
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SPIKE-SSM: A SPARSE, PRECISE, AND EFFICIENT
SPIKING STATE SPACE MODEL FOR LONG SEQUENCES
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking neural networks (SNNs) provide a low-power, energy-efficient solution by
utilizing the spike-based and sparse nature of biological systems. Since the advent
of Transformers, SNNs have struggled to compete with artificial networks on long
sequential tasks, until the recent emergence of state space models (SSMs), which
offer superior computational efficiency and modeling capability. However, apply-
ing the highly capable SSMs to SNNs for long sequences learning poses three
major challenges: ❶ The membrane potential is determined by the past spiking
history of the neuron, leading to reduced efficiency for sequence modeling in par-
allel computing scenarios. ❷ Complex dynamics of biological spiking neurons are
crucial for functionality but challenging to simulate and exploit effectively in large
networks. ❸ It is arduous to maintain high sparsity while achieving high accuracy
for spiking neurons without resorting to dense computing, as utilized in artificial
neuron-based SSMs. To address these challenges, we propose a sparse, precise
and efficient spiking SSM framework, termed SPikE-SSM. For ❶, we propose a
boundary compression strategy (PMBC) to accelerate the inference of the spiking
neuron model, enabling parallel processing for long sequence learning. For ❷, we
propose a novel and concise neuron model incorporating reset-refractory mech-
anism to leverage the inherent temporal dimension for dynamic computing with
biological interpretability. For ❸, we hierarchically integrate the proposed neuron
model to the original SSM block, and enhance the dynamics of SPikE-SSM by
incorporating trainable thresholds and refractory magnitudes to balance accuracy
and sparsity. Extensive experiments illustrate the effectiveness and robustness
of SPikE-SSM on the long range arena benchmarks and large language dataset
WikiText-103, showing the potential of dynamic spiking neurons in efficient long
sequence learning. The code will be publicly available.

1 INTRODUCTION

Spiking neural networks (SNNs) recently emerged as a competitive paradigm to improve AI en-
ergy efficiency. SNNs transmit information as binary spikes between synapses to perform sparse
and event-driven computation. Despite being increasingly more competitive with artificial neural
networks (ANNs) in vision tasks, SNNs still struggle with long-sequence modeling – a critical task
for a wide range of temporal or sequential data-driven machine learning applications, such as text
comprehending (Zhou et al., 2023), electroencephalograms spanning (Tang et al., 2023), etc.

Transformer (Vaswani et al., 2017) and its variants (Kitaev et al., 2020; Zaheer et al., 2020;
Katharopoulos et al., 2020) have been developed for sequential tasks. However, their architectures
are not suitable for SNN-based long sequence learning as SNN requires a time window-based sim-
ulation to enhance spike-based representation, resulting in slow inference compared to their ANN
counterparts (Zhou et al., 2022; Yao et al., 2024). Moreover, the self-attention mechanisms (Vaswani
et al., 2017) in Transformers are computationally intensive, contrasting with the energy-efficient
properties of event-based representations and the sparse computation inherent to SNNs. As a com-
petitive alternative to Transformer, state space models (SSMs) have garnered significant attention
due to their long sequence modeling capabilities, such as S4 (Gu et al., 2021), DSS (Gupta et al.,
2022), S5 (Smith et al., 2022) and Mamba (Gu & Dao, 2023). Notably, SSMs can achieve fast in-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

𝑥 𝑢 𝐻𝑠SSM

𝑠

𝜏Soft

Reset
Heaviside

Function

Spike

GLU Conv

input

output

Refractory

PMBC
Parallel

𝜏𝑟

SPikE-SSMs: Michael Jordan, born on February 17, 1963, is widely regarded as one

 of the greatest basketball players of all time. He gained prominence

 after leading the University of North Carolina to an NCAA

championship. Known for his incredible scoring ability, agility, and unmatched

competitive spirit, Jordan led the Bulls to six NBA championships and earned

five regular-season MVP awards in his career.

How many regular-season MVP awards has Michael Jordan won?

Michael Jordan has won 5 regular-season MVP awards in his career .

Figure 1: Main ideas of SPikE-SSM for long-sequence modeling. (Left) Overview: A parallel
max-min boundary compression (PMBC) strategy is proposed to address ❶ (§ 3.2); a new refractory
neuron model with trainable dynamics is developed to address ❷ (§ 3.3). We integrate the proposed
refractory neuron with soft reset within SSMs to address ❸ (§ 3.4). (Right) An example showing
that the relevant information for the task at hand is often sparse in long-sequence inputs.

ference and parallel training by incorporating dynamic hidden states for handling long-range depen-
dencies (LRDs), inspired by the low-complexity inference mechanism of recurrent neural networks
(RNNs) (Sherstinsky, 2020; Schuster & Paliwal, 1997). Meanwhile, the sequential computing nature
of SSMs is also more compatible with SNNs as the dynamics of spiking neurons can be inherently
exploited in the temporal dimension. Furthermore, for tasks with long-sequence inputs, it is often
the case that the relevant information to the problem at hand is inherently sparse (see Figure 1 Right
for an example), aligning well with the sparse representation of SNNs.

Therefore, spiking SSMs naturally emerge as a promising paradigm for efficient long-sequence
modeling. Recent works have highlighted notable advancements in capturing LRDs using spiking
SSMs (Stan & Rhodes, 2023; Bal & Sengupta, 2024; Shen et al., 2024). However, these exist-
ing methods are still inadequate in addressing the following challenges when applying spike-based
computation to SSMs: ❶ The membrane potential of a neuron in SNNs depends on its past spik-
ing history, making parallel processing infeasible and, in turn, hindering the efficiency of sequence
modeling. ❷ Biological neuron models exhibit complex dynamics that are essential for function-
ality (Urbanczik & Senn, 2014; Mikulasch et al., 2021; Capone et al., 2023) but challenging to
simulate efficiently in large networks – an issue often overlooked by existing methods. ❸ Sparse
representation is key for efficient computation in SNNs (Olshausen & Field, 2004; Jiao et al., 2022;
Raposo et al., 2024); however, balancing the trade-off between sparsity (i.e., spiking rate) and ac-
curacy remains challenging for spiking SSMs, as SSMs were originally designed on top of artificial
neurons with dense computations.

In this work, we propose a novel spiking SSM model, termed SPikE-SSM, to exploit the intri-
cate dynamics of Leaky Integrate-and-Fire (LIF) neuron (Gerstner et al., 2014) in SSMs for sparse,
parallel, and efficient long-sequence modeling. First, to address ❶, we propose a parallel max-min
boundary compression strategy (PMBC) to accelerate the inference of the LIF neuron, enabling par-
allel processing for long sequence modeling. Second, to address ❷, we propose a refined LIF neuron
model incorporating a reset-refractory dynamics to fully utilize the inherent temporal dimension for
dynamic computing with biological interpretability; in the meantime, the hyperparameters of the
proposed neuron model are trained efficiently and explicitly based on PMBC, enabling a systematic
study of their functional impacts on the network. Third, to address ❸, we integrate the refractory
neuron into an SSM block to adjust the membrane potential with dynamic reset, achieving both high
accuracy and low spiking rate (i.e., high efficiency). An overview comparison of our SPikE-SSM
with existing spiking SSMs is presented in Table 1. The main contributions are as follows:

• In this paper, we propose SPikE-SSM to effectively model the long sequence with SNNs.
In contrast to existing spiking SSMs, our method can realize comprehensive parallel accel-
eration with trainable temporal dynamics, facilitating sparse, precise, efficient training and
inference for long-range dependencies learning.

• To tackle the dilemma of event-driven neuronal dynamics with parallel processing for long
sequence modeling, we propose a max-min boundary compression (PMBC) strategy to
facilitate an efficient inference of SPikE-SSM. We empirically demonstrate that PMBC is
versatile and effective for accelerating neuronal dynamics for parallel computing of SNNs.

• A new LIF neuron model with a refractory mechanism is proposed to fully utilize the
inherent temporal dimension for biologically interpretable dynamic computation, achieving
both high accuracy and sparsity with the trainable dynamics.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Comparison of our model with existing spiking SSMs. Previous methods mostly apply
binary activation to SSMs without considering the intricate neuronal dynamics. † SpikingSSM ap-
proximates the LIF neuron with hard reset dynamics by using a surrogate model, which is subject
to approximation errors. ‡ SpikingSSM has partial trainable dynamics since hard reset is rough and
simplified with limited dynamic variables. In contrast, our method can train the neuron hyperparam-
eters and temporal dynamics efficiently and explicitly in a parallel manner with the proposed PMBC,
enabling a functional study of their impact on the network. In SPikE-SSM, a more interpretable soft
reset mechanism is employed, incorporating additional trainable dynamic variables and parameters.

Method Reset Mechanism Trainable Dynamics

Binary-S4D (Stan & Rhodes, 2023) ✗ ✗
S6-based SNN (Bal & Sengupta, 2024) ✗ ✗

SpikingSSM (Shen et al., 2024) ✓† partial‡

SPikE-SSM (ours) ✓ ✓

• Extensive experiments are conducted on LRA benchmarks and the large-scale WikiText-
103 language modeling databases, the results of which validate the effectiveness and effi-
ciency of the proposed SPikE-SSM for long-range dependencies learning.

