
neuron into an SSM block to adjust the membrane potential with dynamic reset, achieving both high
accuracy and low spiking rate (i.e., high efficiency). An overview comparison of our SPikE-SSM
with existing spiking SSMs is presented in Table 1. The main contributions are as follows:

• In this paper, we propose SPikE-SSM to effectively model the long sequence with SNNs.
In contrast to existing spiking SSMs, our method can realize comprehensive parallel accel-
eration with trainable temporal dynamics, facilitating sparse, precise, efficient training and
inference for long-range dependencies learning.

• To tackle the dilemma of event-driven neuronal dynamics with parallel processing for long
sequence modeling, we propose a max-min boundary compression (PMBC) strategy to
facilitate an efficient inference of SPikE-SSM. We empirically demonstrate that PMBC is
versatile and effective for accelerating neuronal dynamics for parallel computing of SNNs.

• A new LIF neuron model with a refractory mechanism is proposed to fully utilize the
inherent temporal dimension for biologically interpretable dynamic computation, achieving
both high accuracy and sparsity with the trainable dynamics.
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Table 1: Comparison of our model with existing spiking SSMs. Previous methods mostly apply
binary activation to SSMs without considering the intricate neuronal dynamics. † SpikingSSM ap-
proximates the LIF neuron with hard reset dynamics by using a surrogate model, which is subject
to approximation errors. ‡ SpikingSSM has partial trainable dynamics since hard reset is rough and
simplified with limited dynamic variables. In contrast, our method can train the neuron hyperparam-
eters and temporal dynamics efficiently and explicitly in a parallel manner with the proposed PMBC,
enabling a functional study of their impact on the network. In SPikE-SSM, a more interpretable soft
reset mechanism is employed, incorporating additional trainable dynamic variables and parameters.

Method Reset Mechanism Trainable Dynamics

Binary-S4D (Stan & Rhodes, 2023) ✗ ✗
S6-based SNN (Bal & Sengupta, 2024) ✗ ✗

SpikingSSM (Shen et al., 2024) ✓† partial‡

SPikE-SSM (ours) ✓ ✓

• Extensive experiments are conducted on LRA benchmarks and the large-scale WikiText-
103 language modeling databases, the results of which validate the effectiveness and effi-
ciency of the proposed SPikE-SSM for long-range dependencies learning.

2 RELATED WORKS

2.1 LONG SEQUENCES LEARNING MODELS

Long sequence modeling has gained significant attention recently due to its widespread applica-
tion across different domains such as text comprehending (Zhou et al., 2023), computer vision (Shi
et al., 2024; Zhong et al., 2024) and electroencephalograms spanning (Tang et al., 2023). The key
challenge in long-sequence modeling lies in efficiently compressing context into a manageable state
while capturing information spread across observations separated by thousands of timesteps. To
address them, Transformer and Attention (Vaswani et al., 2017; Dao et al., 2022; Dao, 2023) are
proposed to retain the entire context during auto-regressive inference, which is effective but requires
quadratic-time computational complexity. Although some Transformer variants (Kitaev et al., 2020;
Katharopoulos et al., 2020) are proposed to reduce the compute and memory requirements, their
performances on long-range reasoning remain considerably suboptimal (Gu et al., 2021). Inspired
by RNNs, RWKV (Peng et al., 2023) combines the parallel training of transformers with the effi-
cient inference of RNNs. Similarly, other recurrent models aim to compress context into a finite
state, offering constant-time inference and linear-time training, but their effectiveness is limited by
the quality of compression and a fixed representation space (Qin et al., 2023). More recently, SSM-
based methods (Smith et al., 2022; Fu et al., 2022; Mehta et al., 2022) have emerged as a promising
alternative to sequence models such as RNNs and Transformers. For example, HiPPO (Gu et al.,
2020) pioneered compressing long inputs into dynamic representations using orthogonal polynomi-
als, while S4 (Gu et al., 2021) advanced this with low-rank corrections for stable diagonalization
and simplified Cauchy kernel operations. Mamba (Gu & Dao, 2023) focuses on selective state
representations to optimize efficiency and effectiveness, using a selection mechanism and hardware-
optimized algorithms to maintain robust contextual information capture. All above methods are
based on artificial neurons with analog-valued output, resulting in dense vector-matrix multipli-
cation (VMM) and huge computational costs. In contrast, the proposed SPikE-SSM utilizes the
compatibility between the remarkable LRDs modeling ability of SSMs and the intrinsic dynamics
of SNNs, promoting sparse training and fully parallel inference with trainable temporal dynamics.

2.2 SNNS-BASED SEQUENCE MODELING AND APPLICATIONS

SNNs (Ghosh-Dastidar & Adeli, 2009) have gained attention as a compelling bio-plausible and
computational efficient substitute for traditional artificial neural networks (ANNs) in many vision
tasks. However, SNNs have struggled to make significant progress in long-sequence modeling tasks
due to the inherent serial computing nature. Therefore, to train SNNs in parallel, PSN (Fang et al.,
2024) simplifies spiking neuron by omitting the reset mechanism, leading to reduced sparsity. To
handle this issue, a probabilistic reset mechanism is proposed in PSU (Li et al., 2024) to achieve
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parallel computing with elevated sparsity by decoupling the integration-spiking-resetting process,
which comes at the expense of higher computational complexity. With the recent resurgence of
SSMs, there has been a renewed focus on applying efficient parallel computing to SNNs. For ex-
ample, SpikeS4 (Du et al., 2024) integrates LIF neurons with S4 layers for speech learning. Binary
S4D builds a binary SSM by applying a spiking activation directly to the sum of hidden states,
enabling parallel training but neglecting neuronal dynamics (Stan & Rhodes, 2023). To further en-
hance sparsity, a stochastic spiking neuron is proposed in S6-based SNN (Bal & Sengupta, 2024),
which is trained with stochastic noises in gradients, resulting in accuracy degradation. More re-
cently, SpikingSSMs (Shen et al., 2024) utilizes a surrogate dynamic network (SDN) to approxi-
mate the dynamics of LIF neurons, which extremely accelerates the training and inference by par-
allel computing. However, the pre-training requirement of SDN could constrain its application on
more general dynamic spiking neurons which are hard to approximate. Due to the effectiveness of
spike-based sequence learning, some SNNs-based language models are proposed for more efficient
language modeling, such as SpikeGPT (Zhu et al., 2023) and SpikeBERT (Lv et al., 2023). In con-
trast to existing spiking SSMs, SPikE-SSM proposed in this paper realizes comprehensive parallel
acceleration with trainable temporal dynamics, efficiently achieving both high sparsity and excel-
lent accuracy for long-range dependencies learning, which possesses the potential and prospects for
constructing low-energy language models and enabling widespread applications.

3 METHOD

3.1 PRELIMINARIES OF SSMS AND LIF NEURON

SSMs. According to (Gupta et al., 2022) and (Gu et al., 2021), SSMs provide a framework for
long sequences modeling with lower computational complexity, which aims to transform an input
sequence x(t) = (x0, · · · , xL−1) ∈ R1×L into an output sequence y(t)(y0, · · · , yL−1) ∈ R1×L,
where L is the length of sequence. This transformation occurs with the aid of an implicit latent state
h(t) ∈ RN×1, which captures the underlying dynamics and relationships between the input and
output sequences. The continuous representation of this model is formulated as:

dh(t)

dt
= h′(t) = Ah(t) +Bx(t), y(t) = Ch(t), (1)

where the state matrix A ∈ RN×N and vectors B ∈ RN×1, C ∈ R1×N are the parameters. To
adapt SSM to real-world discrete data, one can discretize the continuous formulation Eq. (1) with
discretization rules such as zero-order hold (Gupta et al., 2022; Voelker et al., 2019). Then x(t) can
be mapped to y(t) in a recurrent view:

Ā = e∆A, B̄ = A−1(Ā− I)B, C̄ = C =⇒ ht = Āht−1 + B̄xt, yt = C̄ht, (2)

where ∆ ∈ R+ is the sample time, and h−1 = 0 for convenience. Note that the recurrence operation
in Eq. (2) can be explicitly unrolled as a kernel view:

yk =

k∑
j=0

K̄j · xk−j , K̄ =
(
CB,CAB, . . . , CA

L−1
B̄
)
∈ R1×L, (3)

which requires O(L2) multiplications despite all the elements of y can be expediently computed in
parallel by computing the kernel K̄ first. Fortunately, Eq. (3) can be accelerated by Fast Fourier
Transform (FFT) (Duhamel & Vetterli, 1990) with time complexity O(L logL) (Gupta et al., 2022).

