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In control and machine learning, the primary goal is to learn the models that make

predictions or decisions and act in the world. This thesis covers two important aspects

for control theory and machine learning: the model structure that allows low training

and generalization error with few samples (i.e., low sample complexity), and convergence

guarantees for first-order optimization algorithms for nonconvex optimization.

If the model and the training algorithm apply the knowledge of the structure of data

(such as sparsity, low-rankness, etc.), the model can be learned with low sample complexity.

We present two results, the Hankel nuclear norm regularization method for learning a low

order system, and the overparameterized representation for linear meta-learning.

We study dynamical system identification in the first result. We assume the true system

order is low. A low system order means that the state can be represented by a low dimensional



vector, and the system corresponds to a low rank Hankel matrix. The low-rankness is known

to be encouraged by nuclear norm regularized estimator in matrix completion theory. We

apply a nuclear norm regularized estimator for Hankel matrix, and show that it requires fewer

samples than the ordinary least squares estimator.

We study linear meta-learning in the second part. The meta-learning algorithm contains

two steps: learning a large model in representation learning stage, and fine tuning the model in

few-shot learning stage. The few-shot dataset contains few samples, and to avoid overfitting,

we need a fine-tuning algorithm that uses the information from representation learning.

We generalize the subspace-based model in prior arts to Gaussian model, and describe the

overparameterized meta-learning procedure. We show that the feature-task alignment reduces

the sample complexity in representation learning, and the optimal task representation is

overparameterized.

First order optimization methods such as gradient based method, is widely used in machine

learning thanks to its simplicity for implementation and fast convergence. However, the

objective function in machine learning can be nonconvex, and the first order method has only

the theoretical guarantee that it converges to a stationary point, rather than a local/global

minimum. We dive into more refined analysis of the convergence guarantee, and present

two results, the convergence of perturbed gradient descent approach to a local minimum on

Riemannian manifold, and a unified global convergence result of policy gradient descent for

linear system control problems.

We study how Riemannian gradient converges to an approximate local minimum in the

first part. While it is well-known that the perturbed gradient descent escapes saddle points in

Euclidean space, less is known about the concrete convergence rate when we apply Riemannian

gradient descent on the manifold. In the first result, we show that the perturbed Riemannian



gradient descent converges to an approximate local minimum and reveal the relation between

convergence rate and the manifold curvature.

We study the policy gradient descent applied in control in the second part. Many control

problems are revisited under the context of the recent boom in reinforcement learning (RL),

however, there is a gap between the RL and control methodology: The policy gradient in RL

applies first-order method on nonconvex landscape, and it is hard to show they converge to

global minimum, while control theory invents reparameterization that makes the problem

convex and they are proven to find the globally optimal controller in polynomial time.

Targeting on interpreting the success of the nonconvex method, in the second result, we

connect the nonconvex policy gradient descent applied for a collection of control problems

with their convex parameterization, and propose a unified proof for the global convergence of

policy gradient descent.
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Chapter 1

INTRODUCTION

In the last few decades, we have witnessed the power of machine learning models which

extracts the useful information from the data, and accomplishes variant difficult tasks based

on the learnt information. Machine learning and control (also revisited by reinforcement

learning) both aim to learn models that predict and act on the real world. A machine learning

model can be as simple as a linear map, which is trained by solving a linear regression problem

on features and labels. In recent years, more complicated models are investigated. These

models perform remarkably well in many applications, such as robotics, image classification,

objective detection, machine translation, recommendation systems, etc. Although these

models behave well in practice, we do not have a good theoretical understanding of these

methods. In this work, we aim to study two components raised in learning problems:

1. What is a good formulation of the machine learning model, so that it is trained with

low training-generalization error with few samples.

2. How to train the machine learning model in a computationally efficient way with

convergence guarantee.

The first challenge means that, it is important to define the correct model for machine

learning tasks, and see how the structure of models helps learn with few data, i.e., improves

the statistical rates. In the system identification and representation learning applications

below, we hope to learn “simple” models that represents the real-world tasks. Both of them

involve low rank structure of models. We propose that, the low rank structure enables the

Hankel nuclear norm regularized algorithm to learn a low-order system on few data with

small training and generalization error, and a proper representation of meta-learning model

leads to optimal generalization guarantee compared with the SVD based method, which is
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proven suboptimal.

Besides that, we are interested in the convergence guarantee of optimization methods for

training machine learning models. The convergence to global optimum is well studied only

for convex optimization, whereas during the recent trend in machine learning, gradient based

algorithms are applied for solving non-convex optimization problems, and they empirically

learn good models. Thus we are interested in studying the theoretical convergence guarantee

of first order algorithms for nonconvex optimization. We study the convergence of Riemannian

gradient descent and show the relation of convergence rate and curvature constants, and the

global optimality for a special family of nonconvex optimization problem in control theory.

This chapter is a brief introduction of the following chapters, and full introduction and

literature review of each theme will be specified in the corresponding chapters.

• Chapter 2 investigates the second order convergence guarantee of gradient based method

on Riemannian manifolds. Thanks to recent boom of machine learning, gradient based

methods applied to nonconvex problem empirically perform remarkably well. One line

among them is optimizing strict saddle functions (Ge et al., 2015; Jin et al., 2017a),

where we can find an approximate local minimum in polynomial time. Another line of

work is to study the optimization method on a manifold (Absil et al., 2009b), which

is generally a nonconvex optimization problem if we trivially treat the manifold as a

constraint. One can combine the geometric structure of the manifold and the convex

optimization algorithms to obtain the convergence guarantee of the Riemannian gradient

method, which is a gradient based method implemented on manifolds. However, the

convergence to local minimum for nonconvex optimization problem on manifolds is

less studied (convexity is not well defined on manifolds) before. We investigate the

convergence rate to an approximate local minimum on an Riemannian manifold, and

relate the rate with the curvature constants of the function and the manifold.

• Chapter 3 studies the convergence guarantee of policy gradient descent method for

control problems. There is a recent boom in reinforcement learning that revisits the

control problems. However, we see a difference in their philosophy that, control theory
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has traditionally relied more on building physical models whereas machine learning

relies more on data-driven methods. The policy gradient descent algorithm in the RL

domain is typically used in the policy space where the costs are usually nonconvex (Fazel

et al., 2018). Previous papers in control theory study the convex optimization theory

with linear matrix inequalities (LMI) or semidefinite programming (SDP) (Dullerud

& Paganini, 2013; Stengel, 1994; Rawlings et al., 2017; Boyd et al., 1994). Motivated

by recent papers (Fazel et al., 2018; Mohammadi et al., 2019a; Bu et al., 2019a,b;

Furieri et al., 2020; Zhang et al., 2020; Jansch-Porto et al., 2020) that directly study

the nonconvex landscape of the linear quadratic regulator (LQR), LQR for Markov

jump linear systems(MJLS), robust control and decentralized control problems, we

propose an explanation that connects convex analysis in control theory with analysis of

policy gradient method, and generalize nonconvex analysis to a broad range of optimal

control problems. We show the generality of this idea by covering the results of the

aforementioned papers on nonconvex landscape into a single unifying theorem. In

summary, we build a bridge between the two methodologies and show the theoretical

tools from control theory can help explaining the empirical success of nonconvex methods

of reinforcement learning.

• Chapter 4 studies the system identification problem, which belongs to the model based

method more usually used before. Previous works such as Oymak & Ozay (2018); Sarkar

et al. (2019) use unregularized least squares method to regress the input-output map,

however if we do not know the dimension of state space, the train-validation step (in

order to find the state dimension) is required and not easy to implement. We study the

Hankel nuclear norm regularized formulation, which encourages the simplicity of a linear

system by the low-order property, and it reduces the sample complexity requirement

while the statistical rate of error is preserved. We propose the statistical property, and

a practical training-validation algorithm that tunes the regularizer efficiently.

• Chapter 5 studies the role of overparametrization and dimension reduction in represen-

tation learning. It aims to retrieve the principle features of the tasks, which are often
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low-dimensional, from limited data available for related tasks. We consider a setup

where task features follow a Gaussian distribution in the high dimensional space, whose

covariance spectrum has a decaying pattern so they are approximately low dimensional.

As mentioned in Kong et al. (2020b,a); Tripuraneni et al. (2020); Du et al. (2020),

a low-rank approximation step such as k-SVD is commonly used to retrieve the low

dimensional space. We are interested in overparameterized meta-learning. We show that

learning large representations by letting directions weighted by their relative importance,

although leading to an ill-posed overparameterized problem, can result in the optimal

generalization error compared to low dimensional representations. Furthermore, the

findings reveal a double descent phenomena when varying the representation dimension,

which is typically observed in practical meta-learning.
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Chapter 2

FIRST-ORDER METHOD FOR NONCONVEX OPTIMIZATION
ON RIEMANNIAN MANIFOLDS

In this chapter, we investigate the convergence to a local minimum using the first order

optimization algorithms. It is known that, for solving an unconstrained optimization problem

in Euclidean space, the perturbed gradient descent algorithm converges to an approximate

local minimum in polynomial time. We analyze the first order optimization algorithm

on Riemannian manifold, and show that perturbed Riemannian gradient descent provably

converges to an approximate local minimum. We give the concrete convergence rate of

perturbed Riemannian gradient descent, which reveals the role of the manifold curvature

with respect to the rate.

This work is published as Sun et al. (2019).

2.1 Introduction

We consider minimizing a non-convex smooth function on a smooth manifoldM,

min
x∈M

f(x), (2.1)

whereM is a d-dimensional smooth manifold1, and f is twice differentiable. We assume the

Hessian is ρ-Lipschitz. This framework includes a wide range of fundamental problems (often

non-convex), such as PCA (Edelman et al., 1998), dictionary learning (Sun et al., 2017), low

rank matrix completion (Boumal & Absil, 2011), and tensor factorization (Ishteva et al.,

2011). Finding the global minimum of a nonconvex function is in general NP-hard; our goal

1Here d is the dimension of the manifold itself; we do not consider M as a submanifold of a higher
dimensional space. For instance, ifM is a 2-dimensional sphere embedded in R3, its dimension is d = 2.
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is to find an approximate second order stationary point with first order optimization methods.

We are interested in first-order methods as they are extremely prevalent in machine learning,

partly because computing Hessians is often too costly. It is important to understand how

first-order methods work when applied to nonconvex problems, and there has been recent

interest on this topic since (Ge et al., 2015), as reviewed below.

In the Euclidean space, it is known that with random initialization, gradient descent

avoids saddle points asymptotically (Pemantle, 1990; Lee et al., 2016). Lee et al. (2017, §5.5)

show that the result above is also true on smooth manifolds, although the result is expressed

in terms of nonstandard manifold smoothness measures. Importantly, these works do not

give quantitative rates for the algorithm’s behavior near saddle points.

Du et al. (2017) shows gradient descent can be exponentially slow in the presence of saddle

points. To alleviate this phenomenon, if we define (ε,−√ρε) local minimum as x satisfying

‖∇f(x)‖ ≤ ε, λmin∇2f(x) ≥ −√ρε, it is shown that for a β-gradient Lipschitz, ρ-Hessian

Lipschitz function, cubic regularization (Carmon & Duchi, 2017) and perturbed gradient

descent (Ge et al., 2015; Jin et al., 2017a) converges to (ε,−√ρε) local minimum in polynomial

time, and momentum based method accelerates the convergence (Jin et al., 2017b). We know

much less about inequality constraints: Nouiehed et al. (2018) and Mokhtari et al. (2018)

discuss second order convergence for general inequality-constrained problems, where they need

an NP-hard subproblem (checking the co-positivity of a matrix) to admit a polynomial time

approximation algorithm. However such an approximation exists only under very restrictive

assumptions. Avdiukhin et al. (2019); Lu et al. (2019b,a) show that, when the negative

curvature direction of saddle points always coordinate well with the nonlinear constraints (we

omit the exact definitions in the papers), the perturbed projected gradient descent algorithm

always converges to an approximate second order minimum. But it is unknown whether this

assumption applies to the loss landscape of any well known applications.

An orthogonal line of work is optimization on Riemannian manifolds. Absil et al. (2009a)

provides comprehensive background, showing how algorithms such as gradient descent,

Newton and trust region methods can be implemented on Riemannian manifolds, together
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with asymptotic convergence guarantees to first order stationary points. Zhang & Sra (2016)

provide global convergence guarantees for first order methods when optimizing geodesically

convex functions. Bonnabel (2013) obtains the first asymptotic convergence result for

stochastic gradient descent in this setting, which is further extended by Tripuraneni et al.

(2018); Zhang et al. (2016); Khuzani & Li (2017). If the problem is non-convex, or the

Riemannian Hessian is not positive definite, one can use second order methods to escape from

saddle points. Boumal et al. (2016a) shows that Riemannian trust region method converges

to a second order stationary point in polynomial time (Kasai & Mishra, 2018; Hu et al., 2018;

Zhang & Zhang, 2018). But this method requires a Hessian oracle, whose complexity is d

times more than computing gradient. In Euclidean space, trust region subproblem can be

sometimes solved via a Hessian-vector product oracle, whose complexity is about the same

as computing gradients. Agarwal et al. (2018) discusses its implementation on Riemannian

manifolds, but not clear about the complexity and sensitivity of Hessian vector product oracle

on manifold.

The study of the convergence of gradient descent for non-convex Riemannian problems

is previously done only in the Euclidean space by modeling the manifold with equality

constraints. Ge et al. (2015, Appendix B) proves that stochastic projected gradient descent

methods converge to second order stationary points in polynomial time (here the analysis

is not geometric, and depends on the algebraic representation of the equality constraints).

Sun & Fazel (2018) proves perturbed projected gradient descent converges with a comparable

rate to the unconstrained setting (Jin et al., 2017a) (polylog in dimension). The paper

applies projections from the ambient Euclidean space to the manifold and analyzes the

iterations under the Euclidean metric. This approach loses the geometric perspective enabled

by Riemannian optimization, and cannot explain convergence rates in terms of inherent

quantities such as the sectional curvature of the manifold.

Criscitiello & Boumal (2019) gives a similar convergence analysis to our result for a related

perturbed Riemannian gradient method. We point out a few differences:

1. Criscitiello & Boumal (2019) assumes Lipschitzness on the pullback map f ◦Retr. While
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this makes the analysis simpler, it lumps the properties of the function and the manifold

together, and the role of the manifold’s curvature is not explicit. In contrast, our

rates are expressed in terms of the function’s smoothness parameters and the sectional

curvature of the manifold separately, capturing the geometry more clearly.

2. The algorithm in Criscitiello & Boumal (2019) uses two types of iterates (some on

the manifold but some taken on a tangent space), whereas all our algorithm steps are

directly on the manifold, which is more natural.

3. To connect our iterations with intrinsic parameters of the manifold, we use the expo-

nential map instead of the retraction map used in Criscitiello & Boumal (2019).

There are recent works analyzing other algorithms for escaping from saddle points on

manifolds, such as cubic regularization (Agarwal et al., 2018), stochastic gradient descent

(Durmus et al., 2020), stochastic variance reduced cubic regularization (Zhang & Tajbakhsh,

2020), etc.

Contributions. We provide convergence guarantees for perturbed first order Riemannian

optimization methods to second-order stationary points (local minimum). We prove that

as long as the function is appropriately smooth and the manifold has bounded sectional

curvature, a perturbed Riemannian gradient descent algorithm escapes (an approximate)

saddle points with a rate of 1/ε2, a polylog dependence on the dimension of the manifold

(hence almost dimension-free), and a polynomial dependence on the smoothness and curvature

parameters. This is the first result showing such a rate for Riemannian optimization, and the

first to relate the rate to geometric parameters of the manifold.

Despite analogies with the unconstrained (Euclidean) analysis and with the Riemannian

optimization literature, the technical challenge in our proof is more than simply combining

two lines of work: we need to analyze the interaction between the first-order method and the

second order structure of the manifold to obtain second-order convergence guarantees. Unlike

in Euclidean space, the curvature affects the Taylor approximation of gradient steps. On

the other hand, unlike in the local rate analysis in first-order Riemannian optimization, our

second-order analysis requires more refined properties of the manifold structure (whereas in
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prior works on first order convergence, the linear approximation of the manifold is enough for

a local convergence rate proof, see Lemma 1). The works studying second order algorithms

such as (Boumal et al., 2016a) use second order oracles (Hessian evaluation).

2.2 Notation and background

We consider a complete2, smooth, d dimensional Riemannian manifold (M, g), equipped with

a Riemannian metric g, and we denote by TxM its tangent space at x ∈M (which is a vector

space of dimension d). We also denote by Bx(r) = {v ∈ TxM, ‖v‖ ≤ r} the ball of radius r in

TxM centered at 0. At any point x ∈M, the metric g induces a natural inner product on the

tangent space denoted by 〈·, ·〉 : TxM×TxM→ R. We denote the Levi-Civita connection

as ∇ (Absil et al., 2009a, Theorem 5.3.1). The Riemannian curvature tensor is denoted by

R(x)[u, v] where x ∈ M, u, v ∈ TxM and is defined in terms of the connection ∇ (Absil

et al., 2009a, Theorem 5.3.1). The sectional curvature K(x)[u, v] for x ∈M and u, v ∈ TxM

is then defined in Lee (1997, Prop. 8.8).

K(x)[u, v] =
〈R(x)[u, v]u, v〉

〈u, u〉〈v, v〉 − 〈u, v〉2
, x ∈M, u, v ∈ TxM.

Denote the distance (induced by the Riemannian metric) between two points inM by

d(x, y). A geodesic γ : R →M is a constant speed curve whose length is equal to d(x, y).

It is the shortest path on manifold linking x and y. γx→y denotes the geodesic from x to y

(thus γx→y(0) = x and γx→y(1) = y).

The exponential map Expx(v) maps v ∈ TxM to y ∈M such that there exists a geodesic

γ with γ(0) = x, γ(1) = y and d
dt
γ(0) = v. The injectivity radius at point x ∈ M is the

maximal radius r for which the exponential map is a diffeomorphism on Bx(r) ⊂ TxM.

We denote the injectivity radius of the manifold by I. Since the manifold is complete, we

have I > 0. When x, y ∈ M satisfies d(x, y) ≤ I, the exponential map admits an inverse

2Since our results are local, completeness is not necessary and our results can be easily generalized, with
extra assumptions on the injectivity radius.
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Exp−1
x (y), which satisfies d(x, y) = ‖Exp−1

x (y)‖. Parallel translation Γyx denotes a the map

which transports v ∈ TxM to Γyxv ∈ TyM along γx→y such that the vector stays constant by

satisfying a zero-acceleration condition (Lee, 1997, Eq(4.13)).

For a smooth function f :M→ R, gradf(x) ∈ TxM denotes the Riemannian gradient

of f at x ∈ M, which satisfies d
dt
f(γ(t)) = 〈γ′(t), gradf(x)〉 (see Absil et al., 2009a, Sec

3.5.1 and (3.31)). The Hessian of f is defined jointly with the Riemannian structure of the

manifold. The (directional) Hessian at x in direction ξx is denoted by H(x)[ξx] := ∇ξxgradf,

and we denote H(x)[u, v] := 〈u,H(x)[v]〉. We call x ∈ M an (ε,−√ρε) saddle point when

‖∇f(x)‖ ≤ ε and λmin(H(x)) ≤ −√ρε. Do Carmo (2016) and Lee (1997) provide a thorough

review on these important concepts of Riemannian geometry covering the above definitions.

2.3 Perturbed Riemannian gradient algorithm

Our main Algorithm 1 runs as follows:

1. Check the norm of the gradient: If it is large, do one step of Riemannian gradient

descent, and the function value decreases.

2. If the norm of gradient is small, it’s either an approximate saddle point or a local

minimum. Perturb the variable by adding an appropriate level of noise in its tangent

space, map it back to the manifold and run a few iterations.

(a) If the function value decreases, the iterates are escaping from the approximate

saddle point (and the algorithm continues)

(b) If the function value does not decrease, then it is an approximate local minimum

(the algorithm terminates).

Algorithm 1 relies on the manifold’s exponential map, and is useful for cases where this map

is easy to compute (true for many common manifolds). We refer readers to Lee (1997, pp.

81-86) for the exponential map of sphere and hyperbolic manifolds, and Absil et al. (2009a,

Example 5.4.2, 5.4.3) for the Stiefel and Grassmann manifolds. If the exponential map is not
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Algorithm 1 Perturbed Riemannian gradient algorithm
Require: Initial point x0 ∈ M, parameters β, ρ,K, I, accuracy ε, probability of success δ
(parameters defined in Assumptions 1, 2, 3 and assumption of Theorem 1).
Set constants: ĉ ≥ 4, C := C(K, β, ρ) (defined in Lemma 2 and proof of Lemma 8)

and
√
cmax ≤ 1

56ĉ2
, r =

√
cmax

χ2 ε, χ = 3 max{log(dβ(f(x0)−f∗)
ĉε2δ

), 4}.

Set threshold values: fthres = cmax

χ3

√
ε3

ρ
, gthres =

√
cmax

χ2 ε, tthres = χ
cmax

β√
ρε
, tnoise = −tthres − 1.

Set stepsize: η = cmax

β
.

while 1 do
if ‖gradf(xt)‖ ≤ gthres and t− tnoise > tthres then

tnoise ← t, x̃t ← xt, xt ← Expxt(ξt), ξt uniformly sampled from Bxt(r) ⊂ TxM.
if t− tnoise = tthres and f(xt)− f(x̃tnoise

) > −fthres then
Return x̃tnoise

xt+1+← Expxt(−min{η, I
‖gradf(xt)‖}gradf(xt)).

t← t+ 1.

computable, the algorithm can use a retraction3 instead, however our current analysis only

covers the case of the exponential map. In Figure 2.14, we illustrate a function with saddle

point on sphere, and plot the trajectory of Algorithm 1 when it is initialized at a saddle point.

2.4 Main theorem: escape rate for perturbed Riemannian gradient descent

We now turn to our main results, beginning with our assumptions and a statement of our

main theorem. We then develop a brief proof sketch.

Our main result involves two conditions on function f and one on the curvature of the

manifoldM.

Assumption 1 (Lipschitz gradient). There is a finite constant β such that

‖gradf(y)− Γyxgradf(x)‖ ≤ βd(x, y) for all x, y ∈M.

3A retraction is a first-order approximation of the exponential map which is often easier to compute.
4Codes for generating figures are available at https://sunyue93.github.io/code.zip.

https://sunyue93.github.io/code.zip
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Figure 2.1: Function f with saddle point on a sphere. f(x) = x2
1 − x2

2 + 4x2
3. We plot the

contour of this function on unit sphere. Algorithm 1 initializes at x0 = [1, 0, 0] (a saddle
point), perturbs it towards x1 and runs Riemannian gradient descent, and terminates at
x∗ = [0,−1, 0] (a local minimum). We amplify the first iteration to make saddle perturbation
visible.

Assumption 2 (Lipschitz Hessian). There is a finite constant ρ such that

‖H(y)− ΓyxH(x)Γxy‖2 ≤ ρd(x, y) for all x, y ∈M.

Assumption 3 (Bounded sectional curvature). There is a finite constant K such that

|K(x)[u, v]| ≤ K for all x ∈M and u, v ∈ TxM

K is an intrinsic parameter of the manifold capturing the curvature. We list a few

examples here: (i) A sphere of radius R has a constant sectional curvature K = 1/R2 (Lee,

1997, Theorem 1.9). If the radius is bigger, K is smaller which means the sphere is less

curved; (ii) A hyper-bolic space Hn
R of radius R has K = −1/R2 (Lee, 1997, Theorem 1.9);

(iii) For sectional curvature of the Stiefel and the Grasmann manifolds, we refer readers to

Rapcsák (2008, Section 5) and Wong (1968), respectively.

Note that the constant K is not directly related to the RLICQ parameter R defined by
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Ge et al. (2015) which first requires describing the manifold by equality constraints. Different

representations of the same manifold could lead to different curvature bounds, while sectional

curvature is an intrinsic property of manifold. If the manifold is a sphere
∑d+1

i=1 x
2
i = R2,

then K = 1/R2, but generally there is no simple connection. The smoothness parameters

are natural compared to some quantity from complicated compositions (Lee et al., 2017,

Section 5.5) or pullback (Zhang & Zhang, 2018; Criscitiello & Boumal, 2019). With these

assumptions, the main result of this work is the following:

Theorem 1. Under Assumptions 1,2,3, let C(K, β, ρ) be a function defined in Lemma 2,

ρ̂ = max{ρ, C(K, β, ρ)}, if ε satisfies that

ε ≤ min

{
ρ̂

56 max{c2(K), c3(K)}ηβ
log

(
dβ√
ρ̂εδ

)
,

(
Iρ̂

12ĉ
√
ηβ

log

(
dβ√
ρ̂εδ

))2
}

(2.2)

where c2(K), c3(K) are defined in Lemma 4, then with probability 1−δ, perturbed Riemannian

gradient descent with step size cmax/β converges to a (ε,−
√
ρ̂ε)-stationary point of f in

O

(
β(f(x0)− f(x∗))

ε2
log4

(
βd(f(x0)− f(x∗))

ε2δ

))

iterations.

Proof roadmap. For a function satisfying smoothness condition (Assumption 1 and 2),

we use a local upper bound of the objective based on the third-order Taylor expansion

f(u) ≤ f(x) + 〈gradf(x),Exp−1
x (u)〉+

1

2
H(x)[Exp−1

x (u),Exp−1
x (u)] +

ρ

6
‖Exp−1

x (u)‖3.

When the norm of the gradient is large (not near a saddle), the following lemma guarantees

the decrease of the objective function in one iteration.

Lemma 1. (Boumal et al., 2018) Under Assumption 1, by choosing η̄ = min{η, I
‖gradf(u)‖} =

O(1/β), the Riemannian gradient descent algorithm is monotonically descending, and f(u+)≤
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f(u)− 1
2
η̄‖gradf(u)‖2.

Thus our main challenge in proving the main theorem is the Riemannian gradient behaviour

at an approximate saddle point:

1. Similar to the Euclidean case studied by Jin et al. (2017a), we need to bound the

probability where the perturbation fails, and we do it by bounding the “thickness” of the

“stuck region” . We use a pair of hypothetical auxiliary sequences and study the “coupling”

sequences. When two perturbations couple in the thinnest direction of the stuck region, their

distance grows and one of them escapes from saddle point.

2. Our iterates are evolving on a manifold rather than a Euclidean space, so our strategy is

to map the iterates back to an appropriate fixed tangent space where we can use the Euclidean

analysis. This is done using the inverse of the exponential map and parallel transports.

3. Several key challenges arise in doing this. Unlike Jin et al. (2017a), the structure of the

manifold interacts with the local approximation of the objective function in a complicated

way. On the other hand, unlike recent work on Riemannian optimization by Boumal et al.

(2016a), we do not have access to a second order oracle and we need to understand how

the sectional curvature and the injectivity radius (which both capture intrinsic manifold

properties) affect the behavior of the first order iterates.

4. Our main contribution is to carefully investigate how the various approximation

errors arising from (a) the linearization of the iteration couplings and (b) their mappings

to a common tangent space can be handled on manifolds with bounded sectional curvature.

We address these challenges in a sequence of lemmas (Lemmas 3 through 6) we combine

to linearize the coupling iterations in a common tangent space and precisely control the

approximation error. This result is formally stated in the following lemma.

Lemma 2. Define γ =
√
ρ̂ε, κ = β

γ
, and S =

√
ηβ γ

ρ̂
log−1(dκ

δ
). Let us consider x be a

(ε,−
√
ρ̂ε) saddle point, and define u+ = Expu(−ηgradf(u)) and w+ = Expw(−ηgradf(w)).

Under Assumptions 1, 2, 3, if all pairwise distances between u,w, u+, w+, x are less than 12S ,
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then for some explicit constant C(K, ρ, β) depending only on K, ρ, β,

‖Exp−1
x (w+)− Exp−1

x (u+)− (I − ηH(x))(Exp−1
x (w)− Exp−1

x (u))‖ (2.3)

≤ C(K, ρ, β)d(u,w) (d(u,w) + d(u, x) + d(w, x)) .

The proof of this lemma includes novel contributions by strengthen known result (Lemmas

3) and also combining known inequalities in novel ways (Lemmas 4 to 6) that allow us to

control all the approximation errors and arrive at the tight rate of escape for the algorithm.

2.5 Proof of Lemma 2

Lemma 2 controls the error of the linear approximation of the iterates when mapped in TxM.

In this section, we assume that all points are within a region of diameter R := 12S ≤ I

(inequality follows from (2.2) ), i.e., the distance of any two points in the following lemmas

are less than R.

The proof of Lemma 2 is based on the sequence of following lemmas.

Lemma 3. Let x ∈ M and y, a ∈ TxM. Let us denote by z = Expx(a) then under

Assumption 3

d(Expx(y + a),Expz(Γ
z
xy)) ≤ c1(K) min{‖a‖, ‖y‖}(‖a‖+ ‖y‖)2. (2.4)

This lemma tightens the result of Karcher (1977, C2.3), which only shows an upper-bound

O(‖a‖(‖a‖+ ‖y‖)2). We prove the upper-bound O(‖y‖(‖a‖+ ‖y‖)2) in the Appendix A.3.

We also need the following lemma showing that both the exponential map and its inverse

are Lipschitz.

Lemma 4. Let x, y, z ∈M , and the distance of each two points is no bigger than R. Then

under Assumption 3,

(1 + c2(K)R2)−1d(y, z) ≤ ‖Exp−1
x (y)− Exp−1

x (z)‖ ≤ (1 + c3(K)R2)d(y, z).



16

(a) (b)

Figure 2.2: (a) Eq(2.5), first map w and w+ to TuM and Tu+M, and transport the two
vectors to TxM, and get their relation. (b) Lemma 3 bounds the difference of two steps
starting from x: (1) take y + a step in TxM and map it to manifold, and (2) take a step in
TxM, map to manifold, call it z, and take Γzxy step in TxM, and map to manifold. Expz(Γ

z
xy)

is close to Expx(y + a).

Intuitively this lemma relates the norm of the difference of two vectors of TxM to the

distance between the corresponding points on the manifoldM and follows from bounds on

the Hessian of the square-distance function (Sakai, 1996, Ex. 4 p. 154). The upper-bound

is directly proven by Karcher (1977, Proof of Cor. 1.6), and we prove the lower-bound via

Lemma 3.

The following contraction result is fairly classical and is proven using the Rauch comparison

theorem from differential geometry (Cheeger & Ebin, 2008).

Lemma 5. (Mangoubi et al., 2018, Lemma 1) Under Assumption 3, for x, y ∈ M and

w ∈ TxM,

d(Expx(w),Expy(Γ
y
xw)) ≤ c4(K)d(x, y).

Finally we need the following corollary of the Ambrose-Singer theorem (Ambrose & Singer,

1953).
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Lemma 6. (Karcher, 1977, Section 6) Under Assumption 3, for x, y, z ∈M and w ∈ TxM,

‖ΓzyΓyxw − Γzxw‖ ≤ c5(K)d(x, y)d(y, z)‖w‖.

Lemma 3 through 6 are mainly proven in the literature, and we make up the missing part

in Appendix A.3. Then we prove Lemma 2 in Appendix A.3.

The spirit of the proof is to linearize the manifold using the exponential map and its

inverse, and to carefully bounds the various error terms caused by the approximation. Let us

denote by θ = d(u,w) + d(u, x) + d(w, x).

1. We first show using twice Lemma 3 and Lemma 5 that

d(Expu(Exp−1
u (w)− ηΓuwgradf(w)),Expu(−ηgradf(u) + Γuu+

Exp−1
u+

(w+))) = O(θd(u,w)).

2. We use Lemma 4 to linearize this iteration in TuM as

‖Γuu+
Exp−1

u+
(w+)− Exp−1

u (w) + η[gradf(u)− Γuwgradf(w)]‖ = O(θd(u,w)).

3. We use the Hessian Lipschitzness

‖Γuu+
Exp−1

u+
(w+))− Exp−1

u (w) + ηH(u)Exp−1
u (w)‖ = O(θd(u,w)).

3. We use Lemma 6 to map to TxM and the Hessian Lipschitzness to compare H(u) to H(x).

This is an important intermediate result.

‖Γxu+
Exp−1

u+
(w+)− ΓxuExp−1

u (w) + ηH(x)ΓxuExp−1
u (w)‖ = O(θd(u,w)). (2.5)

4. We use Lemma 3 and 4 to approximate two iteration updates in TxM.

‖Exp−1
x (w)− (Exp−1

x (u) + ΓxuExp−1
u (w))‖ ≤ O(θd(u,w)). (2.6)
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And same for the u+, w+ pair replacing u,w.

5. Combining (2.5) and (2.6) together, we obtain

‖Exp−1
x (w+)− Exp−1

x (u+)− (I − ηH(x))(Exp−1
x (w)− Exp−1

x (u))‖ ≤ O(θd(u,w)).

Now note that, the iterations u, u+, w, w+ of the algorithm are both on the manifold. We use

Exp−1
x (·) to map them to the same tangent space at x.

Therefore we have linearized the two coupled trajectories Exp−1
x (ut) and Exp−1

x (wt) in a

common tangent space, and we can modify the Euclidean escaping saddle analysis thanks to

the error bound we proved in Lemma 2.

2.6 Proof of main theorem

In this section we suppose all assumptions in Section 2.4 hold. The proof strategy is to

show with high probability that the function value decreases of F in T iterations at an

approximate saddle point. Lemma 7 suggests that, if after a random perturbation and T

steps, the iterate is Ω(S ) far from the approximate saddle point, then the function value

decreases. If the iterates do not move far, the perturbation falls in a stuck region. Lemma

8 uses a coupling strategy, and suggests that the width of the stuck region is small in the

negative eigenvector direction of the Riemannian Hessian.

Define

F = ηβ
γ3

ρ̂2
log−3(

dκ

δ
), G =

√
ηβ
γ2

ρ̂
log−2(

dκ

δ
), T =

log(dκ
δ

)

ηγ
.

At an approximate saddle point x̃, let y be in the neighborhood of x̃ where d(y, x̃) ≤ I, denote

f̃y(x) := f(y) + 〈gradf(y),Exp−1
y (x̃)〉+

1

2
H(x̃)[Exp−1

y (x̃),Exp−1
y (x̃)].

Let ‖gradf(x̃)‖ ≤ G and λmin(H(x̃)) ≤ −γ. We consider two iterate sequences, u0, u1, ... and

w0, w1, ... where u0, w0 are two perturbations at x̃.
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Lemma 7. Assume Assumptions 1, 2, 3 and (2.2) hold. There exists a constant cmax,

∀ĉ > 3, δ ∈ (0, dκ
e

], for any u0 with d(x̃, u0) ≤ 2S /(κ log(dκ
δ

)), κ = β/γ.

T = min
{

inf
t

{
t|f̃u0(ut)− f(u0) ≤ −3F

}
, ĉT

}
,

then ∀η ≤ cmax/β, we have ∀0 < t < T , d(u0, ut) ≤ 3(ĉS ).

Lemma 8. Assume Assumptions 1, 2, 3 and (2.2) hold. Take two points u0 and w0 which are

perturbed from an approximate saddle point, where d(x̃, u0) ≤ 2S /(κ log(dκ
δ

)), Exp−1
x̃ (w0)−

Exp−1
x̃ (u0) = µre1, e1 is the smallest eigenvector5 of H(x̃), µ ∈ [δ/(2

√
d), 1], and the algorithm

runs two sequences {ut} and {wt} starting from u0 and w0. Denote

T = min
{

inf
t

{
t|f̃w0(wt)− f(w0) ≤ −3F

}
, ĉT

}
,

then ∀η ≤ cmax/l, if ∀0 < t < T , d(x̃, ut) ≤ 3(ĉS ), we have T < ĉT .

We prove Lemma 7 and 8 in Appendix A.4. We also prove, in the same section, the

main theorem using the coupling strategy of Jin et al. (2017a). but with the additional

difficulty of taking into consideration the effect of the Riemannian geometry (Lemma 2) and

the injectivity radius.

2.7 Numerical examples

kPCA. We consider the kPCA problem, where we want to find the k ≤ n principal

eigenvectors of a symmetric matrix H ∈ Rn×n, as an example (Tripuraneni et al., 2018). This

corresponds to

min
X∈Rn×k

−1

2
tr(XTHX) subject to XTX = I,

5“smallest eigenvector” means the eigenvector corresponding to the smallest eigenvalue.



20

which is an optimization problem on the Grassmann manifold defined by the constraint

XTX = I. If the eigenvalues of H are distinct, we denote by v1,...,vn the eigenvectors of H,

corresponding to eigenvalues with decreasing order. Let V ∗ = [v1, ..., vk] be the matrix with

columns composed of the top k eigenvectors of H, then the local minimizers of the objective

function are V ∗G for all unitary matrices G ∈ Rk×k. Denote also by V = [vi1 , ..., vik ] the

matrix with columns composed of k distinct eigenvectors, then the first order stationary

points of the objective function (with Riemannian gradient being 0) are V G for all unitary

matrices G ∈ Rk×k. In our numerical experiment, we choose H to be a diagonal matrix

H = diag(0, 1, 2, 3, 4) and let k = 3. The Euclidean basis (ei) are an eigenbasis of H and

the first order stationary points of the objective function are [ei1 , ei2 , ei3 ]G with distinct

basis and G being unitary. The local minimizers are [e3, e4, e5]G. We start the iteration at

X0 = [e2, e3, e4] and see in Fig. 2.3 the algorithm converges to a local minimum.

Burer-Monteiro approach for certain low rank problems. Following Boumal et al.

(2016b), we consider, for A ∈ Sd×d and r(r + 1)/2 ≤ d, the problem

min
X∈Sd×d

tr(AX), s.t. diag(X) = 1, X � 0, rank(X) ≤ r.

We factorize X by Y Y T with an overparametrized Y ∈ Rd×p and p(p+ 1)/2 ≥ d. Then any

local minimum of

min
Y ∈Rd×p

tr(AY Y T ), s.t. diag(Y Y T ) = 1,

is a global minimum where Y Y T = X∗ (Boumal et al., 2016b). Let f(Y ) = 1
2
tr(AY Y T ). In

the experiment, we take A ∈ R100×20 being a sparse matrix that only the upper left 5×5 block

is random and other entries are 0. Let the initial point Y0 ∈ R100×20, such that (Y0)i,j = 1 for

5j − 4 ≤ i ≤ 5j and (Y0)i,j = 0 otherwise. Then Y0 is a saddle point. We see in Fig. 2.3 the

algorithm converges to the global optimum.
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Figure 2.3: (a) kPCA problem with H = diag(0, 1, 2, 3, 4), X ∈ R5×3, η = 0.1, X0 = [e2, e3, e4].
plot f(X) = 1

2
trace(XTHX) versus iterations. We start from an approximate saddle point,

and it converges to a local minimum (which is also global minimum). (b) Burer-Monteiro
approach with A ∈ R100×100 such that the first 5× 5 block is random and other entries are
0, Y ∈ R100×20, η = 0.1, (Y0)i,j = 1 if 5j − 4 ≤ i ≤ 5j. Plot f(Y ) = 1

2
trace(AY Y T ) versus

iterations. We start from the saddle point, and it converges to a local minimum (which is
also global minimum).



