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ABSTRACT

The ability to integrate task-relevant information into neural representations is a
fundamental aspect of both human and machine intelligence. Recent studies have
explored the transition of neural networks from the lazy training regime (where
the trained network is equivalent to a linear model of initial random features) to
the rich feature learning regime (where the network learns task-relevant features).
However, most approaches focus on weight matrices or neural tangent kernels,
limiting their relevance for neuroscience due to the lack of representation-based
methods to study feature learning. Furthermore, the simple lazy-versus-rich di-
chotomy overlooks the potential for richer subtypes of feature learning driven by
variations in learning algorithms, network architectures, and data properties.
In this work, we present a framework based on representational geometry to study
feature learning. The key idea is to use the untangling of task-relevant neu-
ral manifolds as a signature of rich learning. We employ manifold capacity—a
representation-based measure—to quantify this untangling, along with geometric
metrics to uncover structural differences in feature learning. Our contributions
are threefold: First, we show both theoretically and empirically that task-relevant
manifolds untangle during rich learning, and that manifold capacity quantifies the
degree of richness. Second, we use manifold geometric measures to reveal distinct
learning stages and strategies driven by network and data properties, demonstrat-
ing that feature learning is richer than the lazy-versus-rich dichotomy. Finally,
we apply our method to problems in neuroscience and machine learning, pro-
viding geometric insights into structural inductive biases and out-of-distribution
generalization. Our work introduces a novel perspective for understanding and
quantifying feature learning through the lens of representational geometry.

1 INTRODUCTION

Learning induces changes in brain activity, whether it involves navigating a new city, adapting novel
motor skills, or acquiring new cognitive tasks. These changes are reflected in the incorporation
of task-relevant features into neural representations (Olshausen & Field, 1996; Poort et al., 2015;
Niv, 2019; Reinert et al., 2021; Gurnani & Gajic, 2023). Similarly, the remarkable success of deep
learning is often attributed to the ability of neural networks to learn problem-specific features1. For
example, in deep neural networks (DNNs) (LeCun et al., 1998; Krizhevsky et al., 2012), the ability
to learn rich feature hierarchies enables superior image classification performance (Girshick et al.,
2014). Meanwhile, the seminal work of (Chizat et al., 2019) demonstrated that neural networks
can perform well even when there are negligible changes in the weights of the networks. This
observation had led to some research questions. Do neural networks always need to learn the feature
relevant to the task? How can we evaluate the quality of the learned features?

To answer these questions, researchers in representation learning have developed several methods to
determine whether a neural network operates in the lazy regime (learning without changing internal
features) or the rich regime (learning task-relevant features)2. These methods include measuring

1In this paper, features to refer to measurable properties or characteristics of patterns in data/input.
2These two regimes are also known as kernel regime and feature learning regime .
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changes in the weights of the network, tracking activated neurons, and assessing differences in the
linearized model (also known as the neural tangent kernel, NTK (Jacot et al., 2018)). Factors such
as initial weight norm, learning rate, and readout weight have been found to play a role in whether
a network is lazy or rich (Chizat et al., 2019). Moreover, recent theoretical evidence has suggested
that networks could perform better in the rich regime compared to the lazy regime (Yang & Hu,
2021; Shi et al., 2022; Karp et al., 2021; Damian et al., 2022; Ba et al., 2022).

However, feature learning is much richer than the lazy versus rich dichotomy. For example, changes
in representations are not always beneficial as they can lead to issues such as catastrophic forget-
ting (Kirkpatrick et al., 2017). Moreover, different network architectures, training procedures, and
objective functions, initializations, can result in different inductive biases for feature learning (Chizat
et al., 2019; Bordelon & Pehlevan, 2022; Ba et al., 2022; Damian et al., 2022), yet all of these scenar-
ios could fall under the broad category of rich learning. Lastly, current limitations in neuroscience
technology for precisely tracking synaptic weight changes in neural circuits necessitate a framework
based on neural representations rather than network weights or neural tangent kernel.

Figure 1: Schematic illustration. a, We propose to investigate feature learning using representa-
tional geometry and task-relevant manifolds. b, Specifically, using the packability of manifolds
(Definition 1 and Definition 3) to quantify the degree of richness in feature learning. c, Three main
contributions of this paper. More details in the corresponding section.