LIF Neuron. The LIF neuron is widely used in spiking networks (Eshraghian et al., 2023), as it can
capture the “leaky-integrate-fire-reset” process and balances ease of implementation with temporal
dynamics by simplifying an RC circuit dynamical system (Gerstner et al., 2014). Let t denote the
time step, the input currents I are linearly integrated into the membrane potential u in LIF neuron,
the process of which can be formulated as follows.

τ
du(t)

dt
= −u(t) + IR, u′

t = βut−1 + (1− β)It, st = Hs (u
′
t − vth) , (4)

where τ ∈ R is the time constant and β is its discrete-time equivalent. R denotes the resistivity.
u′
t and ut are the membrane potentials before and after the trigger of a spike. Hs denotes the the
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Algorithm 1 The Optimization Process of Parallel Max-min Boundary Compression (PMBC)
Input: Parameters τ, vth, Uth; Input signal I ∈ R1×L; Maximum of iterations M .
Output: Spiking signals s ∈ R1×L.
1: Define p = (τ0, τ1, · · · , τL−1); k = iFFT (FFT (I) · FFT (p)).
2: Initialize sup = (1, · · · , 1) ∈ R1×L and slow = (0, · · · , 0) ∈ R1×L.
3: Repeat up to M times:
4: mup = Uth · iFFT (FFT (p) · FFT (sup)) + vth;
5: mlow = Uth · iFFT

(
FFT (p) · FFT

(
slow

))
+ vth;

6: If kt > mup
t , then slowt = 1; If kt < mlow

t , then supt = 0;
7: Until convergence of spike rate 1

L

∑
i s

low
i .

8: Return s = slow.

Heaviside function of LIF. As spikes are discrete events highly localized in time, a spike s is emitted
when the membrane potential exceeds the firing threshold (vth ∈ R), that is st = 1, otherwise
st = 0. After firing, the membrane voltage is adjusted by the reset mechanism, making subsequent
spiking more difficult. Specifically, the membrane voltage is either reset to a specific value ur (hard
reset) or reduced by subtracting the same value vth as the firing threshold (soft reset), that is:

soft reset: ut = u′
t − stvth, hard reset: ut = u′

t (1− st) + ur. (5)

From Eq. (5) we can observe that the hard reset clears all historical membrane voltage signals,
while the soft reset retains a proportion of them after spiking, which is more bio-plausible. Further-
more, we creatively decouple the firing threshold value and soft reset magnitude into vth and Uth

respectively, which can promote the representation capability of LIF neuron. However, all the reset
mechanisms introduce unavoidable iterative computations due to the form of temporal dependence
and Heaviside function, similar to the nonlinearities in RNN.

3.2 PARALLEL MAX-MIN BOUNDARY COMPRESSION (PMBC)

This subsection aims to address Challenge ❶. According to discretizing the LIF neuron with the
soft reset mechanism in Eq. (5) combined with a decoupling reset magnitude Uth, we can obtain the
following formula:

ut = τut−1 − st−1Uth + It, st = Hs (ut − vth) . (6)

The output membrane voltage u is iteratively computed by Eq. (6) since ut depends on the spiking
history from the previous time steps, notwithstanding the input current I can be obtained in parallel.
This leads to a significant reduction in computational efficiency, especially for long sequence inputs.
To solve this problem, we propose the following assertion, which lays the foundation for subsequent
parallel computation to accelerate training and inference (See Appendix A.1 for the proof).

Assertion 3.1. The historical input signal I and spiking information s are deconstructed in the
iteration process of Eq. (6), which is equivalent to:

ut = kt −mt + vth, st = Hs (kt −mt) , (7)

where kt =

t∑
i=1

τ t−iIi, mt = Uth

t−1∑
i=1

τ t−1−isi + vth. (8)

Note that τ and vth are fixed in one training step. Given Ii at all times, notice that the form of k is
the convolution of input sequence I and the exponential sequence of τ , we can obtain kt at all times
in parallel with accelerated calculation through FFT. The question of whether we can obtain st in
parallel becomes how to obtain mt at different times in parallel. To this end, we propose the PMBC
strategy to address Challenge ❶. It can be observed that the spiking signal s is a binary variable,
taking a value of either 0 or 1. Thus we can initialize the upper and lower bounds of mup

t and mlow
t

by setting all the spiking signals si = 1,(i = 0, · · · , L− 1) and sj = 0,(j = 0, · · · , L− 1) respec-
tively. The two bounds can be utilized to compare with kt simply, obtaining most spiking signals st
by parallel computation, and then update bounds values using these new st. This process can be it-
erated until convergence in order to obtain all spiking states as shown in Figure 2(a). We summarize
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Figure 2: Intuitive execution process of PMBC in Algorithm 2. ESS means explicit spiking state.

the process of parallel computation of PMBC as Algorithm 1. After finite iterations of PMBC, there
may exist still a few fuzzy spiking signals si unidentified, which can be assigned randomly or based
on a prior distribution. The detailed discussion about the fuzzy spiking signals is provided in the
Appendix C.3.2. To promote a lower spiking rate, we choose s = slow as the final output of spiking
signals. To accelerate training and inference, we implement the FFT and inverse FFT operations
with only setting M = 3, and the experimental results have proven that this configuration is capable
of identifying around 99% of the spiking signals without compromising accuracy. Our method can
determine the majority of spikes in the initial iterations, as shown in Figure 2(b). This is because the
distribution of kt is closely tied to I , which is influenced by the normalization process before. With
a proper initialization of vth, the first PMBC iteration effectively identifies that most spiking signals
are zero. This significantly reduces the number of required iterations and improve training efficiency
(e.g., M = 3 vs. L = 1024). Figure 2(c) provides an intuitive comparison between traditional serial
computing and PMBC. The detailed analysis of the boundary evolution and convergence process of
PMBC in Figure 2 are described in the Appendix B.1. Particularly, we have the following assertion
(see Appendix A.2 for proof):
Assertion 3.2. For the input signal y ∈ R1×L, all the spiking signals can be identified with finite it-
erations of PMBC (≤ L), achieving significant acceleration compared to original serial computing.