22

2.8 Conclusion and future directions

Previous works have shown that in Euclidean space, although the gradient descent can converge

to an approximate second order minimum in exponential time, by simply adding a random

perturbation at the stationary points, the gradient descent iteration escapes from saddle

points and converges to an approximate second order minimum with provable polynomial

rate. However, they require the problem being unconstrained, which does not allow a smooth

manifold constraint, or the optimization problem set up in Riemannian manifolds. No result

was given about the second order convergence of perturbed first order optimization methods

on Riemannian manifolds, and it is unknown how the curvature constant of the manifold

contributes to the rate of escaping from saddle points. We have shown that for the constrained

optimization problem of minimizing f(x) subject to a manifold constraint, if the function and

the manifold are appropriately smooth, a perturbed Riemannian gradient descent algorithm

will escape saddle points with a rate of order 1/ε2 in the accuracy ε, polylog in manifold

dimension d, and depends polynomially on the curvature and smoothness parameters.

A natural extension of our result is to consider other variants of gradient descent, such as

the heavy ball method, Nesterov’s acceleration, and the stochastic setting. The question is

whether these algorithms with appropriate modification (with manifold constraints) would

have a fast convergence to second-order stationary point (not just first-order stationary as

studied in recent literature), and whether it is possible to show the relationship between

convergence rate and smoothness of manifold.
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Chapter 3

ANALYSIS OF POLICY OPTIMIZATION FOR CONTROL:
GLOBAL OPTIMALITY VIA CONVEX PARAMETERIZATION

This chapter proposes a framework that builds the mapping between a few control

problems with their associated convex parameterized form. With the mapping, we show that

all stationary points of the cost functions, as functions of the policy, are global minima despite

their nonconvexity. The fact allows first order optimization methods (i.e., policy gradient

method) to converge the globally optimal controller. We give a comprehensive theory covering

many control problems, including continuous/discrete time/Markov jump LQR, distributed

optimal control, minimizing the L2 gain that unifies the conclusion of each specific work.

This work is published as Sun & Fazel (2021).

3.1 Introduction

During the recent boom of reinforcement learning (RL), many optimal control problem are

revisited as RL problems. However, we see a sharp difference between the training techniques

in RL and in control theory. In RL, policy optimization is widely used, where one formulates a

cost function as a function of the controller/policy, and runs zeroth or first order update in the

policy space. This method is straightforward and empirically finds good policy, but in control

they usually end up with a non-convex objective, where it is unknown whether gradient based

algorithm converges to the global minimum. In control theory, one reparameterizes the cost

function, and ends up with a convex objective in the reparameterized space instead of the

policy space and solves the convex optimization problem. We are interested in explaining the

success of the first order nonconvex policy optimization in RL, especially its convergence to

global optimum, via our understanding of the convex parameterization technique in control
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theory.

We start by reviewing linear quadratic regulator (LQR), which is one of the most well

studied optimal control problems (Kalman et al., 1960). Consider the continuous time linear

time-invariant dynamical system,

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, (3.1)

where x ∈ Rn is the state, u ∈ Rp is the input, and A,B are constant matrices describing the

dynamics. The goal of optimal control is to determine the input series u(t) that minimizes

some cost function (that typically depends on the state and input). In the infinite horizon

LQR problem, we define constant matrices Q ∈ Sn++, R ∈ Sp++, and minimize the cost as a

function of input

cost(u(t)) := Ex0

∫ ∞
0

(x(t)>Qx(t) + u(t)>Ru(t))dt. (3.2)

The optimal controller is linear in the state, called static state feedback controller, and can

be described as u(t) = Kx(t) for a constant K ∈ Rp×n (Kalman et al., 1960).

We can define this cost function with variable K,

L(K) := Ex0

∫ ∞
0

(x(t)>Qx(t) + u(t)>Ru(t))dt, s.t. u(t) = Kx(t)

= Ex0

∫ ∞
0

x(t)>(Q+K>RK)x(t)dt. (3.3)

Policy Optimization. The policy optimization (aka. policy gradient descent method if

applying gradient descent or first order optimization method in policy space) is to minimize
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L(K) by running first order method with respect to K. 1We run2

Kt+1 ← Kt − ηt∇L(Kt).

It is shown that, the cost functions of control problems are typically nonconvex in K, e.g.,

continuous/discrete time LQR (Mohammadi et al., 2019b; Fazel et al., 2018). However,

gradient descent for nonconvex optimization is widely used in machine learning, or control

tasks with the context of reinforcement learning.

Convex parameterization. In classical control theory literature, due to the nonconvex

nature, policy optimization is not commonly used. Instead, one can introduce another

parameterization of the cost to make it convex, and apply convex optimization method with

global convergence guarantee. This approach is in sharp contrast to how one would typically

minimize a cost function through gradient descent on K.

Motivation: There are many papers that show convergence of first order policy opti-

mization methods (which we will review below). They investigate different control problems

and the proofs are given case by case. However, we observe that all the results are proven by

the gradient dominance property, a special case of Lojasiewicz inequality3, and all of them

were solved by convex parameterization methods in classical control literature. Thus, we

ask whether there is a proof that unifies the proofs of the gradient dominance property for

different control problems, and bridges nonconvex methods with convex methods in classical

control literature.

Contributions: We make a connection between nonconvex first order policy optimization

1We initialize K0 as a stabilizing controller, so that L(K0) is well defined. For LQR as an example,
Perdomo et al. (2021) demonstrates an algorithm to find a stabilizing controller by policy optimization.
They begin with an arbitrary controller, and define an alternative cost with a discount factor to make the
cost finite, and run gradient based method on that cost and later anneal the discount factor.

2Zeroth order method is a specific implementation of stochastic gradient descent method and is used a lot
in reinforcement learning. Duchi et al. (2015) proposes the two point estimation method for zeroth order
optimization. Malik et al. (2019) is a survey of the zeroth order realization of policy optimization method
on discrete time LQR with sample complexity analysis.

3‖∇L(K)‖F & (L(K)− L(K∗))α for a positive number α (Lojasiewicz, 1963).
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and known convex parameterization methods with a map between the two parameters. This

map maintains the Lojasiewicz inequality when mapping from the convex landscape to the

nonconvex landscape.

Our result is quite general—we show that continuous-time LQR is a special case that the

main theorems apply to, and we generalize the guarantees provided by this method to a range

of other control problems. The instances cover LQR for continuous, discrete time system, and

Markov jump system, maximizing L2 gain and system level synthesis. To judge whether a

nonconvex landscape can be optimized globally using first order method in policy space, one

can directly check if it is covered by the theorems, avoiding a case-by-case analysis. Also, as

discussed in Fazel et al. (2018), theoretical guarantees for first-order methods naturally lead

to guarantees for the more practical zeroth-order optimization or sampling-based methods,

which do not need access to the gradient of the cost with respect to K.

Outline: The rest of this paper is structured as follows. Sec. 3.2 reviews the continuous-

time LQR problem. Sec. 3.3 presents our main result on the the nonconvex cost, showing all

stationary points are global minima. Sec. 3.4 lists more examples of control problems covered

by the main theorem. Although Sec. 3.4 covered many problems, Sec. 3.5 further generalizes

our main result using different parameterizations and Sec. 3.6 covers examples under the

more generic result. Sec. 3.7 gives a proof sketch with intuitive connections between the

nonconvex and convex formulations.

3.1.1 Prior art

LQR with unknown system matrices: model-based and model-free. There are two

major types of algorithms when system matrices are not known. The first type is model-based

methods, when we first estimate the system matrices and then a controller is constructed

based on the identified system.

The second type of method is model free method, when the controller is directly trained

by observing the cost function or its gradient, without characterizing the dynamics. Here one

does not necessarily estimate the system matrices A,B and runs zeroth order update based
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on function value estimators that a simulator usually provides without explicitly giving the

system matrices Fazel et al. (2018). 4

Recent works on policy optimization. First order policy optimization method calls

for an estimate of the cost and its gradient with respect to controller K. The goal is to show

that gradient descent with respect to K converges to the optimal controller (we can call it

K∗). The policy gradient descent is recently reviewed by Kakade (2002); Rajeswaran et al.

(2017). Fazel et al. (2018) provides a counterexample showing that minimizing the quadratic

LQ cost as a function of K is not convex, quasi-convex or star-convex.

There has been recent evidence of the empirical success of first order methods in solving

nonconvex reinforcement learning problems. (Mårtensson, 2012, Ch. 3) proposes the gradient

based method for optimal control and extends to decentralized control. Roberts et al. (2011)

studies feedback control with dynamical controllers, and observes that gradient descent

with Youla parameterization is robust within the set of stabilizing controllers while other

parameterizations are not. On the theoretical side, despite the nonconvexity of L(K), for

certain types of control problems, there are works showing the gradient dominance property,

which enables first order methods to converge to the global optimum. Fazel et al. (2018)

gives the first result by proving the coercivity and the gradient dominance properties of L(K)

for the discrete time LQR. Based on this, Fazel et al. (2018) shows the linear convergence

of gradient based method. Later Mohammadi et al. (2019b) shows a similar result for the

continuous time case, papers Bu et al. (2019a, 2020) give a more detailed analysis for both

discrete and continuous time LQR. Bu et al. (2019b); Zhang et al. (2019) show the convergence

for two types of zero-sum LQ games. Zhang et al. (2020) studies the convergence of gradient

descent on H2 control with H∞ constraint, and shows that gradient descent implicitly makes

the controller robust. Furieri et al. (2020) shows the convergence for finite-horizon distributed

control under the quadratic invariance assumption.

4Lewis & Vrabie (2009) is a review of reinforcement learning area and optimal control, which studies
a few fixed point type dynamic programming methods . Q-learning is a typical model free method for
reinforcement learning, and it is applied to LQR as in Bradtke et al. (1994); Lee et al. (2012); Lee & Hu
(2018).
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Negative results. We note that, we cannot cover all optimal control problems with our

theory. The feasible domain of structured LQR (where the state feedback controller K is in a

low dimensional subspace) (Li et al., 2021; Feng & Lavaei, 2020) and static output feedback

LQ problem (Feng & Lavaei, 2020) are not connected thus cannot be globally optimized using

first order methods. The LQG problem, although has a convex parameterization, due to the

non-smoothness of the parameterization, does not satisfy the setup of the main theorem in

this chapter, and its cost is proven to have saddle points in policy space (Tang et al., 2021).

We will discuss them in more detail in Sec. 3.8.

3.2 Review of convex parameterization for continuous-time LQR

Convex parameterization (e.g., solving optimal control by linear matrix inequalities (LMI)

in Boyd et al. (1994)) is widely used in optimal control problems, and here we discuss its

application for continuous time LQR (Mohammadi et al., 2019b). We will introduce new

variables, construct an equivalent convex optimization problem with new variables, and the

pair of variables are proven to be linked by a bijection. In the next section we use the critical

properties of the nonconvex and convex problems as an intuition to generalize to a more

general form.

Consider a continuous time linear time invariant system (3.1) where x is the state, u is

the input, and x0 is the initial state, which we assume is randomly picked from a zero-mean

distribution with covariance Σ := E(x0x
>
0 ) � 0. This is a commonly used setup in e.g., the

theoretical study (Bu et al., 2019a, §3.3) and the practical work (Mårtensson, 2012, Ch. 3).

With Σ � 0, the optimal controller is not dependent on the initial state; when Σ is low rank,

then a controller K that gives finite LQR cost does not stabilize the system for all initial

state x0 ∈ null(Σ).

One can then consider minimizing the linear quadratic (LQ) cost (3.2) as a function of u(t)

where Q,R are positive definite matrices. Kalman et al. (1960) proves that, the input signal

that minimizes the cost function cost(u) is given by a static state feedback controller, denoted

by u(t) = K∗x(t). K∗ can be obtained by solving linear equations, called Riccati equations.
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Once we know that the optimal state feedback controller is static, we can write cost as L(K)

as (3.3). It is a function of K, and we search only static state feedback controllers.

Solving the LQR problem, the classical way. The LQR problem is often solved

using the algebraic Riccati equation (ARE) (Stengel, 1994; Dullerud & Paganini, 2013). The

ARE has been widely studied in the literature, with solution methods including iterative

algorithms (Hewer, 1971), algebraic solution methods (Lancaster & Rodman, 1995), and

semidefinite programming (Balakrishnan & Vandenberghe, 2003).

An alternative approach is reparameterization, to obtain a convex optimization problem,

as used in Mohammadi et al. (2019b). We will review it here, starting from the Lyapunov

equation. Suppose the initial state satisfies E(x0x
>
0 ) = Σ � 0, and ẋ(t) = Ax(t). Then with

a matrix P ∈ Sn×n++ (P is a positive definite matrix) as the variable, the Lyapunov equation is

written as

AP + PA> + Σ = 0.

In our setup (3.1), we use a state feedback controller u = Kx, thus we have ẋ = (A+BK)x.

We denote the set of stabilizing controllers as SK,sta, which is defined as

SK,sta = {K : Re(λi(A+BK)) < 0, i = 1, ..., n}.

If a state feedback controller is applied, the cost is only bounded when K ∈ SK,sta and is

coercive in SK,sta (Bu et al., 2020). Replace A by the closed loop system matrix A+BK in

the Lyapunov equation, and let L = KP ∈ Rp×n, we get

AP + PA> +BL+ L>B> + Σ = 0.

Let A(P ) = AP + PA>, B(L) = BL + L>B>, which are referred to as Lyapunov maps.
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Assume A is invertible, then we have the relation

A(P ) + B(L) + Σ = 0. (3.4)

Indeed, once we fix the system and any stabilizing controller A,B,K, the matrices P as well

as L = KP are uniquely determined. P is the Grammian matrix

P =

∫ ∞
0

et(A+BK) Σ et(A+BK)> dt. (3.5)

The matrix P is positive definite if Σ � 0. We are interested in the cost function L(K) when

K ∈ SK,sta, which corresponds to (3.2) by inserting u(t) = Kx(t),

L(K) =

tr((Q+K>RK)P ), K ∈ SK,sta;

+∞, K /∈ SK,sta.
(3.6)

One can construct a bijection from P,L to K, and prove that, if we minimize f(L, P ) subject

to (3.4), the optimizer P ∗, L∗ will map to the optimal K∗, and this minimization problem is

convex.

Convex parameterization for continuous time LQR: Suppose the dynamics and

costs are (3.1) and (3.2), and let E(x0x
>
0 ) = Σ � 0. Denote the (static) state feedback

controller by K, so that u(t) = Kx(t). The optimal control problem is

min
K
L(K), s.t. K ∈ SK,sta (3.7)

where L(K) is the cost in (3.2) with u = Kx. This problem can be expressed as the following
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equivalent convex problem,

min
L,P,Z

f(L, P, Z) := tr(QP ) + tr(ZR) (3.8a)

s.t. A(P ) + B(L) + Σ = 0, P � 0, (3.8b) Z L

L> P

 � 0. (3.8c)

The connection between the two problems is distilled in Sec. 3.3. For all feasible (L, P, Z)

triplets in (3.8), we can take the first two elements (L, P ), and they form a bijection with all

stabilizing controllers K in (3.7). The cost function values are equal under the bijection. So

we can solve for L∗, P ∗, and K∗ = L∗(P ∗)−1.

3.3 Main result

In this section, we propose the main theorem. We first destill the property of the convex

parameterization for continuous time LQR. The nonconvex cost function in the policy space

has a convex counterpart, whose reparameterization is a smooth bijection and the cost value

maps between the two parameterized forms. Based on that, we propose the main theorem: the

norm of gradient of the nonconvex cost in policy space is lower bounded by the suboptimality

gap from the global minimum.

Motivated by methods that use gradient descent in the policy space, we ask whether

running a gradient-based algorithm and getting ∇KL(K) = 0 for some K in fact gives the

globally optimum K∗. Fazel et al. (2018); Mohammadi et al. (2019b) show the coercivity and

gradient dominance property of L(K) for discrete- and continuous-time LQR respectively.

In this chapter, we generalize these results from the special case of continuous-time LQR to

a much broader set of control problems, showing the gradient dominance property of the

nonconvex costs as functions of policy.

We present our main result in Theorem 2. We consider a pair of problems satisfying

Assumptions 4, 6. In Sec. 3.4 we catalog a number of examples showing the generality of this
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result.

We begin by considering an abstract description of the pair of problems (3.7) and (3.8).

These problem descriptions cover LQR as discussed in the last section, as well as more

problems discussed in Sec. 3.4. Consider the problems

min
K

L(K), s.t. K ∈ SK , (3.9)

and

min
L,P,Z

f(L, P, Z), s.t. (L, P, Z) ∈ S, (3.10)

where the sets SK ,S capture the control constraints. They are defined differently for each

specific example in Sec. 3.4. For example, for continuous time LQR, SK is the set of all

stabilizing controllers (3.7) and S is the intersection of (3.8b) & (3.8c). In infinite horizon

problems, we need a stabilizing K so that SK is equal to or a subset of the set of stabilizing

controllers. We allow special cases when (3.10) depends only on L, P ,

min
L,P

f(L, P ), s.t. (L, P ) ∈ S. (3.11)

We distill the properties of the two problems (3.9) and (3.10) that will be critical for Theorem

2, and allow us to cover more problems as discussed in Sec. 3.4.

Assumption 4. The feasible set S is convex in (L, P, Z). The cost function f(L, P, Z) is

convex, bounded, and differentiable over an open domain that contains the set S.

Assumption 4 indicates the second problem is convex. Next, we examine the connection

between (3.7) and (3.8), formalized in the following assumption.

Assumption 5. Let P be invertible5 whenever (L, P, Z) ∈ S. Assume we can express L(K)

5The invertibility of P holds for all instances in Sec. 3.4.



33

as follows,

L(K) = min
L,P,Z

f(L, P, Z)

s.t. (L, P, Z) ∈ S, LP−1 = K.

Denote ∇L(K)[V ] := tr(V >∇L(K)) as the directional derivative of L(K) is the direction

V . With the assumptions above, we will present the main theorem.

Theorem 2. Suppose Assumptions 4,5 hold, and consider the two problems (3.9) and (3.10).

Let K∗ denote the global minimizer of L(K) in SK. Then there exist constants C1, C2 > 0

and a direction V with ‖V ‖F = 1, in the descent cone of SK at K such that,

1. if f is convex, the gradient of L satisfies6

∇L(K)[V ] ≤ −C1(L(K)− L(K∗)). (3.12)

2. (a) if f is µ-strongly convex, or

(b) let PS(−∇f(L, P, Z)) be the projection of −∇f(L, P, Z) in the descent cone of S

at (L, P, Z), if for any

(L, P, Z) = arg min
L′,P ′,Z′

f(L′, P ′, Z ′), s.t. (L′, P ′, Z ′) ∈ S, L′(P ′)−1 = K,

we have ‖PS(−∇f(L, P, Z))‖2
F ≥ µ(f(L, P, Z)− f(L∗, P ∗, Z∗)),

the gradient of L satisfies

∇L(K)[V ] ≤ −C2(µ(L(K)− L(K∗)))1/2. (3.13)

Remark 1. The constants in the above theorem can be computed or bounded in a case by

case manner, as discussed further in Appendix B.2. They typically depend on the norm of

6We always consider the directional derivative of a feasible direction within descent cone.
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system parameters and the radius of the feasible domain7. We study continuous time LQR as

an example. Let the sublevel set be where L(K) ≤ a. Define

ν =
λ2

min(Σ)

4

(
σmax(A)λ

−1/2
min (Q) + σmax(B)λ

−1/2
min (R)

)−2

,

then

C1 =
νλ

1/2
min(Q)λ

1/2
min(R)

4a4
·min

{
a2, νλmin(Q)

}
.

Mohammadi et al. (2019b) gives another convex formulation with strong convexity and we

can get C2 for that form,

C2 =
ν

2a3
min

{
a2, νλ

1/2
min(Q)λ

1/2
min(R)

}
.

See Appendix B.2 for more details.

We know that ‖∇L(K)‖F ≥
∣∣∣∇L(K)[ V

‖V ‖F
]
∣∣∣ for any direction V . The lower bound

‖∇L(K)‖F & (L(K) − L(K∗))α on the norm of the gradient is known as Lojasiewicz

inequality (Lojasiewicz, 1963). The case when α = 1/2 is also called the gradient dominance

property. If this inequality holds for all K, all stationary points of the objective function are

global minima, and an iterative method in which the norm of the gradient decreases to zero

will have to converge to a global minimum. Nonconvex functions that satisfy Lojasiewicz

inequality are easily optimized, compared to those with spurious local minima. In practice,

Lojasiewicz inequality often holds in a neighborhood of a local minimum, and Lojasiewicz

inequality is typically used as a tool for local convergence analysis (it is rare that Lojasiewicz

inequality holds for L(K) globally, but it holds for example problems in this chapter).

Next, we consider a stronger assumption covered by Assumption 5, where we assume

7Although the set can be unbounded, when we run gradient descent with respect to L(K), the cost is
typically bounded by the initial value L(K0) so the iterates are in a sublevel set, therefore boundedness of
this sublevel set suffices for our purpose.
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that there is a bijection of a specific form between K and (L, P ) (Assumption 6). This is

true for many control problems including continuous time LQR. Theorem 2 also holds with

Assumptions 4, 6. We emphasize the special case with the bijection for illustration. (In this

section, the map between the variables is K = LP−1, and in Sec. 3.5, we will present the

result for a general K = Φ(P )) In Sec. 3.7, we will illustrate the key proof steps: we use the

fact that the convex function f(L, P ) is gradient dominant, and apply the bijection between

K and (L, P ) to calculate ∇L(K).

Assumption 6. 1. (Bijection between the two feasible sets) Let P be invertible, and let

K = LP−1 define a bijection8 K ↔ (L, P ), where there exists an auxiliary variable Z

such that (L, P, Z) ∈ S.

2. (Equivalence of functions) Choose a controller K ∈ SK with corresponding (L, P ) ∈ S.

Then L(K) = minZ f(L, P, Z) subject to (L, P, Z) ∈ S.

Theorem 2 suggests that when the original nonconvex optimization problem can be mapped

to a convex optimization problem that satisfies Assumptions 4, 5 or 4, 6, all stationary points

of the nonconvex objective are global minima. So if we can evaluate the gradient of nonconvex

objective and run gradient descent algorithm, the iterates converge to the optimal controller.

3.4 Control problems covered by main theorem

Theorem 2 requires an optimal control problem (3.9), and its convex form (3.10) that satisfies

a few assumptions. This is an abstract and general description that does not need the exact

continuous time LQR formulation in Sec. 3.2. Sec. 3.2 implies that the continuous time LQR

satisfies Assumptions 4,6, thus we can directly apply Theorem 2 to argue that the continuous

time LQR cost L(K) satisfies (3.12).

In this section, we discuss more examples, showing that Theorem 2 covers a wide range

of control design problems. This illustrates the generality of Theorem 2. If a new control

8Note that generally K = LP−1 cannot guarantee a bijection. However bijection is possible with the
extra constraint (L,P ) ∈ S.
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problem is encountered, the assumptions for Theorem 2 can be checked, in order to directly

conclude that the stationary points of the original cost function are all global minima, and

further, the nonconvex function can be globally optimized by policy optimization.

3.4.1 Discrete time infinite horizon LQR

We will show that minimizing the LQ cost as a function of the state feedback controller K,

and the convex form, satisfy the assumptions for Theorem 2. So that all stationary points of

the LQ cost as a function of K are global minima, same as the result in Fazel et al. (2018).

We consider a discrete time linear system

x(t+ 1) = Ax(t) +Bu(t), x(0) = x0,

The goal is to find a state feedback controller K such that the cost function

L(K) = Ex0

∞∑
i=0

x(t)>Qx(t) + u(t)>Ru(t), u(t) = Kx(t)

is minimized. In other words, we will solve

min
K
L(K), s.t. K stabilizes. (3.14)

Here we assume that E(x0x
>
0 ) = Σ. Similar to the continuous time system, one can choose

the same parameterization P,L, Z and another PSD matrix G ∈ Rn×n � 0 and solve the

following problem

min
L,P,Z,G

f(L, P, Z,G) := tr(QP ) + tr(ZR), (3.15a)

s.t. P � 0, G− P + Σ = 0, (3.15b) Z L

L> P

 � 0,

 G AP +BL

(AP +BL)> P

 � 0. (3.15c)
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The goal is to argue that L(K) and (3.15) has the connection such that Theorem 2 applies,

so that the stationary point of L(K) has to be the global optimum.

Lemma 9. The LQR problems (3.14) and (3.15) satisfy Assumptions 4, 5.

Proof. (3.15) is a convex optimization problem. Now we prove Assumption 5, i.e., we prove

that L(K) equals the minimum of the problem (3.15) with an extra constraint K = LP−1.

• We first minimize over Z, the minimizer is Z = LP−1L>. Now we plug Z = LP−1L> into

cost, replace L by KP and the cost becomes tr((Q+K>RK)P ).

• We will eliminate G by

G− P + Σ = 0,

 G AP +BL

(AP +BL)> P

 � 0.

Using Schur complement, it is equivalent to

(AP +BL)P−1(AP +BL)> − P + Σ � 0.

Plug in L = KP , we have

(A+BK)P (A+BK)> − P + Σ � 0.

The cost does not involve G so it does not change.

• Now, we need to prove that L(K) is equal to

min
P

tr((Q+K>RK)P ),

s.t. (A+BK)P (A+BK)> − P + Σ � 0. (3.16)

The constraint (3.16) can be written as

(A+BK)P (A+BK)> − P + Θ = 0, Θ � Σ.
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• Denote the solution to (A+BK)P (A+BK)> − P + Θ = 0 as P (Θ). P (Θ) for all Θ � Σ

covers the feasible points of (3.16). P (Θ) is expressed as:

P (Θ) =
∞∑
t=0

(A+BK)tΘ((A+BK)>)t.

So P (Θ) � P (Σ), for all Θ � Σ. Since Q and K>RK are positive semidefinite, the cost

tr((Q+K>RK)P ) achieves the minimum at P = P (Σ).

• At the end, P (Σ) is the Grammian E
∑∞

t=0 x(t)x(t)> when Ex(0)x(0)> = Σ. We studied

the connection between continous time Grammian (3.5) and the cost (3.6), and a similar

result holds for discrete time LQR:

tr((Q+K>RK)P (Σ)) = L(K).

We built the connection between minimizing L(K), and the convex optimization (3.15).

We argued this pair of problems satisfies the assumptions of Theorem 2. Theorem 2 suggests

that L(K) is gradient dominant, so we can approach K∗ by gradient descent on K. This is

essentially the conclusion of Fazel et al. (2018); Bu et al. (2019a). Note that the proof of

discrete time LQR (Fazel et al., 2018; Bu et al., 2019a) and continuous time LQR (Mohammadi

et al., 2019b; Bu et al., 2020) cannot trivially extend to each other, but our result can cover

both continuous and discrete time cases.

3.4.2 LQR with Markov jump linear system

We generalize the discrete time linear system to multiple linear systems with transitions,

called Markov jump linear system in this part. We show that, the LQR with Markov jump

linear system can be covered by the conclusion of Theorem 2. It means all stationary points

of the linear quadratic cost as a function of policy/controllers are global minima.
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Markov jump linear system. Suppose there are N linear systems, the i-th one being

x(t+ 1) = Aix(t) +Biu(t).

Now we study the LQR of Markov jump linear system (Jansch-Porto et al., 2020). At each

time t, the dynamics linking x(t+ 1) and the past state and input x(t), u(t) is given by

x(t+ 1) = Aw(t)x(t) +Bw(t)u(t), w(t) ∈ [N ] := {1, ..., N}.

At time t, a system w(t) from number 1 to N is randomly chosen by some probabilistic

model. The transition of the linear systems, or the transition of w(t), follows the following

probabilistic model

Pr(w(t+ 1) = j|w(t) = i) = ρij ∈ [0, 1], ∀t ≥ 0.

Suppose Pr(w(0) = i) = pi. For the i-th system, we will use a state feedback controller Ki.

Let K = [K1, ..., KN ]. Define the cost as

L(K) = Ew,x0

∞∑
t=0

x(t)>Qx(t) + u(t)>Ru(t), s.t. u(t) = Kw(t)x(t), Pr(w(0) = i) = pi.

The nonconvex problem we target to solve is

min
K
L(K), s.t. L(K) is finite. (3.17)

Convex formulation. We propose the following convex formulation. DenoteX0,X1, ...,XN ∈

Rn×n, L1, ..., LN ∈ Rp×n, Z0, Z1, ..., ZN ∈ Rp×p, Uji ∈ Rn×n for i, j ∈ [N ]. The following



40

problem is convex:

min tr(QX0) + tr(Z0R),

s.t. X0 =
N∑
i=1

Xi, Z0 =
N∑
i=1

Zi,

Zi Li

L>i Xi

 � 0,

Xi − piΣ =
N∑
j=1

Uji,

 ρ−1
ji Uji AjXj +BjLj

(AjXj +BjLj)
> Xj

 � 0, ∀i, j ∈ [N ].

The mapping between the controller Ki and the new variables are Ki = Li(Xi)
−1.

When the convex problem is minimized, X∗i represents the Grammian matrix X∗i =∑∞
t=0E(x(t)x(t)>1w(t)=i).

We prove that (3.17) and the convex formulation satisfy Assumptions 4, 5 in Appendix

B.3.1, so that we apply Theorem 2 to claim that all stationary points of L(K) are global

minima.

3.4.3 Minimizing L2 gain

We quote from Boyd et al. (1994) the problem of minimizing the L2 gain with static state

feedback controller K and the convex formulation. We can apply Theorem 2 to argue that

all stationary points of L2 gain as a function of K are global minima. The L2 gain is also the

H∞ norm of transfer function (Boyd et al., 1994, §6.3.2). This problem has an associated

convex optimization problem and we can show that they satisfy Assumptions 4,5.

We consider minimizing the L2 gain of a closed loop system. The continuous time linear

dynamical system is

ẋ = Ax+Bu+Bww, y = Cx+Du.
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For any signal z, denote

‖z‖2 :=

(∫ ∞
0

‖z(t)‖2
2dt

)1/2

Suppose we use a state feedback controller u = Kx, and aim to find the optimal controller

K∗ that minimizes the L2 gain. We minimize the squared L2 gain as

min
K
L(K) := ( sup

‖w‖2=1

‖y‖2)2, s.t. u = Kx.

This problem can be further reformulated as the formulation in (Boyd et al., 1994, Sec 7.5.1)

min
L,P,γ

f(L, P, γ) := γ, s.t.AP + PA> +BL+ L>B> +BwB
>
w (CP +DL)>

CP +DL −γI

 � 0. (3.19)

The minimum L2 gain is
√
γ∗ and K∗ = L∗P ∗−1. We will show in the Appendix B.3.2 that

the above nonconvex and convex problems satisfy Assumptions 4,5. Thus we can claim that

all stationary points of L(K) are global minima.

3.4.4 Dissipativity

We quote from Boyd et al. (1994) the problem of maximizing the dissipativity with static

state feedback controller K and the convex formulation, and apply Theorem 2 to show that

all stationary points of the dissipativity as a function of K are global minima.

We study the dynamical system

ẋ = Ax+Bu+Bww, y = Cx+Du+Dww (3.20)

The notion of dissipativity can be found in (Boyd et al., 1994, §6.3.3, §7.5.2). Our goal is to

maximize the dissipativity, which is defined and formulated as with a convex parameterization
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(Boyd et al., 1994, §7.5.2).

The dissipativity is defined as all η > 0 (if it exists, we usually take the maximum one)

that satisfy the following inequality for all w and all T > 0,

∫ T

0

w>y − ηw>wdt ≥ 0.

We use a state feedback controllerK, and the goal is to findK∗ that maximizes the dissipativity

η. Same as before, let K be factorized as LP−1. We can maximize the dissipativity η as a

function of K. From the formulation in (Boyd et al., 1994, §7.5.2), we maximize η subject to

the dissipativity constraint (3.21),

max
η,L,P

η,

s.t.

AP + PA> +BL+ L>B> Bw − PC> − (DL)>

B>w − CP −DL 2ηI − (D +D>)

 � 0. (3.21)

We can claim that all stationary points of L(K) are global minima.

3.4.5 System level synthesis (SLS) for finite horizon time varying discrete time LQR

In this part, we switch to the discrete time system in finite horizon. We study the finite

horizon time varying LQR problem, and its solution using SLS, and show that it satisfies

Assumptions 4,6. Hence we can apply Theorem 2 to conclude that all stationary points of

the nonconvex objective functions are global minima.

This problem and its convex form are introduced in Anderson et al. (2019). We consider

the following linear dynamical system

x(t+ 1) = A(t)x(t) +B(t)u(t) + w(t) (3.22)
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over a finite horizon 0, . . . T . Let the state be x and the input be u. Define

X =


x(0)

...

x(T )

 , U =


u(0)

...

u(T )

 ,

W =


x(0)

w(0)

...

w(T − 1)

 , Z =



0 0 ... 0 0

I 0 ... 0 0

0 I ... 0 0

...

0 0 ... I 0


,

A = diag(A(0), ..., A(T − 1), 0),

B = diag(B(0), ..., B(T − 1), 0).

Now we consider the time varying controller K that links state and input as

u(t) =
t∑
i=0

K(t, t− i)x(i), (3.23)

and let

K =


K(0, 0) 0 ... 0

K(1, 1) K(1, 0) ... 0

...

K(T, T ) K(T, T − 1) ... K(T, 0)

 .

We will minimize some cost function with the constraint. For example, in the discrete time

LQR regime (more examples of nonquadratic cost in (Anderson et al., 2019, Sec 2.2)), let the
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input be (3.23) and define

L(K) =
T∑
t=0

x(t)>Q(t)x(t) + u(t)>R(t)u(t), (3.24)

here Q(t), R(t) � 0. We will minimize L(K) where K is the variable.

Parameterization: The dynamics (3.22) can be written as

X = ZAX + ZBU +W = Z(A+ BK)X +W

We define the mapping from W to X,U byX
U

 =

ΦX

ΦU

W.
where ΦX ,ΦU are block lower triangular. There is a constraint on ΦX ,ΦU :

[
I − ZA −ZB

]ΦX

ΦU

 = I. (3.25)

It is proven in (Anderson et al., 2019, Thm. 2.1) that K = ΦUΦ−1
X , K and ΦX ,ΦU is a

bijection given ΦX ,ΦU satisfying (3.25).

Let Q = diag(Q(0), ..., Q(T )), R = diag(R(0), ..., R(T )), the LQR cost with x(0) ∼

N (0,Σ) and no noise is

f(ΦX ,ΦU) =

∥∥∥∥∥∥diag(Q1/2,R1/2)

ΦX(:, 0)

ΦU(:, 0)

Σ1/2

∥∥∥∥∥∥
2

F

,

ΦX(:, 0),ΦU (:, 0) are the first n columns of ΦX ,ΦU . The LQR cost with x(0), w(t) being i.i.d
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from N (0,Σ) is

f(ΦX ,ΦU) =

∥∥∥∥∥∥diag(Q1/2,R1/2)

ΦX

ΦU

 (IT+1 ⊗ Σ1/2)

∥∥∥∥∥∥
2

F

.

The symbol ⊗ means Kronecker product. If we solve

min
K
L(K), K is block lower left triangular

with the above two costs of w(t), both can be minimized with constraint (3.25):

min
ΦX ,ΦU

f(ΦX ,ΦU), s.t.
[
I − ZA −ZB

]ΦX

ΦU

 = I,

ΦX ,ΦU are block lower left triangular.

This problem is convex. The theorem (Anderson et al., 2019, Thm. 2.1) suggests the relation

between L and f satisfying Assumption 6 for Theorem 2. With Theorem 2, we can argue

that all stationary points of L(K) are global minimum.

The paper Alonso et al. (2021) proposes some generalization of SLS. It introduces a

localization constraint, where the state is constrained in a convex set. For example, the

constraint is (Alonso et al., 2021, Eq. (9))

ΦX(:, 0)x0 ∈ P

for a convex set P. We can add it to the problem in convex parameterized problem and

map it as a constraint in the controller K space. The nonconvex problem is still gradient

dominant.
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3.5 A more general description of Assumption 5

In this section, we will give a more general theorem, based on replacing the map K = LP−1

by arbitrary function Φ defined below. This allows the theorem to cover more examples in

Sec. 3.6.

We chose K = LP−1 because this is frequently used for the convex parameterization

of the optimal control problem. For example, with the continuous time LQR problem

motivated in Sec. 3.2, the mapping between K and L, P is almost the only widely used

convex parameterization method. If we choose another change of variable, the resulting

objective function is usually not convex in the new variables.

On the other hand, although the mapping K = LP−1 is studied, we can generalize

Theorem 2 with arbitrary mappings if the reformulated problem is convex – the new mappings

still have to satisfy a few assumptions to preserve the Lojasiewicz inequality.

Here we will propose the following assumptions which replace the mapping K = LP−1 by

an abstract mapping Φ.

Suppose we consider the problems

min
K

L(K), s.t. K ∈ SK , (3.26)

and

min
P

f(P ), s.t. P ∈ S. (3.27)

The matrix P can be a concatenation of many variables, just as a shortlisted expression. For

example, P represents (P,L, Z) of continuous LQR. We will study the original optimization

problem (3.26), and map it to a convex optimization problem (3.27) where the mapping

between K and the variable of the other problem P is abstractly denoted by K = Φ(P ) in

(3.28).

Assumption 7. The feasible set S is convex in P . The cost function f(P ) is convex, finite



47

and differentiable in P ∈ S. L(K) is Lipschitz in K.

Assumption 8. Assume we can express L(K) as:

L(K) = min
P

f(P ), s.t. P ∈ S, K = Φ(P ). (3.28)

And we assume the first order Taylor expansion of the mapping Φ is well defined as

Φ(P + dP ) = Φ(P ) + Ψ(P )[dP ] + o(dP ).

for any P ∈ S and any perturbation dP such that dP is in the descent cone of S at P .

We mentioned that, P represents (P,L, Z) in continuous LQR. And we can see that

Assumption 5 is very similar to Assumption 8. We just apply Φ(P,L, Z) = LP−1 and get

Assumption 5.

As a description of the connection between the controller and its parameterization,

Assumption 8 is more general than Assumption 6. In Assumption 6, if Z does not exist,

it means that the two parameterization and cost functions are diffeomorphic, so that the

minimums of the two cost functions map to each other. Assumption 8 is more general with a

surjective map. However, if assume the right hand side of the following equation is unique for

any K and define

g(K) = arg min
P

f(P ), s.t. P ∈ S, K = Φ(P ).

Then g(·), whose inverse exists, gives a bijection between K and P . And we have L(K) =

f(P ) = f(g(K)) and L(g−1(P )) = f(P ). Suppose g is smooth, then this gives a diffeomor-

phism between K ∈ SK and P ∈ {P ′ | ∃K ∈ SK , g(K) = P ′} := SP . SP is a subset of S

and it is a manifold. Generally we cannot claim convexity of a function defined on a manifold.