1.1 CONTRIBUTIONS

We study feature learning through the angle of task-relevant manifolds. Here, task-relevant mani-
folds refer to point clouds in the neural activity space that are related to the tasks. For example, in a
classification task, a manifold could be the point cloud of neural activations corresponding to stimuli
in a given category (e.g., the cat and dog manifolds in Figure 1a, left). In other domains, a manifold
could correspond to a context in a neuroscience experiment or to a concept in a language model.

In a network that does not learn task-relevant features (e.g., lazy learning, random features, Fig-
ure 1b, left), the manifolds are poorly organized, making them harder to distinguish (e.g., smaller
margin, smaller solution volume). In contrast, when a network learns task-relevant features (e.g.,
rich learning, neural collapse Figure 1b, right), the manifolds become well-organized and easier to
separate (e.g., larger margin, larger solution volume). From this perspective, feature learning can be
viewed as a process of untangling task-relevant manifolds—structuring the neural representational
space to improve separation among manifolds.

To make this intuition concrete and quantitative, we propose the usage of manifold capacity (Chung
et al., 2018; Chou et al., 2024) to quantify the degree of richness in feature learning (Figure 1c,
left). Spcifically, manifold capacity (Definition 1 and Definition 3) quantifies the degree of manifold
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untangling via an average-case notion of how separable the manifolds are: manifold packability3.
Additionally, manifold capacity is analytically connected to a collection of geometric measures,
which provide mechanistic descriptors to explain how these manifolds untangle.

To demonstrate our proposed method, we examine problems in neuroscience and machine learning
and find insights that have not been reported. Our contributions and results are summarized below.

• Manifold capacity as a representation-based method to quantify feature learning (Section 3).

– We theoretically and empirically show that manifold capacity tracks the degree of feature
learning in a wide range of settings.

– We demonstrate that capacity is better than conventional measures in quantifying the degree
of feature learning.

• Manifold geometry reveals previously unreported subtypes of feature learning (Section 4).

– We find that the training process of neural networks undergoes various learning stages as
shown by the dynamics of different geometric measures.

– We discover emergent learning strategies as networks transition between lazy and rich
regimes. These strategies involve trade-offs among different geometric measures.

• New geometric insights in problems from neuroscience and machine learning (Section 5).

– In recurrent neural networks (RNNs) trained on common neuroscience tasks, we find that
different network structures can result in different manifold geometry, even when achieving
the same accuracy and feature learning level.

– In an out-of-distribution (OOD) generalization task on deep neural networks (DNNs), we
find manifold-geometric correlates to the failure of generalization. This finding opens up
new avenues for future research in mitigating issues in OOD generalization.

1.2 RELATED WORK

Feature learning has been a fundamental research problem in various domains, including neuro-
science and machine learning. In neuroscience, understanding the relationship between neural rep-
resentations and task performance is a central focus (Gao & Ganguli, 2015). Representational ge-
ometry (Chung & Abbott, 2021) has emerged as a promising approach to investigate how different
organizations of features can lead to better task performance (Bernardi et al., 2020; Flesch et al.,
2022; Gurnani & Gajic, 2023). There were also works that attempted to infer the underlying learn-
ing rules of a neural network using representational geometry (Cao et al., 2020; Sorscher et al., 2022)
and low-order statistics (Nayebi et al., 2020). In machine learning, visualization techniques (Zeiler
& Fergus, 2014) have been widely used to gain intuitive insights into learned representations, often
supplemented with specialized measures to quantify specific properties. On the theoretical front,
the kernel method (Jacot et al., 2018; Lee et al., 2019) has been a leading approach to analytically
characterize the behavior of neural networks, particularly in terms of their deviation from the cor-
responding kernel. This line of research includes studies on the distinction between lazy and rich
regimes (Chizat et al., 2019; Geiger et al., 2020) and identifying problem settings where neural net-
works with feature learning outperform kernel methods (Ba et al., 2022; Dandi et al., 2023; Yang &
Hu, 2021). For a more comprehensive overview of related work, see Appendix A.

2 METHOD AND SETUP

2.1 MANIFOLD CAPACITY THEORY

Manifold capacity theory (MCT) (Chung et al., 2018; Chou et al., 2024) was originally developed
to study the untangling hypothesis4 of invariant object recognition in vision neuroscience (DiCarlo
& Cox, 2007). MCT (Chung et al., 2018; Chou et al., 2024) extends the classic notion of storage

3We remark that the margin in support vector machine (SVM) theory quantifies the degree of separability in
the worst-case setting. Here the manifold capacity theory is average-case in the sense of the random projection
in Definition 1 and the random up-lifting in Definition 3.