3.3 REFRACTORY LIF NEURON MODEL

In biological neurons, spiking is usually followed by a refractory period during which new spiking is
more difficult. This mechanism improves the overall sparsity of the network and could substantially
reduce its energy consumption. Therefore, to simulate the intrinsic temporal dynamics of realistic
neurons and further improve network sparsity, we introduce an innovative refractory LIF neuron
model based on the soft reset mechanism, which effectively addresses Challenge ❷. The LIF neuron
with a refractory period can be mathematically described as:

ut = τut−1+It −RtUth, st = Hs(ut − vth), (9)
where Rt = τrRt−1 + st−1, (10)

In our refractory neuron model, τr is the refractory magnitude. Rt denotes the refractory period-
based sliding pulse, which is determined by both spiking signal st−1 and Rt−1 in the last time step.
From Eq. (10) we can observe that the larger the value of the previous sliding pulse Rt−1, the greater
Rt becomes, causing membrane voltage ut to decrease accordingly, which makes it harder for the
neuron to spike again during the refractory period. Similar to Assertion 3.1, we have the following
results for the proposed refractory neuron model (see Appendix A.3 for the proof):
Assertion 3.3. In the refractory LIF neuron, the historical input signal I and spiking information s
is deconstructed in the iteration process of Eq. (9), which is equivalent to:

ut = kt −mt + vth, st = Hs (kt −mt) , (11)

where kt =

t∑
i=1

τ t−iIi, mt = Uth

t−1∑
i=1

t−1−i∑
j=0

(τ/τr)
jτ t−1−i

r si + vth. (12)

The PMBC algorithm of the refractory LIF neuron is summarized as Algorithm 2 in Appendix B.2,
which only differs from the LIF neuron with soft reset in the representation of mt.
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Figure 3: The SPikE-SSM block. (Left) Forward computation graph of a single SPikE-SSM layer.
(Right) Comparison of SSMs. The original SSM outputs floating-point numbers, while SPikE-SSM
replaces its non-linearity with the proposed refractory neuron model, which can incorporate higher-
level neuronal dynamics for long sequence modeling. D, N , and L represent the model dimension,
SSM hidden dimension, and sequence length, respectively. SAF is the spiking activation function.

3.4 THE BLOCK OF SPIKE-SSM

For Challenge ❸, due to the exceptional long sequence modeling capability of SSMs, we integrate
the proposed refractory neuron with soft reset mechanism and PMBC to the inherent SSM block,
which aims to maintain both the high sparsity and excellent accuracy in the inference progress.
In the proposed SPikE-SSM, we choose the original block of S4D model (Gu et al., 2022) as the
backbone since it can achieve pragmatic simplification to enhance model efficiency as the latest
diagonal version of SSM. Then the output y of the S4D block is activated by the proposed refractory
neuron, hence Eq. (9) is rewritten as follows with Eq. (10) unchanged:

yt = C̄ht, ut = τut−1 + yt −RtUth, st = Hs(ut − vth). (13)

Inspired from (Rathi & Roy, 2021), we render vth and Uth as trainable parameters within the SPikE-
SSM block. This approach is motivated by their pivotal role in regulating the neuron’s spiking
rate, thereby not only bolstering the SPikE-SSM’s capability to attain exceptional performance and
expedite the convergence of PMBC, but also serving as a further stepping stone to tackle Challenge
❸ with greater efficacy. The results of Eq. (13) are fed into a linear layer that comprises a Conv1D
operation followed by a GLU activation function (Dauphin et al., 2017). The Conv1D enables
efficient local feature extraction, while the GLU activation selectively gates the information flow,
improving the model’s ability to capture critical patterns in sparse binary data. Since the Heaviside
function Hs is non-differentiable at x = 0, we adopt the surrogate gradient (SG) method in SPikE-
SSM. The details of SG in our method are provided in the Appendix B.3.

Figure 3 presents the forward computation graph of the SPikE-SSM block and the comparison with
the original S4 blocks. Notably, from a neurobiological perspective, the SPikE-SSM block resem-
bles a multi-time scale dendritic neuron (London & Häusser, 2005; Zheng et al., 2024), where h
represents the dendrites and y the soma, both showing self-recurrent temporal dynamics.

4 EXPERIMENTS

In this section, we conduct extensive experiments to validate the superiority of our method, including
the testing of long-range modeling capabilities on the sequential LRA and WikiText-103 tasks, with
ablation studies and other related analyses. More experiments are shown in the Appendix C.

4.1 DATASETS AND EXPERIMENTAL SETTINGS

Datasets. In this paper, we perform experiments on extensive long sequence databases, including
sequential MNIST (sMNIST) (Le et al., 2015), LRA benchmarks (comprising six tasks) (Tay et al.,
2020) and WikiText-103 (one large Wikipedia text data) (Merity et al., 2016). The Details of these
datasets are shown in the Appendix C.1.
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Table 2: Accuracy performance comparison of SPikE-SSM and state-of-the-art methods on the
LRA benchmarks. Since the original S4D-Lin failed on the Path-X task, we report the results of its
close variant, S4D-Inv. Following S4D, we assume 50% accuracy for Path-X when not available and
calculate the overall average (AVG) across all tasks. The best two results are highlighted in bold.
For SpikingSSM and SPikE-SSM, the spiking rates (↓) of each task are highlighted in shaded gray
areas. “—” indicates not applicable or unworkable, same for the other tables in this paper.

Method SNN ListOps Text Retrieval Image Pathfinder Path-X AVG

Transformer (Vaswani et al., 2017) No 36.37 64.27 57.46 42.44 71.40 — 53.66
LMUFormer (Liu et al., 2024) No 34.43 68.27 78.65 54.16 69.90 — 59.24
S4D-Lin (Gu et al., 2021) No 60.52 86.97 90.96 87.93 93.96 92.80 85.52

Spiking LMUFormer (Liu et al., 2024) Yes 37.30 65.80 79.76 55.65 72.68 — 60.20
Binary S4D (Stan & Rhodes, 2024) Yes 54.80 82.50 85.03 82.00 82.60 61.20 74.69
S6-based SNN (Bal & Sengupta, 2024) Yes 55.70 77.62 88.48 80.10 83.41 — 72.55

SpikingSSM (Shen et al., 2024) Yes 59.93 82.35 88.20 86.81 93.68 94.80 84.30
(13%) (10%) (6 %) (22%) (7 %) (10%) (11%)

SPikE-SSM (ours) Yes 60.17 82.43 88.82 87.23 92.04 94.37 84.18
(12%) (3 %) (7 %) (10%) (9 %) (7 %) (8 %)

Table 3: Perplexity performance comparison of SPikE-SSM with SOTA methods on WikiText-103.
The symbol ↓ indicates that a smaller value for this metric is better, the same for other tables.

Method SNN Perplexity (↓) Parameters Layer Count Spiking Rate (↓)
Transformer (Vaswani et al., 2017) No 20.51 231M 48 —
S4 (Gu et al., 2021) No 20.95 249M 48 —

SpikeGPT (Zhu et al., 2023) Yes 39.75 213M 48 —
SpikingSSM (Shen et al., 2024) Yes 33.94 75M 16 26.4%
SPikE-SSM (ours) Yes 33.18 75M 16 24.5%

Implementation Details. The hyper-parameters τ and τr are set to 0.1 and 0.9, respectively. To
ensure the threshold and refractory magnitude are positive during training, the trainable parameters
vth and Uth are computed by exp(vth) and exp(Uth) with zero initialization (i.e. exp(vth) and
exp(Uth) are initialized as 1). Other parameters of SPikE-SSM blocks are initialized same as S4D-
Lin (Gu et al., 2022). SPikE-SSM is trained with Pytorch library on four NVIDIA A100-SXM4-
80GB GPUs and AMD EPYC 7642 48-core CPUs, using AdamW optimization (Loshchilov, 2017).
For sCIFAR10, sMNIST, psMNIST and LRA benchmarks, the model is trained by the cross-entropy
loss (Mao et al., 2023) with accuracy (Acc) results reported, while the Perplexity results are reported
for WikiText-103. The division of training and test data is consistent with (Shen et al., 2024). The
details of settings on nine different tasks are described in Table 7 in Appendix C.2, including six
LRA benchmarks, three sequential vision tasks, and a large text dataset (WikiText-103).