As long as P 6= P ∗, the Riemannian gradient of f(P ) is non-zero. With a diffeomorphism, we

can claim that ∇L(K) 6= 0 as long as K 6= K∗.



48

Remark 2. Note that, because of (3.28), the assumption does not trivially hold for any

smooth mapping Φ in the very general context. For example, the paper Lasserre (2001)

proposes the sum-of-squares method for solving polynomial optimizations, which has a convex

parameterization of lifting the problem to a higher dimensional space. We explain the idea in

a simple paradigm. let x ∈ R2 and the objective function is power 2. The objective function is

L(x) = a1x
2
1 + a2x1x2 + a3x

2
2.

One can define a matrix X ∈ S2×2 � 0 and a cost function that is linear in X,

f(X) =

 a1 a2/2

a2/2 a3

X.

It can be proven that X∗ is rank-1, and it maps to

 x2
1 x1x2

x1x2 x2
2

 . However, the map creates

many meaningless points while lifting the dimension – extra points when X is rank-2 that are

not mapped from the original problem x1, x2, and the extra points do not necessarily satisfy

(3.28).

The following conclusion holds with the above Assumptions 7, 8. It generalizes beyond the

specific mapping Φ(P,L) = LP−1 to a more general definition, and we propose some instances

of convex formulations with different Φ in the next section. We propose the following theorem

and the proof is in Appendix B.1.

Theorem 3. Denote ∆K = Ψ(P )[P ∗ − P ]. Let ∇L(K)[∆K] be the directional derivative of

L(K) in direction ∆K. Then with Assumptions 7, 8 we have

∇L(K)[∆K] ≤ L(K∗)− L(K).

If K is not optimal, then the right hand side is strictly less than 0, which means the

directional derivative of L is not 0. Therefore ∇L(K) = 0 holds only at the global minima.
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Remark 3. Theorem 3 means that,

‖∇L(K)‖F ≥ −∇L(K)[
∆K

‖∆K‖F
] ≥ C(K)(L(K)− L(K∗))

where

C(K) = ‖Ψ(P )[P ∗ − P ]‖−1
F = ‖Ψ(Φ−1(K))[Φ−1(K∗)− Φ−1(K)]‖−1

F

≥ ‖Ψ(P )‖−1
op ‖P ∗ − P‖−1

F

For continuous time LQR, P represents the list of variables (P,L, Z) there. Remember

ν =
λ2

min(Σ)

4

(
σmax(A)λ

−1/2
min (Q) + σmax(B)λ

−1/2
min (R)

)−2

.

In the sublevel set where L(K) ≤ a, we have that

‖Ψ(P )‖op ≤
2a

ν
max

{
1,

a2

ν(λmin(Q)λmin(R))1/2

}
,

‖P ∗ − P‖F ≤
a

λ
1/2
min(Q)

max
{
λ
−1/2
min (Q), λ

−1/2
min (R)

}
.

3.6 Control problems with generalized map

This section will cover examples where the parameterization is based on the general map Φ,

not necessarily Φ(P,L) = LP−1. We can apply Theorem 3 to these problems.

3.6.1 Distributed finite horizon LQR

(Mårtensson, 2012, Ch. 3) is an empirical study (i.e., proposing an algorithm without a proof

of convergence) of the gradient descent method for distributed control synthesis. For such

a problem, the controller is distributed with a graph structure, showing the accessibility of

the distributed controllers to the states: if controller i has no access to state j, then Kij = 0,

otherwise Kij ∈ R. Thus there is an extra subspace constraint regarding the graph structure



50

of K, and (Mårtensson, 2012, Ch. 3) applies projected gradient descent on (3.2) with respect

to K. It allows a fixed or random of initial state as in (3.2). Generally it is NP-hard to find

a global optimum with the subspace constraint, so the paper only proposes an algorithm

without a proof.

With an extra condition called quadratic invariance, the problem is not NP-hard. We

review the solutions in Furieri et al. (2020) with the connection to our framework.

We consider the time varying linear system

x(t+ 1) = A(t)x(t) +B(t)u(t) + w(t),

y(t) = C(t)x(t).

This is in finite time horizon t = 0, ..., T . The state evolution is same as the setup in our SLS

example (Sec. 3.4.5), and we can use the same notations X,U,W,Z,A,B. We further define

Y =


y(0)

...

y(T )

 , V =


v(0)

...

v(T )

 , C = diag(C(0), ..., C(T )).

Now we will consider the control policy

u(t) =
t∑
i=0

K(t, t− i)y(i).

The search space of policy is same as SLS, and we define K matrix in the same way. Furieri

et al. (2020) studies the problem under the context of distributed control. One searches for

the controller K ∈ SK where SK a subset of controllers. In distributed control, there is a

graph model for controllers such that the i-th controller might not be able to access the

state j for (i, j) in a set of indices Sidx. In this case, Ki,j = 0 is an extra constraint for the

control problem. Therefore, if one searches for the optimal controller in SK , we can define
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the subspace

SK := {K | Ki,j = 0, ∀(i, j) ∈ Sidx}.

The extra constraint is not always easily handled, but (Furieri et al., 2020, §3) proposes an

extra assumption, called quadratic invariance (QI), and introduces the equivalent convex

optimization.

Remember we defined

K =


K(0, 0) 0 ... 0

K(1, 1) K(1, 0) ... 0

...

K(T, T ) K(T, T − 1) ... K(T, 0)

 , C = diag(C(0), ..., C(T )).

And we define

P11 = (I − ZA)−1, P12 = (I − ZA)−1ZB.

QI means that, for all K ∈ SK , KCP12K ∈ SK .

The cost function is:

L(K) =
T∑
t=0

y(t)>Q(t)y(t) + u(t)>R(t)u(t).

Define

Φ(G) = (I + GCP12)−1G.

Then we can get a new variable G and a function Φ. With K = Φ(G), the cost can be

proven to be convex in G. The variable G is in the same subspace as K determined by

SK . Indeed, the mapping satisfies Assumptions 7, 8, and the exact formulation of the two



52

optimization problems are described in (Furieri et al., 2020, Append. A, Lem. 5). Define

Q = diag(Q(0), ..., Q(T )), R = diag(R(0), ..., R(T )). Let w(t) be Gaussian random vectors

with stationary covariance, w(t1) and w(t2) are independent ∀t1 6= t2. Σw = IT ⊗ Cov(w) (⊗

means Kronecker product), Σx = diag(E(x0x
>
0 ), 0, ..., 0). The convex cost function takes the

form

f(G) =
∥∥∥Q1/2C(I + P12GC)P11

[
Σ

1/2
w Σ

1/2
x

]∥∥∥2

F
+
∥∥∥R1/2GCP11

[
Σ

1/2
w Σ

1/2
x

]∥∥∥2

F
.

In summary, we have a pair of problems: 1) minimize L(K) over K and 2) minimize f(G)

over G. They are related under the Assumptions 4, 6 of Theorem 2. Thus we can claim via

Theorem 2 that, all stationary points of L(K) are global minima.

3.7 Proof sketch

Figure 3.1: Mapping between nonconvex and convex landscapes. Suppose we run gradient
descent at iteration t, for any controller K, we can map it to L, P, Z in the other parameterized
space. and then we map the direction (L∗, P ∗, Z∗)− (L, P, Z) and the gradient ∇f(L, P, Z)
back to the original K space. Since in (L, P, Z) space the objective function is convex, then
〈∇f(L, P, Z), (L∗, P ∗, Z∗)− (L, P, Z)〉 < 0. We prove that similar correlation holds for the
nonconvex objective.

We put the full proof of Theorem 2 in Appendix B.1, and give a sketch of the proof in
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this section. We illustrate the idea in Figure 3.1, which, on the high level, maps the original

space of controller K where the cost is nonconvex, and the parameterized space with L, P, Z

where the cost is convex.

For simplicity, we sketch the proof using Assumptions 4,6. For any point K, we can find

a point (L, P, Z) in the parameterized space. If it is not the optimizer, we can find the line

segment linking (L, P, Z) and the optimizer (L∗, P ∗, Z∗). Note that the optimization problem

is convex in this space so that 〈∇f(L, P, Z), (L∗, P ∗, Z∗) − (L, P, Z)〉 is upper bounded by

f(L∗, P ∗, Z∗)− f(L, P, Z). Then with the assumptions, we can map the directional derivative

back to the original K space, and show that the directional derivative in L(K) is not 0.

3.8 Conclusion and future directions

The future work is to refine the analysis to obtain the best case-specific convergence rates,

and to provide an interpretation of the associated constants in terms of control theoretic

notions.

We also note that, not all control problems are easy to solve by first order methods

in policy space. The distributed control problem is an example. The controller K has a

sparsity pattern, i.e., K is in a subspace. Ref. (Li et al., 2021) shows that, generally the

set of stabilizing controllers is highly disconnected and the problem is NP-hard without

the extra assumption of quadratic invariance in Furieri et al. (2020). Similarly, the static

output feedback controller design is NP-hard. The goal is to minimize the LQ cost, but

we can only observe an output y = Cx but cannot observe the full state, and we are only

allowed to use a static output feedback controller u = Ky. If C is not full row rank, the

set of stabilizing controllers is also highly disconnected (Feng & Lavaei, 2020). If C is full

row rank, the problem almost reduces to state feedback control since one can recover the

state x from y, and Ref. Duan et al. (2021) shows that first order policy optimization finds

the optimal controller. Ref. Tang et al. (2021) shows that, the cost of the LQR problem

with an output-feedback dynamical controller, i.e., the LQG cost, has saddle points (the

problem setup in Tang et al. (2021) expresses the dynamic controller in state-space and the
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optimization variables are the state-space matrices AK ,BK , CK for the controller). Although

a parameterization can construct an equivalent convex optimization problem, the map for

such parameterization is generally not smooth, and the nonsmoothness breaks the gradient

dominance and generates saddle points; thus this negative example is not covered by the

results in this paper.

We are also interested in understanding the cost landscape of LQG problem (Tang et al.,

2021) and output estimation problem (Umenberger et al., 2022), specifically their connection

with the convex parameterization, and investigating the second order landscape analysis

via the mapping to the convex problem. For such problems, one possible approach is in

(Umenberger et al., 2022, Sec. I.2). They propose a regularizer which is a barrier function in

the reparameterized space, with a closed form expression in the policy space. The boundary

of the barrier consists of singular matrices that breaks the smoothness of the mapping. Hence

with the barrier function, when the regularized objective function is finite, we might be able

to get a Lipschitz Φ function and can apply Theorem 3.
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Chapter 4

LEARNING LINEAR DYNAMICAL SYSTEMS VIA NUCLEAR
NORM REGULARIZATION

In this chapter, we investigate the regularzation method for learning low-order linear

dynamical systems from input-output data, named as system identification problem. It is

known that with appropriate regularizers, the prior information of the structure learning

model can be exploited. We show that, with a designed random matrix as input and

the Hankel nuclear norm regularizer, one can recover the system using optimal number of

observations and achieve strong statistical estimation rates. We propose a training-validation

procedure for tuning the regularization weight and accurately selecting the recovered model.

Our synthetic experiment shows the strict advantage of regularized algorithm over the

unregularized counterpart, and our experiments on real dataset shows that regularized

algorithm has lower sample complexity and returns a Hankel matrix with a clear singular

value gap.

This work is published as Sun et al. (2020).

4.1 Introduction

System identification is an important topic in control theory. Accurate estimation of system

dynamics is the basis of control or policy decision problems in tasks varying from linear-

quadratic control to deep reinforcement learning. Consider a linear time-invariant system of

order R with the minimal state-space representation

xt+1 = Axt +But,

yt = Cxt +Dut + zt,
(4.1)
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where xt ∈ RR is the state, ut ∈ Rp is the input, yt ∈ Rm is the output, zt ∈ Rm is the output

noise, A ∈ RR×R, B ∈ RR×p, C ∈ Rm×R, D ∈ Rm×p are the system parameters, and x0 is the

initial state (in this chapter, we assume x0 = 0). Generally with the same input and output,

the dimension of the hidden state x can be any number no less than R, and we are interested

in the minimum dimensional representation (i.e., minimal realization) in this chapter.

The goal of system identification is to find the system parameters, such as A,B,C,D

matrices or impulse response, given input and output observations. If (C,D) = (I, 0), we

directly observe the state. A notable line of work derives statistical bounds for system

identification with limited state observations from a single output trajectory (defined in Fig.

4.2) with a random input Abbasi-Yadkori & Szepesvári (2011); Simchowitz et al. (2018);

Sarkar & Rakhlin (2019).

The state evolves as xt+1 = Axt + ηt where ηt is the white noise that provides excitation

to states Simchowitz et al. (2018); Sarkar & Rakhlin (2019). They recover A by solving

a least-squares problem. The main proof approach comes from an analysis of martingales

(Abbasi-Yadkori et al., 2011, Thm 2,3). Simchowitz et al. (2018) assumes that the system is

stable whereas Sarkar & Rakhlin (2019) removes the assumptions on the spectral radius of A.

When we do not directly observe the state x (also known as hidden-state), one has only

access to ut and yt and lack the full information on xt. We recover the impulse response (also

known as the Markov parameters) sequence h0 = D, ht = CAt−1B ∈ Rm×p for t = 1, 2, . . .

that uniquely identifies the end-to-end behavior of the system. The impulse response can

have infinite length, and we let h = [D,CB,CAB,CA2B, . . . , CA2n−3B]> denote its first

2n − 1 entries, which can be later placed into an n × n Hankel matrix. Without knowing

the system order, we consider recovering the first n terms of h where n is larger than system
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order R. To this end, let us also define the Hankel map H : Rm×(2n−1)p → Rmn×pn as

H := H(h) =


h1 h2 ... hn

h2 h3 ... hn+1

...

hn hn+1 ... h2n−1

 . (4.2)

If n ≥ R, the Hankel matrix H is of rank R regardless of n (Sontag, 2013, Sec. 5.5).

Specifically, we will assume that R is small, so the Hankel matrix is low rank. Our goal is to

recover a low rank Hankel matrix. It is known that nuclear norm regularization is used to

find a low rank matrix Recht et al. (2010); Fazel et al. (2001), and Fazel (2002) uses it for

recovering a low rank Hankel matrix.

Low-rank Hankel matrices arise in a range of applications, from dynamical systems –

where the rank corresponds to a low order or MacMillan degree for the system Sontag (2013);

Fazel (2002) – to signal processing problems. The latter includes recovering sum of complex

exponentials Cai et al. (2016); Xu et al. (2018) (where the rank of the Hankel matrix is

the number of summands), shape-from-moments estimation in tomography and geophysical

inversion Elad et al. (2004) (where the vertices of an object are probed and the output is a

sum of exponentials), and video in-painting Ding et al. (2007) (where the video is regarded

as a low order system).

Performance criteria for system identification: To explain our contributions, we intro-

duce common performance metrics. Refs. Oymak & Ozay (2018) and Sarkar et al. (2019)

recover the system from single rollout/trajectory ("rollout" is defined in Sec. 4.3) of the input

signal, whereas our work, Tu et al. (2017) and Cai et al. (2016) require multiple rollouts. To

ensure a standardized comparison, we define sample complexity to be the number of equations

(equality constraints in variables ht) used in the problem formulation, which is same as the

number of observed outputs (see Fig. 4.2 and Sec. 4.3). With this, we explore the following

performance metrics for learning the system from T output measurements.
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• Sample complexity: The minimum sample size T for recovering system parameters with

zero error when the noise is set to z = 0. This quantity is lower bounded by the system

order. System order can be seen as the “degrees of freedom" of the system.

• Impulse Response (IR) Estimation Error: The Frobenius norm error ‖ĥ − h‖F for

the IR. A good estimate of IR enables the accurate prediction of the system output.

• Hankel Estimation Error: The spectral norm error ‖H(ĥ− h)‖ of the Hankel matrix.

This metric is particularly important for system identification as described below.

The Hankel spectral norm error is a critical quantity for several reasons. First, the Hankel

spectral norm error connects to the H∞ estimation of the system Sanchez-Pena & Sznaier

(1998). Secondly, bounding this error allows for robustly finding balanced realizations of

the system; for example, the error in reconstructing state-space matrices (A,B,C,D) via

the Ho-Kalman procedure is bounded by the Hankel spectral error. Finally, it is beneficial

in model selection, as a small spectral error helps distinguish the true singular values of

the system from the spurious ones caused by estimation error. Indeed, as illustrated in the

experiments, the Hankel singular value gap of the solution of the regularized algorithm is

more visible compared to least-squares, which aids in identifying the true order of the system

as explored in Sec. 4.8.

Algorithms: Hankel-regularization & OLS. In our analysis, we consider a multiple

rollout setup where we measure the system dynamics with T separate rollouts. For each

rollout, the input sequence is u(i) = [u
(i)
2n−1, ..., u

(i)
1 ] ∈ R(2n−1)p and we measure the system

output at time 2n − 1. Note that the ith output at time 2n − 1 is simply h>u(i). Define

Ū ∈ RT×(2n−1)p where the ith row is u(i). Let y ∈ RT×m denote the corresponding observed

outputs. Hankel-regularization refers to the nuclear norm regularized problem (HNN).

ĥ = arg min
h′

1

2
‖Ūh′ − y‖2

F + λ‖H(h′)‖∗, (HNN)

Finally, setting λ = 0, we obtain the special case of ordinary least-squares (OLS).
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4.2 Contributions

Our main contribution is establishing data-driven guarantees for Hankel nuclear norm regu-

larization and shedding light on the benefit of regularization through a comparison to the

ordinary least-squares (OLS) estimator. Specifically, a summary of our findings are as follows.

• Hankel nuclear norm (Sec. 4.4 & 4.5): For multi-input/single-output (MISO) systems

(p input channels), we establish near-optimal sample complexity bounds for the Hankel-

regularized system identification, showing the required sample size grows as O(pR log2 n)

where R is the system order and n is the Hankel size. This result utilizes an input-shaping

strategy (rather than i.i.d. excitation, see Fig. 4.1a) and builds on Cai et al. (2016) who

studied the recovery of a sum-of-exponentials signal. Our bound significantly improves over

naive bounds. For instance, without Hankel structure, enforcing low-rank would require

O(nR) samples and enforcing Hankel structure without low-rank would require O(n) samples.

We also establish finite sample bounds on the IR and Hankel spectral errors. Our rates

are on par with the OLS rates; however, unlike OLS, they also apply in the small sample size

regime pn & T & pR log2 n.

Surprisingly, Sec. 4.5 shows that the input-shaping is necessary for the logarithmic sample

complexity in n. Specifically, we prove that if the inputs are i.i.d. standard normal (Fig.

4.1b), the minimum number of observations to exactly recover the impulse response in the

noiseless case grows as T & n1/6.

• Sharpening OLS bounds (Sec. 4.6): For multi-input/multi-output (MIMO) systems, we

establish a near-optimal spectral error rate for the Hankel matrix when T & np. Our error

rate improves over that of Oymak & Ozay (2018) and our sample complexity improves over

Sarkar et al. (2019) and Tu et al. (2017) which require O(n2) samples rather than O(n). This

refinement is accomplished by relating the IR and Hankel errors. Specifically, using the fact

that rows of the Hankel matrix are subsets of the IR sequence, we always have the inequality

‖ĥ− h‖F/
√

2 ≤ ‖H(ĥ− h)‖ ≤
√
n‖ĥ− h‖F . (4.3)
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Figure 4.1: (a) Shaped input (where variance of u(t) changes over time): recovery is guaranteed
when T ≈ R; (b) i.i.d input (fixed variance): recovery fails with high probability when
T . n1/6. See Sec. 4.5.

Observe that there is a factor of
√
n gap between the left-hand and right-hand side inequalities.

We show that the left-hand side is typically the tighter one, thus ‖ĥ− h‖F ∼ ‖H(ĥ− h)‖.

• Guarantees on accurate model-selection (Sec. 4.7): The Hankel-regularized algo-

rithm requires a proper choice of the regularization parameter λ. In practice, the optimal

choice is data dependent and one usually estimates λ via trial and error based on the validation

error. We provide a complete procedure for model selection (training & validation phases),

and establish statistical guarantees for it.

• Contrasting Hankel regularization and OLS (Sec. 4.8): Finally, we assess the

benefits of regularization via numerical experiments on system identification focusing on data

collected from a single-trajectory.

We first consider synthetic data and focus on low-order systems with slow impulse-response

decay. The slow-decay is intended to exacerbate the FIR approximation error arising from

truncating the impulse-response at 2n − 1 terms. In this setting, OLS as well as Sarkar

et al. (2019) are shown to perform poorly. In constrast, Hankel-regularization better avoids

the truncation error as it allows for fitting a long impulse-response with few data (due to

logarithmic dependence on n).
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Our real-data experiments (on a low-order example from the DaISy datasets De Moor et al.

(1997)) suggest that the regularized algorithm has empirical benefits in sample complexity,

estimation error, and Hankel spectral gap, and demonstrate that the regularized algorithm is

less sensitive to the choice of the tuning parameter, compared to OLS whose tuning parameter

is the Hankel size n. Finally, comparison of least-squares approaches in Oymak & Ozay

(2018) (OLS) and Sarkar et al. (2019) reveals that OLS (which directly estimates the impulse

response) performs substantially better than the latter (which estimates the Hankel matrix).

This highlights the role of proper parameterization in system identification.

4.2.1 Prior Art

The traditional unregularized methods include Cadzow approach (Cadzow, 1988; Gillard,

2010), matrix pencil method (Sarkar & Pereira, 1995), Ho-Kalman approach (Ho & Kálmán,

1966) and the subspace method raised in Ljung (1999); Van Overschee & De Moor (1995,

2012), further modified as frequency domain subspace method in McKelvey et al. (1996)

when the inputs are single frequency (sine/cosine) signals.

The algorithms reduce the rank of the estimated Hankel matrix or the order of the system

impulse response in the following ways: Cadzow (1988) uses alternative projections to get

a low rank Hankel; Sarkar & Pereira (1995) recovers the subspace of the Hankel matrix by

columns of Vandermonde decomposition matrix and the system order is the column space

dimension; Ho & Kálmán (1966) recovers system parameters A,B,C,D from a low rank

approximation of Hankel matrix estimation, with the size of A,B,C,D corresponding to

the system order; Van Overschee & De Moor (2012) rewrites the system dynamics as a

relation of input, output and state, leverages the subspaces spanned by them and does system

identification. Recent works show that least-squares can be used to recover the Markov

parameters. To identify a stable system from a single trajectory, Oymak & Ozay (2018)

estimates the impulse response and Sarkar et al. (2019) estimates the Hankel matrix via

least-squares. The latter provides optimal Hankel spectral norm error rates, however has

suboptimal sample complexity (see the table in Section 4.3). While Oymak & Ozay (2018);
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Sarkar et al. (2019) use random input, (Tu et al., 2017, Thm 1.1, 1.2) use impulse and single

frequency signal respectively as input. They both recover impulse response. These works

assume known system order, or traverse the Hankel size n to fit the system order. Zheng &

Li (2020) proves that least-squares can identify any (including unstable) linear systems with

multiple rollout data. Reyhanian & Haupt (2021) studies online system identification. It

applies online gradient descent on least-squares loss and shows the identification error. Fattahi

(2020) shows that, when the system is strictly stable (ρ(A) < 1), the sample complexity is

only polynomial in (1− ρ(A))−1 and logarithmic in dimension.

There are several interesting generalizations of least squares with non-asymptotic guaran-

tees for different goals. Hazan et al. (2018) and Simchowitz et al. (2019) introduced filtering

strategies on top of least squares. The filters in Hazan et al. (2018) is the top eigenvectors

of a special deterministic matrix, used for output prediction in stable systems. Simchowitz

et al. (2019) uses filters in frequency domain to recover the system parameters of a stable

system, Tsiamis & Pappas (2019) gives a non-asymptotic analysis for learning a Kalman

filter system, which can also be applied to an auto-regressive setting. As an extension, Dean

et al. (2019) and Mania et al. (2019) apply system identification guarantee for robust control,

where the system is identified and controlled in an episodic way. Lu & Mo (2021) extended

the online LQR to a non-episodic way. Agarwal et al. (2019) studies online control and regret

analysis in adversarial setting, whose algorithm directly learns the policy in an end-to-end

way. Talebi et al. (2020) controls an unknown unstable system with no initial stabilizing

controller. Another area is system identification with non-linearity. Mhammedi et al. (2020)

learns a linear system using nonlinear output observations. Oymak (2019); Khosravi & Smith

(2020); Foster et al. (2020); Bahmani & Romberg (2019); Sattar & Oymak (2020) consider

guarantees for certain nonlinear systems with state observations and Mania et al. (2020);

Wagenmaker & Jamieson (2020) study active learning where the new input adapts with

respect to previous observations. Rutledge et al. (2020) studies the estimation and proposes

the subsequent model-based control algorithm with missing data. Du et al. (2019); Sattar

et al. (2021) study clustering and identification for Markov jump system and Du et al. (2021)
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further analyzes the optimal control strategy based on the estimated system parameters.

Chen & Poor (2022) studies learning mixtures of linear systems from multiple trajectories.

Each trajectory is generated by one of a collection of systems while we don’t know which

one it comes from. The algorithm first identifies the clusters and then identifies each system.

The technique about learning mixture data and subspace-based meta-learning is covered in

Chapter 5.

Nuclear norm regularization has been shown to recover an unstructured low-rank matrix in

a sample-efficient way in many settings (e.g., Recht et al. (2010); Candes & Plan (2010)). The

regularized subspace method are introduced in Hansson et al. (2012); Verhaegen & Hansson

(2016). Liu et al. (2013); Fazel et al. (2013) propose slightly different algorithms which regress

low rank output Hankel matrix. Grossmann et al. (2009) specifies the application of Hankel

nuclear norm regularization when some output data are missing. Ayazoglu & Sznaier (2012)

proposes a fast algorithm on solving the regularization algorithm. All above regularization

works emphasize on optimization algorithm implementation and have no statistical bounds.

More recently Cai et al. (2016) theoretically proves that a low order SISO system from

multi-trajectory input-outputs can be recovered by this approach. Blomberg (2016) gives

a thorough analysis on Hankel nuclear norm regularization applied in system identification,

including discussion on proper error metrics, role of rank/system order in formulating the

problem, implementable algorithm and selection of tuning parameters.

The rest of the chapter is organized as follows. Next section introduces the technical setup.

Sections 4.4 proposes our results on nuclear norm regularization. Section 4.5 discusses the

role of the input distribution and establishes lower bounds. Section 4.6 provides our results

on least-squares estimator. Section 4.7 discusses model selection algorithms. Finally Section

4.8 presents the numerical experiments.

4.3 Problem Setup and Algorithms

Let ‖ · ‖, ‖ · ‖∗, ‖ · ‖F denote the spectral norm, nuclear norm and Frobenius norm respectively.

Throughout, we estimate the first 2n− 1 terms of the impulse response denoted by h. The
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Figure 4.2: (a) Arbitrary sampling on output data, and two specific data aqcuisition models:
(b) multi-rollout, and (c) single rollout.

system is excited by an input u over the time interval [0, t] and the output y is measured at

time t, i.e.,

yt =
t∑
i=1

ht+1−iui + zt. (4.4)

We start by describing data acquisition models. Generally there are several rounds (ith round

is denoted with super script (i) in Fig. 4.2) of inputs sent into the system, and the output can

be collected or neglected at arbitrary time. In the setting that we refer to as “multi-rollout"

(Fig. 4.2(b)), for each input signal u(i) we take only one output measurement yt at time

t = 2n− 1 and then the system is restarted with a new input. Here the sample complexity is

T , the number of output measurements as well as the round of inputs. Recent papers (e.g.,

Oymak & Ozay (2018) and Sarkar et al. (2019)) use the “single rollout" model (Fig. 4.2(c))

where we apply an input signal from time 1 to T + 2n− 2 without restart, and collect all

output from time 2n− 1 to T + 2n− 2, in total T output measurements; we use this model

in the numerical experiments in Sec. 4.8.

We consider two estimators in this chapter: the nuclear norm regularized estimator and

the least squares estimator defined later.

We will bound the various error metrics mentioned earlier in terms of the sample complexity

T , the true system order R, the dimension of impulse response n� R, and signal to noise ratio

(SNR) defined as snr = E[‖u‖2
F/n]/E[‖z‖2

F ]. Table 4.1 provides a summary and comparison

of these bounds. All bounds are order-wise and hide constants and log factors. We can see

that, with nuclear norm regularization, our result matches the least squares impulse response
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Table 4.1: Comparison of recovery error of impulse response. The Hankel matrix is n× n,
the system order is R, and the number of samples is T , and σ = 1/

√
snr denotes the noise

level. LS-IR and LS-Hankel stands for least squares regression on the impulse response and
on the Hankel matrix.

Paper This work This work Oymak & Ozay (2018) Sarkar et al. (2019)
Sample complexity R n n n2

Method Nuc-norm LS-IR LS-IR LS-Hankel
Impulse response error see (4.7) σ

√
n/T σ

√
n/T (1 + σ)

√
n/T

Hankel spectral error see (4.7) σ
√
n/T σn/

√
T (1 + σ)

√
n/T

and Hankel spectral error bound while sample complexity can be as small as O(R2), and we

can recover the impulse response with guaranteed suboptimal error when sample complexity

is O(R). Our least square error bound matches the best error bounds among Oymak & Ozay

(2018) and Sarkar et al. (2019), which is proven optimal for least squares.

Next, we discuss the design of the input signal and introduce input shaping matrix.

Input shaping: Note H operator does not preserve the Euclidean norm, so Cai et al. (2016)

proposes using a normalized operator G, where they first define the weights

Kj =


√
j, 1 ≤ j ≤ n,

√
2n− j, n < j ≤ 2n− 1.

(4.5)

and let K ∈ R(2n−1)p×(2n−1)p be a block diagonal matrix where the jth diagonal block of size

p× p is equal to KjIp×p. In other words,

K =


K1I 0 0 ... 0

0 K2I 0 ... 0

...

0 0 0 ... K2n−1I


Define the mapping G(h) = H(K−1h). In other words, if β = Kh then G(β) = H(h). Define

G∗ : Rmn×np → Rm×(2n−1)p as the adjoint of G, where [G∗(M)]i =
∑

j+k−1=iM(j)(k)/Ki if we
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denote the j, k-th block of M (defined in (4.2)) by M(j)(k). Using this change of variable and

letting U = ŪK−1, problem (HNN) can be written as

β̂ = arg min
β′

1

2
‖Uβ′ − y‖2

F + λ‖G(β′)‖∗. (4.6)

4.4 Hankel nuclear norm regularization

To promote a low-rank Hankel matrix, we add nuclear norm regularization in our objective

and solve the regularized regression problem. Here we give a finite sample analysis for the

recovery of the Hankel matrix and the impulse response found via this approach. We consider

a random input matrix Ū and observe the corresponding noisy output vector y as in (4.4).

We then regress y and Ū such that y = Ūh+ z where z is the noise vector.

Theorem 4. Consider the problem (HNN) in the MISO (multi-input single-output) setting

(m=1, p inputs). Suppose the system is order R, Ū ∈ RT×(2n−1)p, each row consists of

an input rollout u(i) ∈ R(2n−1)p, and the scaled U = ŪK−1 has i.i.d Gaussian entries. Let

snr = E[‖u‖2/n]/E[‖z‖2] and σ = 1/
√

snr. Let λ = σ
√

pn
T

log(n). Then, the problem (HNN)

returns ĥ such that

‖ĥ− h‖2√
2

≤ ‖H(ĥ− h)‖ .


√

np
snr×T log(n) if T & min(R2, n)√
Rnp

snr×T log(n) if R . T . min(R2, n).

(4.7)

Thm. 4 jointly bounds the impulse response and Hankel spectral errors of the system

under mild conditions. We highlight the improvements that our bounds provide: (1) When

the system is low order, the sample complexity T is logarithmic in n and improves upon the

O(n) bound of the least-squares algorithm. (2) The error rate with respect to the system

parameters n,R, T is same as Oymak & Ozay (2018), Sarkar et al. (2019) and Tu et al. (2017)

(e.g. compare to Thm. 7).

The regularized method also has the intrinsic advantage that it does not require knowledge

of the rank or the singular values of the Hankel matrix beforehand. Numerical experiments
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on real data in Section 4.8 demonstrate the performance and robustness of the regularized

method.

The theorem above follows by combining statistical analysis with a more general determin-

istic result (Thm. 5). We will state this result in terms of a restricted singular value (RSV)

condition. While RSV is a common condition in sparse estimation literature, our analysis

requires introducing a spectral norm variation of RSV. Given a matrix M spectral RSV over

a set S is defined as follows:

‖M‖S = max
v∈S,v 6=0

‖G(Mv)‖/‖G(v)‖.

Theorem 5. Consider the problem (4.6) in the MISO setting, where U ∈ RT×(2n−1)p. Let β

denote the (weighted) impulse response of the true system which has order R, i.e., rank(G(β)) =

R, and let y = Uβ + ξ be the measured output, where ξ is the measurement noise. Finally,

denote the minimizer of (4.6) by β̂. Define

J (β) :=

{
v
∣∣ 〈v, ∂(

1

2
‖Uβ − y‖2

2 + λ‖G(β)‖∗)〉 ≤ 0

}
, Γ := ‖I −U>U‖J (β),

where J (β) is the normal cone at β, and Γ is the spectral RSV. If Γ < 1, β̂ satisfies

‖G(β̂ − β)‖ ≤ ‖G(U>ξ)‖+ λ

1− Γ
.

This theorem determines the generic conditions on the measurementsU to ensure successful

system identification. As future work, it would be desirable to extend our results to a wider

range of measurement models.

4.5 IID inputs and the importance of input shape

I.i.d. input (without shaping matrix K) is typically used for the recovery of impulse response,

and Oymak & Ozay (2018) proves an optimal bound in terms of Frobenius norm error of
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least squares algorithm. However, we used a scaling matrix K in our algorithm. We ask that,

when a system is low order, is i.i.d. input without shaping optimal regarding the sample

complexity?

In the following theorem, we prove that, for a special case, the Gaussian width with

unweighted input is polynomial in n, compared to O(log n) in weighted setting. Since the

Gaussian width bound is tight with respect to sample complexity for high probability recovery

(McCoy & Tropp, 2013, Thm. 1), Thm. 6 indicates that the sample complexity in i.i.d. input

regime is larger than weighted input regime.

Theorem 6. Suppose the system impulse response is h such that ht = 1, ∀t ≥ 1, which is

order 1. The Gaussian width of the set {x | ‖H(h+ x)‖∗ ≤ ‖H(h)‖∗} ∩ S is lower bounded

by Cn1/6 for some constant C.

Thus in the noiseless setting, the sample complexity is T & n1/6, which is bigger than

log n dependence with input shape. This result is rather counter-intuitive since i.i.d. inputs

are often optimal for structured parameter estimation tasks (e.g. compressed sensing). Our

result shows the provable benefit of input shaping.

4.6 Refining the bounds on least-squares estimator

In this section, we revisit the least-squares estimator given measurements y = Ūh+ z. We

consider the MIMO setup where y ∈ RT×m and h ∈ R(2n−1)p×m. This is obtained by setting

λ = 0 in (HNN) hence the estimator is given via the pseudo-inverse

ĥ := h+ Ū †z = min
h′

1

2
‖Ūh′ − y‖2

F . (4.8)

The next theorem bounds the error when inputs and noise are randomly generated.

Theorem 7. Denote the solution to (4.8) as ĥ. Let Ū ∈ RT×(2n−1)p be input matrix obtained

from multiple rollouts, with i.i.d. standard normal entries, y ∈ RT×m be the corresponding
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outputs and z ∈ RT×m be the noise matrix with i.i.d. N (0, σ2
z) entries. Then the spectral

norm error obeys ‖H(ĥ− h)‖ . σz
√

mnp
T

log(np).

This theorem improves the spectral norm bound compared to Oymak & Ozay (2018)

which naively bounds the spectral norm in terms of IR error using the right-hand side of (4.3).

Instead, we show that spectral error is same as the IR error up to a log factor (when there is

only output noise). We remark that O(σz
√
np/T ) is a tight lower bound for ‖H(h− ĥ)‖ as

well as ‖h− ĥ‖ (Oymak & Ozay, 2018; Arias-Castro et al., 2012). The proof of the theorem

above is in Sec. C.5.

4.7 Model selection for regularized system identification

In Thm. 4, we established the recovery error of system impulse response for a particular

parameter choice λ, which depends on the noise level. In practice, we do not know the noise

level, thus, given the candidates of regularization parameter, which is denoted by a set Λ

containing positive numbers, we try a list of λ ∈ Λ and check the validation error to perform

a model selection. Denote the cardinality of Λ by Nλ. In Algorithm 2, we state our training

and validation procedure. The theorem below states our performance guarantee for this

algorithm.

Theorem 8. Consider the setting of Thm. 4. Sample T i.i.d. training rollouts (U , y) and Tval

i.i.d. validation rollouts (Uval, yval). Set λ∗ = Cσ
√

pn
T

log(n) which is the choice in Thm. 4.

Fix failure probability P ∈ (0, 1). Suppose that:

(a) There is a candidate λ̂ ∈ Λ obeying λ∗/2 ≤ λ̂ ≤ 2λ∗.

(b) Validation set obeys Tval &
(
T log2(|Λ|/P )

R log2(n)

)1/3

.

Set R̄ = min(R2, n). With probability at least 1− P , Algorithm 2 achieves an estimation

error equivalent to (4.7):

‖H(ĥ− h)‖ .


√

np
snr×T log(n), if T & R̄,√
Rnp

snr×T log(n), if R . T . R̄.

(4.9)
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Algorithm 2 System identification and model selection
Require: Training data: Input feature matrix Ū , output vector y, with T measurements

Validation data: Input feature matrix Ūval, output vector yval, with Tval measurements
Hyperparameters: Hankel dimension n, candidate set Λ.
for λi ∈ Λ do

Training: Solve ĥλ ← arg minh′
1
2
‖Ūh′ − y‖2

2 + λi‖H(h′)‖∗. Record ĥλ.
Model selection: Choose ĥλ that corresponds to the smallest validation error ‖Ūvalĥλ−yval‖2

2,
and call it ĥ.
return ĥ

In Algorithm 2, we fix the size of Hankel matrix (which is usually large/overparameterized)

and tune λ. In contract to this, Sarkar et al. (2019) introduces a model selection method for

unregularized least squares, which is accomplished by changing the size of the Hankel matrix.

In the next section, we will run experiments and contrast these two methods, and provide

insights on how regularization can improve over least-squares for certain class of dynamical

systems.

Sample complexity analysis: model selection with data being requested online.

Algorithm 2 uses static data for training and validation, which means that, the total T + Tval

samples are given and fixed, and we split the data and run Algorithm 2. We denote the

total sample complexity Ttot = T + Tval. To be fully efficient in sample complexity, we can

start from Ttot = 0, keep requesting new samples, which means increasing Ttot, and run

Algorithm 2 for each Ttot. When the validation error is small enough (which happens when

Ttot & R), we know the algorithm recovers a meaningful impulse response estimation and we

can terminate the algorithm.