2 RELATED WORKS

2.1 LONG SEQUENCES LEARNING MODELS

Long sequence modeling has gained significant attention recently due to its widespread applica-
tion across different domains such as text comprehending (Zhou et al., 2023), computer vision (Shi
et al., 2024; Zhong et al., 2024) and electroencephalograms spanning (Tang et al., 2023). The key
challenge in long-sequence modeling lies in efficiently compressing context into a manageable state
while capturing information spread across observations separated by thousands of timesteps. To
address them, Transformer and Attention (Vaswani et al., 2017; Dao et al., 2022; Dao, 2023) are
proposed to retain the entire context during auto-regressive inference, which is effective but requires
quadratic-time computational complexity. Although some Transformer variants (Kitaev et al., 2020;
Katharopoulos et al., 2020) are proposed to reduce the compute and memory requirements, their
performances on long-range reasoning remain considerably suboptimal (Gu et al., 2021). Inspired
by RNNs, RWKV (Peng et al., 2023) combines the parallel training of transformers with the effi-
cient inference of RNNs. Similarly, other recurrent models aim to compress context into a finite
state, offering constant-time inference and linear-time training, but their effectiveness is limited by
the quality of compression and a fixed representation space (Qin et al., 2023). More recently, SSM-
based methods (Smith et al., 2022; Fu et al., 2022; Mehta et al., 2022) have emerged as a promising
alternative to sequence models such as RNNs and Transformers. For example, HiPPO (Gu et al.,
2020) pioneered compressing long inputs into dynamic representations using orthogonal polynomi-
als, while S4 (Gu et al., 2021) advanced this with low-rank corrections for stable diagonalization
and simplified Cauchy kernel operations. Mamba (Gu & Dao, 2023) focuses on selective state
representations to optimize efficiency and effectiveness, using a selection mechanism and hardware-
optimized algorithms to maintain robust contextual information capture. All above methods are
based on artificial neurons with analog-valued output, resulting in dense vector-matrix multipli-
cation (VMM) and huge computational costs. In contrast, the proposed SPikE-SSM utilizes the
compatibility between the remarkable LRDs modeling ability of SSMs and the intrinsic dynamics
of SNNs, promoting sparse training and fully parallel inference with trainable temporal dynamics.

2.2 SNNS-BASED SEQUENCE MODELING AND APPLICATIONS

SNNs (Ghosh-Dastidar & Adeli, 2009) have gained attention as a compelling bio-plausible and
computational efficient substitute for traditional artificial neural networks (ANNs) in many vision
tasks. However, SNNs have struggled to make significant progress in long-sequence modeling tasks
due to the inherent serial computing nature. Therefore, to train SNNs in parallel, PSN (Fang et al.,
2024) simplifies spiking neuron by omitting the reset mechanism, leading to reduced sparsity. To
handle this issue, a probabilistic reset mechanism is proposed in PSU (Li et al., 2024) to achieve

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

parallel computing with elevated sparsity by decoupling the integration-spiking-resetting process,
which comes at the expense of higher computational complexity. With the recent resurgence of
SSMs, there has been a renewed focus on applying efficient parallel computing to SNNs. For ex-
ample, SpikeS4 (Du et al., 2024) integrates LIF neurons with S4 layers for speech learning. Binary
S4D builds a binary SSM by applying a spiking activation directly to the sum of hidden states,
enabling parallel training but neglecting neuronal dynamics (Stan & Rhodes, 2023). To further en-
hance sparsity, a stochastic spiking neuron is proposed in S6-based SNN (Bal & Sengupta, 2024),
which is trained with stochastic noises in gradients, resulting in accuracy degradation. More re-
cently, SpikingSSMs (Shen et al., 2024) utilizes a surrogate dynamic network (SDN) to approxi-
mate the dynamics of LIF neurons, which extremely accelerates the training and inference by par-
allel computing. However, the pre-training requirement of SDN could constrain its application on
more general dynamic spiking neurons which are hard to approximate. Due to the effectiveness of
spike-based sequence learning, some SNNs-based language models are proposed for more efficient
language modeling, such as SpikeGPT (Zhu et al., 2023) and SpikeBERT (Lv et al., 2023). In con-
trast to existing spiking SSMs, SPikE-SSM proposed in this paper realizes comprehensive parallel
acceleration with trainable temporal dynamics, efficiently achieving both high sparsity and excel-
lent accuracy for long-range dependencies learning, which possesses the potential and prospects for
constructing low-energy language models and enabling widespread applications.

3 METHOD

3.1 PRELIMINARIES OF SSMS AND LIF NEURON

SSMs. According to (Gupta et al., 2022) and (Gu et al., 2021), SSMs provide a framework for
long sequences modeling with lower computational complexity, which aims to transform an input
sequence x(t) = (x0, · · · , xL−1) ∈ R1×L into an output sequence y(t)(y0, · · · , yL−1) ∈ R1×L,
where L is the length of sequence. This transformation occurs with the aid of an implicit latent state
h(t) ∈ RN×1, which captures the underlying dynamics and relationships between the input and
output sequences. The continuous representation of this model is formulated as:

dh(t)

dt
= h′(t) = Ah(t) +Bx(t), y(t) = Ch(t), (1)

where the state matrix A ∈ RN×N and vectors B ∈ RN×1, C ∈ R1×N are the parameters. To
adapt SSM to real-world discrete data, one can discretize the continuous formulation Eq. (1) with
discretization rules such as zero-order hold (Gupta et al., 2022; Voelker et al., 2019). Then x(t) can
be mapped to y(t) in a recurrent view:

Ā = e∆A, B̄ = A−1(Ā− I)B, C̄ = C =⇒ ht = Āht−1 + B̄xt, yt = C̄ht, (2)

where ∆ ∈ R+ is the sample time, and h−1 = 0 for convenience. Note that the recurrence operation
in Eq. (2) can be explicitly unrolled as a kernel view:

yk =

k∑
j=0

K̄j · xk−j , K̄ =
(
CB,CAB, . . . , CA

L−1
B̄
)
∈ R1×L, (3)

which requires O(L2) multiplications despite all the elements of y can be expediently computed in
parallel by computing the kernel K̄ first. Fortunately, Eq. (3) can be accelerated by Fast Fourier
Transform (FFT) (Duhamel & Vetterli, 1990) with time complexity O(L logL) (Gupta et al., 2022).

LIF Neuron. The LIF neuron is widely used in spiking networks (Eshraghian et al., 2023), as it can
capture the “leaky-integrate-fire-reset” process and balances ease of implementation with temporal
dynamics by simplifying an RC circuit dynamical system (Gerstner et al., 2014). Let t denote the
time step, the input currents I are linearly integrated into the membrane potential u in LIF neuron,
the process of which can be formulated as follows.

τ
du(t)

dt
= −u(t) + IR, u′

t = βut−1 + (1− β)It, st = Hs (u
′
t − vth) , (4)

where τ ∈ R is the time constant and β is its discrete-time equivalent. R denotes the resistivity.
u′
t and ut are the membrane potentials before and after the trigger of a spike. Hs denotes the the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 The Optimization Process of Parallel Max-min Boundary Compression (PMBC)
Input: Parameters τ, vth, Uth; Input signal I ∈ R1×L; Maximum of iterations M .
Output: Spiking signals s ∈ R1×L.
1: Define p = (τ0, τ1, · · · , τL−1); k = iFFT (FFT (I) · FFT (p)).
2: Initialize sup = (1, · · · , 1) ∈ R1×L and slow = (0, · · · , 0) ∈ R1×L.
3: Repeat up to M times:
4: mup = Uth · iFFT (FFT (p) · FFT (sup)) + vth;
5: mlow = Uth · iFFT

(
FFT (p) · FFT

(
slow

))
+ vth;

6: If kt > mup
t , then slowt = 1; If kt < mlow

t , then supt = 0;
7: Until convergence of spike rate 1

L

∑
i s

low
i .

8: Return s = slow.

Heaviside function of LIF. As spikes are discrete events highly localized in time, a spike s is emitted
when the membrane potential exceeds the firing threshold (vth ∈ R), that is st = 1, otherwise
st = 0. After firing, the membrane voltage is adjusted by the reset mechanism, making subsequent
spiking more difficult. Specifically, the membrane voltage is either reset to a specific value ur (hard
reset) or reduced by subtracting the same value vth as the firing threshold (soft reset), that is:

soft reset: ut = u′
t − stvth, hard reset: ut = u′

t (1− st) + ur. (5)

From Eq. (5) we can observe that the hard reset clears all historical membrane voltage signals,
while the soft reset retains a proportion of them after spiking, which is more bio-plausible. Further-
more, we creatively decouple the firing threshold value and soft reset magnitude into vth and Uth

respectively, which can promote the representation capability of LIF neuron. However, all the reset
mechanisms introduce unavoidable iterative computations due to the form of temporal dependence
and Heaviside function, similar to the nonlinearities in RNN.

3.2 PARALLEL MAX-MIN BOUNDARY COMPRESSION (PMBC)

This subsection aims to address Challenge ❶. According to discretizing the LIF neuron with the
soft reset mechanism in Eq. (5) combined with a decoupling reset magnitude Uth, we can obtain the
following formula:

ut = τut−1 − st−1Uth + It, st = Hs (ut − vth) . (6)

The output membrane voltage u is iteratively computed by Eq. (6) since ut depends on the spiking
history from the previous time steps, notwithstanding the input current I can be obtained in parallel.
This leads to a significant reduction in computational efficiency, especially for long sequence inputs.
To solve this problem, we propose the following assertion, which lays the foundation for subsequent
parallel computation to accelerate training and inference (See Appendix A.1 for the proof).

Assertion 3.1. The historical input signal I and spiking information s are deconstructed in the
iteration process of Eq. (6), which is equivalent to:

ut = kt −mt + vth, st = Hs (kt −mt) , (7)

where kt =

t∑
i=1

τ t−iIi, mt = Uth

t−1∑
i=1

τ t−1−isi + vth. (8)

Note that τ and vth are fixed in one training step. Given Ii at all times, notice that the form of k is
the convolution of input sequence I and the exponential sequence of τ , we can obtain kt at all times
in parallel with accelerated calculation through FFT. The question of whether we can obtain st in
parallel becomes how to obtain mt at different times in parallel. To this end, we propose the PMBC
strategy to address Challenge ❶. It can be observed that the spiking signal s is a binary variable,
taking a value of either 0 or 1. Thus we can initialize the upper and lower bounds of mup

t and mlow
t

by setting all the spiking signals si = 1,(i = 0, · · · , L− 1) and sj = 0,(j = 0, · · · , L− 1) respec-
tively. The two bounds can be utilized to compare with kt simply, obtaining most spiking signals st
by parallel computation, and then update bounds values using these new st. This process can be it-
erated until convergence in order to obtain all spiking states as shown in Figure 2(a). We summarize

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0
2
4
6

Va
lu

e

kt mup
t (0) mlow

t (0) mup
t (1) mlow

t (1)

0 10 20 30 40 50 60
Time Step

0
2
4
6

Va
lu

e

mup
t (5) mlow

t (5) Spiking No Spiking

(a) The evolution of the boundary.