4.2 PERFORMANCES COMPARISONS

Results on LRA Benchmarks. Table 2 compares SPikE-SSM with both non-spiking and spiking
networks using Transformer or SSM architectures . While maintaining accuracy comparable to the
original model, SPikE-SSM achieves an average network sparsity of less than 10%. Additionally,
our model shows a significant performance improvement over previous SNN sequence models. No-
tably, SPikE-SSM successfully tackles the Path-X task with extreme sparsity (only 0.07%). This
task, which demands reasoning over long-range dependencies across sequences with 16,384 steps,
is highly challenging and unsolvable by S4D-Lin, highlighting the robustness of our method.

Results on WikiText-103. In addition to LRA datasets, we further conduct experiments on the
large Wikipedia text data, WikiText-103, to prove the advanced long sequence learning ability of
SPikE-SSM against existing SOTA methods. The Perplexity results are shown in Table 3, which can
be observed that SPikE-SSM achieves better performance with fewer parameters. Although model
sparsity can improve computational efficiency, it is generally observed that achieving high accuracy
often conflicts with maintaining strong sparsity, as sparsity typically results in information loss.
However, it is particularly noteworthy that SPikE-SSM achieves both higher sparsity and accuracy
compared to SpikingSSM, fully validating the effectiveness and superiority of the proposed model.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Ablation studies of SPikE-SSM of different variants reported. Acc and SpkR denote Accu-
racy(%) ↑ and Spiking Rate(%) ↓ respectively. Spiking Rate is not applicable for ANN-S4D.

Dataset sMNIST psMNIST sCIFAR10

Criterion Acc (%) SpkR (%) Acc (%) SpkR (%) Acc (%) SpkR (%)

ANN-S4D 99.50 — 98.20 — 87.11 —
Spiking-S4D 99.46 7.81 97.68 7.73 85.34 12.70
SPikE-SSM-SR 99.50 7.23 97.61 6.81 85.29 12.56
SPikE-SSM-SRT 99.51 6.09 96.97 5.65 85.61 11.03
SPikE-SSM-SRR 99.39 5.07 96.25 4.57 84.35 10.26

SPikE-SSM-Full 99.53 5.56 97.89 5.13 85.67 9.85

Table 5: Comparison of training speed of different methods. Training with the PMBC strategy
achieves significant acceleration, the speed-up ratio amplifies with increasing sequence length.

Method Speed (iterations / s) ↑
L = 1K L = 2K L = 4K L = 8K

Training with BPTT (Mozer, 2013) 0.60 0.29 0.11 0.03
Training with SLTT (Meng et al., 2023) 0.73 0.33 0.12 0.03
Training with PMBC (ours) 17.1 10.1 5.28 2.63

Speed-up Ratio 25.6× 32.2× 47.9× 81.7×

4.3 ABLATION STUDY

We conduct ablation studies to verify the design rationality of SPikE-SSM following the same ex-
perimental setups as Table 2. The variants with different levels of biological interpretability include:

• ANN-S4D. ANN-based SSM (S4D) model.
• Spiking-S4D. LIF-based spiking SSM without reset mechanism and refractory period.
• SPikE-SSM-SR. Only the soft reset mechanism is considered in the LIF neuron of SPikE-

SSM block with PMBC, as shown in Eq. (6).
• SPikE-SSM-SRR. Both the soft reset mechanism and refractory period are considered in

the LIF neuron of SPikE-SSM block with PMBC, as shown in Eq. (9-10).
• SPikE-SSM-SRT. Only the soft reset mechanism is considered in the LIF neuron of SPikE-

SSM block with PMBC. Uth and Vth are trainable.
• SPikE-SSM-Full. Both the soft reset mechanism and refractory period are considered in

the LIF neuron of SPikE-SSM block with PMBC. Uth and Vth are trainable.

Note that Uth and Vth are trainable only in SPikE-SSM-Full and SPikE-SSM-SRT. We compare
the performances of different variants of SPikE-SSMs on sMNIST, psMNIST and sCIFAR10. The
results are shown in Table 4, from which we can observe that each component designed for three
Challenges is effective in SPikE-SSM. Specifically, the proposed refractory neuron model with the
soft reset mechanism can optimize both high accuracy and pronounced sparsity with the thresholds
vth and refractory magnitudes Uth trainable in the SPikE-SSM block. More ablation studies about
hyper-parameters τ and τr, fire modes of fuzzy spiking signals, and the number of iterations M in
PMBC are shown in Tables 8 and 9 in the Appendix C.3.1, Tables 10 and 11 in the Appendix C.3.2,
and Tables 12 and 13 respectively in the Appendix C.3.3, where our experiments in Figure 5 illus-
trates that SPikE-SSM with fixed τ and τr performs better than that with trainable τ and τr.

4.4 TRAINING SPEED AND COMPUTATION COST ANALYSE

The Superiority of PMBC on Training Speed. We compare the training speed of SPikE-SSM,
enhanced by our PMBC strategy, against traditional methods based on iterative LIF neurons, includ-
ing Back-Propagation Through Time (BPTT) (Mozer, 2013) and the more recent Spatial Learning
Through Time (SLTT) (Meng et al., 2023), which uses an optimized computational graph. The input
consists of randomly generated 1-D sequences with various lengths of L = 1K, 2K, 4K, and 8K,

9
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Table 6: Computation cost comparison of SSM with ANN settings, SpikingSSM and SPikE-SSM
on WikiText-103. ”Ops” is an abbreviation for “operations”.

Model Ops Types Num of Ops (G) ↓ Energy Cost (mJ) ↓
SSM with ANN Settings MAC 275 1265
SpikngSSM (Shen et al., 2024) AC 72.66 65.40
SPikE-SSM AC 67.68 60.68
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SpikingSSM on WikiText-103:   26.4
SPikE-SSM on WikiText-103:    24.5 (Ours)

SpikingSSM on sCIFAR10:   15.1
SPikESSM on sCIFAR10:     10.1 (Ours)

Figure 4: Spiking rate across all layers of SPikE-SSM and SpikingSSM on sCIFAR10 and WikiText-
103 datasets. The number following each legend represents the respective average spiking rate.

and a batch size of 64. All time measurements were conducted on a single NVIDIA A100-SXM4-
80GB GPU. As shown in Table 5, the speedup ratio using PMBC increases with sequence length,
achieving a nearly two-order acceleration at 8K.

The Energy-efficiency of SPikE-SSM. We compare the energy costs of the proposed SPikE-
SSM and its corresponding ANN-based version on WikiText-103, the sequence length of which
is L = 8192. Spiking networks are considered energy-efficient due to sparse binary activation. The
multiplication between a binary activation and a floating-point weight can be performed using only
addition operations in some neuromorphic chips (Yao et al., 2024). As a result, the primary oper-
ation in SNNs, synaptic accumulation (AC), incurs lower energy costs compared to the multiply-
and-accumulate (MAC) operation in traditional ANNs. Although the hardware specifics and neuron
dynamics are not considered here, a theoretical analysis can provide an estimate of SNN efficiency.
Following previous studies (Yao et al., 2024; Li et al., 2024), we assume the energy cost of an MAC
operation is EMAC = 4.6pJ , while an AC operation costs EAC = 0.9pJ (Horowitz, 2014). In this
part of the experiment, our model is set to comprise 16 layers, including a linear layer that projects
spikes from d = 1024 to d = 2048. For specific quantitative comparison, we first report the spiking
rates across different layers of SPikE-SSM in Figure 4. Then we report the MAC, AC, and energy
consumption in these feature-mix layers since they occupy the majority of parameters and computa-
tions. Specifically, if these projections were fully computed via floating-point multiplications (SSM
with ANN-based settings), they would require 275.2G MACs, consuming approximately 1.265J .
However, in our model (SPikE-SSM with SNN-based settings), the inputs to these layers are binary,
with an average spiking rate of less than 25%. Based on the spiking rates in Figure 4, our model per-
forms 67.42G ACs, consuming 60.68mJ . The results are summarized in Table 6, which illustrate
the high energy efficiency of SPikE-SSM compared with ANN-based SSM and SpikingSSM.