4In computational neuroscience, the “untangling hypothesis” posits that the brain transforms complex, en-
tangled sensory inputs into more linearly separable representations, facilitating efficient object recognition.
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capacity of points (Cover, 1965; Gardner & Derrida, 1988; Gardner, 1988) to object manifolds, i.e.,
the collection of neural representations that are invariant to the same input category (Figure 11, left).
Let P be the number of classes and N be the number of neurons (in the layer of interest). The
i-th class manifold is modeled as the convex set5 Mi = conv({Φ(x) : x ∈ Xi}) where Xi is the
collection of inputs in the i-th class, Φ(x) is the representation for x, and conv(·) denotes the convex
hull of a set. A simulated version of manifold capacity is defined as follows.

Definition 1 (Simulated manifold capacity (Chung et al., 2018)). Let P,N ∈ N andMi ⊆ RN be
convex sets for each i ∈ [P ] = {1, . . . , P}. For each n ∈ [N ], define

pn := Pr
y,Πn

[∃θ ∈ Rn : yi⟨θ, s⟩ ≥ 0, ∀i ∈ [P ], s ∈Mi)]

where y is a random dichotomy sampled from {±1}P and Πn is a random projection operator from
RN to Rn. Suppose pN = 1, the simulated capacity of {Mi}i∈[P ] is defined as

αsim :=
P

minn : pn≥0.5{n}
.

Intuitively, the simulated manifold capacity measures the packability (Chung et al., 2018) of man-
ifolds by determining the smallest dimensional subspace needed to ensure that the manifolds can
be separated. Namely, manifolds that are more packable (i.e., separable when projected to smaller
dimensional subspaces) exhibit higher manifold capacity. While Definition 1 provides a quanti-
tative description for packability, it is computationally expensive to estimate and is not analyti-
cally trackable. In (Chung et al., 2018; Chou et al., 2024), the authors resolved these issues by
considering a mean-field version of the manifold capacity (formal definition deferred to Defini-
tion 3 for simplicity), denoted as αmf, which is analytically trackable and has the property that
|αsim − αmf| = O(1/N). In particular, (Chou et al., 2024) derived that

α−1
mf =

1

P
E

y∼{±1}P
T∼N (0,IN )

[
max
si∈Mi

{
∥projcone({yisi})T∥

2
2

}]
(1)

where N (µ,Σ) denotes the multivariate Gaussian distribution with mean µ and covariance Σ and
cone(·) is the convex cone spanned by the vectors, i.e., cone({yisi}) = {

∑
i λiyisi : λi ≥ 0}.

2.2 EFFECTIVE GEOMETRIC MEASURES FROM MANIFOLD CAPACITY THEORY

The advantages of mean-field manifold capacity are: (i) αmf can be estimated via solving a quadratic
program (Algorithm 1) and (ii) Equation 1 connects manifold capacity to the structure of the mani-
folds {Mi}. Specifically, for each y, T , define{si(y, T )} = yi · argmax{si} ∥projcone({yisi})T∥

2
2

as the anchor points with respect to y and T . Intuitively, these anchor points are the support vectors
with respect to some random projection and dichotomy as in Definition 1. Specifically, these anchor
points are analytically linked to manifold capacity via Equation 1 and are distributed over the mani-
folds {Mi}. This connection inspired the previous work (Chung et al., 2018; Chou et al., 2024) to
define the following effective manifold geometric measures that capture the structure of manifolds
while being analytically connected to capacity (see Figure 2c and Appendix B).

For each i ∈ [P ], define s0i := Ey,T [si(y, T )] as the center of the i-th manifold and define
s1i (y, T ) := si(y, T )− s0i to be the axis part of si(y, T ) for each pair of (y, T ).

• Manifold dimension captures the degree of freedom of the noises/variations within the mani-
folds. Formally, it is defined as Dmf := Ey,T [∥projcone({s1i (y,T )}i)T∥

2
2].

• Manifold radius captures the noise-to-signal ratio of the manifolds. Formally, it is defiend as

Rmf :=

√
Ey,T

[
∥projcone({si(y,T )}i)

T∥2

∥projcone({s1
i
(y,T )}i)

T∥2−∥projcone({si(y,T )}i)
T∥2

]
.