We compare it with the model selection algorithm in Sarkar et al. (2019) for least squares

estimator, and we find that it does not terminate until Ttot & n. For least squares,

the parameter to be tuned is the dimension of the variable, i.e., we vary the length of

estimated impulse response. We call the tuning variable nt and it is upper bounded by n.

We keep increasing Ttot and train by varying nt ∈ [1, Ttot/2] (so the least squares problems

are overdetermined). The output y is collected at time 2nt − 1. We consider two impulse

responses with horizon n: h1 = 1n (order = 1) and hn1 = [1n1 ; 0n−n1 ] (order = n1). As long
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as Ttot � n1, one cannot differentiate h1 and hn1 since y is collected at time Ttot and the

Ttot + 1-th to the n-th terms of h1, hn1 do not contribute to y. Even if the system is order

1, one does not know it and cannot terminate the algorithm. Thus the tuning algorithm in

Sarkar et al. (2019) requires Ttot & n. This does not happen with regularization, because we

collect y at time n in Algorithm 2, but not time 2nt − 1, thus the algorithm always detects

the difference between h1, hn1 after time n1.

4.8 Experiments and insights

4.8.1 Experiments with synthetic data

We use an experiment with synthetic data to answer the following question.

When does regularization beat least-squares: Low-order slow-decay systems

(Fig. 4.3). So far, we showed that for fixed Hankel size, nuclear norm regularization requires

less data than unregularized least-squares especially when the Hankel size is set to be large.

However, for least squares, one can choose to use a smaller Hankel size that n ≈ R, so that

we solve a problem of small dimension compared to n� R. We ask if there is a scenario in

which fine-tuned nuclear norm regularization strictly outperforms fine-tuned least-squares.

In what follows, we discuss a single trajectory scenario.An advantage of the regularized

algorithm is that, we can set up the problem with large n, when the sample complexity T

and the system order R are both small. Least squares suffers an error of order (1− ρ(A)n)−1

Oymak & Ozay (2018). The error comes from FIR truncation of impulse response so that

happens for both regularized and unregularized algorithms. Thus, if system decays slowly,

i.e., ρ(A) ≈ 1, we will suffer from significant truncation error. As an example, when sample

size is 40 and ρ(A) = 0.98, if the problem is kept overdetermined (i.e. n < 40), then n will

not be large enough to make the truncation error (1− ρ(A)n)−1 small. In regularized method,

as long as n is large, we can recover a system with slowly-decaying impulse response even if

the number of parameters (i.e., Hankel size) is larger than sample size. This motivates us to

compare the performance on recovering systems with low-order slow-decay. In Fig. 4.3, we
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set up an order-1 system with a pole at 0.98 and generate single rollout data with size 40.

We tune λ when applying regularized algorithm with n = 45 (as it is safe to choose a large

Hankel dimension), whereas in unregularized method, Hankel size cannot be larger than 20

(n× n Hankel has 2n− 1 parameters and we need least squares to remain overdetermined).

With these in mind, in the first two figures we can see that the best validation error of

regularization algorithm is 0.44, which is drastically smaller than the unregularized validation

error 0.73. In the third figure, we use regularized least squares with n = 20, which also causes

large truncation error (due to large ρ(A)) compared to the initial choice of n = 45 (the first

figure). In this case, the best validation error is 0.56 which is again noticeably worse than

the error 0.44 in the first figure.

When the number of variables 2n− 1 is larger than T , the problem is overparameterized

and there can be infinitely many impulse responses that achieves zero squared loss on training

dataset. This happens in the first figure when λ→ 0, and in the second figure when n is large.

In this case, regularized algorithm chooses the solution with the smallest Hankel nuclear

norm and the least squares chooses the one with smallest `2 norm. We can see that, the first

figure has smaller validation error when 1/λ tends to infinity. So among the solutions that

overfits the training dataset, the one with small Hankel nuclear norm has better generalization

performance when the true system is low order1.

4.8.2 Experiments with DaISy Dataset

Our experiment uses the DaISy dataset De Moor et al. (1997), where a known input signal

(not random) is applied and the resulting noisy output trajectory is measured. Using the

1Codes for generating figures are available at https://github.com/sunyue93/sunyue93.github.io/
blob/main/sysIdFiles.zip.

https://github.com/sunyue93/sunyue93.github.io/blob/main/sysIdFiles.zip
https://github.com/sunyue93/sunyue93.github.io/blob/main/sysIdFiles.zip
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Figure 4.3: Synthetic data, single rollout. Order-1 system with pole= 0.98. Recovery by
regularized algorithm varying λ and unregularized algorithms varying Hankel size n. Training
sample size is 40 and validation sample size is 800. The figures are the training/validation
error with (1) regularized algorithm, different λ and fixed n = 45; and (2) least squares with
varying n; (3) regularized algorithm, different λ and fixed n = 20 (small size).
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input and output matrices

U =


uT2n−1 uT2n−2 ... uT1

uT2n uT2n−1 ... uT2

...

uT2n+T−2 uT2n+T−3 ... uTT

 , (4.10)

y = [y2n−1, ..., y2n+T−2], (4.11)

we solve the optimization problem (HNN) using single trajectory data.

While the input model is single instead of multiple rollout, experiments will demonstrate

the advantage of Hankel-regularization over least-squares in terms of sample complexity,

singular value gap and ease of tuning.

Large data regime: Both Hankel and least-squares algorithms work well (Fig.

4.4). The first two figures in Fig. 4.4 show the training and validation errors of Hankel-

regularized and unregularized methods with hyperparameters λ and n respectively. We then

choose the best system by tuning the hyperparameters to achieve the smallest validation

error. The third figure in Fig. 4.4 plots the training and validation output sequence of the

dataset for these algorithms. We see that with sufficient sample size, the system is recovered

well. However, the validation error is more flat as a function of 1/λ (first figure) whereas it is



74

sensitive to the choice of n (second figure), thus λ is easier to tune compared to n.

Small data regime: Hankel-regularization succeeds while least-squares may

fail due to overfitting (Fig. 4.5). The first two figures in Fig. 4.5 show that the Hankel

spectrums of the two algorithms have a notable difference: The system recovered by Hankel-

regularization is low-order and has larger singular value gap. The last two figures in Fig. 4.5

show the advantage of regularization with much better validation performance. As expected

from our theory, the difference is most visible in small sample size (this experiment uses 50

training samples). When the number of observations T is small, Hankel-regularization still

returns a solution close to the true system while least-squares cannot recover the system

properly.

Learning a linear approximation of a nonlinear system with few data (Fig. 4.6).

Finally, we show that Hankel-regularization can identify a stable nonlinear system via its

linearized approximation as well. We consider the inverted pendulum as the experimental

environment. First we use a linearized controller to stabilize the system around the equilibrium,

and apply single rollout input to the closed-loop system, which is i.i.d. random input of

dimension 1. The dimension of the state is 4, and we observe the output of dimension 1, which

is the displacement of the system. We then use the Hankel-regularization and least-squares

to estimate the closed-loop system with a linear system model and predict the trajectory

using the estimated impulse response. We use T = 16 observations for training, and set the

dimension to n = 45. Fig. 4.6 shows the singular values and estimated trajectory of these

two methods. Despite the nonlinearity of the ground-truth system, the regularized algorithm

finds a linear model with order 6 and the predicted output has small error, while the correct

order is not visible in the singular value spectrum of the unregularized least-squares.

4.9 Conclusion and future directions

This work established new sample complexity and estimation error bounds for system

identification. We showed that nuclear norm penalization works well with small sample size

regardless of the mis-specification in the problem (i.e. fitting impulse response with a much
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larger length rather than the true order). For least-squares we provide the first guarantee

that is optimal in sample complexity and the Hankel spectral norm error. These results

can be refined in several directions. In the proof of Thm. 5, we use a weighted version of

the Hankel operator. We expect that directly computing the Gaussian width of the original

Hankel operator will also lead to improvements from least square. It would also be interesting

to extend the results to account for single trajectory analysis or process noise. In both cases,

an accurate analysis of the regularized problem would lead to new algorithmic insights.

Figure 4.4: System identification for CD player arm data. Training data size = 200 and
validation data size = 600. The first two figures are the training/validation errors of varying
λ in regularized algorithm (n = 10), and training/validation errors of varying Hankel size n
in unregularized algorithm. The last figure is the output trajectory of the true system and
the recovered systems (best validation chosen for each).
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Figure 4.5: The first two figures: CD player arm data, singular values of the regularized
and unregularized Hankel. The last two figures: Recovery by regularized and unregularized
algorithms when Hankel matrix is 10× 10. Training size is 50 and validation size is 400.
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Figure 4.6: The first two figures: Stabilized inverted pendulum data, singular values of the
regularized and unregularized Hankel. The last two figures: Recovery by regularized and
unregularized algorithms when Hankel matrix is 40× 40. Training size is 16 and validation
size is 600.
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Chapter 5

ANALYSIS OF OVERPARAMETERIZED LINEAR
META-LEARNING

In this chapter, we study the overparameterized linear meta-learning. Here we have a

sequence of linear-regression tasks and ask: (1) Given earlier tasks, what is the optimal linear

representation of features for a new downstream task? and (2) How many samples do we

need to build this representation? Specifically, for (1), we first show that learning the optimal

representation coincides with the problem of designing a task-aware regularization to promote

inductive bias. This inductive bias explains how the downstream task actually benefits from

overparameterization, in contrast to prior works on few-shot learning. For (2), we develop a

theory to explain how feature covariance can implicitly help reduce the sample complexity

well below the degrees of freedom and lead to small estimation error. We then integrate

these findings to obtain an overall performance guarantee for our meta-learning algorithm.

Numerical experiments on real and synthetic data verify our insights on overparameterized

meta-learning.

This work is published 1 as Sun et al. (2021).

5.1 Introduction

In a multitude of machine learning (ML) tasks with limited data, it is crucial to build accurate

models in a sample-efficient way. Constructing a simple yet informative representation of

features is a critical component of learning a model that generalizes well to an unseen test set.

The field of meta-learning dates back to Caruana (1997); Baxter (2000) and addresses this

challenge by transferring insights across distinct but related tasks. Usually, the meta-learner

1Codes for generating figures are available at https://github.com/sunyue93/Rep-Learning/tree/
main/nips_supp.

https://github.com/sunyue93/Rep-Learning/tree/main/nips_supp
https://github.com/sunyue93/Rep-Learning/tree/main/nips_supp
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first (1) learns a feature-representation from previously seen tasks and then (2) uses this

representation to succeed at an unseen task. The first phase is called representation learning

and the second is called few-shot learning. Such information transfer between tasks is the

backbone of modern transfer and multitask learning and finds ubiquitous applications in image

classification (Deng et al., 2009), machine translation (Bojar et al., 2014) and reinforcement

learning (Finn et al., 2017).

Recent literature in ML theory has posited that overparameterization can be beneficial to

generalization in traditional single-task setups for both regression (Mei & Montanari, 2019;

Wu & Xu, 2020; Bartlett et al., 2020; Muthukumar et al., 2019; Montanari et al., 2019)

and classification (Muthukumar et al., 2020; Montanari et al., 2020) problems. Empirical

literature in deep learning suggests that overparameterization is of interest for both phases of

meta-learning as well. Deep networks are stellar representation learners despite containing

many more parameters than the sample size. Additionally, overparameterization is observed

to be beneficial in the few-shot phase for transfer-learning in Figure 5.1(a). A ResNet-50

network pretrained on Imagenet was utilized to obtain a representation of R features for

classification on CIFAR-10. All layers except the final (softmax) layer are frozen and are

treated as a fixed feature-map. We then train the final layer of the network for the downstream

task which yields a linear classifier on pretrained features. The figure plots the effect of

increasing R on the test error on CIFAR-10, for different choices of training size n2. For

each choice of n2, increasing representation dimension R beyond downstream samples n2 is

seen to reduce the test-error. These findings are corroborated by Finn et al. (2017) (MAML)

and Vinyals et al. (2016), who successfully use a transfer learning method that adapts a

pre-trained model, with 112980 parameters, to downstream tasks with only 1-5 new training

samples.

In Figure 5.1(b), we consider a sequence of linear regression tasks and plot the few-shot

error of our proposed projection and eigen-weighting based meta-learning algorithm for a

fixed few-shot training size, but varying dimensionality of features. The resulting curve looks

similar to Figure 5.1(a) and suggests that the observations regarding overparameterization
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Figure 5.1: Illustration of the benefit of overparameterization in the few-shot
phase. (a) Double-descent in transfer learning: dashed lines indicate the location where the
number of features R exceed the number of training points; i.e., the transition from under
to over-parameterization. The experimental details are contained in the supplement. (b)
Illustration of the benefit of using Weighted minL2-interpolation in Definition 3 (blue). See
Remark 4 for details and discussion.

for meta-learning in neural networks can, to a good extent, be captured by linear models,

thus motivating their detailed study. This aligns with trends in recent literature: while deep

nets are nonlinear, recent advances show that linearized problems such as kernel regression

(e.g., via neural tangent kernel (Jacot et al., 2018; Du et al., 2018; Lee et al., 2019; Oymak

et al., 2019; Chizat et al., 2018)) provide a good proxy to understand some of the theoretical

properties of practical overparameterized deep nets.

However, existing analysis of subspace-based meta-learning algorithms for both the

representation learning and few-shot phases of linear models have typically focused on the

classical underparameterized regime. These works (see Paragraphs 2-3 of Section 5.1.2)

consider the case where representation learning involves projection onto a lower-dimensional

subspace. On the other hand, recent works on double descent show that an overparameterized

interpolator beats PCA-based method. We aim to build upon these results to develop a

theoretical understanding of overparameterized meta-learning.
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5.1.1 Our contributions

We study meta-learning when each task is a linear regression problem, similar in spirit to

Tripuraneni et al. (2020); Kong et al. (2020b). In the representation learning phase, the

learner is provided with training data from T distinct tasks, with n1 training samples per

task: using this data, it selects a matrix Λ ∈ Rd×R with arbitrary R to obtain a linear

representation of features via the map x→ Λ>x. In the few-shot learning phase, the learner

faces a new task with n2 training samples and aims to use the representation Λ>x to aid

prediction performance.

We highlight that obtaining the representation consists of two steps: first the learner

projects x onto R basis directions, and then performs eigen-weighting of each of these

directions, as shown in Figure 5.2b. The overarching goal of this chapter is to propose a

scheme to use the knowledge gained from earlier tasks to choose Λ that minimizes few-shot

risk. This goal enables us to engage with important questions regarding overparameterization:

Q1: What should the size R and the representation Λ be to minimize risk at the few-shot

phase?

Q2: Can we learn the Rd dimensional representation Λ with N � Rd samples?

The answers to the questions above will shed light on whether overparameterization is

beneficial in few-shot learning and representation learning respectively. Towards this goal, we

make several contributions to the finite-sample understanding of linear meta-learning, under

assumptions discussed in Section 5.2. Our results are obtained for a general data/task model

with arbitrary task covariance Σβ and feature covariance ΣF which allows for a rich set of

observations.

Optimal representation for few-shot learning. As a stepping stone towards the goal

of characterizing few-shot risk for different Λ, in Section 5.3 we first consider learning with

known covariances ΣT and ΣF respectively (Algorithm 3). Compared to projection-only

representations in previous works (see Paragraphs 2-3 of Section 5.1.2), our scheme applies
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ΣF Feature covariance
ΣT Task covariance
Σ̃T Canonical task covariance
n1 Samples per each earlier task
T Number of earlier tasks
N Total sample size T × n1

n2 Samples for new task
Λ Eigen-weighting matrix

Table 5.1: Main notation

eigen-weighting matrix Λ∗ to incentivize the optimizer to place higher weight on promising

eigen-directions. This eigen-weighting procedure has been shown in the single-task case to be

extremely crucial to avail the benefit of overparameterization (Belkin et al., 2019; Montanari

et al., 2019; Muthukumar et al., 2019): it captures an inductive bias that promotes certain

features and demotes others. We show that the importance of eigen-weighting extends to the

multi-task case as well.

Canonical task covariance. Our analysis in Section 5.3 also reveals that, the optimal

subspace and representation matrix are closed-form functions of the canonical task covariance

Σ̃T = Σ
1/2
F ΣTΣ

1/2
F , which captures the feature saliency by summarizing the feature and task

distributions.

Representation learning. In practice, task and feature covariances (and hence the

canonical covariance) are rarely known apriori. However, we can estimate the principal

subspace of the canonical task covariance Σ̃T (which has a degree of freedom (DoF) of

Ω(Rd)) from data. In Section 5.4 we first present empirical evidence that feature covariance

ΣF is “positively correlated” with Σ̃T . Then we propose an efficient algorithm based on

Method-of-Moments (MoM), and show that the sample complexity of representation learning

is well below O(Rd) due to the inductive bias. Our sample complexity bound depends on

interpretable quantities such as effective ranks ΣF , Σ̃T and improves over prior art (e.g., Kong

et al. (2020b); Tripuraneni et al. (2020)), even though the prior works were specialized to

low-rank Σ̃T and identity ΣF (see Table 5.2).
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Figure 5.2: (a) Steps of the meta-learning algorithm. (b) Our representation-learning
algorithm has two steps: projection and eigen-weighting. We focus on the use of
overparameterization+weighting matrix (Def. 3), and compare this with overparameter-
ization with simple projection (no eigen-weighting), and underparameterization (for which
eigen-weighting has no impact and is equivalent to projection). Tripuraneni et al. (2020); Kong
et al. (2020b,a); Du et al. (2020) study underparameterized projections only. To distinguish
from eigen-weighting, we will refer to simple projections as subspace-based representations.

End to end meta-learning guarantee. In Section 5.5, we consider the generalization

of Section 5.3, where we have only estimates of the covariances instead of perfect knowledge.

This leads to an overall meta-learning guarantee in terms of Λ∗, N and n2 and uncovers a

bias-variance tradeoff: As N decreases, it becomes more preferable to use a smaller R (more

bias, less variance) due to inaccurate estimate of the weak eigen-directions of Σ̃T . In other

words, we find that overparameterization is only beneficial for few-shot learning if the quality

of representation learning is sufficiently good. This explains why, in practice, increasing the

representation dimension may not help reduce few-shot risk beyond a certain point (see Fig.

A.2).

5.1.2 Related work

Overparameterized ML and double-descent. The phenomenon of double-descent was

first discovered by Belkin et al. (2019). This paper and subsequent works on this topic

Bartlett et al. (2020); Muthukumar et al. (2019, 2020); Montanari et al. (2019); Chang et al.
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(2020) emphasize the importance of the right prior (sometimes referred to as inductive bias or

regularization) to avail the benefits of overparameterization. However, an important question

that arises is: where does this prior come from? Our work shows that the prior can come

from the insights learned from related previously-seen tasks. Section 5.3 extends the ideas in

Nakkiran et al. (2020); Wu & Xu (2020) to depict how the optimal representation described

can be learned from imperfect covariance estimates as well.

Theory for representation learning. Recent papers (Kong et al., 2020b,a; Tripuraneni

et al., 2020; Du et al., 2020) propose the theoretical bounds of representation learning when the

tasks lie in an exactly r dimensional subspace. (Kong et al., 2020b,a; Tripuraneni et al., 2020)

discuss method of moment estimators and (Tripuraneni et al., 2020; Du et al., 2020) discuss

matrix factorized formulations. Tripuraneni et al. (2020) shows that the number of samples

that enable meaningful representation learning is O(dr2). Kong et al. (2020b,a); Tripuraneni

et al. (2020) assume the features follow a standard normal distribution. Thekumparampil

et al. (2021) proposes the alternating minimization algorithm for matrix factorization method,

and shows that the algorithm converges to the estimator that achieves O((dr)−1/2) error with

O(dr2) samples. We define a canonical covariance which handles arbitrary feature and task

covariances. We also show that our estimator succeeds with O(dr) samples when n1 ∼ r, and

extend the bound to general covariances with effective rank defined.

Subspace-based meta learning. With tasks being low rank, Kong et al. (2020b,a);

Tripuraneni et al. (2020); Gulluk et al. (2021); Du et al. (2020) do few-shot learning in

a low dimensional space. Collins et al. (2022) applies MAML for matrix factorization in

subspace-based linear model and shows that MAML learns the features. Yang et al. (2020,

2021) study meta-learning for linear bandits. Lucas et al. (2020) gives information theoretic

lower and upper bounds. Bouniot et al. (2020) proposes subspace-based methods for nonlinear

problems such as classification. As mentioned in Chapter 4, Chen & Poor (2022) studies

learning mixtures of linear systems from multiple trajectories, which is a combination of

system identification and learning mixed clusters. The clustering method is similar to

the philosophy of clustering method, and then it applies individual system identification
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algorithm as downstream tasks. We investigate a representation with arbitrary dimension,

specifically interested in overparameterized case and show it yields a smaller error with

general task/feature covariances. Du et al. (2020) provides results on overparameterized

representation learning, but Du et al. (2020) requires number of samples per pre-training task

to obey n1 & d, whereas our results apply as soon as n1 & 1.

Mixed Linear Regression (MLR). In MLR (Zhong et al., 2016; Li & Liang, 2018; Chen

et al., 2020), multiple linear regression are executed, similar to representation learning. The

difference is that, the tasks are drawn from a finite set, and number of tasks can be larger

than d and not necessarily low rank. Lounici et al. (2011); Cavallanti et al. (2010); Maurer

et al. (2016) propose sample complexity bounds of representation learning for mixed linear

regression. They can be combined with other structures such as binary task vectors (Balcan

et al., 2015) and sparse task vectors (Argyriou et al., 2008).

5.2 Problem setup

The problem we consider consists of two phases:

1. Representation learning: Prior tasks are used to learn a suitable representation to process

features.

2. Few-shot learning: A new task is learned with a few samples by using the suitable

representation.

This section defines the key notations and describes the data generation procedure for the

two phases. In summary, we study linear regression tasks, where the features and tasks are

generated randomly i.i.d. from their associated distributions DT and DF , and the two phases

share the same feature and task distributions.The setup is summarized in Figure 5.2(a).

5.2.1 Data generation

Definition 1 (Task and feature distributions). Throughout, DT and DF denote the distribu-

tions of tasks βi and features xij respectively. These distributions are subGaussian, zero-mean

with corresponding covariance matrices ΣT and ΣF .
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Definition 2 (Data distribution for a single task). Given a specific realization of task vector

β ∼ DT , the corresponding label/input distribution (y,x) ∼ Dβ is obtained via y = x>β + ε

where x ∼ DF and ε is zero-mean subgaussian noise with variance σ2.

Data for Representation Learning (Phase 1). We have T tasks, each with n1 training

examples. The task vectors (βi)
T
i=1 ⊂ Rd are drawn i.i.d. from the distribution DT . The data

for ith task is given by (yij,xij)
n1
j=1

i.i.d.∼ Dβi . In total, there are N = T × n1 examples.

Data for Few-Shot Learning (Phase 2). Sample task β? ∼ DT . Few-shot dataset has

n2 examples (yi,xi)
n2
j=1

i.i.d.∼ Dβ? .

We use representation learning data to learn a representation of feature-task distribution,

called eigen-weighting matrix Λ in Defenition 3 below. The matrix Λ is passed to few-shot

learning stage, helping learn β? with few data.

5.2.2 Training in Phase 2

We will define a weighted representation, called eigen-weighting matrix, and show how it is

applied for few-shot learning. The matrix is learned during representation learning using the

data from the T tasks. Denote X ∈ Rn2×d whose ith row is xi, and y = [y1, ..., ym]>. We are

interested in studying the weighted 2-norm interpolator defined below for overparameterization

regime R ≥ n2.

Definition 3 (Eigen-weighting matrix and Weighted `2-norm interpolator). Let the represen-

tation dimension be R, where R is any integer between 1 and d. We define an eigen-weighting

matrix Λ ∈ Rd×R and the associated weighted `2-norm interpolator

β̂Λ = arg min
β
‖Λ†β‖2 s.t. y = Xβ and β ∈ range_space(Λ).

The solution is equivalent to defining α̂Λ = Λ†β̂Λ and solving an unweighted minimum

2-norm regression with features XΛ. This corresponds to our few-shot learning problem

α̂Λ = arg min
α
‖α‖2 s.t. y = XΛα
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from which we obtain β̂Λ = Λα̂Λ. When there is no confusion, we can replace β̂Λ with β̂.

One can easily see that β̂ = Λ(XΛ)†y. We note that Definition 3 is a special case of the

weighted ridge regression discussed in Wu & Xu (2020), as stated in Observation 1. An

alternative equivalence between min-norm interpolation and ridge regression can be found in

Muthukumar et al. (2019).

Observation 1. Let X ∈ Rn2×d and y ∈ Rn2 , define

β̂1 = lim
t→0

argminβ‖Xβ − y‖2
2 + tβ>(ΛΛ>)†β, β ∈ column space of Λ. (5.1)

We have that β̂1 = β̂.

5.3 Canonical covariance and optimal representation

In this section, we ask the simpler question: if the covariances ΣT and ΣF are known, what

is the best choice of Λ to minimize the risk of the interpolator from Definition 3? In general,

the covariances are not known; however, the insights from this section help us study the more

general case in Section 5.5. Define the risk as the expected error of inferring the label on

the few-shot dataset,

risk(Λ,ΣT ,ΣF ) = Ex,y,β(y − x>β̂Λ)2 = Eβ(β̂Λ − β)>ΣF (β̂Λ − β) + σ2. (5.2)

The natural choice of optimization for choosing Λ would be to choose the weighting that

minimizes the eventual risk of the learned interpolator.

Λ∗ = arg min
Λ′∈Rd×R

risk(Λ′,ΣT ,ΣF ) (5.3)

Since the label y is bilinear in x and β, we introduce whitened features x̃ = Σ
−1/2
F x and

associated task vector β̃ = Σ
1/2
F β. This change of variables ensures xTβ = x̃T β̃; now, the
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task covariance in the transformed coordinates takes the form

Σ̃T = Σ
1/2
F ΣTΣ

1/2
F ,

which we call the canonical task covariance; it captures the joint behavior of feature and

task covariances ΣF ,ΣT . Below, we observe that the risk in Equation (5.2) is invariant to the

change of co-ordinates that we have described above i.e it does not change when Σ
1/2
F ΣTΣ

1/2
F

is fixed and we vary ΣF and ΣT .

Observation 2 (Equivalence to problem with whitened features). Let data be generated as

in Phase 1. Denote Σ̃T = Σ
1/2
F ΣTΣ

1/2
F . Then risk(Σ

−1/2
F Λ,ΣT ,ΣF ) = risk(Λ, Σ̃T , I).

This observation can be easily verified by substituting the change-of-coordinates into (5.2)

and evaluating the risk.

The risk in (5.2) quantifies the quality of representation Λ; however it is not a manageable

function of Λ that can be straightforwardly optimized. In this subsection, we show that it

is asymptotically equivalent to a different optimization problem, which can be easily solved

by analyzing KKT optimality conditions. Theorem 9 characterizes this equivalence; the

computeReduction subroutine of Algorithm 3 calculates key quantities that are used in

specifying the reduction, and the computeOptimalRep subroutine of Algorithm 3 uses the

solution of the simpler problem to obtain a solution for the original.

Assumption 9 (Bounded feature covariance). There exist positive constants Σmin, Σmax such

that ΣF is lower/upper bounded as follows: 0 ≺ ΣminI � ΣF � ΣmaxI.

Assumption 10 (Joint diagonalizability). ΣF and ΣT are diagonal matrices.2

Assumption 11 (Double asymptotic regime). We let the dimensions and the sample size

grow as d,R, n2 →∞ at fixed ratios κ̄ := d/n2 and κ := R/n2.

Assumption 12. The joint empirical distribution of the eigenvalues of ΛR and Σ̃R
T is given

by the average of Dirac δ’s: 1
R

∑R
i=1 δΛR,i,

√
RΣ̃R

T,i
. It converges to a fixed distribution as d→∞.

2This is equivalent to the more general scenario where ΣF and ΣT are jointly diagonalizable.
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Algorithm 3 Constructing the optimal representation

Require: Projection dimension R, noise level σ, canonical covariance Σ̃T , task covariance
ΣF .

function ComputeOptimalRep(R,ΣF , Σ̃T , σ, n2)
U1,Σ

R
F , Σ̃

R
T , σR = ComputeReductionR,ΣF , Σ̃T , σ

Optimization: Get θ∗ from (OPT-REP).
Map to eigenvalues: Set diagonal Λ∗R ∈ RR×R with entries Λ∗R,i = (1/θ∗i − 1)−2.
Lifting and feature whitening: Λ∗ ← U1(ΣR

F )−1/2Λ∗R.
Return Λ∗

function ComputeReduction(R,ΣF ,Σ̃T , σ)
Get eigen-decomposition Σ̃T = UΣU>.
Principal eigenspace U1 ∈ Rd×R = the first R columns of U .
Top eigenvalues: Set Σ̃R

T = U>1 Σ̃TU1,Σ
R
F = U>1 ΣFU1

Equivalent noise level: σ2
R ← σ2 + tr(Σ̃T )− tr(Σ̃R

T ).
Return U1,Σ

R
F , Σ̃

R
T , σR

With these assumptions, we can derive an analytical expression to quantify the risk of a

representation Λ. We will then optimize this analytic expression to obtain a formula for the

optimal representation.

Theorem 9 (Asymptotic risk equivalence). Suppose Assumptions 9, 10, 11, 12 hold. Let

ξ > 0 be the unique number obeying n2 =
∑R

i=1

(
1 + (ξΛ2

i )
−1
)−1. Define θ ∈ RR with entries

θi =
ξΛ2

i

1+ξΛ2
i
and calculate Σ̃R

T , σR using the ComputeReduction procedure of Algorithm 3.

Then, define the analytic risk formula

f(θ, Σ̃R
T , n2) =

1

n2 − ‖θ‖2
2

(
n2

R∑
i=1

(1− θi)2Σ̃R
T,i + (‖θ‖2

2 + 1)σ2
R

)
. (5.4)

We have that

lim
n2→∞

f(θ, Σ̃R
T , n2) = lim

n2→∞
risk(Σ−1/2

F Λ,ΣT ,ΣF ) (5.5)

The proof of Theorem 9 applies the convex Gaussian Min-max Theorem (CGMT) in

Thrampoulidis et al. (2015) and can be found in the Appendix D.2. We show that as

dimension grows, the distribution of the estimator β̂ converges to a Gaussian distribution
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and we can calculate the expectation of risk.

Theorem 9 provides us with a closed-form risk for any linear representation. Now, one

can solve for the optimal representation by computing (OPT-REP) below. In order to do

this, we propose an algorithm for the optimization problem in Appendix D.2.5 via a study of

the KKT conditions for the problem3.

θ∗ = arg min
θ

f(θ,ΣT ,ΣF ), s.t. 0 ≤ θ < 1,
R∑
i=1

θi = n2 (OPT-REP)

0 20 40 60 80 100
Representation Dimension

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Fe
w-

Sh
ot

 Te
st

 E
rro

r

ι = 0.5 optimal weighting
ι = 0.5 no weighting
ι = 0.1 optimal weighting
ι = 0.1 no weighting
ι = 0.05 optimal weighting
ι = 0.05 no weighting

Figure 5.3: Theoretical risk of optimal representation. ΣF = I100, ΣT = diag(I20, ιI80),
n2 = 40.

The optimal representation is4 Λ∗R,i = ((1/θ∗i − 1)ξ)−2. The subroutine computeOpti-

malRep in Algorithm 3 summarizes this procedure.

Remark 4. Thm. 9 states that risk(Σ−1/2
F Λ,ΣT ,ΣF ) can be arbitrarily well-approximated

by f(θ, Σ̃R
T , n2) if n2 is sufficiently large. In Fig. 5.1(b), we set ΣF = I100, ΣT =

diag(I20, 0.1I80), n2 = 40. The curves in Fig5.1(b) are the finite dimensional approximation

of f (LHS of (5.5)); the dots are empirical approximations of the risk (RHS of (5.5)). We

3In Sec. 5.5 the constraint is θ ≤ θ ≤ 1− d−n2

n2
θ for robustness concerns.

4In the algorithm, ξ = 1 and ΛR,i = (1/θ∗i − 1)−2, because cΛ∗ for any constant c gives the same β̂.



91

tested two cases when Λ is the optimal eigen-weighting or projection matrix with no weighting.

Our theorem is corroborated by the observation that the dots and curves are visibly very close.

The approximation is already accurate for the finite dimensional problem with just n2 = 40.

The benefit of overparameterization. Theorem 1 leads to an optimal eigen-weighting

strategy via asymptotic analysis. In Figure 5.3, we plot the effect on the risk of increasing R

for different shapes of task covariance; the parameter ι controls how spiked ΣT is, with a

smaller value for ι indicating increased spiked-ness. For the underparameterized problem,

the weighting does not have any impact on the risk. In the overparameterized regime, the

eigen-weighted learner achieves lower few-shot error than its unweighted (Λ = I) counterpart,

showing that eigen-weighting becomes critical.

The eigen-weighting procedure can introduce inductive bias during few-shot learning, and

helps explain how optimal representation minimizing the few-shot risk can be overparameter-

ized with R� n2. We note that, an R dimensional representation can be recovered by a d

dimensional representation matrix of rank R, thus the underparameterized case can never beat

d dimensional case in theory. The error with optimal eigen-weighting in overparameterized

regime is smaller than the respective underparameterized counterpart. The error is lower

with smaller ι. It implies that, while Σ̃T gets closer to low-rank, the excess error caused by

choosing small dimension R (equal to the gap σ2
R − σ2 in Algo 3) is not as significant.

Low dimensional representations zero out features and cause bias. By contrast, when

Σ̃T ∈ Rd×d is not low rank, every feature contributes to learning with the importance of the

features reflected by the weights. This viewpoint is in similar spirit to that of Hastie et al.

(2019) where the authors devise a misspecified linear regression to demonstrate the benefits

of overparameterization. Our algorithm allows arbitrary representation dimension R and

eigen-weighting.



92

5.4 Representation learning

In this section, we will show how to estimate the useful distribution in representation learning

phase that enables us to calculate eigen-weighting matrix Λ∗. Note that Λ∗ depends on the

canonical covariance Σ̃T = Σ
1/2
F ΣTΣ

1/2
F . Learning the R-dimensional principal subspace of

Σ̃T enables us5 to calculate Λ∗. Denote this subspace by S̃T .

Subspace estimation vs. inductive bias. The subspace-based representation S̃T

has degrees of freedom= Rd. When Σ̃T is exactly rank R and features are whitened,

Tripuraneni et al. (2020) provides a sample-complexity lower bound of Ω(Rd) examples and

gives an algorithm achieving O(R2d) samples. However, in practice, deep nets learn good

representations despite overparameterization. In this section, recalling our Q2, we argue that

the inductive bias of the feature distribution can implicitly accelerate learning the canonical

covariance. This differentiates our results from most prior works such as Kong et al. (2020b,a);

Tripuraneni et al. (2020) in two aspects:

1. Rather than focusing on a low dimensional subspace and assuming N & Rd, we can

estimate Σ̃T or S̃T in the overparameterized regime N . Rd.

2. Rather than assuming whitened features ΣF = I and achieving a sample complexity of

R2d, our learning guarantee holds for arbitrary covariance matrices ΣF ,ΣT . The sample

complexity depends on effective rank and can be arbitrarily smaller than DoF. We showcase

our bounds via a spiked covariance setting in Example 1 below.

For learning Σ̃T or its subspace S̃T , we investigate the method-of-moments (MoM)

estimator.

Definition 4 (MoM Estimator). For 1 ≤ i ≤ T , define b̂i,1 = 2n−1
1

∑n1/2
j=1 yi,jxi,j, b̂i,2 =

2n−1
1

∑n1

j=n1/2+1 yi,jxi,j. Set

M̂ = n−1
1

T∑
i=1

(bi,1b
>
i,2 + bi,2b

>
i,1),

5We also need to estimate ΣF for whitening. Estimating ΣF is rather easy and incurs smaller error
compared to Σ̃T . The analysis is provided in Appendix D.3.1.
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The expectation of M̂ is equal to M = ΣFΣTΣF .

Inductive bias in representation learning: Recall that canonical covariance Σ̃T =

Σ
1/2
F ΣTΣ

1/2
F is the attribute of interest. However, feature covariance Σ

1/2
F term implicitly

modulates the estimation procedure because the population MoM is not Σ̃T but M =

Σ
1/2
F Σ̃TΣ

1/2
F . For instance, when estimating the principle canonical subspace S̃T , the degree

of alignment between ΣF and Σ̃T can make or break the estimation procedure: If ΣF and

Σ̃T have well-aligned principal subspaces, S̃T will be easier to estimate since ΣF will amplify

the S̃T direction within M .

We verify the inductive bias on practical image dataset, reported in Appendix D.1.

We assessed correlation coefficient between covariances Σ̃T ,ΣF via the canonical-feature

alignment score defined as the correlation coefficient

ρ(ΣF , Σ̃T ) :=

〈
ΣF , Σ̃T

〉
‖ΣF‖F‖Σ̃T‖F

=
trace(M )

‖ΣF‖F‖Σ̃T‖F
.

Observe that, the MoM estimator M naturally shows up in the alignment definition because

the inner product of Σ̃T ,ΣF is equal to trace(M). This further supports our inductive

bias intuition. As reference, we compared it to canonical-identity alignment defined as
trace(Σ̃T )√
d‖Σ̃T ‖F

(replacing ΣF with I). The canonical-feature alignment score is higher than the

canonical-identity alignment score. This significant score difference exemplifies how ΣF and

Σ̃T can synergistically align with each other (inductive bias). This alignment helps our MoM

estimator defined below, illustrated by Example 1 (spiked covariance).

In the following subsections, let N = n1T refer to the total tasks in representation-learning

phase. Let rF = tr(ΣF ), rT = tr(ΣT ), and r = tr(Σ̃T ). Define the approximate low-rankness

measure of feature covariance by6

sF = min s′F , s.t. s
′
F ∈ {1, ..., d}, s′F/d ≥ λs′F+1(ΣF )

6The (sF + 1)-th eigenvalue is smaller than sF /d. Note the top eigenvalue is 1.
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feature cov ΣF = I, ΣT = diag(IsT ,0)
ΣF = diag(IsF , ιFId−sF ),
ΣT = diag(IsT , ιTId−sT )

estimator sample N sample n1 error sample N sample n1 error
MoM ds2

T 1 (ds2
T/N)1/2 rF r

2
T 1 (rF r

2
T/N)1/2

MoM dsT sT (sT/n1)1/2 rF rT rT (rT/n1)1/2

Table 5.2: Right side: Sample complexity and error of MoM estimators. sF (sT ) is the
dimension of the principal eigenspace of the feature (task) covariance. rF = sF + ιF (d− sF ),
rT = sT + ιT (d− sT ) are the effective ranks. Left side: This is the well-studied setting of
identity feature covariance and low-rank task covariance. Our bound in the second row is
the first result to achieve optimal sample complexity of O(dsT ) (cf. Tripuraneni et al. (2020);
Kong et al. (2020b)).

We have two results for this estimator.