5 CONCLUSION

In this paper, we introduced SPikE-SSM, a novel spiking state space model designed to address key
challenges in long-sequence learning with SNNs. Specifically, we innovatively address the conflict
of event-driven neuronal dynamics with parallel computing in long sequence modeling by the PMBC
method, enabling explicit and efficient training of neuronal dynamics. Subsequently, a concise reset-
refractory neuron model is proposed to exploit the functionality of biological-plausible temporal
dynamics. Its effective integration with the SSM block and incorporation of trainable thresholds
and refractory magnitudes realize a balance between sparsity and accuracy. Extensive experiments
on sequential vision tasks, LRA benchmarks, and WikiText-103 language modeling validate the
superior efficiency, accuracy, and sparsity of SPikE-SSM. Our work shows the potential of dynamic
spiking neurons in efficient long sequence learning.
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A THE PROOFS

A.1 THE PROOF OF ASSERTION 3.1

We utilize the Mathematical Induction Theory (Bather, 1994) to prove Assertion 3.1. As the pre-
supposition, we set s0 = 0 and u0 = 0, which is reasonable since there’s no signal at t = 0 with the
time step of the spiking signal s, membrane voltage u, refractory momentum R and input current I
signal all considered as 1 to L, that is st, ut, Rt and It, t = 1, · · · , L. On this basis, according to
Eq. (6) (ut = τut−1 − st−1Uth + It, st = Hs (ut − vth)), we have the following derivation.

Firstly, consider t = 1, we can obtain:

u1 = τu0 − s0Uth + I1
s1=Hs(u1−vth)−−−−−−−−−−→ k1 = I1, m1 = vth, (14)

which is congruent to Eqs. (7-8) with t = 1. Then, to verify that Eqs. (7-8) hold for all t ∈ [1, L],
we assume that Eqs. (7-8) hold for t = t1 ∈ [1, L− 1], that is

ut1 = kt1 −mt1 + vth, st1 = Hs (kt1 −mt1) , (15)

where kt1 =

t1∑
i=1

τ t1−iIi, mt1 = Uth

t1−1∑
i=1

τ t1−1−isi + vth, (16)

based on this we have:

ut1+1 = τut1 − st1Uth + It1+1, st1+1 = Hs (ut1+1 − vth) . (17)

According to substituting the ut1 in Eq. (15) into Eq. (17), we have:

ut1+1 =τ (kt1 −mt1 + vth)− st1Uth + It1+1 (18)

=τ

(
t1∑
i=1

τ t1−iIi −

(
Uth

t1−1∑
i=1

τ t1−1−isi + vth

)
+ vth

)
− st1Uth + It1+1 (19)

=τ

t1∑
i=1

τ t1−iIi + It1+1 − Uth

t1−1∑
i=1

τ t1−1−isi − st1Uth (20)

=

t1+1∑
i=1

τ t1+1−iIi −

(
Uth

t1∑
i=1

τ t1−isi + vth

)
+ vth (21)

=kt1+1 −mt1+1 + vth (22)

Therefore, Eqs. (7-8) hold for t = t1 + 1 ∈ [2, L]. According to the Mathematical Induction The-
ory (Bather, 1994), we can conclude that Eqs. (7-8) hold for all the t ∈ [1, L], so that Assertion 3.1
holds. Q.E.D.

A.2 THE PROOF OF ASSERTION 3.2

We assume that the dimension of input signal I is L for the refractory LIF neurons with the soft
reset. Firstly, according to Eq. (7) and Eq. (8), we have

k1 = I1, m1 = vth. (23)

Hence we can definitely obtain s1 = Hs (k1 −m1) in the first iteration of PMBC. Then, without
loss of generality, for the (a + 1)-th iteration of PMBC, we assume that the first a spiking signals
(i.e. s1, s2, · · · , sa) have been obtained. Note that ma+1 is only related to the first a spiking signals:

ka+1 =

a+1∑
i=1

pa+1
a+1−iyi, ma+1 = Uth

a∑
i=1

qa+1
a−i si + vth, (24)

where pa+1 = (τ0, τ1, · · · , τa), qa+1 = (0, τ0, τ1, · · · , τa−1). Therefore, in the b-th itera-
tion of PMBC, at least one new spiking signal (sa+1) can be definitely obtained by sa+1 =
Hs (ka+1 −ma+1), thus the maximum number of iterations of PMBC is no more than L. Q.E.D.
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In fact, due to the parallel computing mechanism of PMBC, the actual number of iterations is much
smaller than L. As shown in Figure 2(b), after only 5 iterations, the explicit spiking state exceeds
99%, whereas processing a 1024-dimensional input sequence serially would require 1024 iterations,
highlighting the efficiency of PMBC. Detailed experimental proofs and analysis are shown in Sec-
tion B.1. Based on the proof process for Assertion 3.1, we can conclude that the distribution of
kt is closely related to yt, where yt is the output obtained from the previous SSM block, calcu-
lated through layer normalization. Therefore, if SPikE-SSM initializes vth = 1 during training, the
first iteration of PMBC can effectively determine that most of the spiking signals are zero. This
significantly reduces the number of required iterations and accelerates training efficiency.

A.3 THE PROOF OF ASSERTION 3.3

Similarly to the proof of Assertion 3.1, we utilize the Mathematical Induction Theory (Bather, 1994)
to proof Assertion 3.3. As the presupposition, we set s0 = 0, u0 = 0,and R0 = 0, which is
reasonable since there’s no signal at t = 0 with the time step of the spiking signal s, membrane
voltage u and input current I signal all considered as 1 to L, that is st, ut, and It, t = 1, · · · , L.
On this basis, according to Eqs. (11-12) (ut = τut−1 + It − RtUth, Rt = τrRt−1 + st−1, st =
H(ut − vth)), we can transform the problem into proving the following equation first.

ut = kt −mt + vth, st = Hs (kt −mt) , (25)

where kt =

t∑
i=1

τ t−iIi, mt = Uth

t−1∑
i=1

τ t−1−iRi+1 + vth, Rt+1 = τrRt + st, (26)

Firstly, consider t = 1, we can obtain:

u1 = τu0 −R1Uth + I1
s1=Hs(u1−vth)−−−−−−−−−−→
R1=τrR0+s0

k1 = I1, m1 = vth, (27)

which is congruent to Eq. (26) with t = 1. Then, to verify that Eqs. (25-26) hold for all t ∈ [1, L],
we assume that Eqs. (25-26) hold for t = t1 ∈ [1, L− 1], that is

ut1 = kt1 −mt1 + vth, st1 = Hs (kt1 −mt1) , (28)

where kt1 =

t1∑
i=1

τ t1−iIi, mt1 = Uth

t1−1∑
i=1

τ t1−1−iRi+1 + vth, Rt1+1 = τrRt1 + st, (29)

based on this we have:

ut1+1 = τut1 −Rt1+1Uth + It1+1, st1+1 = Hs (ut1+1 − vth) . (30)

According to substituting the ut1 in Eq. (28) into Eq. (30), we have:

ut1+1 =τ (kt1 −mt1 + vth)−Rt1+1Uth + It1+1 (31)

=τ

(
t1∑
i=1

τ t1−iIi −

(
Uth

t1−1∑
i=1

τ t1−1−iRi+1 + vth

)
+ vth

)
−Rt1+1Uth + It1+1 (32)