• Center alignment captures the correlation between the center of different manifolds. Formally,
it is defined as ρcmf :=

1
P (P−1)

∑
i ̸=j |⟨s0i , s0j ⟩|.

5In the context of linear classification, it is mathematically equivalent to study the convex hull of a manifold.
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• Axis alignment captures the correlation between the axis of different manifolds. Formally, it is
defined as ρamf :=

1
P (P−1)

∑
i ̸=j Ey,T [|⟨s1i (y, T ), s1j (y, T )⟩|].

• Center-axis alignment captures the correlation between the center and axis of different mani-
folds. Formally, it is defined as ψmf :=

1
P (P−1)

∑
i ̸=j Ey,T [|⟨si, s1j (y, T )⟩|].

Previous work Chung et al. (2018); Chou et al. (2024) showed that the the changes in manifold
capacity can be explained by the changes of these geometric measures. For example, the decrease
of manifold radius and dimension makes the capacity higher (see Figure 2c, Section B.4).

Figure 2: Our methods. a, Higher capacity means that the neural representational space can pack
more manifolds (Definition 1). b, We propose to use changes of capacity across training to study
task-relevant richness/laziness in feature learning (Section 3). Top: we consider the setting in (Chizat
et al., 2019) where VGG-11 was trained on CIFAR-10. An inverse scale factor was introduced to
interpolate between lazy and rich training, where smaller value (blue) corresponds to lazier learning
and larger value correponds to richer learning (red). Bottom: we show that the changes in capacity
faithfully tracks the degree of richness in feature learning. c, Effective geometric measures drive the
capacity value, providing mechanistic descriptors to study representational changes in feature learn-
ing. Center-axis alignment has a more complex relationship with capacity, discussed Section B.4.

2.3 RICH AND LAZY LEARNING IN NEURAL NETWORKS

We studied rich versus lazy learning in two standard settings: 2-layer non-linear neural networks on
synthetic data and feedforward deep neural networks on real image classification datasets (Chizat
et al., 2019). All analyses were performed on the test data representations in the last layer.

A scale factor for interpolating between rich and lazy regime. In all experiments, we use the
inverse scale factor η̄ as a tunable ground truth for the degree of feature learning. In particular, η̄
controls the magnitude of the output of the network as in (Chizat et al., 2019). Intuitively, a larger
η̄ indicates that the learning rate of intermediate layers is faster compared to that of the readout
weights, resulting in a richer learning process. See Appendix D and E for more details.

2-Layer non-linear neural networks. We considered standard 2-layer neural networks with non-
linear activation functions and trained with gradient descent. We also considered a data model to
generate random point clouds as input manifolds. This setting serves as a well-curated testbed for
testing the proposed methodology and showcasing intuitions. See Appendix D for more details.

Deep neural networks. The goal of this work is to develop a framework to understand neural
representations rather than pushing the benchmark. Therefore, we focused on models and settings
that are large enough to see interesting phenomena, while the computational cost is still reasonable.
Specifically, we considered feedforward DNN architectures such as VGG-11 (Simonyan & Zisser-
man, 2015) and ResNet-18 (He et al., 2016) and datasets CIFAR-10 (Krizhevsky & Hinton, 2009),
CIFAR-100 (Krizhevsky & Hinton, 2009), CIFAR-10C (Hendrycks & Dietterich, 2018). This set-
ting illustrates the applicability of our methodology to DNNs. See Appendix E for more details.
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3 MANIFOLD CAPACITY QUANTIFIES THE DEGREE OF FEATURE LEARNING

In this section, we provide both empirical and theoretical justifications for using the increase in ca-
pacity during training as a measure to quantify the degree of richness (or the amount of task-relevant
features) in feature learning. Furthermore, we compare our method with conventional approaches in
the study of lazy versus rich learning, highlighting the new insights uncovered by our approach.