0 50 100 150 200
Number of PMBC Iterations

97

97.5

98

98.5

99

99.5

100

E
xp

lic
it

Sp
ik

in
g

St
at

e
(%

)

 (1, 97.12)

 (5, 99.02)

 (180, 99.99)

ESS = 99%

(b) Convergence of ESS.

𝑢0

𝑠0

𝑚0
(𝑀)

𝑚1
(𝑀)

…
𝑚𝐿−1
(𝑀)

𝑠0
(𝑀)

𝑠1
(𝑀)

𝑠𝐿−1
(𝑀)

Iteration (𝑴 times)

𝑢0 𝑢1
…

𝑢𝐿−1

𝑠0 𝑠1 𝑠𝐿−1

Recurrence (𝑳 times)

𝑳 ≫ 𝑴

PMBC Serial Computing

𝑚0
(1)

𝑚1
(1)

…
𝑚𝐿−1
(1)

𝑠0
(1)

𝑠1
(1)

𝑠𝐿−1
(1)

𝑚0
(0)

𝑚1
(0)

…
𝑚𝐿−1
(0)

𝑠0
(0)

𝑠1
(0)

𝑠𝐿−1
(0)

𝑢0 𝑢1

𝑠0 𝑠1

(c) PMBC vs Serial computing.

Figure 2: Intuitive execution process of PMBC in Algorithm 2. ESS means explicit spiking state.

the process of parallel computation of PMBC as Algorithm 1. After finite iterations of PMBC, there
may exist still a few fuzzy spiking signals si unidentified, which can be assigned randomly or based
on a prior distribution. The detailed discussion about the fuzzy spiking signals is provided in the
Appendix C.3.2. To promote a lower spiking rate, we choose s = slow as the final output of spiking
signals. To accelerate training and inference, we implement the FFT and inverse FFT operations
with only setting M = 3, and the experimental results have proven that this configuration is capable
of identifying around 99% of the spiking signals without compromising accuracy. Our method can
determine the majority of spikes in the initial iterations, as shown in Figure 2(b). This is because the
distribution of kt is closely tied to I , which is influenced by the normalization process before. With
a proper initialization of vth, the first PMBC iteration effectively identifies that most spiking signals
are zero. This significantly reduces the number of required iterations and improve training efficiency
(e.g., M = 3 vs. L = 1024). Figure 2(c) provides an intuitive comparison between traditional serial
computing and PMBC. The detailed analysis of the boundary evolution and convergence process of
PMBC in Figure 2 are described in the Appendix B.1. Particularly, we have the following assertion
(see Appendix A.2 for proof):
Assertion 3.2. For the input signal y ∈ R1×L, all the spiking signals can be identified with finite it-
erations of PMBC (≤ L), achieving significant acceleration compared to original serial computing.

3.3 REFRACTORY LIF NEURON MODEL

In biological neurons, spiking is usually followed by a refractory period during which new spiking is
more difficult. This mechanism improves the overall sparsity of the network and could substantially
reduce its energy consumption. Therefore, to simulate the intrinsic temporal dynamics of realistic
neurons and further improve network sparsity, we introduce an innovative refractory LIF neuron
model based on the soft reset mechanism, which effectively addresses Challenge ❷. The LIF neuron
with a refractory period can be mathematically described as:

ut = τut−1+It −RtUth, st = Hs(ut − vth), (9)
where Rt = τrRt−1 + st−1, (10)

In our refractory neuron model, τr is the refractory magnitude. Rt denotes the refractory period-
based sliding pulse, which is determined by both spiking signal st−1 and Rt−1 in the last time step.
From Eq. (10) we can observe that the larger the value of the previous sliding pulse Rt−1, the greater
Rt becomes, causing membrane voltage ut to decrease accordingly, which makes it harder for the
neuron to spike again during the refractory period. Similar to Assertion 3.1, we have the following
results for the proposed refractory neuron model (see Appendix A.3 for the proof):
Assertion 3.3. In the refractory LIF neuron, the historical input signal I and spiking information s
is deconstructed in the iteration process of Eq. (9), which is equivalent to:

ut = kt −mt + vth, st = Hs (kt −mt) , (11)

where kt =

t∑
i=1

τ t−iIi, mt = Uth

t−1∑
i=1

t−1−i∑
j=0

(τ/τr)
jτ t−1−i

r si + vth. (12)

The PMBC algorithm of the refractory LIF neuron is summarized as Algorithm 2 in Appendix B.2,
which only differs from the LIF neuron with soft reset in the representation of mt.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

𝑥𝑡
𝑙

ℎ𝑡−1
𝑙

ℎ𝑡
𝑙

𝐻𝑠

𝑠𝑟

𝑠𝑡
𝑙

𝑢𝑡
𝑙

𝑢𝑡−1
𝑙

𝑦𝑡
𝑙

T
im

e

Refractory

neuronSpace

SSM 𝑥 ℎ 𝑦

…

𝑢 𝑜

(𝐷, 𝐿) (𝐷, 𝑁, 𝐿) (𝐷, 𝐿) (𝐷, 𝐿) (𝐷, 𝐿)

SSM

SPikE-SSM

𝑠𝑟 :soft reset:add operation :multiply operation

:hyper-parameter : trainable parameter :data flow

𝑠

(𝐷, 𝐿)

𝑥

(𝐷, 𝐿)

:GELU :Conv + GLU :SAF

𝑅𝑡
𝑙

𝑅𝑡+1
𝑙

𝑠𝑡
𝑙

ҧ𝐶ത𝐵

ҧ𝐴 𝜏

𝑉𝑡ℎ

𝑈𝑡ℎ

𝜏𝑟

binary

spiking

signal

Figure 3: The SPikE-SSM block. (Left) Forward computation graph of a single SPikE-SSM layer.
(Right) Comparison of SSMs. The original SSM outputs floating-point numbers, while SPikE-SSM
replaces its non-linearity with the proposed refractory neuron model, which can incorporate higher-
level neuronal dynamics for long sequence modeling. D, N , and L represent the model dimension,
SSM hidden dimension, and sequence length, respectively. SAF is the spiking activation function.

3.4 THE BLOCK OF SPIKE-SSM

For Challenge ❸, due to the exceptional long sequence modeling capability of SSMs, we integrate
the proposed refractory neuron with soft reset mechanism and PMBC to the inherent SSM block,
which aims to maintain both the high sparsity and excellent accuracy in the inference progress.
In the proposed SPikE-SSM, we choose the original block of S4D model (Gu et al., 2022) as the
backbone since it can achieve pragmatic simplification to enhance model efficiency as the latest
diagonal version of SSM. Then the output y of the S4D block is activated by the proposed refractory
neuron, hence Eq. (9) is rewritten as follows with Eq. (10) unchanged:

yt = C̄ht, ut = τut−1 + yt −RtUth, st = Hs(ut − vth). (13)

Inspired from (Rathi & Roy, 2021), we render vth and Uth as trainable parameters within the SPikE-
SSM block. This approach is motivated by their pivotal role in regulating the neuron’s spiking
rate, thereby not only bolstering the SPikE-SSM’s capability to attain exceptional performance and
expedite the convergence of PMBC, but also serving as a further stepping stone to tackle Challenge
❸ with greater efficacy. The results of Eq. (13) are fed into a linear layer that comprises a Conv1D
operation followed by a GLU activation function (Dauphin et al., 2017). The Conv1D enables
efficient local feature extraction, while the GLU activation selectively gates the information flow,
improving the model’s ability to capture critical patterns in sparse binary data. Since the Heaviside
function Hs is non-differentiable at x = 0, we adopt the surrogate gradient (SG) method in SPikE-
SSM. The details of SG in our method are provided in the Appendix B.3.

Figure 3 presents the forward computation graph of the SPikE-SSM block and the comparison with
the original S4 blocks. Notably, from a neurobiological perspective, the SPikE-SSM block resem-
bles a multi-time scale dendritic neuron (London & Häusser, 2005; Zheng et al., 2024), where h
represents the dendrites and y the soma, both showing self-recurrent temporal dynamics.

4 EXPERIMENTS

In this section, we conduct extensive experiments to validate the superiority of our method, including
the testing of long-range modeling capabilities on the sequential LRA and WikiText-103 tasks, with
ablation studies and other related analyses. More experiments are shown in the Appendix C.

4.1 DATASETS AND EXPERIMENTAL SETTINGS

Datasets. In this paper, we perform experiments on extensive long sequence databases, including
sequential MNIST (sMNIST) (Le et al., 2015), LRA benchmarks (comprising six tasks) (Tay et al.,
2020) and WikiText-103 (one large Wikipedia text data) (Merity et al., 2016). The Details of these
datasets are shown in the Appendix C.1.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Accuracy performance comparison of SPikE-SSM and state-of-the-art methods on the
LRA benchmarks. Since the original S4D-Lin failed on the Path-X task, we report the results of its
close variant, S4D-Inv. Following S4D, we assume 50% accuracy for Path-X when not available and
calculate the overall average (AVG) across all tasks. The best two results are highlighted in bold.
For SpikingSSM and SPikE-SSM, the spiking rates (↓) of each task are highlighted in shaded gray
areas. “—” indicates not applicable or unworkable, same for the other tables in this paper.