=τ

t1∑
i=1

τ t1−iIi + It1+1 − Uth

t1−1∑
i=1

τ t1−1−iRi+1 −Rt1+1Uth (33)

=

t1+1∑
i=1

τ t1+1−iIi −

(
Uth

t1∑
i=1

τ t1−iRi+1 + vth

)
+ vth (34)

=kt1+1 −mt1+1 + vth (35)

Therefore, Eqs. (25-26) hold for t = t1 +1 ∈ [2, L]. According to the Mathematical Induction The-
ory (Bather, 1994), we can conclude that Eqs. (25-26) hold for all the t ∈ [1, L]. Subsequently, the
parallel calculation form of the membrane potential of the LIF neuron with soft reset and refractory
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period can be expressed as:

ut =

t∑
i=1

τ t−iIi − Uth

t∑
i=1

τ t−iRi (36)

=

t∑
i=1

τ t−iIi − Uth

t∑
i=1

τ t−i(

i−1∑
j=1

τ i−1−j
r sj) (37)

=

t∑
i=1

τ t−iIi − Uth

t−1∑
i=1

t−1−i∑
j=0

τ jτ t−1−i−j
r si (38)

=

t∑
i=1

τ t−iIi − Uth

t−1∑
i=1

t−1−i∑
j=0

(τ/τr)
jτ t−1−i

r si (39)

st = Hs(ut − vth), kt =

t∑
i=1

τ t−iIi (40)

mt = Uth

t−1∑
i=1

t−1−i∑
j=0

(τ/τr)
jτ t−1−i

r si + vth (41)

Therefore, Assertion 3.3 holds. Q.E.D.

Apparently, Eqs. (11-12) degrade to the version of SPikE-SSM-RS without the refractory period
when τr = 0.

B MORE DETAILS RELATED TO SPIKE-SSM

B.1 DETAILED DESCRIPTION AND ANALYSIS FOR FIGURE 2

To clearly demonstrate the implementation process and effectiveness of PMBC, we present the evo-
lution of the boundary and convergence process in Figure 2.

(1) In Figure 2(a), we illustrate the boundary’s evolution of a particular neuron chosen at random
during training as PMBC iterations increase over different time steps. In the top part of Figure 2(a),
before the first iteration, with all spiking signals si setting to 1, mup

t (0) increases slowly as the time
step t progresses, with growth gradually leveling off until stabilizing. This is consistent with Eq. (8),
as 0 < τ < 1 causes τ t to approach 0 over time, mup

t (0) approaches Uth/(1− τ) + vth when t is
large. Conversely, with all spiking signals si setting to 0, mlow

t (0) remains vth across all time steps.
After the first iteration of PMBC, partial binary spiking signals si are explicitly obtained, leading
to two outcomes: in some time steps, mlow

t (1) apparently increases compared to mlow
t (0), while

in others, mup
t (1) apparently decreases compared to mup

t (0). It is observed that spiking states that
are quickly identified are often following several kt that are too large or too small in succession.
In the bottom part of Figure 2(a), inherited from the convergence process of mup

t and mlow
t in

the top part, the results after 5 iterations of PMBC are shown, where mlow
t (5) and mup

t (5) become
almost identical. Eventually, nearly all binary spiking signals si are explicitly determined based on
st = Hs(kt−mt), by comparing kt and mt in parallel and efficiently, omitting the serial computing
of membrane potential ut.

(2) In Figure 2(b), we show the convergence curve of the explicit spiking state as PMBC iterations
increase. The explicit spiking state refers to the proportion of spiking signals that are explicitly
determined across all time steps. From Figure 2(b), it is evident that PMBC can resolve most of the
spikes in just a few iterations, significantly fewer than the original serial computation method used
for LIF neurons (Eq. (4)). After only 5 iterations, the explicit spiking state exceeds 99%, whereas
processing a 1024-dimensional input sequence serially would require 1024 iterations, highlighting
the efficiency of PMBC.

(3) In Figure 2(c), we provide an intuitive comparison between the PMBC method based on parallel
computing and the traditional serial computation method. For a sequence of length L, the serial
method requires L iterations, whereas the PMBC approach processes all L tokens simultaneously in
parallel, requiring only M iterations, with M much smaller than L.
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Algorithm 2 The Optimization Process of PMBC for the Refractory LIF Neuron
Input: Parameters τ, τr, Uth and vth; Input signal I ∈ R1×L; Maximum of iterations M .
Output: Spiking signals s ∈ R1×L.
1: Define p = (τ0, τ1, · · · , τL−1), q : qt = τ tr ·

∑t
j=0(τ/τr)

j ; k = iFFT (FFT (I) · FFT (p)).
2: Initialize sup = (1, · · · , 1) ∈ R1×L and slow = (0, · · · , 0) ∈ R1×L.
3: Repeat up to M times:
4: mup = Uth · iFFT (FFT (q) · FFT (sup)) + vth;
5: mlow = Uth · iFFT

(
FFT (q) · FFT

(
slow

))
+ vth;

6: If kt > mup
t , then slowt = 1; If kt < mlow

t , then supt = 0;
7: Until convergence of spike rate 1

L

∑
i s

low
i .

8: Return s = slow.

In fact, the parallel PMBC method makes explicitly training parametric LIF neurons more efficient
and feasible, especially in long sequence scenarios. In contrast, the SDN-based approach in Spik-
ingSSM (Shen et al., 2024) is limited to effectively training only the threshold voltage (vth), while
it’s unclear whether other hyper-parameters can be trained end-to-end. This ambiguity highlights
the advantage of PMBC in handling more comprehensive parameter optimization with trainable
temporal dynamics.

The experimental setup for this part is described as follows:

For Figure 2(a): Both the soft reset mechanism and refractory period are considered in the LIF
neuron of SPikE-SSM block trained with PMBC. The parameters τ , τr, Uth, and vth are fixed as
0.3, 0.4, 1, and 0.5 respectively. The number of iterations in PMBC is set to 10 during training. The
curve in Figure 2(a) shows the results with different iteration numbers in PMBC during inference.

For Figure 2(b): Only the soft reset mechanism is considered in the LIF neuron of the SPikE-SSM
block trained with PMBC. The parameters τ , Uth, and vth are fixed as 0.1, 1, and 3 respectively.
The number of iterations in PMBC is set to 10 during training. After all the iterations of PMBC, the
still fuzzy spiking signals are set to 1 by default, i.e. the spiking signals for these time steps are set
to fire by default. The curve in Figure 2(b) shows the explicit spiking state with different iteration
numbers in PMBC during inference.

B.2 THE OPTIMIZATION PROCESS OF PMBC FOR THE REFRACTORY LIF NEURON

The pseudo-code of the optimization process of PMBC for the Refractory LIF Neuron is summarized
in Algorithm 2, which only differs from the LIF neuron with soft reset in the representation of mt

in Algorithm 1.

B.3 SURROGATE GRADIENT IN SPIKE-SSM

Since the Heaviside function Hs in Eq. (13) is non-differentiable at x = 0, several surrogate gradient
(SG) methods are proposed to enable training through gradient descent. Common SG functions
are differentiable at all points and possess non-zero derivatives near the threshold, allowing them
to approximate the original discontinuous gradient of the spiking activation function, such as the
rectangular function (Zheng et al., 2021) and the triangular function (Bellec et al., 2018). In SPikE-
SSM, the piecewise quadratic surrogate spiking function g(x) is utilized with α = 1. g(x) and its
gradient g′(x) are defined as:

g(x) =

 0, if x < − 1
α

− 1
2α

2|x|x+ αx+ 1
2 , if |x| ≤ 1

α
1, if x > 1

α

, g′(x) =

{
0, if |x| > 1

α

−α2|x|+ α, if |x| ≤ 1
α

. (42)
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Figure 5: Comparison on sCIFAR10 between SPikE-SSM-SRR with fixed τ and τr and that with
trainable τ and τr. Uth and Uth are both set to 1 in SPikE-SSM-SRR.