3.1 JUSTIFICATIONS OF CAPACITY FOR QUANTIFYING THE LAZY VERSUS RICH DICHOTOMY

Theoretical justification on 2-layer non-linear neural networks. We built on previous work
from Ba et al. (2022) and Montanari et al. (2019) to analytically characterize the connection be-
tween capacity, prediction error, and the effective degree of richness in a well-studied theoreti-
cal model. Concretely, we consider the training of a fully-connected 2-layer network of the form
f(x) = 1√

N
a⊤σ(W⊤x), where x ∈ Rd is an input, W ∈ RN×d is the hidden layer matrix,

a ∈ RN is the readout weight, and σ : R → R is the (non-linear) activation function. To study
feature learning in this setting, it is common to consider W to be randomly initialized (i.e., ran-
dom feature model (Rahimi & Recht, 2007)) and update via gradient descent with squared loss.
Meanwhile, the readout weight a is randomly initialized and fixed to avoid lazy learning (where the
network minimally adjusts the hidden layer and focuses on learning a good readout weight) as well
as enable mathematical analysis (Ba et al., 2022). Input data and label (x1, y1), . . . , (xPtrain , yPtrain)
were randomly generated by a teacher-student setting, where there is a hidden signal direction β∗

that correlates with the label (see Setting 1 for the full setting). As previously proved in Ba et al.
(2022) (see Proposition 1), in the proportional asymptotic limit (i.e., Ptrain, d,N → ∞ at the same
rate), the first-step gradient update can be approximated by a rank-1 matrix that contains label infor-
mation, resulting in the updated weight to be more aligned with the hidden signal β∗. Hence, in this
setting, the learning rate η can be used as the ground-truth to measure the amount of task-relevant
information (i.e., richness in learning) in the model representation after gradient updates.

We extend the previous results in (Ba et al., 2022) from a regression setting to a classification set-
ting. Specifically, We prove that capacity correctly tracks the effective degree of richness after one
gradient step6. Moreover, we derive a monotone connection between capacity and prediction accu-
racy. Here, we provide an informal statement of our results and leave the formal version and proof
in Appendix C.

Theorem 1. Given Assumption 1 and Setting 1. Let 0 < η < ∞ be the learning rate of a one-step
gradient descent with squared loss and ψ1 = N

d , ψ2 = Ptrain
d where Ptrain is the number of training

points, d is the input dimension, and N is the number of hidden neurons. Let αPtrain,d,N (η) be the
capacity and let AccPtrain,d,N (η) be the prediction accuracy after a gradient step with learning rate
η. We have

1. (Capacity tracks the degree of richness) αPtrain,d,N (η)
Ptrain,d,N→∞−−−−−−−−→ α(η, ψ1, ψ2) where α(·, ·, ·)

is defined in Theorem 2. Specifically, α(η, ψ1, ψ2) < α(η′, ψ1, ψ2) for every 0 < η < η′.

2. (Capacity links to prediction accuracy) AccPtrain,d,N (η)
Ptrain,d,N→∞−−−−−−−−→ Acc(η, ψ1, ψ2) where

Acc(η, ψ1, ψ2) is formally defined in Theorem 2. In particular, there exists an increasing and
invertible function hψ1,ψ2

: R+ → [0, 1] such that Acc(η, ψ1, ψ2) = hψ1,ψ2
(α(η, ψ1, ψ2)).

The above theorem justifies the usage of capacity as a measure for the degree of richness in fea-
ture learning within a well-studied theoretical setting. We remark that our proof requires substantial
technical improvements from (Ba et al., 2022) due to the difference between regression and classi-
fication (e.g., analyzing the margin of the Gaussian equivalent model after one-step gradient using
tools from (Montanari et al., 2019), Proposition 2).

Empirical justification in standard settings. Next, we empirically justify the use of capacity to
quantify the degree of feature learning. A classic result in the literature of lazy versus rich training
is to train a lazy network where the test accuracy improves, but the weight matrices (or kernels) do
not change much before and after training. We consider two settings in (Chizat et al., 2019), one

6Here we follow the convention in (Ba et al., 2022) and study only the first gradient step as the key Gaussian
equivalence step might not hold for more steps as remarked in footnote 2 of (Ba et al., 2022).
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is feedforward DNNs (VGG-11 and ResNet-18) trained on CIFAR-10 (Figure 2b), and the other is
2-layer non-linear NNs trained on random point clouds (Figure 3a). In both cases, we observe that
the manifolds are more untangled when training is richer and capacity correctly tracks the degree of
feature learning (the ground truth being the scale parameter η̄). This provides empirical justification
for the use of capacity as well as evidence for manifold untangling in the rich learning regime.