Method SNN ListOps Text Retrieval Image Pathfinder Path-X AVG

Transformer (Vaswani et al., 2017) No 36.37 64.27 57.46 42.44 71.40 — 53.66
LMUFormer (Liu et al., 2024) No 34.43 68.27 78.65 54.16 69.90 — 59.24
S4D-Lin (Gu et al., 2021) No 60.52 86.97 90.96 87.93 93.96 92.80 85.52

Spiking LMUFormer (Liu et al., 2024) Yes 37.30 65.80 79.76 55.65 72.68 — 60.20
Binary S4D (Stan & Rhodes, 2024) Yes 54.80 82.50 85.03 82.00 82.60 61.20 74.69
S6-based SNN (Bal & Sengupta, 2024) Yes 55.70 77.62 88.48 80.10 83.41 — 72.55

SpikingSSM (Shen et al., 2024) Yes 59.93 82.35 88.20 86.81 93.68 94.80 84.30
(13%) (10%) (6 %) (22%) (7 %) (10%) (11%)

SPikE-SSM (ours) Yes 60.17 82.43 88.82 87.23 92.04 94.37 84.18
(12%) (3 %) (7 %) (10%) (9 %) (7 %) (8 %)

Table 3: Perplexity performance comparison of SPikE-SSM with SOTA methods on WikiText-103.
The symbol ↓ indicates that a smaller value for this metric is better, the same for other tables.

Method SNN Perplexity (↓) Parameters Layer Count Spiking Rate (↓)
Transformer (Vaswani et al., 2017) No 20.51 231M 48 —
S4 (Gu et al., 2021) No 20.95 249M 48 —

SpikeGPT (Zhu et al., 2023) Yes 39.75 213M 48 —
SpikingSSM (Shen et al., 2024) Yes 33.94 75M 16 26.4%
SPikE-SSM (ours) Yes 33.18 75M 16 24.5%

Implementation Details. The hyper-parameters τ and τr are set to 0.1 and 0.9, respectively. To
ensure the threshold and refractory magnitude are positive during training, the trainable parameters
vth and Uth are computed by exp(vth) and exp(Uth) with zero initialization (i.e. exp(vth) and
exp(Uth) are initialized as 1). Other parameters of SPikE-SSM blocks are initialized same as S4D-
Lin (Gu et al., 2022). SPikE-SSM is trained with Pytorch library on four NVIDIA A100-SXM4-
80GB GPUs and AMD EPYC 7642 48-core CPUs, using AdamW optimization (Loshchilov, 2017).
For sCIFAR10, sMNIST, psMNIST and LRA benchmarks, the model is trained by the cross-entropy
loss (Mao et al., 2023) with accuracy (Acc) results reported, while the Perplexity results are reported
for WikiText-103. The division of training and test data is consistent with (Shen et al., 2024). The
details of settings on nine different tasks are described in Table 7 in Appendix C.2, including six
LRA benchmarks, three sequential vision tasks, and a large text dataset (WikiText-103).

4.2 PERFORMANCES COMPARISONS

Results on LRA Benchmarks. Table 2 compares SPikE-SSM with both non-spiking and spiking
networks using Transformer or SSM architectures . While maintaining accuracy comparable to the
original model, SPikE-SSM achieves an average network sparsity of less than 10%. Additionally,
our model shows a significant performance improvement over previous SNN sequence models. No-
tably, SPikE-SSM successfully tackles the Path-X task with extreme sparsity (only 0.07%). This
task, which demands reasoning over long-range dependencies across sequences with 16,384 steps,
is highly challenging and unsolvable by S4D-Lin, highlighting the robustness of our method.

Results on WikiText-103. In addition to LRA datasets, we further conduct experiments on the
large Wikipedia text data, WikiText-103, to prove the advanced long sequence learning ability of
SPikE-SSM against existing SOTA methods. The Perplexity results are shown in Table 3, which can
be observed that SPikE-SSM achieves better performance with fewer parameters. Although model
sparsity can improve computational efficiency, it is generally observed that achieving high accuracy
often conflicts with maintaining strong sparsity, as sparsity typically results in information loss.
However, it is particularly noteworthy that SPikE-SSM achieves both higher sparsity and accuracy
compared to SpikingSSM, fully validating the effectiveness and superiority of the proposed model.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Ablation studies of SPikE-SSM of different variants reported. Acc and SpkR denote Accu-
racy(%) ↑ and Spiking Rate(%) ↓ respectively. Spiking Rate is not applicable for ANN-S4D.

Dataset sMNIST psMNIST sCIFAR10

Criterion Acc (%) SpkR (%) Acc (%) SpkR (%) Acc (%) SpkR (%)

ANN-S4D 99.50 — 98.20 — 87.11 —
Spiking-S4D 99.46 7.81 97.68 7.73 85.34 12.70
SPikE-SSM-SR 99.50 7.23 97.61 6.81 85.29 12.56
SPikE-SSM-SRT 99.51 6.09 96.97 5.65 85.61 11.03
SPikE-SSM-SRR 99.39 5.07 96.25 4.57 84.35 10.26

SPikE-SSM-Full 99.53 5.56 97.89 5.13 85.67 9.85

Table 5: Comparison of training speed of different methods. Training with the PMBC strategy
achieves significant acceleration, the speed-up ratio amplifies with increasing sequence length.

Method Speed (iterations / s) ↑
L = 1K L = 2K L = 4K L = 8K

Training with BPTT (Mozer, 2013) 0.60 0.29 0.11 0.03
Training with SLTT (Meng et al., 2023) 0.73 0.33 0.12 0.03
Training with PMBC (ours) 17.1 10.1 5.28 2.63

Speed-up Ratio 25.6× 32.2× 47.9× 81.7×

4.3 ABLATION STUDY

We conduct ablation studies to verify the design rationality of SPikE-SSM following the same ex-
perimental setups as Table 2. The variants with different levels of biological interpretability include:

• ANN-S4D. ANN-based SSM (S4D) model.
• Spiking-S4D. LIF-based spiking SSM without reset mechanism and refractory period.
• SPikE-SSM-SR. Only the soft reset mechanism is considered in the LIF neuron of SPikE-

SSM block with PMBC, as shown in Eq. (6).
• SPikE-SSM-SRR. Both the soft reset mechanism and refractory period are considered in

the LIF neuron of SPikE-SSM block with PMBC, as shown in Eq. (9-10).
• SPikE-SSM-SRT. Only the soft reset mechanism is considered in the LIF neuron of SPikE-

SSM block with PMBC. Uth and Vth are trainable.
• SPikE-SSM-Full. Both the soft reset mechanism and refractory period are considered in

the LIF neuron of SPikE-SSM block with PMBC. Uth and Vth are trainable.

Note that Uth and Vth are trainable only in SPikE-SSM-Full and SPikE-SSM-SRT. We compare
the performances of different variants of SPikE-SSMs on sMNIST, psMNIST and sCIFAR10. The
results are shown in Table 4, from which we can observe that each component designed for three
Challenges is effective in SPikE-SSM. Specifically, the proposed refractory neuron model with the
soft reset mechanism can optimize both high accuracy and pronounced sparsity with the thresholds
vth and refractory magnitudes Uth trainable in the SPikE-SSM block. More ablation studies about
hyper-parameters τ and τr, fire modes of fuzzy spiking signals, and the number of iterations M in
PMBC are shown in Tables 8 and 9 in the Appendix C.3.1, Tables 10 and 11 in the Appendix C.3.2,
and Tables 12 and 13 respectively in the Appendix C.3.3, where our experiments in Figure 5 illus-
trates that SPikE-SSM with fixed τ and τr performs better than that with trainable τ and τr.

4.4 TRAINING SPEED AND COMPUTATION COST ANALYSE

The Superiority of PMBC on Training Speed. We compare the training speed of SPikE-SSM,
enhanced by our PMBC strategy, against traditional methods based on iterative LIF neurons, includ-
ing Back-Propagation Through Time (BPTT) (Mozer, 2013) and the more recent Spatial Learning
Through Time (SLTT) (Meng et al., 2023), which uses an optimized computational graph. The input
consists of randomly generated 1-D sequences with various lengths of L = 1K, 2K, 4K, and 8K,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: Computation cost comparison of SSM with ANN settings, SpikingSSM and SPikE-SSM
on WikiText-103. ”Ops” is an abbreviation for “operations”.

Model Ops Types Num of Ops (G) ↓ Energy Cost (mJ) ↓
SSM with ANN Settings MAC 275 1265
SpikngSSM (Shen et al., 2024) AC 72.66 65.40
SPikE-SSM AC 67.68 60.68

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Layer Index

5

10

15

20

25

30

35

Sp
ik

in
g

R
at

e
(%

)

SpikingSSM on WikiText-103: 26.4
SPikE-SSM on WikiText-103: 24.5 (Ours)

SpikingSSM on sCIFAR10: 15.1
SPikESSM on sCIFAR10: 10.1 (Ours)

Figure 4: Spiking rate across all layers of SPikE-SSM and SpikingSSM on sCIFAR10 and WikiText-
103 datasets. The number following each legend represents the respective average spiking rate.

and a batch size of 64. All time measurements were conducted on a single NVIDIA A100-SXM4-
80GB GPU. As shown in Table 5, the speedup ratio using PMBC increases with sequence length,
achieving a nearly two-order acceleration at 8K.

The Energy-efficiency of SPikE-SSM. We compare the energy costs of the proposed SPikE-
SSM and its corresponding ANN-based version on WikiText-103, the sequence length of which
is L = 8192. Spiking networks are considered energy-efficient due to sparse binary activation. The
multiplication between a binary activation and a floating-point weight can be performed using only
addition operations in some neuromorphic chips (Yao et al., 2024). As a result, the primary oper-
ation in SNNs, synaptic accumulation (AC), incurs lower energy costs compared to the multiply-
and-accumulate (MAC) operation in traditional ANNs. Although the hardware specifics and neuron
dynamics are not considered here, a theoretical analysis can provide an estimate of SNN efficiency.
Following previous studies (Yao et al., 2024; Li et al., 2024), we assume the energy cost of an MAC
operation is EMAC = 4.6pJ , while an AC operation costs EAC = 0.9pJ (Horowitz, 2014). In this
part of the experiment, our model is set to comprise 16 layers, including a linear layer that projects
spikes from d = 1024 to d = 2048. For specific quantitative comparison, we first report the spiking
rates across different layers of SPikE-SSM in Figure 4. Then we report the MAC, AC, and energy
consumption in these feature-mix layers since they occupy the majority of parameters and computa-
tions. Specifically, if these projections were fully computed via floating-point multiplications (SSM
with ANN-based settings), they would require 275.2G MACs, consuming approximately 1.265J .
However, in our model (SPikE-SSM with SNN-based settings), the inputs to these layers are binary,
with an average spiking rate of less than 25%. Based on the spiking rates in Figure 4, our model per-
forms 67.42G ACs, consuming 60.68mJ . The results are summarized in Table 6, which illustrate
the high energy efficiency of SPikE-SSM compared with ANN-based SSM and SpikingSSM.