Table 7: The hyper-parameters of our experiments on these datasets. H denotes the model dimen-
sion, N denotes the state dimension, LR denotes learning rate, WD denotes weight decay and BS
denotes the batch size. BN and LN refer to Batch Normalization and Layer Normalization.

Dataset Depth H N Norm pNorm Dropout LR BS Epochs WD (∆min, ∆max)
sMNIST 2 128 64 LN False 0.1 0.01 64 25 0.01 (0.001,0.1)
psMNIST 4 128 64 LN False 0.1 0.01 64 60 0.01 (0.001,0.1)
sCIFAR10 4 128 64 LN False 0.1 0.01 64 100 0.01 (0.001,0.1)
ListOps 8 128 64 BN False 0 0.01 50 40 0.05 (0.001, 0.1)
Text 6 256 64 BN True 0 0.01 16 32 0.01 (0.001, 0.1)
Retrieval 6 256 64 BN True 0 0.01 64 20 0.01 (0.001, 0.1)
Image 6 512 64 LN False 0.1 0.01 50 200 0.01 (0.001, 0.1)
Pathfinder 6 256 64 BN True 0 0.004 64 200 0.01 (0.001, 0.1)
Path-X 6 256 64 BN True 0 0.0005 32 50 0.01 (0.0001, 0.01)
WT-103 16 1024 64 LN True 0.1 0.0005 1 200 0.01 (0.001,0.1)

C MORE DETAILS RELATED TO EXPERIMENTS

C.1 DETAILS OF DATASETS

C.1.1 SEQUENTIAL VISION DATASETS

The MNIST dataset (Deng, 2012) is a classic benchmark in machine learning, featuring 70,000
grayscale images of handwritten digits (0-9), with 60,000 samples for training and 10,000 for test-
ing, each image sized at 28×28 pixels. It has long been a cornerstone for evaluating image classi-
fication models due to its simplicity and widespread availability. The sequential MNIST (sMNIST)
dataset (Le et al., 2015) transforms these 2D images into sequences of 784 elements by flattening
the pixel grid into a 1D sequence. This transformation poses a more complex challenge, as models
must process and retain information over longer time steps to accurately classify the digit. To further
increase the difficulty, the permuted sequential MNIST (psMNIST) (Le et al., 2015) applies a fixed
random permutation to the pixel sequences, effectively scrambling their spatial order and disrupting
any inherent structure. This variant demands even greater computational ability from models, as
they must learn to extract meaningful features from a sequence with no obvious temporal or spatial
coherence, making psMNIST a far more challenging task compared to the original sMNIST. The
sCIFAR10 dataset is a sequential version of the CIFAR-10 dataset (Krizhevsky et al., 2009), where
the original static images are processed in a temporal manner, typically by feeding the image pixels
row-by-row or in a pre-defined sequence.

C.1.2 LRA BENCHMARK

The LRA benchmark (Tay et al., 2020) was specifically designed to evaluate the performance of se-
quence models in long-context scenarios, where capturing dependencies across extended sequences
is crucial. It consists of six diverse tasks, with sequence lengths ranging from 1K to 16K steps,
covering multiple modalities including visual data, mathematical expressions, and natural language.
These tasks are carefully curated to challenge models on various aspects of long-context compre-
hensions, such as text classification, document retrieval, image recognition, the pathfinder problem,
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Table 8: Ablation studies of SPikE-SSM-SR (vth and Uth are trainable) with different τ . Acc, SpkR
and FzR denote test accuracy, spiking rate and fuzzy rate respectively.

Iter Nums τ 0.2 0.15 0.1

5
Acc (%) ↑ 84.91 84.93 84.93

SpkR (%) ↓ 10.66 10.69 9.91
FzR (%) ↓ 1.88 1.29 1.30

20
Acc (%) ↑ 85.24 84.37 85.12

SpkR (%) ↓ 10.03 9.72 9.98
FzR (%) ↓ 0.48 0.36 0.37

Table 9: Ablation studies of SPikE-SSM-Full with different τ and τr. Acc, SpkR and FzR denote
test accuracy, spiking rate and fuzzy rate respectively. Fuzzy rate is defined as the mean proportion
of final unidentified spiking signals si in all neurons after finite iterations of PMBC during inference.

τ 0.2 0.15 0.1

Iter Nums τr 0.6 0.75 0.9 0.6 0.75 0.9 0.6 0.75 0.9

5
Acc (%) ↑ 84.97 84.60 83.32 84.13 84.34 84.75 85.17 85.04 84.37

SpkR (%) ↓ 10.27 10.23 10.21 9.93 9.94 9.94 9.46 9.63 9.61
FzR (%) ↓ 2.54 3.09 6.25 2.03 2.27 5.74 2.00 2.39 5.82

20
Acc (%) ↑ 84.64 84.56 83.32 84.25 84.17 83.85 84.66 84.47 83.56

SpkR (%) ↓ 10.28 10.55 10.73 10.41 10.39 10.22 10.10 10.00 10.33
FzR (%) ↓ 1.07 1.64 3.05 0.94 1.21 3.1 0.95 1.18 2.87

and list operations (ListOps), making it a comprehensive testbed for assessing a model’s ability to
process and reason over extended input sequences.

C.1.3 WIKITEXT-103

The WikiText-103 dataset (Merity et al., 2016) is a large-scale corpus containing over 100 million to-
kens extracted from Wikipedia articles that have been rated as Good or Featured. Spanning a broad
spectrum of topics and domains, it offers a rich variety of linguistic patterns and structures. Un-
like many other datasets, WikiText-103 consists of full-length articles rather than isolated snippets,
making it particularly well-suited for models designed to capture long-term dependencies across
extended contexts. Due to its depth and diversity, it has become a pivotal benchmark for word-level
language modeling, providing a robust testing ground for evaluating models’ capacity to understand
and generate coherent text over lengthy sequences.

C.2 DETAILS OF EXPERIMENTAL SETTINGS

Table 7 describes the particular training details of experiments on different tasks, where LRA bench-
marks consist of six tasks, including ListOps, Text, Retrieval, Image, Pathfinder and Path-X. Depth
denotes the number of SPikE-SSM blocks, pNorm denotes the pre-norm, and WT − 103 means
WikiText-103 dataset.

C.3 MORE EXPERIMENTAL RESULTS

C.3.1 PARAMETER SENSITIVITY ANALYSIS

In the blocks of the proposed model, we compare the performances of SPikE-SSM-SSR with fixed
τ and τr and that with trainable τ and τr. The results are shown in Figure 5, which shows that
SPikE-SSMwith fixed τ and τr can achieve lower sparsity and higher accuracy. Therefore, we τ and
τr are set fixed in our method. Then we investigate the impacts of different τ and τr on our model.
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Table 10: The impact of different fire modes for the fuzzy spiking signals on SPikE-SSM-SR with
fixed Uth = 1 and Vth = 1.

Criterion No Reset Fire Mode 1 Fire Mode 2 Fire Mode 3 Fire Mode 4

Accuracy (%) ↑ 85.31 86.11 85.64 85.68 85.55
Spiking Rate (%) ↓ 12.27 13.07 12.19 12.19 11.94

Table 11: The impact of different fire modes for the fuzzy spiking signals on SPikE-SSM-Full with
refractory period and trainable Uth and Vth.