Figure 3: Capacity as a measure for the degree of feature learning. See Section D.1 for the exper-
imental setup. a, We interpolated between lazy and rich regime in 2-layer NNs trained to classify
Gaussian clouds. We found that capacity could tell the difference between the underlying scale pa-
rameter better than the other conventional methods. b, We fixed a scale parameter and initialized the
input Gaussian clouds with different dimensions (the higher the poorer the initial representations are
for each class). We found that capacity could tell the difference in the amount of tasks-relevant fea-
tures at initialization than other conventional methods. Specifically, the representation-label align-
ment would characterize the wrong ordering of wealthiness in initial features.

3.2 COMPARISON WITH CONVENTIONAL FEATURE LEARNING MEASURES.

Here we compare the capacity with several common measures for feature learning: accuracy curves,
weight changes, and alignment methods. Concretely, weight changes at the t-th epoch is defined
as ∥Wt − W0∥F /∥W0∥F where Wt is the weight matrix at the t-th epoch. NTK-label align-
ment and representation-label alignment at the t-th epoch are defined as CKA(KNTK

t ,yy⊤) and
CKA(XtX

⊤
t ,yy

⊤) respectively, where y is the label vector, CKA(·, ·) is the center kernel align-
ment measure (Kornblith et al., 2019), KNTK

t is the neural tangent kernel and Xt is the represen-
tational matrix at the t-th epoch. See Appendix A for a detailed introduction to these methods
and Appendix D for more experimental details.

Capacity can detect task-relevant features in the presence of complex structures in data. In Fig-
ure 3a, we consider 2-layer NNs trained on random Gaussian clouds with gradient descent. We vary
the scale parameter of the network to interpolate between lazy and rich regimes as done in (Chizat
et al., 2019). We find that capacity is better at telling the difference of effective richness (i.e., the
scale parameter) of the training than other conventional measures (Figure 3a). In particular, when
the training is richer, we expect the representations to exhibit more complex structures.

Capacity can quantify the differences in task-relevant features at initialization. When com-
paring two networks with different initializations, focusing solely on network changes can overlook
differences in features present at initialization. Here, we use the capacity value at initialization to
determine whether a network is in a wealthy regime (i.e., possessing more task-relevant features)
or a poor regime (i.e., possessing less task-relevant features), as shown in (Figure 3b). The wealthy
versus poor distinction provides insight into the network’s initial state, allowing for a more compre-
hensive comparison of different settings (see‘Section 5.1 for an example).

4 MANIFOLD GEOMETRY REVEALS SUBTYPES OF FEATURE LEARNING

In this section, we demonstrate that feature learning is much richer than the lazy versus rich di-
chotomy. In particular, we use manifold geometric measures (Figure 2c, and Appendix B for de-
tails) to delineate the differences in the learned features (learning strategies) of neural networks and
representational changes throughout training (learning stages). The key takeaway from this section
is the ability of our method to reveal task-relevant changes in neural representations.
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4.1 GEOMETRIC DIFFERENCES IN LEARNED FEATURES: LEARNING STRATEGIES

To increase capacity, a network can shrink the radius or compress the dimension of neural manifolds
(Figure 2c). We demonstrate in 2-layer NNs the emergence of distinct learning strategies driven by
different factors. In Figure 4a, we consider the setting in Figure 3a where we interpolate the degree
of richness in feature learning via an inverse scale factor. As training moves from the lazy to a richer
regime (blue to gray), the network compresses both the radius and dimension to increase capacity.
Interestingly, in an even richer regime (gray to red), the network sacrifices radius to further reduce
dimension. In Figure 4b, we consider the setting in Figure 3b where we interpolate the wealth of
initialization by varying input data dimension. For the wealthiest initialization (purple), the net-
work primarily compresses radius. For poorer initialization (green), both radius and dimension are
compressed in lazier training, while in the richer regime (e.g., inverse scale factor 24), the network
sacrifices radius for further dimension compression. In summary, varying degrees of richness in
feature learning can exhibit different learning mechanisms, as captured by manifold geometry.

4.2 MANIFOLD GEOMETRY CHANGES THROUGHOUT TRAINING: LEARNING STAGES

Neural networks learn in a highly non-monotonic manner throughout the training period. Examples
include double descent (Belkin et al., 2019; Nakkiran et al., 2021; Mei & Montanari, 2022) and
grokking (Power et al., 2022; Liu et al., 2022; Nanda et al., 2023; Kumar et al., 2024). Previous
works have analytically or empirically described the different stages/phases such as comprehension,
grokking, memorization, and confusion (Liu et al., 2022) through the trajectory of accuracy curves.