5 CONCLUSION

In this paper, we introduced SPikE-SSM, a novel spiking state space model designed to address key
challenges in long-sequence learning with SNNs. Specifically, we innovatively address the conflict
of event-driven neuronal dynamics with parallel computing in long sequence modeling by the PMBC
method, enabling explicit and efficient training of neuronal dynamics. Subsequently, a concise reset-
refractory neuron model is proposed to exploit the functionality of biological-plausible temporal
dynamics. Its effective integration with the SSM block and incorporation of trainable thresholds
and refractory magnitudes realize a balance between sparsity and accuracy. Extensive experiments
on sequential vision tasks, LRA benchmarks, and WikiText-103 language modeling validate the
superior efficiency, accuracy, and sparsity of SPikE-SSM. Our work shows the potential of dynamic
spiking neurons in efficient long sequence learning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Malyaban Bal and Abhronil Sengupta. Rethinking spiking neural networks as state space models.
arXiv preprint arXiv:2406.02923, 2024. 2, 3, 4, 8

John A Bather. Mathematical induction. 1994. 15, 16

Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass. Long
short-term memory and learning-to-learn in networks of spiking neurons. Advances in Neural
Information Processing Systems, 31, 2018. 18

Cristiano Capone, Cosimo Lupo, Paolo Muratore, and Pier Stanislao Paolucci. Beyond spiking
networks: The computational advantages of dendritic amplification and input segregation. Pro-
ceedings of the National Academy of Sciences, 120(49):e2220743120, 2023. 2

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023. 3

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022. 3

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In International Conference on Machine Learning, pp. 933–941. PMLR,
2017. 7

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012. 19

Yu Du, Xu Liu, and Yansong Chua. Spiking structured state space model for monaural speech
enhancement. In IEEE International Conference on Acoustics, Speech and Signal Processing, pp.
766–770. IEEE, 2024. 4

Pierre Duhamel and Martin Vetterli. Fast fourier transforms: A tutorial review and a state of the art.
Signal Processing, 19(4):259–299, 1990. 4

Jason K Eshraghian, Max Ward, Emre O Neftci, Xinxin Wang, Gregor Lenz, Girish Dwivedi, Mo-
hammed Bennamoun, Doo Seok Jeong, and Wei D Lu. Training spiking neural networks using
lessons from deep learning. Proceedings of the IEEE, 2023. 4

Wei Fang, Zhaofei Yu, Zhaokun Zhou, Ding Chen, Yanqi Chen, Zhengyu Ma, Timothée Masquelier,
and Yonghong Tian. Parallel spiking neurons with high efficiency and ability to learn long-term
dependencies. Advances in Neural Information Processing Systems, 36, 2024. 3

Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré.
Hungry hungry hippos: Towards language modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022. 3

Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal Dynamics: From
Single Neurons to Networks and Models of Cognition. Cambridge University Press, 2014. 2, 4

Samanwoy Ghosh-Dastidar and Hojjat Adeli. Spiking neural networks. International Journal of
Neural Systems, 19(04):295–308, 2009. 3

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023. 1, 3

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in Neural Information Processing Systems, 33:
1474–1487, 2020. 3

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021. 1, 3, 4, 8

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35:35971–
35983, 2022. 7, 8

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. Advances in Neural Information Processing Systems, 35:22982–22994, 2022. 1, 4

Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE
International Solid-state Circuits Conference Digest of Technical Papers, pp. 10–14. IEEE, 2014.
10

Licheng Jiao, Yuting Yang, Fang Liu, Shuyuan Yang, and Biao Hou. The new generation brain-
inspired sparse learning: A comprehensive survey. IEEE Transactions on Artificial Intelligence,
3(6):887–907, 2022. 2

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International Conference on Ma-
chine Learning, pp. 5156–5165. PMLR, 2020. 1, 3

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020. 1, 3

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009. 19

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recurrent networks
of rectified linear units. arXiv preprint arXiv:1504.00941, 2015. 7, 19

Boyan Li, Luziwei Leng, Shuaijie Shen, Kaixuan Zhang, Jianguo Zhang, Jianxing Liao, and Ran
Cheng. Efficient deep spiking multilayer perceptrons with multiplication-free inference. IEEE
Transactions on Neural Networks and Learning Systems, 2024. 3, 10

Zeyu Liu, Gourav Datta, Anni Li, and Peter Anthony Beerel. Lmuformer: Low complexity yet
powerful spiking model with legendre memory units. arXiv preprint arXiv:2402.04882, 2024. 8

Michael London and Michael Häusser. Dendritic computation. Annu. Rev. Neurosci., 28(1):503–
532, 2005. 7

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017. 8

Changze Lv, Tianlong Li, Jianhan Xu, Chenxi Gu, Zixuan Ling, Cenyuan Zhang, Xiaoqing Zheng,
and Xuanjing Huang. Spikebert: A language spikformer trained with two-stage knowledge distil-
lation from bert. arXiv preprint arXiv:2308.15122, 2023. 4

Anqi Mao, Mehryar Mohri, and Yutao Zhong. Cross-entropy loss functions: Theoretical analysis
and applications. In International conference on Machine learning, pp. 23803–23828. PMLR,
2023. 8

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language model-
ing via gated state spaces. arXiv preprint arXiv:2206.13947, 2022. 3

Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Towards
memory-and time-efficient backpropagation for training spiking neural networks. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 6166–6176, 2023. 9

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016. 7, 20

Fabian A Mikulasch, Lucas Rudelt, and Viola Priesemann. Local dendritic balance enables learning
of efficient representations in networks of spiking neurons. Proceedings of the National Academy
of Sciences, 118(50):e2021925118, 2021. 2

Michael C Mozer. A focused backpropagation algorithm for temporal pattern recognition. In Back-
propagation, pp. 137–169. Psychology Press, 2013. 9

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Bruno A Olshausen and David J Field. Sparse coding of sensory inputs. Current Opinion in Neuro-
biology, 14(4):481–487, 2004. 2

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin
Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048, 2023. 3

Zhen Qin, Dong Li, Weigao Sun, Weixuan Sun, Xuyang Shen, Xiaodong Han, Yunshen Wei, Bao-
hong Lv, Xiao Luo, Yu Qiao, et al. Transnormerllm: A faster and better large language model
with improved transnormer. 2023. 3

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and
Adam Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based lan-
guage models. arXiv preprint arXiv:2404.02258, 2024. 2

Nitin Rathi and Kaushik Roy. Diet-snn: A low-latency spiking neural network with direct input
encoding and leakage and threshold optimization. IEEE Transactions on Neural Networks and
Learning Systems, 34(6):3174–3182, 2021. 7

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681, 1997. 2

Shuaijie Shen, Chao Wang, Renzhuo Huang, Yan Zhong, Qinghai Guo, Zhichao Lu, Jianguo Zhang,
and Luziwei Leng. Spikingssms: Learning long sequences with sparse and parallel spiking state
space models. arXiv preprint arXiv:2408.14909, 2024. 2, 3, 4, 8, 10, 18

Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long short-term memory
(lstm) network. Physica D: Nonlinear Phenomena, 404:132306, 2020. 2

Yuheng Shi, Minjing Dong, Mingjia Li, and Chang Xu. Vssd: Vision mamba with non-casual state
space duality. arXiv preprint arXiv:2407.18559, 2024. 3

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for
sequence modeling. arXiv preprint arXiv:2208.04933, 2022. 1, 3

Matei Ioan Stan and Oliver Rhodes. Learning long sequences in spiking neural networks. arXiv
preprint arXiv:2401.00955, 2023. 2, 3, 4

Matei-Ioan Stan and Oliver Rhodes. Learning long sequences in spiking neural networks. Scientific
Reports, 14(1):21957, 2024. 8

Siyi Tang, Jared A Dunnmon, Qu Liangqiong, Khaled K Saab, Tina Baykaner, Christopher Lee-
Messer, and Daniel L Rubin. Modeling multivariate biosignals with graph neural networks and
structured state space models. In Conference on Health, Inference, and Learning, pp. 50–71.
PMLR, 2023. 1, 3

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020. 7, 19

Robert Urbanczik and Walter Senn. Learning by the dendritic prediction of somatic spiking. Neuron,
81(3):521–528, 2014. 2

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 30, 2017. 1, 3, 8

Aaron Voelker, Ivana Kajić, and Chris Eliasmith. Legendre memory units: Continuous-time repre-
sentation in recurrent neural networks. Advances in neural information processing systems, 32,
2019. 4

Man Yao, Jiakui Hu, Tianxiang Hu, Yifan Xu, Zhaokun Zhou, Yonghong Tian, Bo Xu, and Guoqi
Li. Spike-driven transformer v2: Meta spiking neural network architecture inspiring the design
of next-generation neuromorphic chips. arXiv preprint arXiv:2404.03663, 2024. 1, 10

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in Neural Information Processing Systems, 33:17283–17297, 2020.
1

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 11062–11070, 2021. 18

Hanle Zheng, Zhong Zheng, Rui Hu, Bo Xiao, Yujie Wu, Fangwen Yu, Xue Liu, Guoqi Li, and Lei
Deng. Temporal dendritic heterogeneity incorporated with spiking neural networks for learning
multi-timescale dynamics. Nature Communications, 15(1):277, 2024. 7

Yan Zhong, Xingyu Wu, Li Zhang, Chenxi Yang, and Tingting Jiang. Causal-iqa: Towards the
generalization of image quality assessment based on causal inference. In Forty-first International
Conference on Machine Learning, 2024. 3

Wangchunshu Zhou, Yuchen Eleanor Jiang, Peng Cui, Tiannan Wang, Zhenxin Xiao, Yifan Hou,
Ryan Cotterell, and Mrinmaya Sachan. Recurrentgpt: Interactive generation of (arbitrarily) long
text. arXiv preprint arXiv:2305.13304, 2023. 1, 3

Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and
Li Yuan. Spikformer: When spiking neural network meets transformer. arXiv preprint
arXiv:2209.15425, 2022. 1

Rui-Jie Zhu, Qihang Zhao, Guoqi Li, and Jason K Eshraghian. Spikegpt: Generative pre-trained
language model with spiking neural networks. arXiv preprint arXiv:2302.13939, 2023. 4, 8

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A THE PROOFS

A.1 THE PROOF OF ASSERTION 3.1

We utilize the Mathematical Induction Theory (Bather, 1994) to prove Assertion 3.1. As the pre-
supposition, we set s0 = 0 and u0 = 0, which is reasonable since there’s no signal at t = 0 with the
time step of the spiking signal s, membrane voltage u, refractory momentum R and input current I
signal all considered as 1 to L, that is st, ut, Rt and It, t = 1, · · · , L. On this basis, according to
Eq. (6) (ut = τut−1 − st−1Uth + It, st = Hs (ut − vth)), we have the following derivation.