Criterion No Reset Fire Mode 1 Fire Mode 2 Fire Mode 3 Fire Mode 4

Accuracy (%) ↑ 85.45 85.34 84.80 84.84 85.23
Spiking Rate (%) ↓ 14.81 10.16 9.97 10.87 9.75

The results for SPikE-SSM-Full and SPikE-SSM-SR (vth and Uth are trainable) are shown in Table 8
and Table 9 respectively. Note that there are two hyper-parameters (τ and τr) in SPikE-SSM-Full,
and only one hyper-parameter (τ ) in SPikE-SSM-SR. As previously stated by the default setting, the
fuzzy spiking signals sf are all set to False during training (i.e. sf = 0).

From Table 8, we can observe that: (1) In SPikE-SSM-SR with only one hyper-parameter τ , re-
gardless of the number of PMBC iterations, the change in τ has minimal impact on the model’s
overall accuracy and sparsity, indicating that the performance of SPikE-SSM-SR is not sensitive to
the parameter τ , which demonstrates the robustness of our proposed method. (2) As the number
of PMBC iterations increases, the Fuzzy Rate significantly decreases, as more iterations in PMBC
allow for more spiking signals to be identified. (3) Under the same number of PMBC iterations, the
Fuzzy Rate decreases significantly as the hyper-parameter τ becomes smaller. This indicates that a
smaller τ helps improve the computational efficiency of PMBC and the accuracy of the model.

From Table 9, we can observe that: (1) In SPikE-SSM-SR with two hyper-parameters τ and τr, under
the same number of PMBC iterations and τr, the change in τ has minimal impact on the model’s
overall accuracy, but smaller τ leads to smaller Spiking Rate and Fuzzy Rate. This indicates that
a smaller τ helps reduce the sparsity and improve the accuracy of the model. (2) Under the same
number of PMBC iterations and τ , the change in τr has minimal impact on the model’s overall
accuracy and sparsity, demonstrating the robustness of our method.

Therefore, the hyper-parameters τ and τr are set to 0.1 and 0.9 respectively in the full SPikE-SSMby
default, which can achieve a more balanced performance between the sparsity and accuracy.

C.3.2 THE IMPACT OF FUZZY FIRE MODES IN PMBC

Due to the parallel computation of PMBC, most of the spiking signals can be definitely obtained in
5-10 iterations of Algorithm 1 and Algorithm 2, with only a few spiking signals are still fuzzy. To
improve computing efficiency, we adopt several fire modes to address these fuzzy spiking signals to
reduce the iterations of PMBC, including:

• No Reset: Train the SPikE-SSM without reset mechanism (so Uth and refractory period
are not applicable).

• Fire Mode 1: The fuzzy spiking signals sf are all set to True (i.e. sf = 1).

• Fire Mode 2: The fuzzy spiking signals sf are all set to False (i.e. sf = 0).

• Fire Mode 3: The fuzzy spiking signals sf randomly are determined by the mean spiking
rate value of definite piking signals sd.

• Fire Mode 4: The fuzzy spiking signals sf are determined by their current corresponding
upper and lower bounds. For example, after all the iterations of PMBC, if si is still fuzzy
in time step t = i, and its upper and lower bounds are mup

i and mlow
i . If ki > (mup

i +
mlow

i )/2, then si = 1, or else si = 0.
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Table 12: The impact of different numbers of iterations in PMBC on the accuracy and spiking rate
performances of our method.

Number of Iterations 1 2 5 10 30

Accuracy (%) ↑ 84.46 84.74 84.74 85.02 84.99
Spiking Rate (%) ↓ 13.32 12.90 12.66 12.11 12.32
Fuzzy Rate (%) ↓ 8.80 6.77 4.48 2.62 0.82

Table 13: The impact of different numbers of iterations in PMBC on the speed and time cost of our
method. “serial computing” means serially training SPikE-SSMwithout PMBC.

Number of Iterations 1 2 5 10 30 50 serial computing

Speed (iters/s) ↑ 25.32 21.51 14.63 9.50 3.97 2.42 1.21
Time (ms/iters) ↓ 39.49 46.49 68.35 105.26 251.89 413.22 826.45

To investigate the impact of different fire modes of fuzzy spiking signals for PMBC, we trained the
SPikE-SSM-SR and SPikE-SSM-Full with different fire modes on dataset sCifar10 with 10 PMBC
iterations and 100 epochs, and the performances are shown in Table 10 and Table 11 respectively.

According to Table 10, we can observe that SPikE-SSM-SR with Fire Mode 2, Fire Mode 3 and Fire
Mode 4 can all achieve both higher accuracy and lower spiking rate than that of SPikE-SSMwithout
the reset mechanism, which verifies the effectiveness of reset mechanism in the refractory LIF neu-
ron model. Although SPikE-SSM-SR with Fire Mode 1 achieves the highest spiking rate, it also
achieves the highest accuracy among the five versions, which can be attributed to the fact that too
sparse signals may lead to the loss of important information during training.

According to Table 11, we can observe that SPikE-SSM-Full with Fire Mode 1, Fire Mode 2, Fire
Mode 3, and Fire Mode 4 can all achieve lower spiking rates than that of SPikE-SSMwithout the
reset mechanism. Notably, compared with Table 10 and Table 11, we can observe that SPikE-SSM-
Full with both trainable Uth and vth can achieve lower spiking rate than SPikE-SSM-SR with the
same Fire Modes in all the four different Fire Modes, which indicates that the trainable Uth and Vth

can more effectively model the temporal dynamics with biological interpretability.

In our method, we choose Fire Mode 2 as the default setting since it can further reduce the spiking
rate with all the fuzzy spiking signals set to False (sf = 0), and it can also achieve a more balanced
performance between accuracy and spiking rate.

C.3.3 THE IMPACT OF DIFFERENT ITERATIONS IN PMBC

In this section, we investigate the impact of different numbers of iterations in PMBC on the accuracy
and sparsity performances of SPikE-SSM. We trained the SPikE-SSM-SR with fixed Uth = vth = 1
and 4 layers on dataset sCIFAR10 with 100 epochs and τ = 0.2. This experiment is conducted on a
V-100 GPU. The results with different iterations in PMBC are shown in Table 12.

According to Table 12, we can observe that: (1) As the number of PMBC iterations increases,
the model’s accuracy gradually improves, while the fuzzy rate decreases. This is because more
spiking signals are explicitly calculated with additional iterations, enhancing the model’s robustness
and leading to a steady rise in accuracy. (2) As the number of PMBC iterations increases, the
overall spiking rate gradually decreases, indicating that more distinct spiking signals can enhance
the model’s sparsity. (3) The SPikE-SSM-SR with 10 iterations of PMBC achieves both higher
accuracy and a lower spiking rate compared to the version with 30 iterations, despite having a
significantly higher fuzzy rate. This suggests that more iterations of PMBC are not always better, as
fuzzy spiking signals may function similarly to dropout.

In addition, we investigate the impact of different and more granular numbers of iterations in PMBC
on the inference speed and the cost times of SPikE-SSM. The experimental settings are the same as
Table 12. Note that the sequence length L of sCIFAR10 is 1024. The experimental results are shown
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in Table 13, from which we can observe that: (1) As the number of iterations in PMBC increases, the
model’s inference speed progressively decreases, with each iteration requiring more time to com-
plete. This slowdown becomes more noticeable as iteration counts grow. (2) The fastest inference
speed is achieved when only a single iteration is performed. However, even when multiple itera-
tions are conducted in parallel within PMBC, the inference speed remains considerably faster than
the traditional sequential iteration method that doesn’t use PMBC. These findings further highlight
the efficiency of our proposed PMBC-based training approach, demonstrating that it significantly
accelerates the model’s inference while maintaining robust performance.

In our method, we set the default number of iterations of PMBC as 3, which can achieve a more
balanced performance between the high-efficiency inference and stable accuracy.
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