1. Generally, we can estimate M with O(rF r
2) samples.

2. Let n1 ≥ sT , we can estimate M with O(sF r) samples.

Tripuraneni et al. (2020) has sample complexity O(dr2) (r is exact rank). Our sample

complexity is O(rF r
2). rF , r can be seen as effective ranks and our bounds are always smaller

than Tripuraneni et al. (2020). We will discuss later in Example 1. Our second result says

when n1 ≥ sT , our sample complexity achieves the O(dr) which is proven a lower bound in

Tripuraneni et al. (2020).

Theorem 10. Let data be generated as in Phase 1. Assume ‖ΣF‖, ‖ΣT‖ = 1 for normal-

ization7.

1. Let n1 be a even number. Then with probability at least 1−N−100,

‖M̂ −M‖ . (r + σ2)

√
rF
N

+

√
rT
T
.

2. Assume T ≥ sF . If n1 & r+σ2, then with probability at least 1−CT−100 for some constant

7This is simply equivalent to scaling yi,j , which does not affect the normalized error ‖M̂ −M‖/‖M‖. In
the appendix we define S = max{‖ΣF ‖, ‖ΣT ‖} and prove the theorem for general S.
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C > 0,

‖M̂ −M‖ .
(
(r + σ2)/n1

)1/2
.

Denote the top-R principal subspaces of M ,M̂ by Mtop,M̂top and assume the eigen-gap

condition λR(M) − λR+1(M) > 2‖M̂ −M‖. Then a direct application of Davis-Kahan

Theorem (Davis & Kahan, 1970) bounds the subspace angle as follows

angle(Mtop,M̂top) . ‖M̂ −M‖/(λR(M)− λR+1(M)).
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Figure 5.4: Error of MoM estimator

Estimating eigenspace of canonical covariance. Note that if ΣF and ΣT are aligned,

(e.g. Example 1 below with sF = sT = R), then Mtop = S̃T is exactly the principal subspace

of Σ̃T . Theorem 10 indeed gives estimation error for the principal subspace of Σ̃T . Note that,

such alignment is and more general requirement compared to related works which require

whitened features (Tripuraneni et al., 2020; Kong et al., 2020b).

Example 1 (Spiked Σ̃T , Aligned principal subspaces). Suppose the spectra of ΣF and Σ̃T

are bimodal as follows ΣF = diag(IsF , ιFId−sF ), ΣT = diag(IsT , ιTId−sT ). Set statistical error

ErrT,N :=
√
r2
T rF/N +

√
rT/T . When ιT , ιF < 1, sF ≥ sT , the recovery error of Σ̃T and its
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principal subspace S̃T are bounded as

angle(M̂top, S̃T ) . ErrT,N + ι2F ιT and ‖M̂ − Σ̃T‖ . ErrT,N + ιF ιT .

The estimation errors for Σ̃T , S̃T are controlled in terms of the effective ranks and the

spectrum tails ιF , ιT . Typically sF sT & n1 so
√
r2
T rF/N term dominates the statistical error

in practice. In Figure 5.4 we plot the error of estimating M (whose principal subspace

coincides with Σ̃T ). ΣF = diag(I30, ιI70), ΣT = diag(I30,070). T = N = 100. We can see

that the error increase with ι .

5.5 Robustness of optimal representation and overall meta-learning bound

In Section 5.3, we described the algorithm for computing the optimal representation with

known distributions of features and tasks. In Section 5.4, we proposed the MoM estimator in

representation learning phase to estimate the unknown covariance matrices. In this section, we

study the algorithm’s behaviors when we calculate Λ using the estimated canonical covariance,

rather than the full-information setting of Section 5.3.

Armed with the provably reliable estimators of Section 5.4, we can replace Σ̃T and ΣF

in Algorithm 3 with our estimators. In this section, we inquire: how does the estimation

error in covariance-estimation in representation learning stage affect the downstream few-shot

learning risk? That says, we are interested in8 risk(Λ,ΣT ,ΣF )− risk(Λ∗,ΣT ,ΣF ).

We replace the constraint in (OPT-REP) by θ ≤ θ ≤ 1 − d−n2

n2
θ. This changes the

“optimization” step in Algorithm 3. Theorem 11 does not require an explicit computation

of the optimal representation by enforcing θ. Instead, we use the robustness of such a

representation (due to its well-conditioned nature) to deduce its stability. Therefore, for

practical computation of optimal representation, we simply use Algorithm 3. We can then

evaluate θ after-the-fact as the minimum singular value of this representation to apply

8Note that Sec.6 of Wu & Xu (2020) gives the exact value of risk(Λ∗,ΣT ,ΣF ) so we have an end to end
error guarantee.
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Theorem 11 without assuming an explicit θ.

Let Λθ(R) = ComputeOptimalRep(R,ΣF ,M̂ , σ, n2) denote the estimated optimal

representation and Λ∗θ(R) = ComputeOptimalRep(R,ΣF , Σ̃T , σ, n2) denote the true opti-

mal representation, which cannot be accessed in practice. Below we present the bound of

the whole meta-learning algorithm. It shows that a bounded error in representation learning

leads to a bounded increase on the downstream few-shot learning risk, thus quantifying the

robustness of few-shot learning to errors in covariance estimates.
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Figure 5.5: End to end learning guarantees. d = 100, n2 = 40, T = 200, ΣT = (I20, 0.05 · I80),
ΣF = I100.

Theorem 11. Let Λθ(R), Λ∗θ(R) be as defined above, and rF = tr(ΣF ), rT = tr(ΣT ), r =

tr(Σ̃T ). The risk of meta-learning algorithm satisfies9

risk(Λθ(R),ΣT ,ΣF )− risk(Λ∗θ(R),ΣT ,ΣF ) .
n2

2

d(R− n2)(2n2 −Rθ)θ

[
(r + σ2)

√
rF
N

+

√
rT
T

]
.

Notice that, as the number of previous tasks T and total representation learning samples

N observed increase, the risk of the estimated Λθ(R) approaches the risk of the optimal

Λ∗θ(R) as we expect. The result only applies to the overparameterized regime of interest

9The bracketed expression applies first conclusion of Theorem 11. One can plug in the second as well.
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R > n2. The expression of risk in the underparameterized case is different, and covered by

the second case of (Wu & Xu, 2020, Eq(4.4) ). We plot it in Fig 5.1(b) on the left side of the

peak as a comparison.

Risk with respect to PCA level R. In Fig. 5.5, we plot the error of the whole

meta-learning algorithm. We simulate representation learning and get M̂ , use it to compute

Λ and plot the theoretical downstream risk (experiments match, see Fig. 5.1 (b)). Mainly,

we compare the behavior of Theorem 11 with different R. When R grows, we search Λ in

a larger space. The optimal representation Λ in a feasible subset is always no better than

searching in a larger space, thus the risk decreases with R increasing. At the same time,

representation learning error increases with R since we need to fit a matrix in a larger space.

In essence, this result provides a theoretical justification on a sweet-spot for the optimal

representation. d = R is optimal when N =∞, i.e., representation learning error is 0. As N

decreases, there is a tradeoff between learning error and truncating small eigenvalues. Thus

choosing R adaptively with N can strike the right bias-variance tradeoff between the excess

risk (variance) and the risk due to suboptimal representation.

5.6 Conclusion and future directions

We study the sample efficiency of meta-learning with linear representations. We show that

the optimal representation is typically overparameterized and outperforms subspace-based

representations for general data distributions and refine the sample complexity analysis for

learning arbitrary distributions and show the importance of inductive bias of feature and

task. Finally we provide an end-to-end bound for the meta-learning algorithm showing the

tradeoff of choosing larger representation dimension v.s. robustness against representation

learning error.

Our optimal representation works with jointly diagonalizable covariances and is asymptotic

(although this is also the case in literature such as Chang et al. (2020); Wu & Xu (2020)). The

setting is limited to mixed linear regression while linearized settings (such as neural tangent

kernel Jacot et al. (2018); Du et al. (2018); Arora et al. (2019)) are helpful for understanding
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nonlinear models, and the nonlinear meta-learning can be the next step.
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Appendix A

APPENDIX OF CHAPTER 2

A.1 Taylor expansions on Riemannian manifold

We provide here the Taylor expansion for functions and gradients of functions defined on a

Riemannian manifold.

Taylor expansion for the gradient

For any point x ∈ M and z ∈ M be a point in the neighborhood of x where the geodesic

γx→z is defined.

Γxz(gradf(z)) = gradf(x) +∇γ′x→z(0)gradf +
∫ 1

0
(Γxγx→z(τ)∇γ′x→z(τ)gradf −∇γ′x→z(0)gradf)dxτ

= gradf(x) +∇γ′x→z(0)gradf + ∆(z), (A.1)

where ∆(z) :=
∫ 1

0
(Γxγx→z(τ)∇γ′x→z(τ)gradf −∇γ′x→z(0)gradf)dτ . The Taylor approximation in

Eq. (A.1) is proven by Absil et al. (2009a, Lemma 7.4.7).

Taylor expansion for the function

Taylor expansion of the gradient enables us to approximate the iterations of the main

algorithm, but obtaining the convergence rate of the algorithm requires proving that the

function value decreases following the iterations. We need to give the Taylor expansion of f

with the parallel translated gradient on LHS of Eq. (A.1). To simplify the notation, let γ
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denote the γx→z.

f(z)−f(x)=

∫ 1

0

d

dτ
f(γ(τ))dτ (A.2a)

=

∫ 1

0

〈γ′(τ), gradf(γ(τ))〉dτ (A.2b)

=

∫ 1

0

〈Γxγ(τ)γ
′(τ),Γxγ(τ)gradf(γ(τ))〉dτ (A.2c)

=

∫ 1

0

〈γ′(0),Γ0
γ(τ)gradf(γ(τ))〉dτ (A.2d)

=

∫ 1

0

〈γ′(0), gradf(x) +∇τγ′(0)gradf + ∆(γ(τ))〉dτ (A.2e)

= 〈γ′(0), gradf(x) + 1
2
∇γ′(0)gradf + ∆̄(z)〉. (A.2f)

∆(z) is defined in Eq. (A.1). ∆̄(z) =
∫ 1

0
∆(γ(τ))dτ . The second line is just rewriting by

definition. Eq. (A.2c) means the parallel translation preserves the inner product (Tu, 2017,

Prop. 14.16). Eq. (A.2d) uses Γxγ(t)γ
′(t) = γ′(0), meaning that the velocity stays constant

along a geodesic (Absil et al., 2009a, (5.23)). Eq. (A.2e) uses Eq. (A.1). In Euclidean space,

the Taylor expansion is

f(z)− f(x) = 〈z,∇f(x) +∇2f(x)z +

∫ 1

0

(∇2f(τz)−∇2f(x))zdτ〉. (A.3)

Compare Eq. (A.2) and Eq. (A.3), z is replaced by γ′(0) := γ′x→z(0) and τz is replaced by

τγ′x→z(0) or γx→z(τ).

Now we have

f(ut) = f(x) + 〈γ′(0), gradf(x)〉+
1

2
H(x)[γ′(0), γ′(0)] + 〈γ′(0), ∆̄(ut)〉.

A.2 Linearization of the iterates in a fixed tangent space

In this section we linearize the progress of the iterates of our algorithm in a fixed tangent space

TxM. We always assume here that all points are within a region of diameter R := 12S ≤ I.
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Figure A.1: Lemma 10. First map w and w+ to TuM and Tu+M, and transport the two
vectors to TxM, and get their relation.

In the course of the proof we need several auxilliary lemmas which are stated in the last two

subsections of this section.

Evolution of Exp−1
u (w)

We first consider the evolution of Exp−1
u (w) in a fixed tangent space TxM. We show in the

following lemma that it approximately follows a linear reccursion.

Lemma 10. Define γ =
√
ρ̂ε, κ = β

γ
, and S =

√
ηβ γ

ρ̂
log−1(dκ

δ
). Let us consider x be a

(ε,−
√
ρ̂ε) saddle point, and define u+ = Expu(−ηgradf(u)) and w+ = Expw(−ηgradf(w)).

Under Assumptions 1, 2, 3, if all pairwise distances between u,w, u+, w+, x are less than 12S ,

then for some explicit constant C1(K, ρ, β) depending only on K, ρ, β, there is

‖Γxu+Exp−1
u+(w+)− (I − ηH(x))ΓxuExp−1

u (w)‖

≤ C1(K, ρ, β)d(u,w) (d(u,w) + d(u, x) + d(w, x)) .

for some explicit function C1.

This lemma is illustrated in Fig. A.1.
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Proof. Denote −ηgradf(u) = vu, −ηgradf(w) = vw. v is a smooth map. We first prove the

following claim.

Claim 1.

d(u+, w+) ≤ c6(K)d(u,w),

where c6(K) = c4(K) + 1 + c2(K)R2.

To show this, note that

d(u+, w+) ≤ d(u+, w̃+) + d(w̃+, w+),

and using Lemma 14 with w̃+ = Expw(Γwu vu),

d(w̃+, w+) = d(Expw(vw),Expw(Γwu vu))

≤ (1 + c2(K)R2)‖vw − Γwu vu‖

≤ β(1 + c2(K)R2)d(u,w).

Using Lemma 14,

d(w̃+, u+) ≤ c4(K)d(u,w). (A.4)

Adding the two inequalities proves the claim.

We use now Lemma 12 between (u,w, u+, w+) in two different ways. First let us use it

for a = Exp−1
u (w) and y = Γuwvw. We obtain:

d(w+,Expu(Exp−1
u (w) + Γuwvw)) ≤ c1(K)d(u,w)(d(u,w)2 + ‖vw‖2). (A.5)
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Then we use it for a = Exp−1
u (vu) and y = Γuu+

Exp−1
u+

(w+) which yields

d(w+,Expu(vu + Γuu+
Exp−1

u+
(w+)))

≤ c1(K)d(u+, w+)(d(u+, w+)2 + ‖vu‖2)

≤ c1(K)c5(K, ‖vu‖, ‖vw‖)d(u,w) ·
[
c5(K, ‖vu‖, ‖vw‖)2d(u,w)2 + ‖vu‖2

]
.

Using the triangular inequality we have

d(Expu(Exp−1
u (w) + Γuwvw),Expu(vu + Γuu+

Exp−1
u+

(w+)))

≤ d(w+,Expu(Exp−1
u (w) + Γuwvw)) + d(w+,Expu(vu + Γuu+

Exp−1
u+

(w+)))

≤ c7d(u,w)

with c7 defined as

c7 = c1(K)c6(K) · [c5(K, ‖vu‖, ‖vw‖)2d(u,w)2 + ‖vu‖2 + ‖vw‖2
]
.

We use again Lemma 13,

‖Γuu+
Exp−1

u+
(w+))− Exp−1

u (w)− [vu − Γuwvw]‖ ≤ (1 + c3(K)R2) · c7d(u,w).

Therefore we have linearized the iterate in TuM. We should see how to transport it back to

TxM. With Lemma 15 we have

‖[ΓxuΓuu+
− Γxu+

]Exp−1
u+

(w+))‖ = c5(K)d(u, x)d(u+, w+)‖vu‖.

Note vu and vw are −ηgradf(u) and −ηgradf(w), we define ∇v(x) the gradient of v, i.e.,
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−ηH. Using Hessian Lipschitz,

‖vu − Γuwvw + ηH(u)Exp−1
u (w)‖

= ‖vu − Γuwvw −∇v(u)Exp−1
u (w)‖

≤ ρd(u,w)2,

and

‖∇v(u)Exp−1
u (w)− Γux∇v(x)ΓxuExp−1

u (w)‖ ≤ ρd(u,w)d(u, x).

So we have

‖Γxu+
Exp−1

u+
(w+)− (I +∇v(x))ΓxuExp−1

u (w)‖

≤ c7d(u,w) + ρd(u,w)(d(u,w) + d(u, x)) + c5(K)d(u, x)d(u+, w+)‖vu‖ := D1 (A.6)

Evolution of Exp−1
x (w)− Exp−1

x (u)

We consider now the evolution of Exp−1
x (w)− Exp−1

x (u) in the fixed tangent space TxM. We

show in the following lemma that it also approximately follows a linear iteration.

Lemma 11. Define γ =
√
ρ̂ε, κ = β

γ
, and S =

√
ηβ γ

ρ̂
log−1(dκ

δ
). Let us consider x be a

(ε,−
√
ρ̂ε) saddle point, and define u+ = Expu(−ηgradf(u)) and w+ = Expw(−ηgradf(w)).

Under Assumptions 1, 2, 3, if all pairwise distances between u,w, u+, w+, x are less than 12S ,

then for some explicit constant C(K, ρ, β) depending only on K, ρ, β, there is

‖Exp−1
x (w+)− Exp−1

x (u+)− (I − ηH(x))(Exp−1
x (w)− Exp−1

x (u))‖ (A.7)

≤ C(K, ρ, β)d(u,w) (d(u,w) + d(u, x) + d(w, x)) .
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This lemma controls the error of the linear approximation of the iterates hen mapped in

TxM and largely follows from Lemma 10.

Proof. We have that

w = Expx(Exp−1
x (w)) (A.8)

= Expu(Exp−1
u (w)). (A.9)

Use Eq. (A.9), let a = Exp−1
x (u) and v = ΓxuExp−1

u (w), Lemma 12 suggests that

d(Expu(Exp−1
u (w)),Expx(Exp−1

x (u) + ΓxuExp−1
u (w)))

≤ c1(K)‖Exp−1
u (w)‖(‖Exp−1

u (w)‖+ ‖Exp−1
x (u)‖)2.

Compare with Eq. (A.8), we have

d(Expx(Exp−1
x (w)),Expx(Exp−1

x (u) + ΓxuExp−1
u (w)))

≤ c1(K)‖Exp−1
u (w)‖(‖Exp−1

u (w)‖+ ‖Exp−1
x (u)‖)2

:= D. (A.10)

Denote the quantity above by D. Now use Lemma 13

‖Exp−1
x (w)− (Exp−1

x (u) + ΓxuExp−1
u (w))‖ ≤ (1 + c3(K)R2)D.

Analogously

‖Exp−1
x (w+)− (Exp−1

x (u+) + Γxu+
Exp−1

u+
(w+))‖ ≤ (1 + c3(K)R2)D+

where

D+ = c1(K)‖Exp−1
u+

(w+)‖(‖Exp−1
u+

(w+)‖+ ‖Exp−1
x (u+)‖)2 (A.11)
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Figure A.2: Lemma 12 bounds the difference of two steps starting from x: (1) take y + a
step in TxM and map it to manifold, and (2) take a step in TxM, map to manifold, call it z,
and take Γzxy step in TxM, and map to manifold. Expz(Γ

z
xy) is close to Expx(y + a).

And we can compare ΓxuExp−1
u (w) and Γxu+

Exp−1
u+

(w+) using Eq. (A.6). In the end we have

‖Exp−1
x (w+)− Exp−1

x (u+)− (I − ηH(x))(Exp−1
x (w)− Exp−1

x (u))‖

≤ ‖Exp−1
x (w+)− (Exp−1

x (u+) + Γxu+
Exp−1

u+
(w+))‖

+ ‖Exp−1
x (w)− (Exp−1

x (u) + ΓxuExp−1
u (w))‖

+ ‖Γxu+
Exp−1

u+
(w+)− ΓxuExp−1

u (w)−∇v(x)ΓxuExp−1
u (w)‖

+ ‖∇v(x)(ΓxuExp−1
u (w)− (Exp−1

x (w)− Exp−1
x (u)))‖

≤ (1 + c3(K)R2)(D+ +D) +D1 + η‖H(x)‖D.

D, D+ and D1 are defined in Eq. (A.10), Eq. (A.11) and Eq. (A.6), they are all order

d(u,w)
(
d(u,w) + d(u, x) + d(w, x)

)
so we get the correct order in Eq. (2.3).

Control of two-steps iteration

In the following lemma we control the distance between the point obtained after moving

along the sum of two vectors in the tangent space, and the point obtained after moving a

first time along the first vector and then a second time along the transport of the second
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vector. This is illustrated in Fig. A.2.

Lemma 12. Let x ∈ M and y, a ∈ TxM. Let us denote by z = Expx(a) then under

Assumption 3

d(Expx(y + a),Expz(Γ
z
xy)) ≤ c1(K) min{‖a‖, ‖y‖}(‖a‖+ ‖y‖)2. (A.12)

This lemma which is crucial in the proofs of Lemma 11 and Lemma 10 tightens the result

of Karcher (1977, C2.3), which only shows an upper-bound O(‖a‖(‖a‖+ ‖y‖)2).

Proof. We adapt the proof of Karcher (1977, Eq. (C2.3) in App C2.2), the only difference

being that we bound more carefully the initial normal component. We restate here the whole

proof for completeness.

Let x ∈ M and y, a ∈ TxM. We denote by γ(t) = Expx(ta). We want to compare the

point Expx(r(y + a)) and Expγ(1)(Γ
γ(1)y
x ). These two points , for a fixed r are joined by the

curve

t 7→ c(r, t) = Expγ(t)(rΓ
γ(t)
x (y + (1− t)a)).

We note that d
dt
c(r, t) is a Jacobi field along the geodesic r 7→ c(r, t), which we denote by

Jt(r). We importantly remark that the length of the geodesic r 7→ c(r, t) is bounded as

‖ d
dr
c(r, t)‖ ≤ ‖y + (1 − t)a‖. We denote this quantity by ρt = ‖y + (1 − t)a‖. The initial

condition of the Jacobi field Jt are given by:

Jt(0) =
d

dt
γ(t) = Γγ(t)

x a

D

dr
Jt(0) =

D

dr
Γγ(t)
x (y + (1− t)a) = −Γγ(t)

x a.

These two vectors are linearly dependent and it is therefore possible to apply Karcher

(1977, Proposition A6) to bound Jnorm
t . Moreover, following Karcher (1977, App A0.3 ), the
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tangential component of the Jacobi field is known explicitly, independent of the metric, by

J tan
t (r) =

(
J tan
t (0) + r

D

dr
J tan
t (0)

)
d

dr
c(r, t)

where the initial conditions of the tangential component of the Jacobi fields are given by

J tan
t (0) = 〈Jt(0),

d
dr
c(r,t)

‖ d
dr
c(r,t)‖〉 and

D
dr
J tan
t (0) = 〈D

dr
Jt(0),

d
dr
c(r,t)

‖ d
dr
c(r,t)‖〉 = −J tan

t (0). Therefore

J tan
t (r) = (1− r)J tan

t (0)
d

dr
c(r, t),

and J tan
t (1) = 0.

We estimate now the distance d(Expx(y + a),Expz(Γ
z
xy)) by the length of the curve

t 7→ c(r, t) as follows:

d(Expx(y + a),Expz(Γ
z
xy)) ≤

∫ 1

0

‖ d
dt
c(1, t)‖dt =

∫ 1

0

‖Jnorm
t (1)‖dt,

where we use crucially that J tant (1) = 0.

We utilize (Karcher, 1977, Proposition A.6) to bound ‖Jnorm
t (1)‖ as

‖Jnorm
t (1)‖ ≤ ‖Jnorm

t (0)‖(cosh(
√
Kρt)−

sinh(
√
Kρt)√

Kρt
)

using (Karcher, 1977, Equation (A6.3)) with κ = 0, fκ(1) = 0 and recalling that the geodesics

r 7→ c(r, t) have length ρt.

In particular for small value ‖a‖+ ‖y‖ we have for some constant c1(K),

‖Jnorm
t (1)‖ ≤ ‖Jnorm

t (0)‖c1(K)ρ2
t .

We bound ‖Jnorm
t (0)‖ now. This is the main difference with the original proof of Karcher

(1977) who directly bounded ‖Jnorm
t (0)‖ ≤ ‖Jt(0)‖ = ‖a‖ and ρt ≤ ‖a‖+ ‖y‖. Therefore his

proof does not lead to the correct dependence in ‖y‖.
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Figure A.3: Figure for Lemma 12.

We have J0
t = Γ

γ(t)
x a, and the tangential component (velocity of r → c(r, t)) is in the

Γ
γ(t)
x (y+(1− t)a) direction. Let z̃ = Γ

γ(t)
x (y+(1− t)a) and Pz̃⊥ and Pa⊥ denote the projection

onto orthogonal complement of z̃ and a.

‖Jnorm
t (0)‖2 = ‖Pz̃⊥(a)‖2

= ‖a‖2 − (aT z̃)2

‖z̃‖2

=
‖a‖2

‖z̃‖2

(
‖z̃‖2 − (aT z̃)2

‖z̃‖2

)
≤ ‖a‖

2

‖z̃‖2
‖Pa⊥(Γγ(t)

x (y + (1− t)a))‖2

≤ ‖a‖
2

‖z̃‖2
‖Pa⊥(Γγ(t)

x ((1− t)a)) + Pa⊥(Γγ(t)
x y)‖2

=
‖a‖2

‖z̃‖2
‖Pa⊥(Γγ(t)

x y)‖2

≤ ‖a‖
2‖y‖2

‖z̃‖2
.

So

‖Jnorm
t (1)‖ ≤ ‖Jnorm

t (0)‖c1(K)ρ2
t

≤ ‖a‖ · ‖y‖
‖z̃‖

c1(K)‖z̃‖2

≤ c1(K)‖a‖ · ‖y‖(‖a‖+ ‖y‖),
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and

d(Expx(y + a),Expz(Γ
z
xy)) ≤ c1(K)‖a‖ · ‖y‖(‖a‖+ ‖y‖).

A.3 Auxilliary lemmas

In the proofs of Lemma 10 and Lemma 11 we needed numerous auxiliary lemmas we are

stating here.

We needed the following lemma which shows that both the exponential map and its

inverse are Lipschitz.

Lemma 13. Let x, y, z ∈M , and the distance of each two points is no bigger than R. Then

under Assumption 3

(1 + c2(K)R2)−1d(y, z) ≤ ‖Exp−1
x (y)− Exp−1

x (z)‖ ≤ (1 + c3(K)R2)d(y, z).

Intuitively this lemma relates the norm of the difference of two vectors of TxM to the

distance between the corresponding points on the manifoldM and follows from bounds on

the Hessian of the square-distance function (Sakai, 1996, Ex. 4 p. 154).

Proof. The upper-bound is directly proven in Karcher (1977, Proof of Cor. 1.6), and we

prove the lower-bound via Lemma 12. Let b = Expy(Γ
y
x(Exp−1

x (z) − Exp−1
x (y))). Using

d(y, b) = ‖Exp−1
y (b)‖ and Lemma 12,

d(y, z) ≤ d(y, b) + d(b,Expx(Exp−1
x (z)))

≤ ‖Exp−1
x (y)− Exp−1

x (z)‖

+ c1(K)‖Exp−1
x (y)− Exp−1

x (z)‖(‖Exp−1
x (y)− Exp−1

x (z)‖+ ‖Exp−1
x (y)‖)2
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The following contraction result is fairly classical and is proven using the Rauch comparison

theorem from differential geometry (Cheeger & Ebin, 2008).

Lemma 14. (Mangoubi et al., 2018, Lemma 1) Under Assumption 3, for x, y ∈ M and

w ∈ TxM,

d(Expx(w),Expy(Γ
y
xw)) ≤ c4(K)d(x, y).

Eventually we need the following corollary of the famous Ambrose-Singer holonomy

theorem (Ambrose & Singer, 1953).

Lemma 15. (Karcher, 1977, Section 6) Under Assumption 3, for x, y, z ∈M and w ∈ TxM,

‖ΓzyΓyxw − Γzxw‖ ≤ c5(K)d(x, y)d(y, z)‖w‖.

A.4 Proof of Lemma 7 and 8

In this section we prove two important lemmas from which the proof of our main result

mainly comes out. Then we show, in the last subsection, how to combine them to prove this

main result.
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Proof of Lemma 7

Suppose f(ut+1)− f(ut) ≤ −η
2
‖gradf(ut)‖2.

d(uĉT , u0)2 ≤ (
ĉT −1∑

0

d(ut+1, ut))
2

≤ ĉT
ĉT −1∑

0

d(ut+1, ut)
2

≤ η2ĉT
ĉT −1∑

0

‖gradf(ut)‖2

≤ 2ηĉT
ĉT −1∑

0

f(ut)− f(ut+1)

= 2ηĉT (f(u0)− f(uĉT ))

≤ 6ηĉT F = 6ĉS 2.

Proof of Lemma 8

Note that, for any points inside a region with diameter R, under the assumption of Lemma 7,

we have max{c2(K), c3(K)}R2 ≤ 1/2.

Define vt = Exp−1
x̃ (wt)− Exp−1

x̃ (ut), let v0 = e1 be the smallest eigenvector of H(x̃), then

let ŷ2,t be a unit vector, we have

vt+1 = (I − ηH(x̃))vt + C(K, ρ, β)d(ut, wt) · (d(ut, x̃) + d(wt, x̃) + d(x̃, u0))ŷ2,t. (A.15)

Let C := C(K, ρ, β). Suppose Lemma 7 is false, then 0 ≤ t ≤ T , d(ut, x̃) ≤ 3ĉS , d(wt, x̃) ≤

3ĉS , so d(ut, wt) ≤ 6ĉS , and the norm of the last term in Eq. (A.15) is smaller than

14ηCĉS ‖vt‖.

Lemma 4 indicates that

‖vt‖ ∈ [1/2, 2] · d(ut, wt) = [3/2, 6] · ĉS . (A.16)
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Let ψt be the norm of vt projected onto e1, the smallest eigenvector of H(0), and ϕt be

the norm of vt projected onto the remaining subspace. Then Eq. (A.15) is

ψt+1 ≥ (1 + ηγ)ψt − µ
√
ψ2
t + φ2

t ,

φt+1 ≤ (1 + ηγ)φt + µ
√
ψ2
t + φ2

t .

Prove that for all t ≤ T , φt ≤ 4µtψt. Assume it is true for t, we have

4µ(t+ 1)ψt+1 ≥ 4µ(t+ 1) ·
(

(1 + ηγ)ψt − µ
√
ψ2
t + φ2

t

)
,

φt+1 ≤ 4µt(1 + ηγ)φt + µ
√
ψ2
t + φ2

t .

So we only need to show that

(1 + 4µ(t+ 1))
√
ψ2
t + φ2

t ≤ (1 + ηγ)ψt.

By choosing
√
cmax ≤ 1

56ĉ2
and η ≤ cmax/β, we have

4µ(t+ 1) ≤ 4µT ≤ 4ηCS · 14ĉ2T = 56ĉ2C

ρ̂

√
ηβ ≤ 1.

This gives

4(1 + ηγ)ψt ≥ 2
√

2ψ2
t ≥ (1 + 4µ(t+ 1))

√
ψ2
t + φ2

t .

Now we know φt ≤ 4µtψt ≤ ψt, so ψt+1 ≥ (1 + ηγ)ψt −
√

2µψt, and

µ = 14ĉηCS ≤ 14ĉ
√
cmaxηγC log−1(

dκ

δ
)/ρ̂ ≤ ηγ/2,

so ψt+1 ≥ (1 + ηγ/2)ψt.
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We also know that ‖vt‖ ≤ 6ĉS for all t ≤ T from Eq. (A.16), so

6ĉS ≥ ‖vt‖ ≥ ψt ≥ (1 + ηγ/2)tψ0

= (1 + ηγ/2)t
S

κ
log−1(

dκ

δ
)

≥ (1 + ηγ/2)t
δS

2
√
dκ

log−1(
dκ

δ
).

This implies

T <
log(12κ

√
d

δ
ĉ log(dκ

δ
))

2 log(1 + ηγ/2)

≤
log(12κ

√
d

δ
ĉ log(dκ

δ
))

ηγ

≤ (2 + log(12ĉ))T .

By choosing ĉ such that 2 + log(12ĉ) < ĉ, we have T ≤ ĉT , which finishes the proof.

Proof of function value decrease at an approximate saddle point

With Lemma 7 and 7 proved, we can lower bound the function value in O(T ) iterations

decrease by Ω(F ), thus match the convergence rate in the main theorem. Let T ′ :=

inft

{
t|f̃u0(ut)− f(u0) ≤ −3F

}
. Let q denote the operator Exp−1

u0
(·). If T ′ ≤ T ,

f(uT ′)− f(u0)

≤ ∇f(u0)T (uT ′ − u0) +
1

2
H(u0)[quT ′ − u0, quT ′ − u0] +

ρ

6
‖quT ′ − u0‖3

≤ f̃u0(ut)− f(u0) +
ρ

2
d(u0, x̃)‖quT ′ − u0‖2

≤ −3F +O(ρS 3) ≤ −2.5F .

If T ′ > T , then inft

{
t|f̃w0(wt)− f(w0) ≤ −3F

}
≤ T , and we know f(wT )−f(w0) ≤ −2.5F .
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Remark 5. What is left is bounding the volume of the stuck region, to get the probability

of getting out of the stuck region by the perturbation. The procedure is the same as in Jin

et al. (2017a). We sample from a unit ball in TxM, where x is the approximate saddle point.

In Lemma 7 and 7, we study the inverse exponential map at the approximate saddle point x,

and the coupling difference between Exp−1
x (w) and Exp−1

x (u). The iterates we study and the

noise are all in the tangent space TxM which is a Euclidean space, so the probability bound is

same as the one in Jin et al. (2017a).
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Appendix B

APPENDIX OF CHAPTER 3

B.1 Proof of the main theorems

Theorem 12. Suppose assumptions 4,5 hold, and consider the two problems (3.9) and (3.10).

Let K∗ denote the global minimizer of L(K) in SK. Then there exist constants C1, C2 > 0

independent of the suboptimality L(K)− L(K∗), and a direction V , with ‖V ‖F = 1, in the

descent cone of SK at K such that,

1. if f is convex, the gradient of L satisfies1

∇L(K)[V ] ≤ −C1(L(K)− L(K∗)). (B.1)

2. if f is µ-strongly convex, the gradient satisfies

∇L(K)[V ] ≤ −C2(µ(L(K)− L(K∗)))1/2. (B.2)

where (the constants can be bounded with simple constraints bounding norms of L, P or K)

C1 = (2 max{‖L− L∗‖Fσ−1
min(P ), ‖P − P ∗‖Fσ−2

min(P )σmax(L)})−1,

C2 = (2 max{σ−1
min(P ), σ−2

min(P )σmax(L)})−1.

Proof. Let f(x) be any convex function. Denote PS(∇f(x)) as the projection of ∇f(x) onto

the descent cone of S at x, and we know ‖PS(∇f(x))‖ ≥ ∇f(x)[ ∆
‖∆‖ ] for any −∆ in the

descent cone of S at x. We will find the direction ∆ and bound the directional deravative.

First, for any convex function f(x), let the minimum be x∗, and x− x∗ = ∆. Let ∇f(x) = g.

1We always consider the directional derivative of a feasible direction within descent cone.
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For any non-stationary point, f(x) ≤ f(x∗)+g>∆. Since S is a convex set, −∆ belongs to the

descent cone of S at x, so the direction − ∆
‖∆‖ is feasible, f(x)− f(x− t ∆

‖∆‖) ≤ tg> ∆
‖∆‖ when

t→+ 0, so that f(x)[ ∆
‖∆‖ ] = g> ∆

‖∆‖ ≥
f(x)−f(x∗)
‖x−x∗‖ . We will apply the inequality for f(L, P, Z).

Let K∗ be the optimal K and (L∗, P ∗, Z∗) be the optimal point in the parameterized

space. We have L(K∗) = f(L∗, P ∗, Z∗).

We denote Z (L, P ) ∈ argminZf(L, P, Z) subject to (L, P, Z) ∈ S (if there are multiple

minimizers we pick any one). With either Assumption 6 or 5, we can define the mapping

from K to (L, P, Z) respectively in one of the following ways:

1. (Assumption 6) let K map to (L, P ) with K = LP−1 and Z = Z (L, P ).

2. (Assumption 5) let

(L, P, Z) = argminL′,P ′,Z′ f(L′, P ′, Z ′)

s.t. (L′, P ′, Z ′) ∈ S, P ′ � 0, L′P ′
−1

= K.

Note f is convex, so

∇f(L, P, Z)[(L, P, Z)− (L∗, P ∗, Z∗)]

≥ f(L, P, Z)− f(L∗, P ∗, Z∗)

= f(L, P,Z (L, P ))− f(L∗, P ∗,Z (L∗, P ∗))

= L(K)− L(K∗).

(B.3)

Now we consider the directional derivative in K space. By definition,

∇L(K)[V ] = lim
t→0+

(L(K + tV )− L(K))/t.
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Let ∆L = L∗ − L, ∆P = P ∗ − P , and V = ∆LP−1 − LP−1∆PP−1. Then

∇L(K)[V ] = lim
t→0+

(L(K + tV )− L(K))/t

= lim
t→0+

(L(LP−1 + t(∆LP−1 − LP−1∆PP−1))− L(LP−1))/t

= lim
t→0+

(L((L+ t∆L)(P + t∆P )−1)− L(LP−1))/t.

The last line uses (P+t∆P )−1 = P−1−tP−1∆PP−1+o(t). Denote ∆(L, P, Z) = (L∗, P ∗, Z∗)−

(L, P, Z), ∆(L, P, Z) is in the descent cone of S at (L, P, Z) due to the convexity of S. With

Assumption 6, we continue with

∇L(K)[V ] = lim
t→0+

(f(L+ t∆L, P + t∆P,Z (L+ t∆L, P + t∆P ))− f(L, P,Z (L, P )))/t

≤ lim
t→0+

(f(L+ t∆L, P + t∆P,Z (L, P ) + t∆Z)− f(L, P,Z (L, P )))/t

= ∇f(L, P, Z)[∆(L, P, Z)].

With Assumption 5, we continue with

∇L(K)[V ] = lim
t→0+

min
L′,P ′,Z′

f(L′, P ′, Z ′)− f(L, P, Z)

s.t. (L′, P ′, Z ′) ∈ S, P ′ � 0,

L′P ′
−1

= (L+ t∆L)(P + t∆P )−1.

(L+ t∆L, P + t∆P,Z (L, P ) + t∆Z) is a feasible point of the optimization problem, thus is

less than or equal to the minimum, and then

∇L(K)[V ] ≤ lim
t→0+

(f(L+ t∆L, P + t∆P,Z (L, P ) + t∆Z)− f(L, P,Z (L, P )))/t

= ∇f(L, P, Z)[∆(L, P, Z)].
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So the following inequality holds.

∇L(K)[V ] ≤ ∇f(L, P, Z)[∆(L, P, Z)]

≤ −(f(L, P, Z)− f(L∗, P ∗, Z∗)) = −(L(K)− L(K∗)) < 0.

After normalization, we have

∇L(K)[
V

‖V ‖F
] ≥ 1

‖V ‖F
(L(K)− L(K∗)). (B.4)

With V = ∆LP−1 − LP−1∆PP−1, we can get ‖V ‖F ≤ 1/C1.