Firstly, consider t = 1, we can obtain:

u1 = τu0 − s0Uth + I1
s1=Hs(u1−vth)−−−−−−−−−−→ k1 = I1, m1 = vth, (14)

which is congruent to Eqs. (7-8) with t = 1. Then, to verify that Eqs. (7-8) hold for all t ∈ [1, L],
we assume that Eqs. (7-8) hold for t = t1 ∈ [1, L− 1], that is

ut1 = kt1 −mt1 + vth, st1 = Hs (kt1 −mt1) , (15)

where kt1 =

t1∑
i=1

τ t1−iIi, mt1 = Uth

t1−1∑
i=1

τ t1−1−isi + vth, (16)

based on this we have:

ut1+1 = τut1 − st1Uth + It1+1, st1+1 = Hs (ut1+1 − vth) . (17)

According to substituting the ut1 in Eq. (15) into Eq. (17), we have:

ut1+1 =τ (kt1 −mt1 + vth)− st1Uth + It1+1 (18)

=τ

(
t1∑
i=1

τ t1−iIi −

(
Uth

t1−1∑
i=1

τ t1−1−isi + vth

)
+ vth

)
− st1Uth + It1+1 (19)

=τ

t1∑
i=1

τ t1−iIi + It1+1 − Uth

t1−1∑
i=1

τ t1−1−isi − st1Uth (20)

=

t1+1∑
i=1

τ t1+1−iIi −

(
Uth

t1∑
i=1

τ t1−isi + vth

)
+ vth (21)

=kt1+1 −mt1+1 + vth (22)

Therefore, Eqs. (7-8) hold for t = t1 + 1 ∈ [2, L]. According to the Mathematical Induction The-
ory (Bather, 1994), we can conclude that Eqs. (7-8) hold for all the t ∈ [1, L], so that Assertion 3.1
holds. Q.E.D.

A.2 THE PROOF OF ASSERTION 3.2

We assume that the dimension of input signal I is L for the refractory LIF neurons with the soft
reset. Firstly, according to Eq. (7) and Eq. (8), we have

k1 = I1, m1 = vth. (23)

Hence we can definitely obtain s1 = Hs (k1 −m1) in the first iteration of PMBC. Then, without
loss of generality, for the (a + 1)-th iteration of PMBC, we assume that the first a spiking signals
(i.e. s1, s2, · · · , sa) have been obtained. Note that ma+1 is only related to the first a spiking signals:

ka+1 =

a+1∑
i=1

pa+1
a+1−iyi, ma+1 = Uth

a∑
i=1

qa+1
a−i si + vth, (24)

where pa+1 = (τ0, τ1, · · · , τa), qa+1 = (0, τ0, τ1, · · · , τa−1). Therefore, in the b-th itera-
tion of PMBC, at least one new spiking signal (sa+1) can be definitely obtained by sa+1 =
Hs (ka+1 −ma+1), thus the maximum number of iterations of PMBC is no more than L. Q.E.D.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

In fact, due to the parallel computing mechanism of PMBC, the actual number of iterations is much
smaller than L. As shown in Figure 2(b), after only 5 iterations, the explicit spiking state exceeds
99%, whereas processing a 1024-dimensional input sequence serially would require 1024 iterations,
highlighting the efficiency of PMBC. Detailed experimental proofs and analysis are shown in Sec-
tion B.1. Based on the proof process for Assertion 3.1, we can conclude that the distribution of
kt is closely related to yt, where yt is the output obtained from the previous SSM block, calcu-
lated through layer normalization. Therefore, if SPikE-SSM initializes vth = 1 during training, the
first iteration of PMBC can effectively determine that most of the spiking signals are zero. This
significantly reduces the number of required iterations and accelerates training efficiency.

A.3 THE PROOF OF ASSERTION 3.3

Similarly to the proof of Assertion 3.1, we utilize the Mathematical Induction Theory (Bather, 1994)
to proof Assertion 3.3. As the presupposition, we set s0 = 0, u0 = 0,and R0 = 0, which is
reasonable since there’s no signal at t = 0 with the time step of the spiking signal s, membrane
voltage u and input current I signal all considered as 1 to L, that is st, ut, and It, t = 1, · · · , L.
On this basis, according to Eqs. (11-12) (ut = τut−1 + It − RtUth, Rt = τrRt−1 + st−1, st =
H(ut − vth)), we can transform the problem into proving the following equation first.

ut = kt −mt + vth, st = Hs (kt −mt) , (25)

where kt =

t∑
i=1

τ t−iIi, mt = Uth

t−1∑
i=1

τ t−1−iRi+1 + vth, Rt+1 = τrRt + st, (26)

Firstly, consider t = 1, we can obtain:

u1 = τu0 −R1Uth + I1
s1=Hs(u1−vth)−−−−−−−−−−→
R1=τrR0+s0

k1 = I1, m1 = vth, (27)

which is congruent to Eq. (26) with t = 1. Then, to verify that Eqs. (25-26) hold for all t ∈ [1, L],
we assume that Eqs. (25-26) hold for t = t1 ∈ [1, L− 1], that is

ut1 = kt1 −mt1 + vth, st1 = Hs (kt1 −mt1) , (28)

where kt1 =

t1∑
i=1

τ t1−iIi, mt1 = Uth

t1−1∑
i=1

τ t1−1−iRi+1 + vth, Rt1+1 = τrRt1 + st, (29)

based on this we have:

ut1+1 = τut1 −Rt1+1Uth + It1+1, st1+1 = Hs (ut1+1 − vth) . (30)

According to substituting the ut1 in Eq. (28) into Eq. (30), we have:

ut1+1 =τ (kt1 −mt1 + vth)−Rt1+1Uth + It1+1 (31)

=τ

(
t1∑
i=1

τ t1−iIi −

(
Uth

t1−1∑
i=1

τ t1−1−iRi+1 + vth

)
+ vth

)
−Rt1+1Uth + It1+1 (32)

=τ

t1∑
i=1

τ t1−iIi + It1+1 − Uth

t1−1∑
i=1

τ t1−1−iRi+1 −Rt1+1Uth (33)

=

t1+1∑
i=1

τ t1+1−iIi −

(
Uth

t1∑
i=1

τ t1−iRi+1 + vth

)
+ vth (34)

=kt1+1 −mt1+1 + vth (35)

Therefore, Eqs. (25-26) hold for t = t1 +1 ∈ [2, L]. According to the Mathematical Induction The-
ory (Bather, 1994), we can conclude that Eqs. (25-26) hold for all the t ∈ [1, L]. Subsequently, the
parallel calculation form of the membrane potential of the LIF neuron with soft reset and refractory

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

period can be expressed as:

ut =

t∑
i=1

τ t−iIi − Uth

t∑
i=1

τ t−iRi (36)

=

t∑
i=1

τ t−iIi − Uth

t∑
i=1

τ t−i(

i−1∑
j=1

τ i−1−j
r sj) (37)

=

t∑
i=1

τ t−iIi − Uth

t−1∑
i=1

t−1−i∑
j=0

τ jτ t−1−i−j
r si (38)

=

t∑
i=1

τ t−iIi − Uth

t−1∑
i=1

t−1−i∑
j=0

(τ/τr)
jτ t−1−i

r si (39)

st = Hs(ut − vth), kt =

t∑
i=1

τ t−iIi (40)

mt = Uth

t−1∑
i=1

t−1−i∑
j=0

(τ/τr)
jτ t−1−i

r si + vth (41)

Therefore, Assertion 3.3 holds. Q.E.D.

Apparently, Eqs. (11-12) degrade to the version of SPikE-SSM-RS without the refractory period
when τr = 0.

B MORE DETAILS RELATED TO SPIKE-SSM

B.1 DETAILED DESCRIPTION AND ANALYSIS FOR FIGURE 2

To clearly demonstrate the implementation process and effectiveness of PMBC, we present the evo-
lution of the boundary and convergence process in Figure 2.

(1) In Figure 2(a), we illustrate the boundary’s evolution of a particular neuron chosen at random
during training as PMBC iterations increase over different time steps. In the top part of Figure 2(a),
before the first iteration, with all spiking signals si setting to 1, mup

t (0) increases slowly as the time
step t progresses, with growth gradually leveling off until stabilizing. This is consistent with Eq. (8),
as 0 < τ < 1 causes τ t to approach 0 over time, mup

t (0) approaches Uth/(1− τ) + vth when t is
large. Conversely, with all spiking signals si setting to 0, mlow

t (0) remains vth across all time steps.
After the first iteration of PMBC, partial binary spiking signals si are explicitly obtained, leading
to two outcomes: in some time steps, mlow

t (1) apparently increases compared to mlow
t (0), while

in others, mup
t (1) apparently decreases compared to mup

t (0). It is observed that spiking states that
are quickly identified are often following several kt that are too large or too small in succession.
In the bottom part of Figure 2(a), inherited from the convergence process of mup

t and mlow
t in

the top part, the results after 5 iterations of PMBC are shown, where mlow
t (5) and mup

t (5) become
almost identical. Eventually, nearly all binary spiking signals si are explicitly determined based on
st = Hs(kt−mt), by comparing kt and mt in parallel and efficiently, omitting the serial computing
of membrane potential ut.