If f(L, P, Z) is µ strongly convex, then we can restrict f in the line segment (L, P, Z)−

(L∗, P ∗, Z∗) and get

(
∇L(K)[V ]

‖V ‖F
)2 ≥ 1

‖V ‖2
F

(∇f(L, P, Z)[∆(L, P, Z)])2

≥ µ‖∆(L, P, Z)‖2
F

‖V ‖2
F

· (f(L, P, Z)− f(L∗, P ∗, Z∗))

=
µ(‖L∗ − L‖2

F + ‖P ∗ − P‖2
F + ‖Z∗ − Z‖2

F )

‖(L∗ − L)P−1 − LP−1(P ∗ − P )P−1‖2
F

· (f(L, P, Z)− f(L∗, P ∗, Z∗))

≥ µ(‖L∗ − L‖2
F + ‖P ∗ − P‖2

F )

‖(L∗ − L)P−1 − LP−1(P ∗ − P )P−1‖2
F

· (f(L, P, Z)− f(L∗, P ∗, Z∗))

≥ µ(f(L, P, Z)− f(L∗, P ∗, Z∗))

(2 max{σ−1
min(P ), σ−2

min(P )σmax(L)})2
.

Now we will prove with the following assumption that is weaker than µ strong convexity: let

PS(−∇f(L, P, Z)) be the projection of −∇f(L, P, Z) in the descent cone of S at (L, P, Z),

if for any

(L, P, Z) = arg min
L′,P ′,Z′

f(L′, P ′, Z ′), s.t. (L′, P ′, Z ′) ∈ S, L′(P ′)−1 = K,

we have ‖PS(−∇f(L, P, Z))‖2
F ≥ µ(f(L, P, Z)− f(L∗, P ∗, Z∗)).
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Now we denote

∆(L, P, Z) = (∆L,∆P,∆Z) =
PS(−∇f(L, P, Z))

‖PS(−∇f(L, P, Z))‖

and V = ∆LP−1 − LP−1∆PP−1. The proof is similar to strongly convex case:

(
∇L(K)[V ]

‖V ‖F
)2 ≥ 1

‖V ‖2
F

(∇f(L, P, Z)[∆(L, P, Z)])2

≥ µ‖∆(L, P, Z)‖2
F

‖V ‖2
F

· (f(L, P, Z)− f(L∗, P ∗, Z∗))

=
µ(‖∆L‖2

F + ‖∆P‖2
F + ‖∆Z‖2

F )

‖(∆L)P−1 − LP−1(∆P )P−1‖2
F

· (f(L, P, Z)− f(L∗, P ∗, Z∗))

≥ µ(‖∆L‖2
F + ‖∆P‖2

F )

‖(∆L)P−1 − LP−1(∆P )P−1‖2
F

· (f(L, P, Z)− f(L∗, P ∗, Z∗))

≥ µ(f(L, P, Z)− f(L∗, P ∗, Z∗))

(2 max{σ−1
min(P ), σ−2

min(P )σmax(L)})2
.

And we get the same gradient dominance parameter as strongly convex case.

Theorem 3. Denote ∆K = Ψ(P )[P ∗ − P ]. Let ∇L(K)[∆K] be the directional derivative of

L(K) in direction ∆K. Then with Assumptions 7, 8 we have

∇L(K)[∆K] ≤ L(K∗)− L(K).

Proof. Suppose f(P ) is convex in P , and the optimizer of (3.27) is P ∗. Denote

P = argminP ′ f(P ′), s.t. P ′ ∈ S, K = Φ(P ′),

and

∆P = P ∗ − P, ∆K = Ψ(P )[∆P ].
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We take the directional derivative and get (explanation of key steps below the last line)

∇L(K)[∆K] = lim
t→0+

L(K + t∆K)− L(K)

t

= lim
t→0+

L(K + tΨ(P )[∆P ])− f(P )

t
(B.5)

= lim
t→0+

L(Φ(P ) + tΨ(P )[∆P ])− f(P )

t
(B.6)

= lim
t→0+

L(Φ(P + t∆P )− o(t))− f(P )

t
(B.7)

= lim
t→0+

L(Φ(P + t∆P ))− f(P )

t

= lim
t→0+

minP ′∈S, Φ(P+t∆P )=Φ(P ′) f(P ′)− f(P )

t
(B.8)

= lim
t→0+

minP ′∈S, Φ(P+t∆P )=Φ(P ′) f(P ′)− f(P + t∆P ) + f(P + t∆P )− f(P )

t

= lim
t→0+

minP ′∈S, Φ(P+t∆P )=Φ(P ′) f(P ′)− f(P + t∆P )

t
+∇f(P )[∆P ]. (B.9)

(B.5) and (B.6) replace ∆K and K with expressions in P and ∆P . (B.7) applies the Taylor

expansion of Φ:

Φ(P + t∆P )− (Φ(P ) + tΨ(P )[∆P ]) = o(t).

(B.8) applies Assumption 8, and we plug in K = Φ(P + t∆P ). (B.9) applied the definition of

directional derivative

∇f(P )[∆P ] = lim
t→0+

f(P + t∆P )− f(P )

t
.

Now we bound the first term of (B.9). Note that, since P + t∆P for t > 0 and t → 0+

belongs to the line segment from P to P ∗. Since S is a convex set, we know that the line

segment between to feasible points P ∗ and P is in S. then

P + t∆P ∈ {P ′ | P ′ ∈ S, Φ(P + t∆P ) = Φ(P ′)} ,
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so that f(P + t∆P ) is no less than the minimum of the optimization problem (3.28),

lim
t→0+

minP ′∈S, Φ(P+t∆P )=Φ(P ′) f(P ′)− f(P + t∆P )

t
≤ 0.

∇f(P )[∆P ] is the directional derivative of f(P ) in the direction of P ∗ − P , for a convex

function f , if P is not an optimizer, ∇f(P )[∆P ] is upper bounded by f(P ∗) − f(P ) =

L(K∗)− L(K) < 0.

B.2 Constants for continuous time LQR

Theorem 12 asks for two constants C1, C2. They are bounded differently for different

examples. As an instance, we will calculate the constants for continuous time LQR, quoted

from (Mohammadi et al., 2019b, Appendix B). First P � 0, so we replace singular value by

eigenvalue with P ,

C1 = (2 max{‖L− L∗‖Fλ−1
min(P ), ‖P − P ∗‖Fλ−2

min(P )σmax(L)})−1,

C2 = (2 max{λ−1
min(P ), λ−2

min(P )σmax(L)})−1.

We need upper bounds for P,L and a lower bound for λmin(P ) to guarantee C1, C2 being

finite. We will show the bounds within the sublevel set that {K : L(K) ≤ a}. Since we can

randomly initialize a feasible K0 and run (projected) gradient descent method with respect

to K, if L(K) is gradient dominant, it is reasonable to assume that during all iterations of

the optimization algorithm, the function value is always upper bounded by L(K0), or some

values not too larger than L(K0). So our derivation with a finite sublevel set is reasonable.

Suppose the matrices Q,R � 0, and we consider the sublevel set when L(K) ≤ a. The
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sublevel set gives tr(QP ) + tr(LP−1L>R) ≤ a, so

λmin(R)λ−1
max(P )‖L‖2

F ≤ λmin(R)‖LP−1/2‖2
F

≤ tr(LP−1L>R)

≤ tr(QP ) + tr(LP−1L>R) ≤ a.

So ‖L‖F ≤ a(λmax(P )λ−1
min(R))1/2, and we know from (Mohammadi et al., 2019b, eq(34))

tr(P ) ≤ aλ−1
min(Q). So we can bound P,L

tr(P ) ≤ aλ−1
min(Q),

‖L‖F ≤ a(λmin(Q)λmin(R))−1/2.

Define

ν =
λ2

min(Σ)

4

(
σmax(A)λ

−1/2
min (Q) + σmax(B)λ

−1/2
min (R)

)−2

(Zare et al., 2019, eq(38,40)) suggests λmin(P ) ≥ ν/a. In summary, we upper bounded L, and

upper and lower bounded P in the sublevel set L(K) ≤ a, and those bounds are also true for

L∗, P ∗. We can complete the calculation by inserting the bounds into C1.

C1 = (2 max{‖L− L∗‖Fλ−1
min(P ), ‖P − P ∗‖Fλ−2

min(P )σmax(L)})−1

≥ νλ
1/2
min(Q)λ

1/2
min(R)

4a4
·min

{
a2, νλmin(Q)

}
.

C2 is calculated similarly with upper bound on P,L, P−1.

C2 = (2 max{λ−1
min(P ), λ−2

min(P )σmax(L)})−1

≥ ν

2a3
min

{
a2, νλ

1/2
min(Q)λ

1/2
min(R)

}
.
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B.2.1 Strongly convex parameter of continuous time LQR

In our previous convex formulation of continuous time LQR (3.8), we translate the objective

function as a linear function in the new variables L, P, Z. The problem (3.8) can be slightly

reformulated as

min
L,P

f(L, P ) := tr(QP ) + tr(LP−1L>R), (B.10a)

s.t. A(P ) + B(L) + Σ = 0, P � 0. (B.10b)

Compared with (3.8), (B.10) does not contain the variable Z. Below, we will prove that the

new objective function f(L, P ), restricted within the feasible set, is a strongly convex function,

which is not the case for the linear objective (3.8). In Theorem 2, there is another result with

strongly convex f and the gradient domminance parameter depends on the strongly convex

parameter µ. We also calculate µ of f(L, P ) below.

Lemma 16. Define a sublevel set of of f at level a, consisting of all L, P such that f(L, P ) ≤ a.

Define

ν =
λ2

min(Σ)

4

(
σmax(A)λ

−1/2
min (Q) + σmax(B)λ

−1/2
min (R)

)−2

,

η = ‖B‖
(
ν1/2λmin(Σ)λmin(Q)λ

1/2
min(R)

)−1

,

µ0 =
2λmin(Q)λmin(R)

a(1 + a2η)2
, µ ≥ (‖A−1 ◦ B‖+ 1)−1µ0.

The function f(L, P ) restricted within the feasible sublevel set (B.10) is µ strongly convex.

Proof. Denote A−1 as the inverse of A, a linear operator such that A−1(A(P )) = P . (Mo-

hammadi et al., 2019b, Proposition 1) concludes that the following function h(·) is µ0 strongly

convex.

h(L) = f(L,−A−1(B(L) + Σ)). (B.11)
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Define a perturbation direction (L̃, P̃ ) such that (L+ L̃, P + P̃ ) is feasible. Any feasible

perturbation at the point L, P will satisfy A(P̃ ) + B(L̃) = 0, so P̃ = −A−1(B(L̃)).

Let the strongly convex parameter of f in the feasible directions be µ, we will show its

connection with µ0.

Let L be perturbed by L̃. Apply chain rule to (B.11),

∇2h(L)[L̃, L̃] = ∇2f(L, P )[(L̃,−A−1(B(L̃))), (L̃,−A−1(B(L̃)))], (B.12)

Here∇2h(L)[L̃, L̃] is the Hessian operator of h at L acting on L̃, L̃, which equals 〈L̃,∇2h(L)L̃〉.

The right hand side is defined similarly. Due to the strong convexity of h,

∇2h(L)[L̃, L̃] ≥ µ0‖L̃‖2
F

2
. (B.13)

We perturb f at (L, P ) in direction (L̃, P̃ ) = (L̃,−A−1(B(L̃))). The strongly convex parameter

of f in feasible directions is defined as the positive number µ such that

∇2f(L, P )[(L̃, P̃ ), (L̃, P̃ )] ≥ µ(‖P̃‖2
F + ‖L̃‖2

F )

2

for all (L̃, P̃ ) such that P̃ = −A−1(B(L̃)). The directional Hessian is

∇2f(L, P )[(L̃, P̃ ), (L̃, P̃ )] = ∇2f(L, P )[(L̃,−A−1(B(L̃))), (L̃,−A−1(B(L̃)))]. (B.14)

(B.14) equals (B.12). So that we apply (B.13),

∇2f(L, P )[(L̃, P̃ ), (L̃, P̃ )] ≥ µ0‖L̃‖2
F

2

=
‖P̃‖2

F + ‖L̃‖2
F

2
· µ0‖L̃‖2

F

‖P̃‖2
F + ‖L̃‖2

F

=
‖P̃‖2

F + ‖L̃‖2
F

2
· µ0‖L̃‖2

F

‖A−1(B(L̃))‖2
F + ‖L̃‖2

F

.
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So

µ ≥ (‖A−1 ◦ B‖+ 1)−1µ0.

B.3 Checking the assumptions for examples

B.3.1 Markov jump linear system

Example 2. (Assumptions 4,5) We study the system

x(t+ 1) = Aw(t)x(t) +Bw(t)u(t), w(t) ∈ [N ].

The transition model is

Pr(w(t+ 1) = j|w(t) = i) = ρij ∈ [0, 1], ∀t ≥ 0.

Let Pr(w(0) = i) = pi, K = [K1, ..., KN ]. Define the cost as

L(K) = Ew,x0

∞∑
t=0

x(t)>Qx(t) + u(t)>Ru(t), u(t) = Kw(t)x(t), Pr(w(0) = i) = pi.

Let the convex formulation be

min tr(QX0) + tr(Z0R), (B.15a)

s.t. X0 =
N∑
i=1

Xi, Z0 =
N∑
i=1

Zi,

Zi Li

L>i Xi

 � 0, (B.15b)

Xi − piΣ =
N∑
j=1

Uji,

 ρ−1
ji Uji AjXj +BjLj

(AjXj +BjLj)
> Xj

 � 0, ∀i, j ∈ [N ]. (B.15c)

Then the pair of problems satisfy Assumptions 4,5.
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Proof. We start from the Grammian matrices below. Let Yi(t) = E(x(t)x(t)>1w(t)=i), and

Xi =
∑∞

t=0 Yi(t). Then Jansch-Porto et al. (2020) suggests

Yi(t+ 1) =
N∑
j=1

ρji(Aj +BjKj)Yj(t)(Aj +BjKj)
>.

Then we can sum over the equation over time t,

N∑
j=1

ρji(Aj +BjKj)(
∞∑
t=0

Yj(t))(Aj +BjKj)
>

=
∞∑
t=0

N∑
j=1

ρji(Aj +BjKj)Yj(t)(Aj +BjKj)
>

=
∞∑
t=0

Yi(t+ 1) =
∞∑
t=1

Yi(t)

=
∞∑
t=0

Yi(t)− Yi(0)

So that

N∑
j=1

ρji(Aj +BjKj)Xj(Aj +BjKj)
> = Xi − Yi(0).

Let Li = KiXi. We will relax the recursion as

N∑
j=1

ρji(AjXj +BjLj)X
−1
j (AjXj +BjLj)

> �Xi − Yi(0). (B.16)

In our setting E(x(0)x(0)>) = Σ so that Yi(0) = piΣ.

Next, we will show that, if we solve the problem (B.15) with the extra constraints

Ki = LiX
−1
i , then the function value is equal to the LQ cost of the system with controllers

Ki’s.

First, if we minimize over Zi’s, then we have Zi = LiXiL
>
i . Moreover, the constraints
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(B.15c) are equivalent to the relaxation (B.16). Suppose the equal signs are achieved in

(B.16), then Xi’s will be the Grammian of the system
∑∞

t=0E(x(t)x(t)>1w(t)=i) and hence

the function value is equal to the LQ cost (Costa, 2005, §4.4.2, Prop. 4.8). Now, it remains

to show that, if not all (B.16) (with enumerating different j’s) achieve equal signs, then the

function value will only increase and not be optimal.

We define N matrices W1, ...,WN , such that Wi � Yi(0) = piΣ, and

N∑
j=1

ρji(Aj +BjKj)Xj(Aj +BjKj)
> = Xi −Wi.

This corresponds to the Markov jump system

x̃(t+ 1) = Aw(t)x̃(t) +Bw(t)u(t), w(t) ∈ [N ].

with the same parameters, transition probability matrix, controllers and a different initial

condition

E(x̃(t)x̃(t)>1w(t)=i) = Wi � piΣ = E(x(t)x(t)>1w(t)=i). (B.17)

Let Ỹi(t) = E(x̃(t)x̃(t)>1w(t)=i) (so that Ỹi(0) = Wi), and let X̃i =
∑∞

t=0 Ỹi(t). We will

show that Ỹi(t) � Yi(t) for all i = 1, ..., N and all t ≥ 0.

We use induction over t. When t = 0, we assumed in (B.17) that Ỹi(0) � Yi(0) hold for

all i ∈ [N ]. And we have the recursions

Ỹi(t+ 1) =
N∑
j=1

ρji(Aj +BjKj)Ỹj(t)(Aj +BjKj)
>,

Yi(t+ 1) =
N∑
j=1

ρji(Aj +BjKj)Yj(t)(Aj +BjKj)
>.

If Ỹi(t) � Yi(t) for a certain t ≥ 0 and for all i ∈ [N ], then the recursion implies that
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Ỹi(t+ 1) � Yi(t+ 1) for all i ∈ [N ]. We sum over t and get X̃i �Xi, so that the objective

function with X̃i’s is larger than with Xi’s unless X̃i = Xi for all i ∈ [N ].

As a result, the optimization problem (B.15) with the extra constraints Ki = LiX
−1
i

achieves minimum when Zi = LiXiL
>
i and (B.16) achieves equality for all i ∈ [N ]. This

means all Xi’s are the Grammians
∑∞

t=0E(x(t)x(t)>1w(t)=i) of the system, so that the

objective function value is equal to LQ cost.

B.3.2 Minimizing L2 gain

Example 3. (Assumptions 4,5) We consider minimizing the L2 gain of a closed loop system.

The input output system is

ẋ = Ax+Bu+Bww, y = Cx+Du (B.18)

and we use the state feedback controller u = Kx, and let

L(K) := ( sup
‖w‖2=1

‖y‖2)2.

If we minimize the function L(K), this problem can be reformulated as

min
L,P,γ

f(L, P, γ) := γ

s.t.

AP + PA> +BL+ L>B> +BwB
>
w (CP +DL)>

CP +DL −γI

 � 0.

And K∗ = L∗P ∗−1. This pair of problems satisfy Assumptions 4,5.



152

Proof. We will check Assumption 5, which means checking

L(K)
?
= min

L,P,γ
γ (B.19a)

s.t.

AP + PA> +BL+ L>B> +BwB
>
w (CP +DL)>

CP +DL −γI

 � 0, LP−1 = K.

(B.19b)

Note that, the intermediate step in (Boyd et al., 1994, Sec 7.5.1) is

L(K) = min
P,γ

γ, s.t. (B.20a)(A+BK)P + P (A+BK)> +BwB
>
w P>(C +DK)>

(C +DK)P −γI

 � 0. (B.20b)

Denote the optimizer of (B.19) by L̂, P̂ , γ̂, and the optimizer of (B.20) by P̌ , γ̌.

Note γ̂ ≤ γ̌ because (γ, L, P ) = (γ̌, KP̌ , P̌ ) is feasible in (B.19). If (B.19) is not true (the

equal sign cannot be satisfied), then γ̂ < γ̌, we can replace P̌ , γ̌ with P̂ , γ̂ in (B.20) and it’s

still feasible due to the feasibility in (B.19). Thus the optimality condition of P̌ , γ̌ in (B.20)

is violated, which contradicts the assumption that (B.19) is not true. Then we claim that

(B.19) is true. The dissipativity uses the same change of variable and we omit the proof in

Boyd et al. (1994).

B.4 Multi-objective and mixed controller design

In this part, we study a few synthesis problems with dynamical controllers, where the

objectives are about (e.g., norms of) transfer functions of the closed form system. We study

the dynamical system with state, disturbance, input, output, and controller’s input x,w, u, z, y
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with the following dynamics 
ẋ

z

y

 =


A Bw B

Cz D E

C F 0



x

w

u

 .

The controller follows ẋc
u

 =

Ac Bc

Cc Dc

xc
y

 . (B.21)

We will denote the transfer function of the closed loop system as T , and the control problems

below are typically related to T .

In the next few subsections, we will present a few control problems:

1. The variables are the controller parameters

Ac Bc

Cc Dc

.
2. The objective functions are H2 norm, H∞ norm of T and the weighted sum of

norms.

3. The book (Scherer & Weiland, 2000, eq(4.2.15)) defines the parameterization of the prob-

lem, by introducing the variables that typically make the objective functions

convex:

v = [X, Y,K,L,M,N ].

4. Mapping of the variables. Define invertible matrices U, V such that UV > = I−XY .

The matrices Ac, Bc, Cc, Dc are the unique solution ofK L

M N

 =

U XB

0 I

Ac Bc

Cc Dc

V > 0

CY I

+

XAY 0

0 0

 . (B.22)

The change of variable enables us to make some control problems as convex optimization,
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listed below. For simplicity of notation, let

X =

Y I

I X

 , A =

AY +BM A+BNC

K AX + LC

 , (B.23)

B =

Bw +BNF

XBw + LF

 , C =
[
CzY + EM Cz + ENC

]
, D = D + ENF. (B.24)

Remark 6. The mapping in (B.22) can be written as

Ac Bc

Cc Dc

 = Φ(v) :=

U XB

0 I

−1 K −XAY L

M N

V > 0

CY I

−1

where Φ plays the role in (3.28). We propose a few control problems with convex forms in

the next few subsections. The variables of nonconvex objective functions are Ac, Bc, Cc, Dc,

the new objective functions with respect to v = [X, Y,K,L,M,N ] are convex, and the two

forms satisfy Assumptions 7, 8. Thus the cost functions with respect to matrix

Ac Bc

Cc Dc

 are

gradient dominant.

Remark 7. In the following subsections, we refer to the result of Scherer & Weiland (2000)

that, the optimal H∞ design, H2 design and the multi-objective and robust designs, can

be made convex optimization problems with the proposed way. However, this map is not

guaranteed to be smooth. When matrices U, V are close to singular, the inverses ofU XB

0 I

 ,
V > 0

CY I


are not well-defined. This makes the nonconvex objective function not gradient dominant.
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For example, Tang et al. (2021) discusses the LQG problem. The dynamics takes the form

ẋ(t) = Ax(t) +Bu(t) + w(t), y(t) = Cx(t) + v(t)

where w(t) ∼ N (0,W ), v(t) ∼ N (0, V ). The controller takes the form (B.21). The cost

function is

lim
T→∞

1

T
E

(∫ T

t=0

(x(t)>Qx(t) + u(t)>Ru(t))dt

)
.

The paper suggests that the set of stabilizing controllers of LQG problem can be non-connected,

and the cost has saddle points. Thus, to apply our theorem and claim that the objectives

with respect to controller K are all gradient dominant, we have to restrict the problem in

the set where the map is smooth, typically around the global minimum. We will review some

controller design problems based on this map in the following subsections.

B.4.1 H∞ design

(Scherer & Weiland, 2000, §4.2.3) The goal in this part is to minimize the H∞ norm of the

closed loop system’s transfer function by designing the optimal controller. Let the transfer

function of the closed form system be T . The problem with its raw, nonconvex form is to

minimize the ‖T ‖H∞ over Ac, Bc, Cc, Dc, and we will propose the convex formulation – the

change of variable trick such that the argument becomes v. The problem takes the form:

min γ,

s.t. X � 0,


A > + A B C >

B> −γI D>

C D −γI

 � 0.

If we fix all other parameters listed in v and optimize over γ, then γ∗ (that depends on v)

is the H∞ norm value of the closed loop system with the mapping from v to controller by
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(B.22). If we minimize over γ and v, then we can get optimal H∞ design.

B.4.2 H2 design

(Scherer & Weiland, 2000, §4.2.5) This part is similar to H∞ design. Suppose the goal is to

minimize ‖T ‖H2 , one can alternatively solve

min γ,

s.t.

A > + A B

B> −γI

 � 0, D = 0,

X C >

C Z

 � 0, tr(Z) ≤ γ.

If we fix all other parameters and optimize over γ, Z, then γ∗ (that depends on v) is the H2

norm value of the closed loop system with the mapping from v to controller by (B.22). If we

minimize over γ, Z and v, then we can get optimal H2 design.

B.4.3 Multi-objective synthesis

(Scherer & Weiland, 2000, §4.3) Let the system be


ẋ

z1

z2

y

 =


A B1 B2 B

C1 D1 D12 E1

C2 D21 D2 E2

C F1 F2 0




x

w1

w2

u

 (B.25)

Now we study the mixed design for H∞ design from z1 to w1 and H2 design from z2 to w2.

We keep the mapping (B.22) and the change of parameter (B.23), but replace (B.24) by

Bi =

Bi +BNFi

XBi + LFi

 , Ci =
[
CiY + EiM Ci + EiNC

]
, Di = Di + EiNFi.

for i = 1, 2. Suppose we are given a positive number λ and hope to study ‖T1‖H∞ + λ‖T2‖H2
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where Ti is the transfer function of the i-th system (z1 to w1, z2 to w2), then we can write

min γ1 + λγ2, (B.26)

s.t.


A > + A B1 C >1

B>1 −γ1I D>1

C1 D1 −γ1I

 � 0, (B.27)

A > + A B2

B>2 −γ2I

 � 0, D2 = 0,

X C >2

C2 Z

 � 0, tr(Z) ≤ γ2. (B.28)

If we fix all other parameters and optimize over γ1, γ2, Z, then the function value is the mixed

H∞/H2 norm value of the closed loop system with the mapping from v to controller by (B.22).

If we minimize over γ1, γ2, Z and v, then we can get the optimal mixed H∞/H2 design.

B.4.4 Robust state feedback control

(Scherer & Weiland, 2000, §8.1.2) We study the robust state feedback control problem, where

the robustness corresponds to a system with uncertain parameters, denoted by ∆ below. We

apply the system model (B.25). “State feedback” means that C = I and F1, F2 = 0. Let N∆

be a positive integer. The connection between w1 and z1 is an uncertain channel

w1(t) = ∆(t)z1(t)

for any

∆(t) ∈ ∆c := conv{0,∆1, ...,∆N∆
}.

The goal is to minimize a certain norm of the transfer function from z2 to w2, which can

be H2 norm, H∞ norm studied in the previous part. We consider minimizing the norms

under an extra constraint when the closed loop system achieves stability with z1 to w1 (z1

with finite norm) and robust quadratic performance with z2 to w2 via a matrix Pp. The
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robust quadratic performance is defined as: there exists a matrix Pp,

Pp =

Q̃p S̃p

S̃>p R̃p

 , P−1
p =

Qp Sp

S>p Rp


such that R̃p � 0, Qp ≺ 0, and

∫ ∞
0

w2(t)

z2(t)

> Pp
w2(t)

z2(t)

 dt ≤ ε‖w2‖2
H2

for some ε > 0.

Define new variables Q,S,R in addition to v = [X, Y,K,L,M,N ], and let M replace

M ←



−(AY +BM)> −(C1Y + E1M)> −(C2Y + E2M)>

I 0 0

−B>1 −D>1 −D>21

0 I 0

−B>2 −D>12 −D>2
0 0 I


.

The constraints, which is proven to be convex in (Scherer & Weiland, 2000, §8.1.2) can be
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written as

R � 0, Q ≺ 0,

 I

−∆j

>  Q S

S> R

 I

−∆j

 ≺ 0, ∀j ∈ [N∆]

Y � 0, M>



0 I 0 0 0 0

I 0 0 0 0 0

0 0 Q S 0 0

0 0 S> R 0 0

0 0 0 0 Qp Sp

0 0 0 0 S>p Rp


M � 0.

For example, if we aim to minimize the H2 norm of the transfer function from z2 to w2,

then we can minimize γ2 subject to (B.28) and the constraints above. With the convex

formulation, if we apply policy gradient descent with respect to H2 norm of the transfer

function from z2 to w2 with robust stability of system 1 (z1 with finite H2 norm) and robust

quadratic performance constraints of system 2, then policy gradient descent converges to

globally optimal controller.

B.4.5 Discrete time system

(Scherer & Weiland, 2000, §4.6) Suppose we study the discrete time system, and we define

the system in a similar way of defining the continuous time system:
x(t+ 1)

z1(t)

z2(t)

y(t)

 =


A B1 B2 B

C1 D1 D12 E1

C2 D21 D2 E2

C F1 F2 0




x(t)

w1(t)

w2(t)

u(t)

 ,
xc(t+ 1)

u(t)

 =

Ac Bc

Cc Dc

xc(t)
y(t)

 .

Now we study the mixed design for H∞ design from z1 to w1 and H2 design from z2 to w2.

Suppose we are given a positive number λ and hope to study ‖T1‖H∞ + λ‖T2‖H2 where Ti is
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the transfer function of the i-th system (z1 to w1, z2 to w2), then we can write

min γ1 + λγ2,

s.t.


X 0 A > C >1

0 γ1I B>1 D1

A B1 X 0

C1 D1 0 γ1I

 � 0, tr(Z) ≤ γ2,


X A B2

A > X 0

B>2 0 γ2I

 � 0,


X 0 C2

0 X D2

C2 D2 Z

 � 0.

If we fix all other parameters and optimize over γ1, γ2, Z, then the function value is the

mixed H∞/H2 value of the closed loop system with the mapping from v. If we minimize over

γ1, γ2, Z and v, then we can get the optimal mixed H∞/H2 design.

B.5 System level synthesis with infinite horizon

We studied the landscape of the optimal control problem where the variables are matrices

(which are finite dimensional), and SLS for finite horizon problem was an example. Generally,

SLS also works with the infinite horizon problem. In this regime, the variables are transfer

functions and they are infinite dimensional. In practice, when the problem is made convex,

one can parameterize the transfer function (say as finite impulse response) and minimize

the cost with respect to the finite dimensional parameters. However, Theorem 2 does not

apply to the infinite dimensional optimization problems, and it is not obvious that the finite

dimensional parameterization satisfies the assumptions for our main theorem. We review the

infinite horizon SLS here. A future direction is to judge whether the Lojasiewicz inequality

holds in the space of transfer function or its parameterized form, and how to analyze it using

SLS.

Example 4. (System level synthesis with infinite horizon (Anderson et al., 2019)) Suppose
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one has a discrete time dynamical system with

x(t+ 1) = Ax(t) +Bu(t) + w(t).

One can apply a dynamic controller K(z). The goal is to find the optimial controller which

minimizes the LQR cost where u(z) = K(z)x(z)

L(K) = lim
T→∞

1

T

T∑
t=0

x(t)>Qx(t) + u(t)>Ru(t).

Suppose x0, wt are i.i.d. from N (0,Σ). The SLS defines two transfer functions ΦX(z),ΦU (z),

and solve the following convex optimization problem

min
ΦX(z),ΦU (z)

∥∥∥∥∥∥
Q1/2ΦX(z)

R1/2ΦU(z)

Σ1/2

∥∥∥∥∥∥
H2

,

s.t.
[
zI − A −B

]ΦX(z)

ΦU(z)

 = I, ΦX(z),ΦU(z) ∈ 1

z
RH∞.

Let the optimizer be Φ∗U(z),Φ∗X(z). The optimal controller is K∗(z) = Φ∗U(z)(Φ∗X(z))−1.

B.6 Conditions of convexifiable nonconvex cost

We consider the pair of problems in Theorem 2, and ask the question: what property of

the nonconvex cost function L(K) allows us to reformulate the problem (3.9) as a convex

optimization problem (3.10)? In this section we propose the following lemma.

Lemma 17. Suppose Assumptions 4, 6 hold, and L(LP−1) as a function of L, P is differen-

tiable.We define the notation ∇2
L,PL(LP−1)[Γ1,Γ2] as in (B.29). If ∇2

L,PL(LP−1)[Γ1,Γ2] > 0

for all (L, P ) ∈ S and all (Γ1,Γ2) such that A(Γ2) + B(Γ1) = 0, then we can define a convex

function f(L, P ) so that Assumption 4 holds.

For the convex formulation with the above lemma, we can apply Theorem 2 so that all
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stationary points of L(K) are global minimum.

Proof. Suppose we observe the simple version (3.11). We know from Assumption 6 that,

f(L, P ) = L(K) = L(LP−1) is convex in L, P . We take the Hessian and ask for

∇

 ∇L(LP−1)P−1

−P−1L>∇L(LP−1)P−1

 � 0.

Note that this is a tensor and it is positive definite. For simplicity, we analyze the directional

Hessian as the following. We expand the left hand side of the inequality above and define

∇2
L,PL(LP−1)[Γ1,Γ2] as

∇2
L,PL(LP−1)[Γ1,Γ2]

:= ∇2L(LP−1)[Γ1G
−2,Γ1]− 2∇2L(LP−1)[Γ1, LP

−3Γ2]

− 2〈Γ1,∇L(LP−1)P−1Γ2P
−1〉+ 2〈Γ2, LP

−1Γ2P
−1∇L(LP−1)P−1〉

+∇2L(LP−1)[LP−2Γ2, LP
−2Γ2].

(B.29)

This is the directional Hessian of L with respect to (L, P ) in direction (Γ1,Γ2). Thus, if

∇2
L,PL(LP−1)[Γ1,Γ2] > 0 for all (L, P ) ∈ S and all (Γ1,Γ2) such that A(Γ2) + B(Γ1) = 0

(which is a condition on nonconvex cost L), we know that f(L, P ) is convex in L, P and the

convex formulation can be made.
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Appendix C

APPENDIX OF CHAPTER 4

C.1 Sample complexity for MISO and MIMO problems

For multi-rollout case, we only observe the output at time 2n− 1, and let u2n = 0, we have

y2n−1 =
2n−2∑
i=1

CA2n−2−iBui +Du2n−1. (C.1)

Denote the impulse response by h ∈ Rp(2n−1), which is a block vector

h =


h(1)

h(2)

...

h(2n−1)


where each block h(i) ∈ Rp. β ∈ Rp(2n−1) is a weighted version of h, with weights

β(i) = Kih
(i)

and

β =


β(1)

β(2)

...

β(2n−1)


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Define the reweighted Hankel map for the same h by

G(β) =


β(1)/K1 β(2)/K2 β(3)/K3 ...

β(2)/K2 β(3)/K3 β(4)/K2 ...

...


T

∈ Rn×pn

and G∗ is the adjoint of G. We define each rollout input u1, ..., u2n−1 as independent Gaussian

vectors with

ui ∼ N (0, K2
i I) (C.2)

Now let U ∈ RT×p(2n−1), each entry is iid standard Gaussian. Let y ∈ RT be the concatenation

of outputs

y =


y1

y2

...

yT


where yi ∈ Rm is defined in (C.1). We consider the question

min
β′

‖G(β′)‖∗

s.t., ‖Uβ′ − y‖2 ≤ δ

(C.3)

where the norm of overall (state and output) noise is bounded by δ. We will present the

following theorem, which generalizes the result of Cai et al. (2016) from SISO case to MISO

case.

Theorem 13. Let β be the true impulse response. If T = Ω((
√
pR log n+ ε)2) is the number

of output observations, C is some constant, the solution β̂ to (C.3) satisfies ‖β − β̂‖2 ≤ 2δ/ε
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with probability

1− exp

(
−1

2
(
√
T − 1− C(

√
pR log n+ ε)− ε)2

)
.

When the system output is y = Uβ + z and z is i.i.d. Gaussian noise with variance σ2
z , we

have that ‖β − β̂‖2 . (
√
pR + ε)σz log n with probability (Oymak et al., 2013, Thm 1)

1− 6 exp

(
−1

2
(
√
T − 1− C(

√
pR log n+ ε)− ε)2

)
.

This theorem says that when the input dimension is p, the sample complexity isO(
√
pR log n).

The proof strongly depends on the following lemma (Cai et al. (2016); Gordon (1988)):

Lemma 18. Define the Gaussian width1

w(S) := Eg(sup
γ∈S

γTg)

where g is standard Gaussian vector of size p. Let Φ = I(β) ∩ S where S is unit sphere. We

have

P (min
z∈Φ
‖Uz‖2 < ε) ≤ exp

(
−1

2
(
√
T − 1− w(Φ)− ε)2

)
.

We will present the proof in Appendix C.1.1.

MIMO. For MIMO case, we say output size is m. We take each channel of output as a

1The Gaussian width of the normal cone of (4.6) and (C.3) are different up to a constant Banerjee et al.
(2014).
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system of at most order R, and solve m problems

Pi : min
βi

‖G(βi)‖∗

s.t., ‖Uxi − yi‖2 ≤ δ,

yi ∈ RT is the ith output.

and for each problem we have failure probability equal to (C.5), which means the total failure

probability is

m exp

(
−1

2
(
√
T − 1− w(Φ)− ε)2

)

so we need T = O((
√
pR log n+log(m)+ε)2). Let the solution to those optimization problems

be [x∗1, ..., x
∗
m], and the true impulse response be [x̂1, ..., x̂m], then ‖[x∗1, ..., x∗m]−[x̂1, ..., x̂m]‖F ≤

√
mδ/ε with probability

1− exp

(
−1

2
(
√
T − 1− w(Φ)− ε)2

)

Another way is that, for each rollout of input data, the output is m dimensional, but we

take 1 channel of output from the observation and throw away other m − 1 output. And

we uniformly pick among channels and get T observations for each channel, and in total

mT observations/input rollouts. In this case, when the sample complexity is m
√
pR log n

(m times of before), we can recover the impulse response with Frobenius norm
√
mδ/ε with

probability

1− exp

(
−1

2
(
√
T/m− 1− w(Φ)− ε)2

)

C.1.1 Proof of Theorem 13

We will only prove the first equation.
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Proof. Let I(β) be the descent cone of ‖G(β)‖∗ at β, we have the following lemma:

Lemma 19. Assume

min
z∈I(β)

‖Uz‖2

‖z‖2

≥ ε,

then ‖β − β̂‖2 ≤ 2δ/ε.

(Proof is same in (Cai et al., 2016, Lemma 1), we omit it here) To prove Theorem 13, we

only need lower bound LHS with Lemma 19. The following lemma gives the probability that

LHS is lower bounded.

Lemma 20. Define the Gaussian width

w(S) := Eg(sup
γ∈S

γTg) (C.4)

where g is standard Gaussian vector of size p. Let Φ = I(β) ∩ S where S is unit sphere. We

have

P (min
z∈Φ
‖Uz‖2 < ε) ≤ exp

(
−1

2
(
√
T − 1− w(Φ)− ε)2

)
. (C.5)

Now we need to study w(Φ).

Lemma 21. (Cai et al. (2016) eq. (17)) Let I∗(β) be the dual cone of I(β), then

w(Φ) ≤ E( min
γ∈I∗(β)

‖g − γ‖2). (C.6)

Note that I∗(β) is just the cone of subgradient of G(β), so it can be written as

I∗(β) = {G∗(V1V
T

2 +W )|V T
1 W = 0,WV2 = 0, ‖W‖ ≤ 1}
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where G(β) = V1ΣV T
2 is the SVD of G(β). So

min
γ∈I∗(x̂)

‖g − γ‖2 = min
λ,W
‖λG∗(V1V

T
2 +W )− g‖2.

For RHS, we have

‖λG∗(V1V
T

2 +W )− g‖2 = ‖λGG∗(V1V
T

2 +W )− G(g)‖F

= ‖λ(V1V
T

2 +W )− G(g)‖F + ‖λ(I − GG∗)(V1V
T

2 +W )‖F

≤ ‖λ(V1V
T

2 +W )− G(g)‖F .

Let PW be projection operator onto subspace spanned by W , i.e.,

{W |V T
1 W = 0,WV2 = 0}

and PV be projection onto its orthogonal complement. Choose λ = ‖PW (G(g))‖ and

W = PW (G(g))/λ.