(2) In Figure 2(b), we show the convergence curve of the explicit spiking state as PMBC iterations
increase. The explicit spiking state refers to the proportion of spiking signals that are explicitly
determined across all time steps. From Figure 2(b), it is evident that PMBC can resolve most of the
spikes in just a few iterations, significantly fewer than the original serial computation method used
for LIF neurons (Eq. (4)). After only 5 iterations, the explicit spiking state exceeds 99%, whereas
processing a 1024-dimensional input sequence serially would require 1024 iterations, highlighting
the efficiency of PMBC.

(3) In Figure 2(c), we provide an intuitive comparison between the PMBC method based on parallel
computing and the traditional serial computation method. For a sequence of length L, the serial
method requires L iterations, whereas the PMBC approach processes all L tokens simultaneously in
parallel, requiring only M iterations, with M much smaller than L.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 2 The Optimization Process of PMBC for the Refractory LIF Neuron
Input: Parameters τ, τr, Uth and vth; Input signal I ∈ R1×L; Maximum of iterations M .
Output: Spiking signals s ∈ R1×L.
1: Define p = (τ0, τ1, · · · , τL−1), q : qt = τ tr ·

∑t
j=0(τ/τr)

j ; k = iFFT (FFT (I) · FFT (p)).
2: Initialize sup = (1, · · · , 1) ∈ R1×L and slow = (0, · · · , 0) ∈ R1×L.
3: Repeat up to M times:
4: mup = Uth · iFFT (FFT (q) · FFT (sup)) + vth;
5: mlow = Uth · iFFT

(
FFT (q) · FFT

(
slow

))
+ vth;

6: If kt > mup
t , then slowt = 1; If kt < mlow

t , then supt = 0;
7: Until convergence of spike rate 1

L

∑
i s

low
i .

8: Return s = slow.

In fact, the parallel PMBC method makes explicitly training parametric LIF neurons more efficient
and feasible, especially in long sequence scenarios. In contrast, the SDN-based approach in Spik-
ingSSM (Shen et al., 2024) is limited to effectively training only the threshold voltage (vth), while
it’s unclear whether other hyper-parameters can be trained end-to-end. This ambiguity highlights
the advantage of PMBC in handling more comprehensive parameter optimization with trainable
temporal dynamics.

The experimental setup for this part is described as follows:

For Figure 2(a): Both the soft reset mechanism and refractory period are considered in the LIF
neuron of SPikE-SSM block trained with PMBC. The parameters τ , τr, Uth, and vth are fixed as
0.3, 0.4, 1, and 0.5 respectively. The number of iterations in PMBC is set to 10 during training. The
curve in Figure 2(a) shows the results with different iteration numbers in PMBC during inference.

For Figure 2(b): Only the soft reset mechanism is considered in the LIF neuron of the SPikE-SSM
block trained with PMBC. The parameters τ , Uth, and vth are fixed as 0.1, 1, and 3 respectively.
The number of iterations in PMBC is set to 10 during training. After all the iterations of PMBC, the
still fuzzy spiking signals are set to 1 by default, i.e. the spiking signals for these time steps are set
to fire by default. The curve in Figure 2(b) shows the explicit spiking state with different iteration
numbers in PMBC during inference.

B.2 THE OPTIMIZATION PROCESS OF PMBC FOR THE REFRACTORY LIF NEURON

The pseudo-code of the optimization process of PMBC for the Refractory LIF Neuron is summarized
in Algorithm 2, which only differs from the LIF neuron with soft reset in the representation of mt

in Algorithm 1.

B.3 SURROGATE GRADIENT IN SPIKE-SSM

Since the Heaviside function Hs in Eq. (13) is non-differentiable at x = 0, several surrogate gradient
(SG) methods are proposed to enable training through gradient descent. Common SG functions
are differentiable at all points and possess non-zero derivatives near the threshold, allowing them
to approximate the original discontinuous gradient of the spiking activation function, such as the
rectangular function (Zheng et al., 2021) and the triangular function (Bellec et al., 2018). In SPikE-
SSM, the piecewise quadratic surrogate spiking function g(x) is utilized with α = 1. g(x) and its
gradient g′(x) are defined as:

g(x) =

 0, if x < − 1
α

− 1
2α

2|x|x+ αx+ 1
2 , if |x| ≤ 1

α
1, if x > 1

α

, g′(x) =

{
0, if |x| > 1

α

−α2|x|+ α, if |x| ≤ 1
α

. (42)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

9

10

11

12

13

14

Sp
ik

in
g

R
at

e
(%

)

Accuracy Spiking Rate

83

84

85

86

A
cc

ur
ac

y
(%

)

Fixed =; =r Trainable =; =r

Figure 5: Comparison on sCIFAR10 between SPikE-SSM-SRR with fixed τ and τr and that with
trainable τ and τr. Uth and Uth are both set to 1 in SPikE-SSM-SRR.

Table 7: The hyper-parameters of our experiments on these datasets. H denotes the model dimen-
sion, N denotes the state dimension, LR denotes learning rate, WD denotes weight decay and BS
denotes the batch size. BN and LN refer to Batch Normalization and Layer Normalization.

Dataset Depth H N Norm pNorm Dropout LR BS Epochs WD (∆min, ∆max)
sMNIST 2 128 64 LN False 0.1 0.01 64 25 0.01 (0.001,0.1)
psMNIST 4 128 64 LN False 0.1 0.01 64 60 0.01 (0.001,0.1)
sCIFAR10 4 128 64 LN False 0.1 0.01 64 100 0.01 (0.001,0.1)
ListOps 8 128 64 BN False 0 0.01 50 40 0.05 (0.001, 0.1)
Text 6 256 64 BN True 0 0.01 16 32 0.01 (0.001, 0.1)
Retrieval 6 256 64 BN True 0 0.01 64 20 0.01 (0.001, 0.1)
Image 6 512 64 LN False 0.1 0.01 50 200 0.01 (0.001, 0.1)
Pathfinder 6 256 64 BN True 0 0.004 64 200 0.01 (0.001, 0.1)
Path-X 6 256 64 BN True 0 0.0005 32 50 0.01 (0.0001, 0.01)
WT-103 16 1024 64 LN True 0.1 0.0005 1 200 0.01 (0.001,0.1)

C MORE DETAILS RELATED TO EXPERIMENTS

C.1 DETAILS OF DATASETS

C.1.1 SEQUENTIAL VISION DATASETS

The MNIST dataset (Deng, 2012) is a classic benchmark in machine learning, featuring 70,000
grayscale images of handwritten digits (0-9), with 60,000 samples for training and 10,000 for test-
ing, each image sized at 28×28 pixels. It has long been a cornerstone for evaluating image classi-
fication models due to its simplicity and widespread availability. The sequential MNIST (sMNIST)
dataset (Le et al., 2015) transforms these 2D images into sequences of 784 elements by flattening
the pixel grid into a 1D sequence. This transformation poses a more complex challenge, as models
must process and retain information over longer time steps to accurately classify the digit. To further
increase the difficulty, the permuted sequential MNIST (psMNIST) (Le et al., 2015) applies a fixed
random permutation to the pixel sequences, effectively scrambling their spatial order and disrupting
any inherent structure. This variant demands even greater computational ability from models, as
they must learn to extract meaningful features from a sequence with no obvious temporal or spatial
coherence, making psMNIST a far more challenging task compared to the original sMNIST. The
sCIFAR10 dataset is a sequential version of the CIFAR-10 dataset (Krizhevsky et al., 2009), where
the original static images are processed in a temporal manner, typically by feeding the image pixels
row-by-row or in a pre-defined sequence.

C.1.2 LRA BENCHMARK

The LRA benchmark (Tay et al., 2020) was specifically designed to evaluate the performance of se-
quence models in long-context scenarios, where capturing dependencies across extended sequences
is crucial. It consists of six diverse tasks, with sequence lengths ranging from 1K to 16K steps,
covering multiple modalities including visual data, mathematical expressions, and natural language.
These tasks are carefully curated to challenge models on various aspects of long-context compre-
hensions, such as text classification, document retrieval, image recognition, the pathfinder problem,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 8: Ablation studies of SPikE-SSM-SR (vth and Uth are trainable) with different τ . Acc, SpkR
and FzR denote test accuracy, spiking rate and fuzzy rate respectively.

Iter Nums τ 0.2 0.15 0.1

5
Acc (%) ↑ 84.91 84.93 84.93

SpkR (%) ↓ 10.66 10.69 9.91
FzR (%) ↓ 1.88 1.29 1.30

20
Acc (%) ↑ 85.24 84.37 85.12

SpkR (%) ↓ 10.03 9.72 9.98
FzR (%) ↓ 0.48 0.36 0.37

Table 9: Ablation studies of SPikE-SSM-Full with different τ and τr. Acc, SpkR and FzR denote
test accuracy, spiking rate and fuzzy rate respectively. Fuzzy rate is defined as the mean proportion
of final unidentified spiking signals si in all neurons after finite iterations of PMBC during inference.

τ 0.2 0.15 0.1

Iter Nums τr 0.6 0.75 0.9 0.6 0.75 0.9 0.6 0.75 0.9

5
Acc (%) ↑ 84.97 84.60 83.32 84.13 84.34 84.75 85.17 85.04 84.37

SpkR (%) ↓ 10.27 10.23 10.21 9.93 9.94 9.94 9.46 9.63 9.61
FzR (%) ↓ 2.54 3.09 6.25 2.03 2.27 5.74 2.00 2.39 5.82

20
Acc (%) ↑ 84.64 84.56 83.32 84.25 84.17 83.85 84.66 84.47 83.56

SpkR (%) ↓ 10.28 10.55 10.73 10.41 10.39 10.22 10.10 10.00 10.33
FzR (%) ↓ 1.07 1.64 3.05 0.94 1.21 3.1 0.95 1.18 2.87

and list operations (ListOps), making it a comprehensive testbed for assessing a model’s ability to
process and reason over extended input sequences.