‖λ(V1V
T

2 +W )− G(g)‖F = ‖G(g)− PW (G(g))− ‖PW (G(g))‖V1V
T

2 ‖F

≤ ‖PV (G(g))− ‖PW (G(g))‖V1V
T

2 ‖F

≤ ‖PV (G(g))‖F + ‖PW (G(g))‖‖V1V
T

2 ‖F

= ‖PV (G(g))‖F +
√
R‖PW (G(g))‖

= ‖PV (G(g))‖F +
√
R‖G(g)‖.

Bound the first term by (note V1 and V2 span R dimensional space, so V1 ∈ Rn×R and
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V2 ∈ Rpn×R)

‖PV (G(g))‖F = ‖V1V
T

1 G(g) + (I − V1V
T

1 )G(g)V2V
T

2 ‖F

≤ ‖V1V
T

1 G(g)‖F + ‖G(g)V2V
T

2 ‖F

≤ 2
√
R‖G(g)‖.

we get

w(Φ) ≤ E(min
λ,W
‖λG∗(V1V

T
2 +W )− g‖2)

≤ E(‖λG∗(V1V
T

2 +W )− g‖2)
∣∣
λ=‖PW (G(g))‖,W=PW (G(g))/λ

≤ 3
√
R‖G(g)‖.

We know that, if p = 1, then E‖G(g)‖ = O(log(n)). For general p, let

g(i) = [g
(i)
1 , ..., g(i)

p ]T ,

we rearrange the matrix as

Ḡ(g) =




g
(1)
1 g

(2)
1 /
√

2 ...

g
(2)
1 /
√

2 g
(3)
1 /
√

3 ...

...




g
(1)
2 g

(2)
2 /
√

2 ...

g
(2)
2 /
√

2 g
(3)
2 /
√

3 ...

...

 ...


= [G1, ..., Gp]

where expectation of operator norm of each block is log(n). Then (note v below also has a
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block structure [v(1); ...; v(n)])

‖Ḡ(g)‖ = max
u,v

uT Ḡ(g)v

‖u‖‖v‖

= max
u,v1,...,vp

p∑
i=1

uTGiv
(i)

‖u‖‖v‖

≤ max
v1,...,vp

O(log(n))

∑p
i=1 ‖v(i)‖√∑p
i=1 ‖v(i)‖2

≤ O(
√
p log(n)).

And ‖Ḡ(g)‖ = ‖G(g)‖. So we have ‖G(g)‖ =
√
p log(n). So w(Φ) = C

√
pR log(n). Get

back to (C.5), we want the probability be smaller than 1, and we get

√
T − 1− C

√
pR log n− ε > 0

thus T = O((
√
pR log(n) + ε)2).

At the end, we give a different version of Theorem 13. Theorem 13 in Cai et al. (2016)

works for the any noise with bounded norm. Here we consider the iid Gaussian noise, and

use the result in Oymak et al. (2013), we have the following result.

Theorem 14. Let the system output y = Uβ+z where U entries are iid Gaussian N (0, 1/T ),

β is the true system parameter and z ∼ N (0, σ2
z). Then (C.3) recovers β̂ with error ‖β̂−β‖2 ≤

w(Φ)‖z‖2/
√
T .

√
pRσz log n with high probability.

Remark 8. Since the power of U is n times of that of Ū and the variance of U is 1/T ,

σz =
√
n/Tσ, we have ‖ĥ− h‖2 ≤ ‖β̂ − β‖2 .

√
pnR
T
σ log n.

C.2 Proof of regularization algorithm’s spectral norm error

Theorem 4. Consider the problem (HNN) in the MISO (multi-input single-output) setting

(m=1, p inputs). Suppose the system is order R, Ū ∈ RT×(2n−1)p, each row consists of
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an input rollout u(i) ∈ R(2n−1)p, and the scaled U = ŪK−1 has i.i.d Gaussian entries. Let

snr = E[‖u‖2/n]/E[‖z‖2] and σ = 1/
√

snr. Let λ = σ
√

pn
T

log(n). Then, the problem (HNN)

returns ĥ such that

‖ĥ− h‖2√
2

≤ ‖H(ĥ− h)‖ .


√

np
snr×T log(n) if T & min(R2, n)√
Rnp

snr×T log(n) if R . T . min(R2, n).

(4.7)

We will prove the first case of (4.7). The second case is a direct application of Theorem

14.

Lemma 22. Suppose ξ ∼ N (0, σξI), T . pR2 log2 n, and U has iid Gaussian entries with

E(U>U) = 1. Then, we have that E(Γ) < 0.5, and P (Γ < 0.5) ≥ 1−O(R log n
√
p/T ). In

this case ‖G(β̂ − β)‖ . σξ
√
p log n.

Remark 9. To be consistent with the main theorem, we need to find the relation between

σξ and SNR, or σ. We do the following computation: (1) G(β̂ − β) = H(ĥ − h), so we

are bounding the Hankel spectral norm error here; (2) Each column of the input is unit

norm, so each input is N (0, 1/T ), and the average power of input is 1/T ; (3) Because of the

scaling matrix K, the actual input of Ū is n times the power of entries in U . With all above

discussion, we have σξ = σ
√
n/T , which results in ‖G(β̂ − β)‖ .

√
np
T
σ log n.

Proof. Now we bound ‖G(β̂−β)‖ by partitioning it to ‖G(I−UTU )(β̂−β)‖ and ‖G(UTU (β̂−

β))‖. We have

‖G(I −UTU)(β̂ − β)‖ = ‖G(I −UTU)G∗G(β̂ − β)‖

≤ ‖G(I −UTU)G∗‖2,GJ (β)‖G(β̂ − β)‖

= Γ‖G(β̂ − β)‖.

(C.7)



172

And then we also have

‖G(UTU (β̂ − β))‖ = ‖GUT (U β̂ − y + ξ)‖

≤ ‖GUT (U β̂ − y)‖+ ‖G(UT ξ)‖.

Since β̂ is the optimizer, we have

UT (U β̂ − y) + λG∗(V̂1V̂
T

2 + Ŵ ) = 0,

where G(β̂) = V̂1Σ̂V̂ T
2 is the SVD of G(β̂), Ŵ ∈ Rn×n where V̂ T

1 Ŵ = 0, Ŵ V̂2 = 0, ‖Ŵ‖ ≤ 1.

We have

‖G(UTU(β̂ − β))‖ ≤ ‖G(UT ξ)‖+ λ. (C.8)

Combining (C.7) and (C.8), we have

‖G(β̂ − β)‖ ≤ ‖G(I −UTU)(β̂ − β)‖+ ‖G(UTU(β̂ − β))‖

≤ Γ‖G(β̂ − β)‖+ ‖G(UT ξ)‖+ λ

or equivalently,

‖G(β̂ − β)‖ ≤ ‖G(UT ξ)‖+ λ

1− Γ
, Γ = ‖G(I −UTU)G∗‖2,GJ (β).

Bounding Γ. Denote the SVD of G(β) = V1ΣV T
2 . Denote projection operators PV (M) =

V1V
T

1 M + MV2V
T

2 − V1V
T

1 MV2V
T

2 and PW (M) = M − PV (M). First we prove some side



173

results for later use. From optimality of β̂, we have

1

2
‖y −U β̂‖2 + λ‖Gβ̂‖∗ ≤

1

2
‖y −Uβ‖2 + λ‖Gβ‖∗ =

1

2
‖ξ‖2 + λ‖Gβ‖∗

⇒ 1

2
‖Uβ + ξ −U β̂‖2 + λ‖Gβ̂‖∗ ≤

1

2
‖ξ‖2 + λ‖Gβ‖∗

⇒ 1

2
‖U(β − β̂)‖2 + ξTU(β − β̂) + λ‖Gβ̂‖∗ ≤ λ‖Gβ‖∗

⇒ λ‖Gβ̂‖∗ ≤ λ‖Gβ‖∗ + ξTU(β̂ − β)

⇒ ‖Gβ̂‖∗ − ‖Gβ‖∗ ≤
‖G(UT ξ)‖

λ
‖G(β̂ − β)‖∗ (C.9)

Eq.(C.9) is an important result to note, and following that,

‖Gβ̂‖∗ − ‖Gβ‖∗ ≤
‖G(UT ξ)‖

λ
‖G(β̂ − β)‖∗

⇒ 〈G(β̂ − β), V1V
T

2 +W 〉 ≤ ‖G(UT ξ)‖
λ

‖G(β̂ − β)‖∗

⇒ ‖PWG(β̂ − β)‖∗ ≤ −〈G(β̂ − β), V1V
T

2 〉+
‖G(UT ξ)‖

λ
‖G(β̂ − β)‖∗

⇒ ‖PWG(β̂ − β)‖∗ ≤ ‖PV G(β̂ − β)‖∗ +
‖G(UT ξ)‖

λ
(‖PV G(β̂ − β)‖∗ + ‖PWG(β̂ − β)‖∗)

⇒ ‖PWG(β̂ − β)‖∗ ≤
1 + ‖G(UT ξ)‖

λ

1− ‖G(UT ξ)‖
λ

‖PV G(β̂ − β)‖∗ (C.10)

Let U be iid Gaussian matrix with scaling E(UTU ) = I. Here we need to study the Gaussian

width of the normal cone w(J (β)) of (4.6). Banerjee et al. (2014) proves that, if (C.9) is

true, and λ ≥ 2‖G(UT ξ)‖, then the Gaussian width of this set (intersecting with unit ball) is

less than 3 times of Gaussian width of {β̂ : ‖G(β̂)‖∗ ≤ ‖G(β)‖∗}, which is O(
√
R log n) (Cai

et al., 2016). A simple bound is that, let δ = β̂ − β, Γ can be replaced by

max ‖G((I −UTU )δ)‖/‖G(δ)‖

subject to β̂ ∈ J (β). With (C.10), we have ‖PWG(δ)‖∗ ≤ 3‖PV G(δ)‖∗. Denote σ = ‖G(δ)‖,

we know that σ ≥ max{‖PWG(δ)‖, ‖PV G(δ)‖} and ‖PV G(δ)‖ ≥ ‖PV G(δ)‖∗/(2R). And
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simple algebra gives that

max
0<σi<σ,

∑
i σ=S

∑
i

σ2
i ≤ Sσ.

So let σi be singular values of PV G(δ) or PWG(δ), and S = ‖PV G(δ)‖∗ or ‖PWG(δ)‖∗,

σ

‖PV G(δ)‖F
≥

√
‖PV G(δ)‖∗

2R‖PV G(δ)‖∗
≥
√

1/2R

σ

‖PWG(δ)‖F
≥

√
‖PV G(δ)‖∗

2R‖PWG(δ)‖∗
≥
√

1/6R

the second last inequality comes from (C.10). Thus if ‖(I − UTU)δ‖ = O(1/
√
R)‖δ‖, in

other words, ‖G((I −UTU)δ)‖F = O(1/
√
R)‖G(δ)‖F , whenever δ in normal cone, we have

‖G((I −UTU)δ)‖ ≤ ‖G((I −UTU)δ)‖F ≤ O(1/
√
R)‖G(δ)‖F ≤ ‖G(δ)‖ (C.11)

so Γ < 1. To get this, we need
√
T/w(J (β)) = O(

√
R) where T = O(pR2 log2 n) (Vershynin,

2018, Thm 9.1.1), still not tight in R, but O(min{n,R2 log2 n}) is as good as Oymak &

Ozay (2018) and better than Sarkar et al. (2019), which are O(n) and O(n2) correspondingly.

(Vershynin, 2018, Thm 9.1.1) is a bound in expectation, but it naively turns into high

probability bound since Γ ≥ 0.

C.3 Bounding Γ, where do we lose?

The previous proof is not tight here.

‖G((I −UTU)δ)‖ ≤ ‖G((I −UTU)δ)‖F︸ ︷︷ ︸
not tight

≤ O(1/
√
R)‖G(δ)‖F ≤ ‖G(δ)‖ (C.12)

If we can show that, for all δ in the tangent cone (thus independent of U ), ‖G((I−UTU )δ)‖ =

O(1/
√
R)‖G((I − UTU)δ)‖F for U ∈ RO(R log2 n)×n, then we can get the correct sample
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complexity. The difficulty is that, we do not know the distribution of (I − UTU)δ. Let

M = I −UTU and g := Mδ. Let g̃ be a Gaussian vector with same mean and covariance

as g that will be studied later. We know that gi =
∑
Mijδj. Let zij = UT

:,iU:,j, u, v denote

standard Gaussian vectors of dimension T , we have (the last equation: i 6= j)

E((1− z2
ii)

2) = E((1− 1

T
uTu)2)

= 1− 2

T

T∑
i=1

E(u2
i ) +

1

T 2
(
T∑
i=1

E(u4
i ) +

T∑
i 6=j

E(u2
iu

2
j)) =

2

T
.

E(z2
ij) = E((

1

T
uTv)2)

=
1

T 2
E(
∑

u2
i v

2
i ) =

1

T
.

E(gi) = 0,

E(g2
i ) = E((

∑
Mijδj)

2)

= δ2
iE((1− z2

ii)
2) +

∑
j 6=i

δ2
jE(z2

ij) +
∑
j 6=k

δjδkE(MijMik)

≤ 1

T
(δ2
i + ‖δ‖2).

E(gigj) = E((
∑

Mikδk)(
∑

Mjlδl))

= δiδjE(MijMji)

=
1

T
δiδj.

So

Cov(g) =
1

T
(‖δ‖2I + δδT ).

The problem is that g is not Gaussian so even we know mean and variance it’s still hard to deal

with. Let’s study Gaussian first. If g̃ = g̃1 + ǧ2δ where g̃1 ∼ N (0, ‖δ‖
2

T
I) and ǧ2 ∼ N (0, 1/T ),
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then we have

E(‖G(g̃)‖) ≤ E(‖G(g̃1)‖) + E(|ǧ2|‖G(δ)‖)

≤ 1√
T

(‖δ‖ log n√
n

+ ‖G(δ)‖)

≤ 1√
T

(

√
R log n√
n︸ ︷︷ ︸

proven before

+1)‖G(δ)‖

≤ 2√
T
‖G(δ)‖.

If we have

P (‖G(g̃)‖ > αE(‖G(g̃)‖)) ≤ ψ(α),

then let α =
√
T/2, we have

P (‖G(g̃)‖ > E(‖G(δ)‖)) ≤ ψ(
√
T/2)

We hope that ψ(α) = exp(−O(α2)) or log(ψ(α)) = −O(α2). Then with a set of Gaussian

width
√
R log n, we use a union bound and have (if we ignore the difference between g and g̃)

P (max
δ
‖G(g)‖ > ‖G(δ)‖) ≤ ψ(

√
T/2) exp(O(R log2 n)) = exp(O(R log2 n) + log(ψ(

√
T/2))).

So if the derivation of a Gaussian vector can be applied to a non-Gaussian g = (I −UTU )δ

with the same mean and variance, and ‖G(g)‖ is a subGaussian random variable, then we

can get the tight bound.

C.4 Proof of suboptimal recovery guarantee with i.i.d. input

Theorem 6. Suppose the system impulse response is h such that ht = 1, ∀t ≥ 1, which is

order 1. The Gaussian width of the set {x | ‖H(h+ x)‖∗ ≤ ‖H(h)‖∗} ∩ S is lower bounded
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by Cn1/6 for some constant C.

Proof. We consider the Gaussian width w(Φ) defined in this specific case.

Let V = 1
n
11T , and

I∗(h) = {H∗(V +W )|1TW = 0,W1 = 0, ‖W‖ ≤ 1}

we have2

w(Φ) = E(min
λ,W
‖λH∗(V +W )− g‖2).

In the instance, V = 1
n
11T . and we take W such that ‖W‖ ≤ 1 and W1 = W T1 = 0.

First, we note that

E(min
λ,W
‖λH∗(V +W )− g‖2)

=
1

2

(
E(min

λ,W
‖λH∗(V +W )− g‖2 | 1Tg ≤ 0) + E(min

λ,W
‖λH∗(V +W )− g‖2 | 1Tg > 0)

)
≥ 1

2
E(min

λ,W
‖λH∗(V +W )− g‖2 | 1Tg ≤ 0). (C.13)

Proof strategy: Based on the previous derivation, we focus on the case when 1Tg ≤ 0.

Denote z = λH∗(V + W ) − g, and the vector z1:k is the first 1 to k entries of z. Then we

prove that

(1) λ ≤ ‖z‖2/
√
n, (2) ‖z1:1/λ‖2 = Ω(λ−1/2).

Then we have

‖z‖2 = Ω(‖z1:1/λ‖2)
2
= Ω(λ−1/2)

1
= Ω((‖z‖2/

√
n)−1/2)

2We slightly change the definition of Gaussian width. We refer readers to (McCoy & Tropp, 2013, Thm
1). It is known to be as tight and the probability of failure is order constant if the number of measurements
is smaller than order square of the quantity.
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which suggests ‖z‖2 = Ω(n1/6).

Lemma 23. Let g be a standard Gaussian vector of size 2n− 1 conditioned on 1Tg ≤ 0. Let

z = λH∗(V +W )− g where V = 1
n
11T , and W1 = W T1 = 0, ‖W‖ ≤ 1. Then we have that

λ ≤ ‖z‖2/
√
n.

We observe that 1TH∗(X) is the summation of every entry in X for any matrix X. Thus

1TH∗(W ) = 0 since W1 = 0. Conditioned on 1Tg ≤ 0, we have

1T (λH∗(V +W )− g) ≥ λ1TH∗(V ) = λn.

And so that ‖λH∗(V +W )− g‖2 ≥ λ
√
n. Then ‖z‖2/

√
n ≥ λ, we have proven the first point.

Lemma 24. Let g be a standard Gaussian vector of size 2n− 1 conditioned on 1Tg ≤ 0. Let

z = λH∗(V +W )− g where V = 1
n
11T , and W1 = W T1 = 0, ‖W‖ ≤ 1. Let the vector z1:k

is the first 1 to k entries of z.Then we have that ‖z1:1/λ‖2 = Ω(λ−1/2).

If ‖z‖2 ≤
√
n, we observe z1:

√
n/‖z‖2 . When i ≤

√
n/‖z‖2, the i-th entry of H∗(V + W ),

denoted as (H∗(V +W ))i, is summation of 2i terns in V and W . Since these two matrices

have bounded spectral norm 1, then every entry of V is 1/n and every entry of W is no bigger

than 1. So

zi = λ(H∗(V +W ))i − gi ∈ ±(1 + 1/n)iλ− gi ∈ ±
(1 + 1/n)i‖z‖2√

n
− gi.

Thus

‖z1:
√
n/‖z‖2‖2 ≥ −

(1 + 1/n)‖z‖2√
n

‖[1, 2, ...,
√
n/‖z‖2]‖2 + ‖g1:

√
n/‖z‖2‖2

≥ −(1 + 1/n)n1/4

√
3‖z‖1/2

2

+
n1/4

‖z‖1/2
2

.
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Note that the first term is smaller than the second, so we have

‖z1:
√
n/‖z‖2‖2 ≥ C1

n1/4

‖z‖1/2
2

for some constant C1 > 0. Note this is the norm of a part of z, which is smaller than the

norm of z, so we have

C1n
1/4

‖z‖1/2
2

≤ ‖z‖2

so that ‖z‖2 = Ω(n1/6), and we have bounded the quantity (C.13).

C.5 Proof of least square spectral norm error

We first propose the following lemma.

Lemma 25. Denote the discrete Fourier transform matrix by F . Denote z(i) ∈ RT , i = 1, ...,m

as the noise that corresponds to each dimension of output. The solution ĥ of

ĥ := h+ Ū †z = min
h′

1

2
‖Ūh′ − y‖2

F . (C.14)

obeys

‖ĥ− h‖F ≤ ‖z‖F/σmin(Ū )

‖H(ĥ− h)‖ ≤
∥∥[‖F Ū †z(1)‖∞, ..., ‖F Ū †z(m)‖∞

]∥∥ .
Proof. First we clarify the notation here. In regularization part, we only consider the MISO

system, whereas we can prove the bound for MIMO system as well in least square. Here we

assume the input is p dimension and output is m dimension, at each time. For the notation

in (C.14), Ū ∈ RT×(2n−1)p, whose each row is the input in a time interval of length 2n− 1.

The impulse response is h ∈ R(2n−1)p×m and output and noise are y, z ∈ RT×m, where each

column corresponds to one channel of the output. Each row of y is an output observation
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at a single time point. z(i) ∈ RT is a column of the noise, meaning one channel of the noise

contaminating all observations at this channel.

(C.14) has close form solution and we have ‖ĥ− h‖ = ‖Ū †z‖ ≤ ‖z‖/σmin(Ū ). To get the

error bound in Hankel matrix, we can denote z̄ = Ū †z = (ŪT Ū)−1ŪT z, and

Hz̄ =


z̄1 z̄2 ... z̄2n−1

z̄2 z̄3 ... z̄1

...

z̄2n−1 z̄1 ... z̄2n−2

 .

If m = 1, z̄ ∈ R(2n−1)p is a vector (Krahmer et al., 2014, Section 4) proves that

Hz̄ = F−1diagF z̄F.

So the spectral norm error is bounded by ‖diagF z̄‖2 = ‖F z̄‖∞.

If m > 1, all columns of z are independent, so Hz̄ can be seen as concatenation of m

independent noise matrices where each satisfies the previous derivation.

Now we prove the following theorem.

Theorem 7. Denote the solution to (4.8) as ĥ. Let Ū ∈ RT×(2n−1)p be input matrix obtained

from multiple rollouts, with i.i.d. standard normal entries, y ∈ RT×m be the corresponding

outputs and z ∈ RT×m be the noise matrix with i.i.d. N (0, σ2
z) entries. Then the spectral

norm error obeys ‖H(ĥ− h)‖ . σz
√

mnp
T

log(np).

Proof. First let m = 1. The covariance of F z̄ = F Ū †z is F (Ū>Ū )−1F>. If T & n, it’s proven

in Vershynin (2018) that TI
2
� Ū>Ū � 3TI

2
. Then n

2T
I � F (Ū>U)−1F> � 3n

2T
I. So ‖F z̄‖∞

should scale as O(σz
√

n
T

log n), and then ‖H(z̄)‖2 ≤ ‖Hz̄‖2 ≤ ‖F z̄‖∞ = O(σz
√

n
T

log n).

If m > 1, then by concatenation we simply bound the spectral norm by m times MISO

case. When m > 1, with previous discussion of concatenation, and each submatrix to be
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concatenated has the same distribution, so the spectral norm error is at most
√
m times

larger.

C.6 Proof of model selection method

Theorem 8. Consider the setting of Thm. 4. Sample T i.i.d. training rollouts (U , y) and Tval

i.i.d. validation rollouts (Uval, yval). Set λ∗ = Cσ
√

pn
T

log(n) which is the choice in Thm. 4.

Fix failure probability P ∈ (0, 1). Suppose that:

(a) There is a candidate λ̂ ∈ Λ obeying λ∗/2 ≤ λ̂ ≤ 2λ∗.

(b) Validation set obeys Tval &
(
T log2(|Λ|/P )

R log2(n)

)1/3

.

Set R̄ = min(R2, n). With probability at least 1− P , Algorithm 2 achieves an estimation

error equivalent to (4.7):

‖H(ĥ− h)‖ .


√

np
snr×T log(n), if T & R̄,√
Rnp

snr×T log(n), if R . T . R̄.

(4.9)

Proof. We select δ > 0 such that Tval & 1
δ2 log |Λ|

P
, and denote a1 = 1 − δ

δ+2
, a2 = 1 + δ

δ+2
.

Then we have a2/a1 = 1 + δ. Let T0 = max{1, T/(TvalR log2 n)}. We will show that

‖ĥ− h‖2√
2

≤ ‖H(ĥ− h)‖

.


(1 + T

1/4
0 )a2

a1

√
np

snr×T log(n), if T & min(R2, n)

(1 + T
1/4
0 )a2

a1

√
Rnp

snr×T log(n), if R . T . min(R2, n).

(C.15)

Note that we will need T 1/4
0 δ . 1 from our choice of Tval in the theorem, so the bound is

sufficient for the theorem. This will be used later to calculate δ in (C.18).

We use the change of variable as in (4.6). We learn the parameter β with different λ, and

get different estimations β̂ which is a function of λ. To be more explicit, let β̂(λ) be the

estimator associated with a certain regularization parameter λ. Among all the estimators, we
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choose the solution with the smallest validation error, which is denoted as

β̂ = argminβ̂(λ)‖Uvalβ̂(λ)− yval‖2
2

Denote the noise in validation data as ξval. We have that

‖Uvalβ̂ − yval‖2
2 = ‖Uval(β̂ − β)− ξval‖2

2

= ‖Uval(β̂ − β)‖2
2 + ‖ξval‖2

2 − 2ξ>valUval(β̂ − β). (C.16)

In this formulation, ‖ξval‖2
2 in (C.16) is regarded as fixed among all validation instances, and

we study the other two terms. Since Uval is normalized that each entry is i.i.d. N (0, 1/Tval),

we have E‖Uval(β̂ − β)‖2
2 = ‖β̂ − β‖2

2.

The quantity ξ>valUval(β̂ − β) is zero mean and we know that Uval(β̂ − β) ∼ N (0,
‖β̂−β‖22
Tval

I).

Thus the variance of ξ>valUval(β̂ − β) is bounded by O(σ2
ξval
‖β̂ − β‖2

2/Tval) (the distribution of

the inner product is sub-exponential). We know that

‖β̂ − β‖2 ≈

√
R log2 n

T
‖ξ‖2 =

√
R log2 n

T

√
Tvalσξval

.

Case 1: If Tval & T
R log2(n)

, we have that ‖β̂ − β‖2 & σξval
.

Suppose the number of validated parameters λ is |Λ| and we need to choose the size

of validation data. With different validation data size Tval, the variance of ‖Uval(β̂ − β)‖2
2

decreases with rate 1/Tval.

We fix factors a1, a2, such that with high probability, for all choices of λ, ‖Uval(β̂ −

β)‖2
2 − 2ξ>valUval(β̂ − β) is in the set (a1‖β̂ − β‖2

2, a2‖β̂ − β‖2
2). We know that: the terms

‖Uval(β̂ − β)‖2
2 and 2ξ>valUval(β̂ − β) are subexponential; The mean of ‖Uval(β̂ − β)‖2

2 is

‖β̂ − β‖2
2 and the variance is O(‖β̂ − β‖4

2/Tval); The mean of 2ξ>valUval(β̂ − β) is 0 and the

variance is O(‖β̂ − β‖4
2/Tval) (Note that ‖β̂ − β‖2 & σξval

in this case).

By Bernstein bound (Vershynin, 2010, Prop. 5.16), we know that the probability that
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the quantity of (C.17) is not between (a1, a2) · ‖β̂ − β‖2
2 is exp(−mini(ai − 1)2Tval) where

(ai − 1)2 ≈ δ2.

Hence there exists a constant c such that for every choice of λ,

Pr
(∣∣‖Uval(β̂ − β)‖2

2 − 2ξ>valUval(β̂ − β)
∣∣

/∈ (a1, a2) · ‖β̂ − β‖2
2

)
< exp(−cδ2Tval). (C.17)

We choose probability P that any of the event in (C.17) happens. If all |Λ| valida-

tions corresponding to λi succeed, then we use the union bound on (C.17) and solve for

|Λ| exp(−cδ2Tval) < P . Thus we set Tval = max{ T
R log2(n)

, 1
cδ2 log |Λ|

P
}. so that (4.9) holds with

probability 1− P .

Case 2: If Tval . T
R log2(n)

, then we denote T0 = T/(TvalR log2 n), with similar derivation as

above, we know that the mean of ‖Uval(β̂−β)‖2
2 is ‖β̂−β‖2

2 and the variance is O(‖β̂−β‖4
2/Tval);

The mean of 2ξ>valUval(β̂ − β) is 0 and the variance is O(T0‖β̂ − β‖4
2/Tval). Thus, similar to

(C.17),

Pr
(∣∣‖Uval(β̂ − β)‖2

2 − 2ξ>valUval(β̂ − β)
∣∣

/∈ (a1, a2) ·
√
T0‖β̂ − β‖2

2

)
< exp(−cδ2Tval).

The following steps are same as the first case, and the error is multiplied by T 1/4
0 compared

to the first case.

At the end, we will need to argue about the lower bound for Tval. We used two inequalities

in the proof above:

Tval &
1

δ2
log(
|Λ|
P

), T
1/4
0 δ . 1.
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They are equivalent to

Tval &
1

δ2
log(
|Λ|
P

), Tval &
δ4T

R log2(n)
. (C.18)

Setting the right hand side to be equal, we have

δ2 =

(
T−1 log(

|Λ|
P

)R log2(n)

)1/3

.

Plugging it into any lower bound for Tval in (C.18), we get the bound in the main theorem.
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D.1 Numerical verification of inductive bias for representation learning
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Figure D.1: (a) Alignment of feature-task on image classification models. For MNIST,
we train 45 linear pairwise classifiers between each two classes. We apply the pretrained
ResNet classification model on the other three datasets, compute the (last layer) feature/task
covariances and get the alignments. The alignment is a measure of correlation which is
denoted by ρ here. (b) We use the cifar100 dataset, take the pretrained ResNet18 network
and vary the number of tasks (i.e., varying the number of output classes of the neural net,
also equivalent to number of rows of the last layer matrix B defined below). The alignments
increase with number of tasks.

We have figures with experiments on a few image datasets. We take the pretrained

ResNet18 neural network, and feed the images into it. For every image, we take the last

(closest to output) layer output as the feature x, which is of dimension d = 512. The weights

of the last layer are the tasks, which is a T × d matrix (We call it B). T = 1000, each row of

B is a task vector. Then Bx ∈ RT generates the label, whose each entry corresponds to each

class. We calculate the feature and task covariance, as well as the alignments defined in Sec.

5.4. We can clearly see the inductive bias of every dataset.
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D.2 Analysis of optimal representation

D.2.1 Proof of Observation 1 and equivalent noise

Observation 3. Let Λ ∈ Rd×R, X ∈ Rn2×d and y ∈ Rn
2 , and define

β̂ = Λ(XΛ)†y, (D.1)

β̂1 = lim
t→0

argminβ‖Xβ − y‖2 + tβ>(ΛΛ>)†β (D.2)

Then β̂1 = β̂.

Proof. Denote the SVD (XΛ)> = UΣV >, where U ∈ RR×R,Σ ∈ RR×n2 ,V ∈ Rn2×n2 .

β̂1 = lim
t→0

argminβ‖Xβ − y‖2 + tβ>(ΛΛ>)†β

= lim
t→0

(X>X + t(ΛΛ>)†)−1Xy

= lim
s→∞

sΛ(sΛ>X>XΛ + I)−1Λ>X>y

= lim
s→∞

sΛ(sUΣV >V Σ>U> + I)−1UΣV >y

= lim
s→∞

sΛ(sUdiag(Σ>Σ + In2 , IR−n2)U>)−1UΣV >y

= lim
s→∞

ΛU(diag(Σ>Σ, IR−n2/s))
−1ΣV >y.

= Λ(XΛ)†y

The risk of β̂ is given by

risk(β̂) = E(y − x>β̂) = E(β̂ − β)>ΣF (β̂ − β) + σ2.

In Sec. D.2.2, we study the asymptotic optimal representation. Below, we characterize
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the properties of the problem for fixed β and arbitrary input covariance ΣF . We first go over

this and then discuss how to obtain the optimal representation Λ∗ minimizing test risk.

Remark 10. Projection onto R dimensional subspace. For the remaining proof after

this part, we will mainly analyze the relation between ΛR and θ in Thm. 9, which lie in an R

dimensional subspace. Here we will build the connection from the d dimensional problem to R

dimensional, mainly computing the equivalent noise below. The equivalent noise consists of

original noise and the extra noise caused by PCA truncation.

Let xR be the projection of x onto the R-dimensional subspace spanned by columns of U1,

and xR⊥ is the projection of x onto the orthogonal complement. Namely, xR = U>1 x ∈ RR

and xR⊥ = U>2 x ∈ R(d−R). Similarly we can define βR and βR⊥. Thus,

y = x>β + ε = x>RβR + x>R⊥βR⊥ + ε (D.3)

We can treat εR = x>
R⊥βR⊥ + ε as the new noise, and try to solve for βR. Then define ΣT,R⊥

as the matrix containing the same eigenvectors as ΣT and the top R eigenvalues are zeroed

out, our noise variance becomes σ2
R = σ2 +E(‖xR⊥‖2‖βR⊥‖2) = σ2 + tr(Σ̃T ) − tr(Σ̃R

T ) in

our algorithm. If we are still in overparameterized regime, namely R > n2, then we define

optimal representation on top of it.

In summary, the R-SVD truncation reduces the search space of Λ into R dimensional

space, where the covariance of the noise in y increases from σ2I to σ2
RI.

D.2.2 Distributional characterization of least norm solution

In this part, for simplicity of discussion, we focus on the R dimensional space while omitting

the projection step, and the equivalence of a diagonal eigen-weighting matrix ΛR ∈ RR×R

and θ ∈ RR in Thm. 9. Here, we assume a truncated feature matrix X̃ ∈ Rn×R where the

feature is projected into an R dimensional space.

Define X̃ ∈ Rn×R, ỹ ∈ Rn. We study the following least norm solution of the least squares
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problem

β̂ = arg min
β′
‖β′‖, s.t., X̃β′ = ỹ (D.4)

Assumption 13. Assume the rows of X̃ are independently drawn from N (0, Σ̃X). We

focus on a double asymptotic regime where R, n → ∞ at fixed overparameterization ratio

κ := R/n > 0.

Assumption 14. The covariance matrix Σ̃X is diagonal and there exist constants Σmin,Σmax ∈

(0,∞) such that: 0 ≺ ΣminI � Σ̃X � ΣmaxI.

Assumption 15. The joint empirical distribution of {(λi(Σ̃X), βi)}i∈[R] converges in Wasserstein-

k distance to a probability distribution µ on R>0×R for some T ≥ 4. That is 1
R

∑
i∈[R] δ(λi(Σ̃X),βi)

Wk=⇒

µ.

Definition 5 (Asymptotic distribution characterization – Overparameterized regime). Thram-

poulidis et al. (2015) Let random variables (Σ, B) ∼ µ (where µ is defined in Assumption 15)

and fix κ > 1. Define parameter ξ as the unique positive solution to the following equation

Eµ
[(

1 + (ξ · Σ)−1
)−1
]

= κ−1 . (D.5)

Define the positive parameter γ as follows:

γ :=
(
σ2 + Eµ

[ B2Σ

(1 + ξΣ)2

])/(
1− κEµ

[ 1

(1 + (ξΣ)−1)2

])
. (D.6)

With these and H ∼ N (0, 1), define the random variable

Xκ,σ2(Σ, B,H) :=
(

1− 1

1 + ξΣ

)
B +

√
κ

√
γ Σ−1/2

1 + (ξΣ)−1
H, (D.7)

and let Πκ,σ2 be its distribution.
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Theorem 15 (Asymptotic distribution characterization – Overparameterized linear Gaussian

problem). Thrampoulidis et al. (2015) Fix κ > 1 and suppose Assumptions 14 and 15 hold.

Let
1

R

R∑
i=1

δ√Rβ̂i,
√
Rβi,Σ̃Xi,i

be the joint empirical distribution of (
√
Rβ̂,
√
Rβ, Σ̃X) and it converges to a fixed distribution

as dimension grows. Let f : R3 → R be a function in PL(2). We have that

1

R

R∑
i=1

f(
√
Rβ̂i,

√
Rβi, Σ̃Xi,i

)
P−→ E [f(Xκ,σ2 , B,Σ)] . (D.8)

In particular, the risk is given by

risk(β̂n)
P−→ E[Σ(B −Xκ,σ2)] + σ2

0 (D.9)

= E[
Σ

(1 + ξΣ)2
B2 +

κγ

(1 + (ξΣ)−1)2
] + σ2

0. (D.10)

D.2.3 Finding Optimal Representation

Now, for simplicity (and actually without losing generality) assume Σ̃X = I. This means

that empirical measure of ΣF trivially converges to Σ = 1. With the representation Λ∗ with

asymptotic distribution Λ, the ML problem has the following mapping

β → Λ−1
R β and Σ̃X → ΛRΣ̃XΛR.

This means the empirical measure converges to the following mapped distributions

B → B̄ = Λ−1B and Σ = 1→ Σ̄ = Λ2Σ = Λ2.
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Our question: Craft the optimal distribution Λ to minimize the representation learning

risk. Specifically, for a given (B,Λ) pair, we know from the theorem above that

riskΛR(β̂n)
P−→ E[

Σ̄

(1 + ξΣ̄)2
B̄2 +

κγ

(1 + (ξΣ̄)−1)2
] + σ2

0 (D.11)

= E[
B2

(1 + ξΛ2)2
+

κγ

(1 + (ξΛ2)−1)2
] + σ2

0. (D.12)

Thus, the optimal weighting strategy (asymptotically) is given by the distribution

Λ∗ = arg min
Λ

E[
B2

(1 + ξΛ2)2
+

κγ

(1 + (ξΛ2)−1)2
],

where γ, ξ are strictly positive scalars that are also functions of Λ.

D.2.4 Non-asymptotic Analysis (for simpler insights)

We apply the discussion iin Sec. D.2.2 non-asymptotically in few-shot learning. Remember

we define X ∈ Rn2×R,y ∈ Rn2 , each row of X is independently drawn from N (0,ΣF ). We

study the following least norm solution of the least squares problem

β̂ = arg min
β′
‖β′‖, s.t., Xβ′ = y. (D.13)

Definition 6 (Non-asymptotic distribution characterization). Set κ = R/n2 > 1. Given

σ0 > 0, covariance ΣF and latent vector β and define the unique non-negative terms ξ, γ, z ∈

RR and φ ∈ RR as follows:

ξ > 0 is the solution of κ−1 = R−1

R∑
i=1

(
1 + (ξΣF,i)

−1
)−1

,

γ =
σ2

0 + 1
R

∑R
i=1

ΣF,iβ
2
i

(1+ξΣF )2

1− κ
R

∑R
i=1 (1 + (ξΣF,i)−1)−2

.

Let h ∼ N (0, I/R). The non-asymptotic distributional prediction is given by the following
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random vector

β̂(ΣF ) =
1

1 + (ξΣF )−1
� β +

√
κγΣ

−1/2
F

1 + (ξΣF )−1
� h.

Note that, the above formulas can be slightly simplified to have a cleaner look by

introducing an additional variable z = 1
1+(ξΣF )−1 .

Also note that, the terms in the non-asymptotic distribution characterization and asymp-

totic distribution characterization have one to one correspondence. Non-asymptotic distribu-

tion characterization is essentially a discretized version of asymptotic DC where instead of

expectations (which is integral over pdf) we have summations.

Now, we can use this distribution to predict the test risk by using Def. 6 in the risk

expression.

Going back to representation question, without losing generality, assume ΣF = I and let

us find optimal ΛR. Then

β̂ = ΛR

[
1

1 + (ξΛ2
R)−1

�Λ−1
R β +

√
κγΛ−1

R

1 + (ξΛ2
R)−1

� h
]
.