C.1.3 WIKITEXT-103

The WikiText-103 dataset (Merity et al., 2016) is a large-scale corpus containing over 100 million to-
kens extracted from Wikipedia articles that have been rated as Good or Featured. Spanning a broad
spectrum of topics and domains, it offers a rich variety of linguistic patterns and structures. Un-
like many other datasets, WikiText-103 consists of full-length articles rather than isolated snippets,
making it particularly well-suited for models designed to capture long-term dependencies across
extended contexts. Due to its depth and diversity, it has become a pivotal benchmark for word-level
language modeling, providing a robust testing ground for evaluating models’ capacity to understand
and generate coherent text over lengthy sequences.

C.2 DETAILS OF EXPERIMENTAL SETTINGS

Table 7 describes the particular training details of experiments on different tasks, where LRA bench-
marks consist of six tasks, including ListOps, Text, Retrieval, Image, Pathfinder and Path-X. Depth
denotes the number of SPikE-SSM blocks, pNorm denotes the pre-norm, and WT − 103 means
WikiText-103 dataset.

C.3 MORE EXPERIMENTAL RESULTS

C.3.1 PARAMETER SENSITIVITY ANALYSIS

In the blocks of the proposed model, we compare the performances of SPikE-SSM-SSR with fixed
τ and τr and that with trainable τ and τr. The results are shown in Figure 5, which shows that
SPikE-SSMwith fixed τ and τr can achieve lower sparsity and higher accuracy. Therefore, we τ and
τr are set fixed in our method. Then we investigate the impacts of different τ and τr on our model.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 10: The impact of different fire modes for the fuzzy spiking signals on SPikE-SSM-SR with
fixed Uth = 1 and Vth = 1.

Criterion No Reset Fire Mode 1 Fire Mode 2 Fire Mode 3 Fire Mode 4

Accuracy (%) ↑ 85.31 86.11 85.64 85.68 85.55
Spiking Rate (%) ↓ 12.27 13.07 12.19 12.19 11.94

Table 11: The impact of different fire modes for the fuzzy spiking signals on SPikE-SSM-Full with
refractory period and trainable Uth and Vth.

Criterion No Reset Fire Mode 1 Fire Mode 2 Fire Mode 3 Fire Mode 4

Accuracy (%) ↑ 85.45 85.34 84.80 84.84 85.23
Spiking Rate (%) ↓ 14.81 10.16 9.97 10.87 9.75

The results for SPikE-SSM-Full and SPikE-SSM-SR (vth and Uth are trainable) are shown in Table 8
and Table 9 respectively. Note that there are two hyper-parameters (τ and τr) in SPikE-SSM-Full,
and only one hyper-parameter (τ) in SPikE-SSM-SR. As previously stated by the default setting, the
fuzzy spiking signals sf are all set to False during training (i.e. sf = 0).

From Table 8, we can observe that: (1) In SPikE-SSM-SR with only one hyper-parameter τ , re-
gardless of the number of PMBC iterations, the change in τ has minimal impact on the model’s
overall accuracy and sparsity, indicating that the performance of SPikE-SSM-SR is not sensitive to
the parameter τ , which demonstrates the robustness of our proposed method. (2) As the number
of PMBC iterations increases, the Fuzzy Rate significantly decreases, as more iterations in PMBC
allow for more spiking signals to be identified. (3) Under the same number of PMBC iterations, the
Fuzzy Rate decreases significantly as the hyper-parameter τ becomes smaller. This indicates that a
smaller τ helps improve the computational efficiency of PMBC and the accuracy of the model.

From Table 9, we can observe that: (1) In SPikE-SSM-SR with two hyper-parameters τ and τr, under
the same number of PMBC iterations and τr, the change in τ has minimal impact on the model’s
overall accuracy, but smaller τ leads to smaller Spiking Rate and Fuzzy Rate. This indicates that
a smaller τ helps reduce the sparsity and improve the accuracy of the model. (2) Under the same
number of PMBC iterations and τ , the change in τr has minimal impact on the model’s overall
accuracy and sparsity, demonstrating the robustness of our method.

Therefore, the hyper-parameters τ and τr are set to 0.1 and 0.9 respectively in the full SPikE-SSMby
default, which can achieve a more balanced performance between the sparsity and accuracy.

C.3.2 THE IMPACT OF FUZZY FIRE MODES IN PMBC

Due to the parallel computation of PMBC, most of the spiking signals can be definitely obtained in
5-10 iterations of Algorithm 1 and Algorithm 2, with only a few spiking signals are still fuzzy. To
improve computing efficiency, we adopt several fire modes to address these fuzzy spiking signals to
reduce the iterations of PMBC, including:

• No Reset: Train the SPikE-SSM without reset mechanism (so Uth and refractory period
are not applicable).

• Fire Mode 1: The fuzzy spiking signals sf are all set to True (i.e. sf = 1).

• Fire Mode 2: The fuzzy spiking signals sf are all set to False (i.e. sf = 0).

• Fire Mode 3: The fuzzy spiking signals sf randomly are determined by the mean spiking
rate value of definite piking signals sd.

• Fire Mode 4: The fuzzy spiking signals sf are determined by their current corresponding
upper and lower bounds. For example, after all the iterations of PMBC, if si is still fuzzy
in time step t = i, and its upper and lower bounds are mup

i and mlow
i . If ki > (mup

i +
mlow

i)/2, then si = 1, or else si = 0.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 12: The impact of different numbers of iterations in PMBC on the accuracy and spiking rate
performances of our method.

Number of Iterations 1 2 5 10 30

Accuracy (%) ↑ 84.46 84.74 84.74 85.02 84.99
Spiking Rate (%) ↓ 13.32 12.90 12.66 12.11 12.32
Fuzzy Rate (%) ↓ 8.80 6.77 4.48 2.62 0.82

Table 13: The impact of different numbers of iterations in PMBC on the speed and time cost of our
method. “serial computing” means serially training SPikE-SSMwithout PMBC.

Number of Iterations 1 2 5 10 30 50 serial computing

Speed (iters/s) ↑ 25.32 21.51 14.63 9.50 3.97 2.42 1.21
Time (ms/iters) ↓ 39.49 46.49 68.35 105.26 251.89 413.22 826.45

To investigate the impact of different fire modes of fuzzy spiking signals for PMBC, we trained the
SPikE-SSM-SR and SPikE-SSM-Full with different fire modes on dataset sCifar10 with 10 PMBC
iterations and 100 epochs, and the performances are shown in Table 10 and Table 11 respectively.

According to Table 10, we can observe that SPikE-SSM-SR with Fire Mode 2, Fire Mode 3 and Fire
Mode 4 can all achieve both higher accuracy and lower spiking rate than that of SPikE-SSMwithout
the reset mechanism, which verifies the effectiveness of reset mechanism in the refractory LIF neu-
ron model. Although SPikE-SSM-SR with Fire Mode 1 achieves the highest spiking rate, it also
achieves the highest accuracy among the five versions, which can be attributed to the fact that too
sparse signals may lead to the loss of important information during training.

According to Table 11, we can observe that SPikE-SSM-Full with Fire Mode 1, Fire Mode 2, Fire
Mode 3, and Fire Mode 4 can all achieve lower spiking rates than that of SPikE-SSMwithout the
reset mechanism. Notably, compared with Table 10 and Table 11, we can observe that SPikE-SSM-
Full with both trainable Uth and vth can achieve lower spiking rate than SPikE-SSM-SR with the
same Fire Modes in all the four different Fire Modes, which indicates that the trainable Uth and Vth

can more effectively model the temporal dynamics with biological interpretability.

In our method, we choose Fire Mode 2 as the default setting since it can further reduce the spiking
rate with all the fuzzy spiking signals set to False (sf = 0), and it can also achieve a more balanced
performance between accuracy and spiking rate.

C.3.3 THE IMPACT OF DIFFERENT ITERATIONS IN PMBC

In this section, we investigate the impact of different numbers of iterations in PMBC on the accuracy
and sparsity performances of SPikE-SSM. We trained the SPikE-SSM-SR with fixed Uth = vth = 1
and 4 layers on dataset sCIFAR10 with 100 epochs and τ = 0.2. This experiment is conducted on a
V-100 GPU. The results with different iterations in PMBC are shown in Table 12.

According to Table 12, we can observe that: (1) As the number of PMBC iterations increases,
the model’s accuracy gradually improves, while the fuzzy rate decreases. This is because more
spiking signals are explicitly calculated with additional iterations, enhancing the model’s robustness
and leading to a steady rise in accuracy. (2) As the number of PMBC iterations increases, the
overall spiking rate gradually decreases, indicating that more distinct spiking signals can enhance
the model’s sparsity. (3) The SPikE-SSM-SR with 10 iterations of PMBC achieves both higher
accuracy and a lower spiking rate compared to the version with 30 iterations, despite having a
significantly higher fuzzy rate. This suggests that more iterations of PMBC are not always better, as
fuzzy spiking signals may function similarly to dropout.

In addition, we investigate the impact of different and more granular numbers of iterations in PMBC
on the inference speed and the cost times of SPikE-SSM. The experimental settings are the same as
Table 12. Note that the sequence length L of sCIFAR10 is 1024. The experimental results are shown

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

in Table 13, from which we can observe that: (1) As the number of iterations in PMBC increases, the
model’s inference speed progressively decreases, with each iteration requiring more time to com-
plete. This slowdown becomes more noticeable as iteration counts grow. (2) The fastest inference
speed is achieved when only a single iteration is performed. However, even when multiple itera-
tions are conducted in parallel within PMBC, the inference speed remains considerably faster than
the traditional sequential iteration method that doesn’t use PMBC. These findings further highlight
the efficiency of our proposed PMBC-based training approach, demonstrating that it significantly
accelerates the model’s inference while maintaining robust performance.

In our method, we set the default number of iterations of PMBC as 3, which can achieve a more
balanced performance between the high-efficiency inference and stable accuracy.

23