The risk is given by (using h ∼ N (0, Ip))

riskΛR(β̂n)− σ2
0 = E[(β̂ − β)>ΣF (β̂ − β)] (D.14)

=
R∑
i=1

ΣT,i

(1 + ξ(ΛR,i)2)2
+

R∑
i=1

κγ

(1 + (ξ(ΛR,i)2)−1)2
. (D.15)

Here, note that ξ is function of Λ∗ and γ is function of β,Λ∗. If we don’t know ΣT , we use

the estimation from representation learning Σ̂T instead.

To find the optimal representation, we will solve the following optimization problem that

minimizes the risk.
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min
Λ∗

∑R
i=1

β2
i

(1 + ξ(ΛR,i)2)2
+
∑R

i=1

κγ

(1 + (ξ(ΛR,i)2)−1)2

s.t. κ−1 =
1

R

∑R
i=1(1 + (ξ(ΛR,i)

2)−1)−1

γ =
σ2

0 +
∑R

i=1
β2
i

(1+ξ(ΛR,i)2)2

1− κ
R

∑R
i=1(1 + (ξ(ΛR,i)2)−1)−2

.

(D.16)

So we plug in the expression of γ and get

κγ =
σ2

0 + 1
R

∑R
i=1

β2
i

(1+ξ(ΛR,i)2)2

κ−1 − 1
R

∑R
i=1(1 + (ξ(ΛR,i)2)−1)−2

=
Rσ2

0 +
∑R

i=1
β2
i

(1+ξ(ΛR,i)2)2∑ ξ(ΛR,i)2

(1+ξ(ΛR,i)2)2

. (D.17)

Let θi =
ξ(ΛR,i)

2

1+ξ(ΛR,i)2 , then the objective function becomes

R∑
i=1

ΣT,i(1−θi)2 +(
R∑
i=1

θ2
i )
Rσ2

0 +
∑

ΣT,i(1− θi)2∑R
i=1 θi(1− θi)

=
n2(
∑R

i=1 ΣT,i(1− θi)2) +Rσ2
0(
∑R

i=1 θ
2
i )

n2 −
∑R

i=1 θ
2
i

such that 0 ≤ θi < 1 and
∑R

i=1 θi = R
κ

= n2. This quantity is same as the objective (D.16).

We divide this quantity by d to get the risk function, which is same as the definition of f in

(5.4).

D.2.5 Solving the optimization problem.

Here, we propose the algorithm for minimizing f(θ). We explore the KKT condition for its

optimality.

The objective function is

f(θ) =
R∑
i=1

ΣT,i(1− θi)2 + (
R∑
i=1

θ2
i )
Rσ2

0 +
∑

ΣT,i(1− θi)2∑R
i=1 θi(1− θi)

. (D.18)
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Lemma 26. Let C, S, V ∈ R. Define

φ(ΣT,i;C, V, S) :=
Cp(R− n2 − S)2

2n2(V +Rσ2
0 + (R− n2 − S)ΣT,i

2)

and we find the root of the following equations:

R∑
i=1

φ(ΣT,i;C, V, S) = R− n2,

R∑
i=1

φ2(ΣT,i;C, V, S) = S − (2n2 −R),

R∑
i=1

ΣT,iφ
2(ΣT,i;C, V, S) = V.

Let θi = 1− φ(ΣT,i;C
∗, V ∗, S∗) where C∗, V ∗, S∗ are the roots, then

θ = arg min
θ′

f(θ′), s.t., 0 ≤ θ′ < 1,
R∑
i=1

θ′i = n2.

Proof. Define s =
∑R

i=1 θ
2
i , φi = 1− θi. Define Q =

1

R

∑R
i=1 ΣT,iφ

2
i . Then

f(φ) =
R∑
i=1

ΣT,iφ
2
i +

s

n2 − s
(Rσ2

0 +
R∑
i=1

ΣT,iφ
2
i )

= R(Q+
s

n2 − s
(σ2

0 +Q))

=
Rn2

R− n2 −
∑R

i=1 φ
2
i

(Q+ σ2
0).

The last line uses

s =
R∑
i=1

(1− φ2) = R− 2
R∑
i=1

φi +
R∑
i=1

φ2
i = R− 2(R− n2) +

R∑
i=1

φ2
i = 2n2 −R +

R∑
i=1

φ2
i .
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Now define
∑R

i=1 φ
2
i = S, and we compute the gradient of f , we have

df

Rφi
=

(
2n2(

R∑
j=1

ΣT jφ
2
j + (R− n2 − s)ΣT,i) + 2Rn2σ

2
0

)
φi.

Suppose 0 < φi < 1, then we need df
Rφi

equal to each other for all i. Suppose df
Rφi

= C, and

denote
∑

ΣT jφ
2
j = V , we can solve for φi from df

Rφi
= C as

φi =
Cd(R− n2 − S)2

2n2(V +Rσ2
0 + (R− n2 − S)ΣT,i

2)
:= φ(ΣT,i;C, V, S). (D.19)

We define the function φ(ΣT,i;C, V, S) as above, and use the fact that

R∑
i=1

φ(ΣT,i;C, V, S) = R− n2,

R∑
i=1

φ2(ΣT,i;C, V, S) = S − (2n2 −R),

R∑
i=1

ΣT,iφ
2(ΣT,i;C, V, S) = V.

We can solve1 C, V, S and retrieve φi by (D.19). θi = 1− φi.

D.3 Analysis of MoM estimators

D.3.1 Covariance estimator

We will first present the estimation error of the feature covariance ΣF . Note that if ΣF is

fully aligned with ΣT , e.g., ΣF = ΣT , then estimating ΣF is enough for getting optimal

representation, and we will show it has lower sample complexity and error compared to

estimating canonical covariance Σ̃T . That is a naive case, if it does not work, this intermediate

result will help in our latter proof.

1For the root of 3-dim problem, the worst case we can grid the space and search with time complexity
O(ε−3).
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We will use the following Bernstein type concentration lemma, generalized from (Tripura-

neni et al., 2020, Lemma 29):

Lemma 27. Let Z ∈ Rn1×n2. Choose T0, σ
2 such that

1. P (‖Z‖ ≥ C0T0 + t) ≤ exp(−c
√
t/T0).

2. ‖E(ZZ>)‖, ‖E(Z>Z)‖ ≤ σ2.

Then with probability at least 1− (nT0)−c, c > 10,

‖ 1

n

n∑
i=1

Zi −E(Zi)‖ . log(nT0)

(
T0 log(nT0)

n
+

σ√
n

)
.

Proof. Define K = log2(CKnT0) for CK > 0, Z ′ = Z1(‖Z‖ ≤ KT0), then

‖E(Z −Z ′)‖ ≤
∫ ∞
KT0

exp(−c
√
t/T0)dt . (1 +

√
K) exp(−c

√
K)T0

. (1 + log(CKnT0))(nT0)−C .

We can choose CK large enough so that C > 10. We will use (Tripuraneni et al., 2020, Lemma

29). SetR = log2(CKnT0)T0+C0T0, ∆ = (1+log(CKnT0))(nT0)−C , t = Ct log(nT0)(T0 log(nT0)
n

+

σ√
n
) for some Ct > 0, plugging in the last inequality of (Tripuraneni et al., 2020, Lemma 29),

the LHS is smaller than (nT0)−c for some c. We can also check P (‖Z‖ ≥ R) ≤ (nT0)−c for

some c, thus we prove the lemma.

Feature Covariance. We can directly estimate the covariance of features by

Σ̂F =
1

N

n1∑
j=1

T∑
i=1

xi,jx
>
i,j, (D.20)

The mean of this estimator is ΣF and we can estimate the top r eigenvector of ΣF with Õ(r)

samples.

As we have defined in Phase 1, features xi,j are generated from N (0,ΣF ). We aim

to estimate the covariance ΣF . Although there are different kinds of algorithms, such as
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maximum likelihood estimator Anderson et al. (1970), to be consistent with the algorithms

in the latter sections, we study the sample covariance matrix defined by (D.20).

Lemma 28. Suppose xi, i = 1, ..., N are generated independently from N (0,ΣF ). We

estimate (D.20), then when N & rF , with probability 1−O((Ntr(ΣF ))−C),

‖Σ̂F −ΣF‖ .
√
‖ΣF‖tr(ΣF )

N
.

Denote the span of top sF eigenvectors of ΣF as W and the span of top sF eigenvectors of

Σ̂F as Ŵ . Let δλ = λsF (ΣF )− λsF+1(ΣF ). Then if N & ‖ΣF ‖tr(ΣF )

δ2
λ

, we have

sin(∠W , Ŵ ) .

√
‖ΣF‖tr(ΣF )

Nδ2
λ

Example 5. When ΣF = diag(IsF , 0), we have sin(∠W , Ŵ ) .
√

sF
N
.

Lemma 28 gives the quality of the estimation of the covariance of features x. When the

condition number of the matrix ΣF is close to 1, we need N & d to get an estimation with

error O(1). However, when the matrix ΣF is close to rank rF , the amount of samples to

achieve the same error is smaller, and we can use N & rF samples to get O(1) estimation

error.

We will use Bernstein type concentration results to bound its error, and a similar technique

will be used for M̂ in the next sections.

Proof. First we observe that, the features xi,j among different tasks are generated i.i.d. from

N (0,ΣF ). So we can rewrite (D.20) as

Σ̂F =
1

N

N∑
i=1

xix
>
i (D.21)

where xi ∼ N (0,ΣF ). The error of Σ̂F depends on N regardless of T and n1 respectively.
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First, we know by concentration inequality

P (‖xx>‖ − tr(ΣF ) ≥ t) = P (‖x‖2 − tr(ΣF ) ≥ t) ≤ exp(−cmin{ t2

tr(Σ2
F )
,

t

‖ΣF‖
}).

(D.22)

We will use the fact
√

tr(Σ2
F ) ≤ tr(ΣF ). Define K = C0 log(Ntr(ΣF ))tr(ΣF ), Z = xx>,

Z ′ = Z · 1{‖Z‖ ≤ K} where 1 means indicator function (1(True) = 1,1(False) = 0), for

some positive number C0. Then

‖E(Z −Z ′)‖ ≤
∫ ∞
t=K

(exp(−c t2

tr2(ΣF )
) + exp(−c t

‖ΣF‖
))dt

≤
∫ ∞
t=K

(exp(−c t

tr(ΣF )
) + exp(−c t

‖ΣF‖
))dt

≤ 2
tr(ΣF )

c
exp(−c K

tr(ΣF )
)

≤
√
Ktr2(ΣF )

c
exp(− cK

tr(ΣF )
)

. (Ntr(ΣF ))−C

where C ≥ C0 − 3/2. Then we compute (xx>)2 = ‖x‖2xx>. Let ΣF be diagonal (the proof

is invariant from the basis. In other words, if ΣF is not diagonal, then we can make the

eigenvectors of ΣF as basis and the proof applies). Then

E(‖x‖2xx>)ij =

ΣF ii(tr(ΣF ) + 2ΣF ii), i = j,

0, i 6= j.

(D.23)

So ‖E(‖x‖2xx>)‖ ≤ ‖ΣF‖(tr(ΣF ) + 2‖ΣF‖) ≈ ‖ΣF‖tr(ΣF ). ≈ means & and ..

Using Lemma 27, with (D.22) and the inequality above, we get that with probability
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1−O((Ntr(ΣF ))−C),

‖Σ̂F −ΣF‖ . log(Ntr(ΣF ))

(
log(Ntr(ΣF ))tr(ΣF )

N
+

√
‖ΣF‖tr(ΣF )

N

)
. (D.24)

If the number above is smaller than λr − λr+1, we have that

N &
‖ΣF‖tr(ΣF )

(λr − λr+1)2
(D.25)

which is O(r) if condition number is 1.

The bound of the angle of top R eigenvector subspace is a direct application of the

following lemma.

Lemma 29. Davis & Kahan (1970) Let A be a square matrix. Let Ŵ , W denote the span

of top r singular vectors of Â and A. Suppose ‖Â −A‖ ≤ ∆, and σr(A) − σr+1(A) ≥ ∆,

then

sin(∠W , Ŵ ) ≤ ∆

σr(A)− σr+1(A)−∆
.

So that the error of principle subspace recovery of feature covariance is upper bounded by
‖Σ̂F−ΣF ‖

σr(ΣF )−σr+1(ΣF )−‖Σ̂F−ΣF ‖
, where ‖Σ̂F −ΣF‖ is calculated in (D.24).

D.3.2 Method of moment

This section contains three parts. We first bound the norm of task vectors. Then we analyze

the second result of Thm. 10, where n1 is lower bounded by effective rank. Last we prove the

first result of Thm. 10 which is a generalization of Tripuraneni et al. (2020).
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Property of task vectors

We first study the property of the tasks β1, ..., βT . We know that, for any β ∼ N (0,ΣT ),

P (‖β‖2 − tr(ΣT ) ≥ t) ≤ exp(−cmin{ t2

tr(Σ2
T )
,

t

‖ΣT‖
}).

So that with probability at least 1− δ, we have

‖βi‖2 . tr(ΣT ) +
√

(log(1/δ) + log(T ))tr(Σ2
T ) + (log(1/δ) + log(T ))‖ΣT‖

. tr(ΣT ) + log(T/δ)
√

tr(Σ2
T ) . tr(ΣT ) log(T/δ), ∀i = 1, ..., T. (D.26)

With similar technique we know that with probability at least 1− δ,

‖ΣFβi‖2 . tr(ΣFΣTΣF ) + log(T/δ)
√

tr((ΣFΣTΣF )2), ∀i = 1, ..., T. (D.27)

‖Σ1/2
F βi‖2 . tr(Σ

1/2
F ΣTΣ

1/2
F ) + log(T/δ)

√
tr((Σ

1/2
F ΣTΣ

1/2
F )2), ∀i = 1, ..., T. (D.28)

We will use δ = T−c for some constant c so that log(T/δ) = (c + 1) log(T ) ≈ log(T ).

Later, we will use the norm bounds of above quantities which happen with probability at

least 1− T−c.

Estimating with fewer samples when each task contains enough samples

In this part we will prove Lemma 31, which is the second case of Theorem 10. First we will

give a description of standard normal features, then prove the general version.

Lemma 30. (Standard normal feature, noiseless) Let data be generated as in Phase 1,

let S = max{‖ΣF‖, ‖ΣT‖} in this theorem and the following section2, r = tr(ΣTΣF ),

rF = tr(ΣF ), rT = tr(ΣT ). Suppose σ = 0, ΣF = I, and suppose the rank of ΣT is sT .

Define β̂i = n−1
1

∑n1

j=1 yi,jxi,j, B = [β1, ..., βT ], and B̂ = [β̂1, ..., β̂T ]. Let n1 > c1rTλ
−1
sT

(ΣT ),

2in the main body we assumed S = 1 for simplicity.
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with probability 1−O(T−C), where C is constant,

σmax(B̂ −B) .

√
TrT
n1

.

Denote the span of top sT singular column vectors of B̂ and ΣT as Ŵ ,W , then

sin(∠Ŵ ,W ) .
√

rT
n1λsT (ΣT )

.

For example, if ΣT = diag(IsT , 0), then sin(∠Ŵ ,W ) .
√
sT/n1.

Proof. We first estimate βi with

β̂i =
1

n1

n1∑
j=1

yi,jxi,j.

Then we fix βi and compute the covariance of yi,jxi,j (its mean is βi).

Cov(yi,jxi,j − βi) = E(xi,jx
>
i,jβiβ

>
i xi,jx

>
i,j)− βiβ>i - ‖βi‖2I.

The first term is similar to (D.23), where the bound can is in (Tripuraneni et al., 2020, Lemma

5). The vector β̂i is the average of yi,jxi,j over all j. With concentration we know that

Cov(β̂i − βi) -
‖βi‖2

n1

I. (D.29)

Let B = [β1, ..., βT ], and B̂ = [β̂1, ..., β̂T ]. Then we know the covariance of each column of

B̂ −B is bounded by (D.29). Thus with a constant c and probability 1− exp(−cT 2),

σ2
max(B̂ −B) .

T‖βi‖2

n1

. (D.30)

We have proved in (D.26) that ‖βi‖2 ≤ log(T )tr(ΣT ) with probability 1 − T−c. The
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columns of B is generated from N (0,ΣT ), so that

σmax(B̂ −B) .

√
T log(T )tr(ΣT )

n1

.

Now we study B. We know that E(BB>) = E(
∑T

i=1 βiβ
>
i ) = TΣT . B is a matrix with

independent columns. Thus let n1 > c1tr(ΣT )λ−1
sT

(ΣT ), T > max{c2d,
‖ΣT ‖tr(ΣT )
λ2
sT

(ΣT )
}, then with

Lemma 28, for Gaussian matrix with independent columns Vershynin (2010), with probability

at least 1−O(T−c3 + (T tr(ΣT ))−c4 + exp(−c5T
2)) = 1−O(T−C), where ci are constants,

σsT (B) ≥
√
TλsT (ΣT )−O(

√
T‖ΣT‖tr(ΣT )).

Denote the span of top sT singular vectors of B̂ and ΣT as Ŵ ,W , with Lemma 29,

sin(∠Ŵ ,W ) ≤

√
log(T )tr(ΣT )

n1λsT (ΣT )
.

Next, we will propose a theorem with general feature covariance and noisy data, which is

a generalization of Lemma 30.

Lemma 31. Let data be generated as in Phase 1. Suppose b̂i = n−1
1

∑n1

j=1 yi,jxi,j, B =

ΣF [β1, ..., βT ], and B̂ = [b̂1, ..., b̂T ]. Let δλ = λsT (ΣFΣTΣF ) − λsT+1(ΣFΣTΣF )), suppose

ΣF is approximately rank sF ,

n1 & (tr(ΣTΣF ) + σ2)‖ΣF‖,

T & max{sF ,
dλsF+1(ΣF )

‖ΣF‖
},
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then with probability 1−O(T−C), where C is constant,

σmax(B̂ −B) .

√
T (tr(ΣTΣF ) + σ2)‖ΣF‖

n1

.

Denote the span of top sT singular vectors of B̂ and ΣFΣTΣF as Ŵ ,W , if further we

assume T & ‖ΣFΣTΣF ‖tr(ΣFΣTΣF )

δ2
λ

, then

sin(∠Ŵ ,W ) .

√
(tr(ΣTΣF ) + σ2)‖ΣF‖

n1δ2
λ

.

Example 6. Suppose ΣF = diag(IsF , ιId−sF ), and ΣT = diag(IsT , 0), σ = 0. Suppose ιd < sF .

Then with T & sF , n1 & sT so that N & sF sT ,

sin(∠Ŵ ,W ) .
√
sT/n.

Proof. We let xi,j ∼ N (0,ΣF ). For the ith task, let

b̂i =
1

n1

n1∑
j=1

yi,jxi,j.

We fix βi and compute

E(yi,jxi,j) - E(xi,jx
>
i,jβi) = ΣFβi, (D.31)

and

Cov(yi,jxi,j −ΣFβi) - (β>i ΣFβi)ΣF + σ2ΣF . (D.32)

To get the bound above, we can adopt the technique in (Tripuraneni et al., 2020, Lemma

5) such that, write xi,j = Σ
1/2
F z, and reduce to E((z>Σ

1/2
F βi)

2Σ
1/2
F zz>Σ

1/2
F ). The proof of
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(Tripuraneni et al., 2020, Lemma 5) gives the explicit bound of ‖E((z>α)2zz>)‖ for any

α that equals above. The vector b̂i is the average of yi,jxi,j over all j = 1, ..., n1. With

concentration we know that

Cov(b̂i −ΣFβi) -
β>i ΣFβi + σ2

n1

ΣF . (D.33)

Suppose B = ΣF [β1, ..., βT ], and B̂ = [b1, ..., bT ]. B̂ − B is a matrix with independent

columns. Suppose X is approximately rank sF , Let VsF ∈ Rd×d be the projection onto the

top-R sigular vector space of ΣF and Vs⊥F ∈ Rd×d be the projection onto the sF + 1 to dth

sigular vector space of ΣF . With T columns and T ≥ sF , we know that

σmax(VsF (B̂ −B)) .
T (maxi β

>
i ΣFβi + σ2)‖ΣF‖

n1

σmax(Vs⊥F (B̂ −B)) .
max{T, d}(maxi β

>
i ΣFβi + σ2)λsT+1(ΣF )

n1

With similar argument as before, with probability 1− exp(−cT 2) for constant c,

σ2
max(B̂ −B) .

max{T‖ΣF‖, dλsF+1(ΣF )}(maxi β
>
i ΣFβi + σ2)‖ΣF‖

n1

. (D.34)

We know in (D.28) that ‖Σ1/2
F βi‖2 ≤ O(log(T )tr(ΣTΣF )) with probability 1 − T−c for

constant c. So that

σmax(B̂ −B) .

√
max{T‖ΣF‖, dλsF+1(ΣF )}(log(T )tr(ΣTΣF ) + σ2)‖ΣF‖

n1

. (D.35)

Now we study B. E(BB>) = E(ΣF (
∑T

i=1 βiβ
>
i )ΣF ) = TΣFΣTΣF .

Thus let

n1 > C1(log(T )tr(ΣTΣF ) + σ2)‖ΣF‖.

Now apply the concentration of Gaussian matrix with independent columns Vershynin (2010).
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With probability 1−O(T−C1 + (T tr(ΣFΣTΣF ))−C2 + exp(−C3T
2)), where Ci are constants

(the probability can be simplified as 1−O(T−C)),

σsT (B) ≥
√
T (λsT (ΣFΣTΣF )− λsT+1(ΣFΣTΣF ))−O(

√
T‖ΣFΣTΣF‖tr(ΣFΣTΣF )).

Denote the span of top sT singular vectors of B̂ and ΣFΣTΣF as Ŵ ,W , let

T & max{sF ,
dλsF+1(ΣF )

‖ΣF‖
,

‖ΣFΣTΣF‖tr(ΣFΣTΣF )

(λsT (ΣFΣTΣF )− λsT+1(ΣFΣTΣF ))2
} (D.36)

we plug in (D.35) and Lemma 29,

sin(∠Ŵ ,W ) .

√
(
dλsF+1(ΣF )

T‖ΣF‖
+ 1) · (tr(ΣTΣF ) + σ2)‖ΣF‖

n1(λsT (ΣFΣTΣF )− λsT+1(ΣFΣTΣF ))

≈

√
(tr(ΣTΣF ) + σ2)‖ΣF‖

n1(λsT (ΣFΣTΣF )− λsT+1(ΣFΣTΣF ))
.

Method of moments with arbitrary n1

In this subsection we will analyze B̂ with any n1, and propose the error of MoM estimator.

Suppose there are at least two samples per task, we can separate the samples into two

halves, and compute the following estimator.

Lemma 32. Let data be generated as in Phase 1, and let n1 be a even number. Define

b̂i,1 = 2n−1
1

∑n1/2
j=1 yi,jxi,j, b̂i,2 = 2n−1

1

∑n1

j=n1/2+1 yi,jxi,j. Define

M̂ = n−1
1

T∑
i=1

(bi,1b
>
i,2 + bi,2b

>
i,1),

M = ΣFΣTΣF .
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Then there is a constant c > 10, with probability 1−N−c,

‖M̂ −M‖ . (r + σ2)

√
rF
N

+

√
rT
T
.

Proof. For simplicity of notation, we will define a random vector x with zero mean and

covariance ΣF , a random vector β with zero mean and covariance ΣT , a random variable ε

with zero mean and covariance σ, and they are subGaussian3. Let y = x>β + ε. We first

estimate the mean of M̂ .

Note that if we fix β, b̂i,1, b̂i,2 are i.i.d., so

Ex,ε(b̂i,1) = Ex,ε(yx) = Ex,ε((x
>β + ε)x) = ΣFβ,

Ex,ε(M̂ ) =
1

2
(Ex,ε(b̂i,1)Ex,ε(b̂i,2)> +Ex,ε(b̂i,2)Ex,ε(b̂i,1)>)

= Ex,ε(b̂i,1)Ex,ε(b̂i,1)> =
1

T
ΣF (

T∑
i=1

βiβ
>
i )ΣF .

We take expectation over βi and get M . We define the right hand side as M̄ for the proof

below.

Next, we will bound ‖M̂ −M‖.

(Tripuraneni et al., 2020, Lemma 3) proposes that, with probability 1− δ,

‖xi,j‖2 . log(1/δ)tr(ΣF ),

(x>i,jβi)
2 . log(1/δ)tr(ΣFΣT ),

ε2
ij . log(1/δ)σ2.

If we enumerate i = 1, ..., T and j = 1, ..., n1, there are in total Tn1 = N terms. So we set

3We remove the subscripts when there is no confusion.
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δ = N−c+1 for a constant c > 1, then with probability 1−N−c, for all i, j we have

‖yi,jxi,j‖ = ‖(xi,jβi + εij)xi,j‖ . log3/2(N)
√

(tr(ΣFΣT ) + σ2)tr(ΣF ).

Define δi,l = b̂i,l −ΣFβi for l = 1, 2 (we will use l = 1 below, the result for l = 2 is the same).

Note that δi is zero mean. With (Kong et al., 2020b, Prop. 5.1) we have with probability

1−N−c,

‖δi,1‖ . n
−1/2
1 log5/2(N)

√
(tr(ΣFΣT ) + σ2)tr(ΣF ) (D.37)

Define

Zi = b̂i,1b̂
>
i,2 −Ex,ε(b̂i,1b̂>i,2)

= (ΣFβi + δi,1)(ΣFβi + δi,2)> −Ex,ε(b̂i,1b̂>i,2)

= δi,1(ΣFβi)
> + ΣFβiδ

>
i,2 + δi,1δ

>
i,2 −Ex,ε(δi,1δ>i,2).

Then

‖EZiZ
>
i ‖ ≤ ‖E(ΣFβiδ

>
i,2 + δi,1(ΣFβi)

>)(ΣFβiδ
>
i,2 + δi,1(ΣFβi)

>)>‖

+ ‖Eδi,1δ>i,2δi,2δ>i,1‖. (D.38)

Then we can use (D.37) and (D.27) to bound the first term by

n−1
1 log6(N)(tr(ΣFΣT ) + σ)tr(ΣF )tr(Σ2

FΣT )‖ΣF‖2.
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And

Ex,εδi,1δ
>
i,2δi,2δ

>
i,1 = (Exδ

>
i,2δi,2)‖Exδi,1δ>i,1‖

. n−2
1 (Ex,ε(x

>β + ε)2x>x)‖Ex,ε(x>β + ε)2xx>‖

. n−2
1 (tr2(ΣFΣT ) + σ4)tr(ΣF )‖ΣF‖.

The second line is due to the fact that δi,l is the difference of (x>β + ε)x and its mean, and

covariance is upper bounded by variance (not subtracting the mean). The n−2
1 factor comes

from the average over n1 terms. The reasoning of the last line is same as (D.32). Now we

can go back to (D.38) and get

‖EZiZ
>
i ‖ . n−1

1 log6(N)(tr(Σ2
FΣT ) + tr(ΣFΣT ) + σ2)2tr(ΣF )‖ΣF‖2.

Next we need to bound the norm of Zi. We use (D.37) and (D.27), with probability 1−N−c,

‖Zi‖ ≤ n
−1/2
1 log3(N)(tr(Σ2

FΣT ) + tr(ΣFΣT ) + σ2)
√

tr(ΣF )‖ΣF‖

+ n−1
1 log5(N)(tr(ΣFΣT ) + σ2)tr(ΣF ).

Define the upper bound for ‖EZiZ
>
i ‖, ‖Zi‖ as Z1, Z2 (the right hand side of two above
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inequalities). Now we apply Bernstein type inequality (Lemma 27), with probability 1−N−c,

‖M̂ − M̄‖

= ‖T−1

T∑
i=1

Zi −ExZi‖

. log(TZ2)
(
T−1/2 log(N)Z

1/2
1 + T−1Z2 log(TZ2)

)
. log(TZ2)

(√ log6(N)(tr(Σ2
FΣT ) + tr(ΣFΣT ) + σ2)2tr(ΣF )‖ΣF‖2

n1T

+
log3(N)(tr(Σ2

FΣT ) + tr(ΣFΣT ) + σ2)
√

tr(ΣF )‖ΣF‖
n

1/2
1 T

+
log5(N)(tr(ΣFΣT ) + σ2)tr(ΣF )

T

)
= log(TZ2) ·

(
log3(N)‖ΣF‖(tr(Σ2

FΣT ) + tr(ΣFΣT ) + σ2)

√
tr(ΣF )

N

+
log5(N)(tr(Σ2

FΣT ) + tr(ΣFΣT ) + σ2)
√

tr(ΣF )‖ΣF‖
N1/2T 1/2

)
.

The term

‖ΣF‖(tr(Σ2
FΣT ) + tr(ΣFΣT ) + σ2)

√
tr(ΣF )

N

is the dominant term as shown in the theorem.

The following method of moment estimator is used in Tripuraneni et al. (2020), where

n1 ≥ 1. In other words, if there is one sample per task, one can use the following estimator.

Lemma 33. Let data be generated as in Phase 1. Define b̂i = n−1
1

∑n1

j=1 yi,jxi,j, B =
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ΣF [β1, ..., βT ], and B̂ = [b̂1, ..., b̂T ]. Define

Ĝ = B̂B̂> = T−1

T∑
i=1

b̂ib̂
>
i ,

G = E(B̂B̂>) = ΣFΣTΣF + n−1
1 (ΣFΣTΣF + tr(ΣTΣF )ΣF + σ2ΣF ),

Σ̄T =
T∑
i=1

βiβ
>
i ,

Ḡ = ΣF Σ̄TΣF + n−1
1 (ΣF Σ̄TΣF + tr(Σ̄TΣF )ΣF + σ2ΣF )

With probability 1−N c,

‖Ĝ− Ḡ‖ . ‖ΣF‖(tr(Σ2
FΣT ) + tr(ΣFΣT ) + σ2)

√
tr(ΣF )

N
.

Proof. First, we compute the expectation of Ĝ.

Ex,y,εĜ = Ex,y,εT
−1(

T∑
i=1

b̂ib̂
>
i ),

Ex,y,εb̂ib̂
>
i = Ex,y,ε

(
n−1

1

n1∑
j=1

(β>i xi,j + εij)xi,j

)(
n−1

1

n1∑
j=1

(β>i xi,j + εij)xi,j

)>

= n−1
1 σ2ΣF +Ex(n−1

1

n1∑
j=1

xi,jx
>
i,jβi)(n

−1
1

n1∑
j=1

xi,jx
>
i,jβi)

>. (D.39)

Now we will study the second term. (D.31) states that Ex,y,ε(b̂i) = ΣFβi. And b̂i is an

average of n1 terms, we use the expression of the covariance of sample means to get

Cov(b̂i) = n−1
1 Cov(xx>βi), (D.40)

Ex,y,εb̂ib̂
>
i = Ex(n−1

1

n1∑
j=1

xi,jx
>
i,jβi)(n

−1
1

n1∑
j=1

xi,jx
>
i,jβi)

>

= ΣFβiβ
>
i ΣF + n−1

1 Cov(xx>βi) (D.41)
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Now we study Cov(xx>βi).

Cov(xx>βi) = Ex(xx>βi −ΣFβi)(xx
>βi −ΣFβi)

>

= Ex(xx>βi)(xx
>βi)

> −ΣFβiβ
>
i ΣF

Let x =
√

ΣFz so that z ∼ N (0, I). Let two indices k, l ∈ [d]. When k 6= l,

Ex[(xx>βi)(xx
>βi)

>]kl = Ez(
d∑
j=1

βi,jσjzj)
2σkzkσlzl

= 2σ2
kσ

2
l βi,kβi,l

And

Ex[(xx>βi)(xx
>βi)

>]kk = Ez(
d∑
j=1

βi,jσjzj)
2σ2

kz
2
k

= tr(β>i ΣFβi)σ
2
k + 2σ4

kβ
2
i,k.

So that

Ex(xx>βi)(xx
>βi)

> = 2ΣFβiβ
>
i ΣF + tr(β>i ΣFβi),

Cov(xx>βi) = Ex(xx>βi)(xx
>βi)

> −ΣFβiβ
>
i ΣF

= ΣFβiβ
>
i ΣF + tr(β>i ΣFβi)ΣF .

We plug it back into (D.41) and (D.39) and get

Ex,y,εb̂ib̂
>
i = ΣFβiβ

>
i ΣF + n−1

1 (ΣFβiβ
>
i ΣF + tr(β>i ΣFβi)ΣF + σ2ΣF ).
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Define Σ̄T = 1
T

∑T
j=1 βjβ

>
j . So that

Ex,y,εĜ = Ex,y,εT
−1(

T∑
i=1

b̂ib̂
>
i )

= ΣF Σ̄TΣF + n−1
1 (ΣF Σ̄TΣF + tr(Σ̄TΣF )ΣF + σ2ΣF ) := Ḡ.

EβĜ = G.

We fix all βi and study Ex,y,εĜ. Now we need to show how fast Ĝ converges to Ḡ.

Define

Zi = b̂ib̂
>
i −Ex(b̂ib̂

>
i )

= (ΣFβi + δi)(ΣFβi + δi)
> −Ex(ΣFβi + δi)(ΣFβi + δi)

>

= ΣFβiδ
>
i + δi(ΣFβi)

> + δiδ
>
i −Ex(ΣFβiδ

>
i + δi(ΣFβi)

> + δiδ
>
i ).

Then

‖EZ2
i ‖ ≤ ‖E(ΣFβiδ

>
i + δi(ΣFβi)

>)2‖+ ‖Eδiδ>i δiδ>i ‖.

Then we can use (D.37) and (D.27) to bound the first term

‖EZ2
i ‖ . n−1

1 log6(N)(tr(ΣFΣT ) + σ)tr(ΣF )tr(Σ2
FΣT )‖ΣF‖2 + ‖Eδiδ>i δiδ>i ‖ (D.42)

So we need to bound ‖Eδiδ>i δiδ>i ‖. Note that δi is the average of xi,j(x>i,jβi + εij) with

respect to index j = 1, ..., n1. So we just let x ∼ N (0,ΣF ) and study x(x>βi + εij). Denote
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it by ui.

‖Exuiu>i uiu>i ‖ = ‖Ex(x>βi + εij)
4xx>xx>‖

. ‖Ex((x>βi)
4 + σ4)xx>xx>‖

. (tr2(ΣFΣT ) + σ4)tr(ΣF )‖ΣF‖.

So that

‖Eδiδ>i δiδ>i ‖ . n−2
1 (tr2(ΣFΣT ) + σ4)tr(ΣF )‖ΣF‖.

Now we can go back to (D.42) and get

‖EZ2
i ‖ . n−1

1 log6(N)(tr(Σ2
FΣT ) + tr(ΣFΣT ) + σ2)2tr(ΣF )‖ΣF‖2.

Next we need to bound the norm of Zi. We use (D.37) and (D.27), with probability 1−N−c,

‖Zi‖ ≤ n
−1/2
1 log3(N)(tr(Σ2

FΣT ) + tr(ΣFΣT ) + σ2)
√

tr(ΣF )‖ΣF‖

+ n−1
1 log5(N)(tr(ΣFΣT ) + σ2)tr(ΣF ).

Define the upper bound for ‖EZ2
i ‖, ‖Zi‖ as Z1, Z2 (the right hand side of two above inequal-
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ities). With Bernstein type inequality (Lemma 27),with probability 1−N−c,

‖Ĝ− Ḡ‖

= ‖T−1

T∑
i=1

Zi −ExZi‖

. log(TZ2)
(
T−1/2 log(N)Z

1/2
1 + T−1Z2 log(TZ2)

)
. log(TZ2)

(√ log6(N)(tr(Σ2
FΣT ) + tr(ΣFΣT ) + σ2)2tr(ΣF )‖ΣF‖2

n1T

+
log3(N)(tr(Σ2

FΣT ) + tr(ΣFΣT ) + σ2)
√

tr(ΣF )‖ΣF‖
n

1/2
1 T

+
log5(N)(tr(ΣFΣT ) + σ2)tr(ΣF )

T

)
= log(TZ2) ·

(
log3(N)‖ΣF‖(tr(Σ2

FΣT ) + tr(ΣFΣT ) + σ2)

√
tr(ΣF )

N

+
log5(N)(tr(Σ2

FΣT ) + tr(ΣFΣT ) + σ2)
√

tr(ΣF )‖ΣF‖
N1/2T 1/2

)
.

D.4 Proof of robustness of optimal representation

Theorem 11. Let Λθ(R), Λ∗θ(R) be as defined above, and rF = tr(ΣF ), rT = tr(ΣT ), r =

tr(Σ̃T ). The risk of meta-learning algorithm satisfies4

risk(Λθ(R),ΣT ,ΣF )− risk(Λ∗θ(R),ΣT ,ΣF ) .
n2

2

d(R− n2)(2n2 −Rθ)θ

[
(r + σ2)

√
rF
N

+

√
rT
T

]
.

Proof. In the proof below, we use Λ and Λ∗ to replace Λθ(R),Λ∗θ(R) for simplicity. We first

4The bracketed expression applies first conclusion of Theorem 11. One can plug in the second as well.
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decompose the risk as

risk(Λ,ΣT ,ΣF )− risk(Λ∗,ΣT ,ΣF )

= risk(Λ, Σ̂T ,ΣF )− risk(Λ∗, Σ̂T ,ΣF )︸ ︷︷ ︸
≤0

+ [risk(Λ,ΣT ,ΣF )− risk(Λ, Σ̂T ,ΣF )] + [risk(Λ∗, Σ̂T ,ΣF )− risk(Λ∗,ΣT ,ΣF )].

We know risk(Λ, Σ̂T ,ΣF ) − risk(Λ∗, Σ̂T ,ΣF ) ≤ 0 due to the optimality of Λ with task

covariance Σ̂T . Now we will bound risk(Λ,ΣT ,ΣF )− risk(Λ, Σ̂T ,ΣF ) for arbitrary Λ, and

it automatically works for risk(Λ∗, Σ̂T ,ΣF )− risk(Λ∗,ΣT ,ΣF ). Note that in (5.4) we know

that

risk(Λ′,Σ′T ) = f(θ; ΣT ,ΣF ) :=
R∑
i=1

n2(1− θi)2

R(n2 − ‖θ‖2)
Σ̃R
T,i +

n2

n2 − ‖θ‖2
σ2. (D.43)

This function is linear in ΣT thus we know that

|risk(Λ∗, Σ̂T ,ΣF )− risk(Λ∗,ΣT ,ΣF )| ≤ n2

d(n2 − ‖θ‖2)
E . (D.44)

Now we need to bound ‖θ‖2. With the constraint θ ≤ θ < 1 − R−n2

n2
θ and

∑
θi = n2, we

know that the maximum of ‖θ‖2 happens when (R− n2) among θi are θ and the others are

1− R−n2

n2
θ. With this we have

‖θ‖2 ≤ (R− n2)θ2 + n2(1− R− n2

n2

θ)2

= (R− n2)θ2 + n2 − 2(R− n2)θ +
(R− n2)2

n2

θ2

= n2 − 2(R− n2)θ +
(R− n2)R

n2

θ2
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Thus

n2 − ‖θ‖2 ≥ (R− n2)θ(2n2 −Rθ).

Plugging it into (D.44) and (D.43) leads to the theorem.
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