From Figure 4a,b we observe distinct stages of manifold geometry evolution during training in 2-
layer networks. In the very rich regime, the network initially compresses both radius and dimension,
then increases radius to further reduce dimension. In Figure 4c, we examine a standard setting
where VGG-11 is trained on CIFAR-10. Despite the rapid saturation of training and test accuracy, at
least four stages of geometric changes are evident (see Figure 2c for analytical connections between
geometric measures and capacity): a clustering stage (initial manifold compression), followed by a
structuring stage (increasing alignment), a separating stage (decreasing alignment to push manifolds
apart), and a final stabilizing stage (further reducing center alignment).

Figure 4: Manifold geometry characterizes learning strategies and learning stages. a, Capacity
contour plot of the example from Figure 3a. The x-axis is the average manifold radius Rmf, the
y-axis is the average manifold dimension Dmf, and the contour is the geometric approximation of
capacity, i.e., αmf ≈ (1 + R−2

mf )/Dmf (see Appendix B for details). b, Capacity contour plot of the
example from Figure 3b. c, Normalized manifold geometry dynamics plot of VGG-11 trained with
CIFAR-10. The values in each row are rescaled so that the max value is 1 and the min value is 0.
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5 APPLICATIONS TO NEUROSCIENCE AND MACHINE LEARNING PROBLEMS

In previous sections, we used capacity to quantify the degree of feature learning and delineate the
learning stages and strategies through effective geometry. In this section, we apply our framework
to find geometric insights in problems from neuroscience and machine learning.

5.1 STRUCTURAL INDUCTIVE BIASES IN NEURAL CIRCUITS

We study recurrent neural networks (RNNs) that are trained on standard neuroscience tasks such
as perceptual decision making (Britten et al., 1992) (Figure 5a). We adopt the setting from previ-
ous work (Liu et al., 2024) on investigating how differences in connectivity initialization affect the
learning process. In particular, previous work used the weight changes of RNNs before and after
training as a measure to quantify if a network is in rich or lazy training regimes (Figure 5b). Here,
we use our methods of capacity and its effective geometry to study such structural biases of neural
circuits in a data-driven way (i.e., from neural activity instead of weight matrix).

Figure 5: Structural inductive biases in neural circuits. a, We consider RNNs trained on standard
neuroscience tasks. b, Previous work (Liu et al., 2024) found that the initial weight rank of the
recurrent connectivity matrix leads to an inductive bias toward effectively richer or lazier training.
c, We find that RNNs trained with different initial weight rank reach the same capacity value at final
epoch. It is the difference in capacity at initialization that makes RNNs with small initial weight
rank richer in training. d, Despite having the same capacity at final epoch, RNNs with different
initial weight rank exhibit different manifold geometry.

Experimental setup. We use the neurogym package (Molano-Mazon et al., 2022) to simu-
late common cognitive tasks, including perceptual decision making, delayed matching, etc. To
study how connectivity structure impacts learning strategies, we initialize recurrent neural networks
(RNN) weights with varying ranks (low-rank weight has lower connectivity and higher initial bias
and vice versa) via Singular Value Decomposition (similar setup used in (Liu et al., 2024)). The
RNN have 300 hidden units, 1 layer, with ReLU activations, and are trained for 10000 iterations
using SGD optimizer. (more details can be found in the Appendix section F). Manifold capacity and
effective geometric measures are computed using representations from the hidden states.

Our findings. First, we study the training dynamics of capacity value in RNNs with various initial
weight rank (Figure 5c). In agreement with the previous finding in (Liu et al., 2024) using weight
changes, we find that the capacity changes of the small initial weight rank RNNs are higher than
those of the large initial weight rank RNNs. Interestingly, the capacity values at the final epoch are
about the same for RNNs with different initial weight rank. It is the difference in capacity value
at initialization that distinguishes the learning dynamics of RNNs with different initial weight rank.
Namely, small initial weight rank RNNs are in the poorer-richer feature learning regime, while large
initial weight rank RNNs are in the wealthier-lazier feature learning (Figure 5c).

Next, although the capacity values of RNNs at the final epoch are about the same for different
initial weight ranks, we find that their geometric organizations are quite different (Figure 5d). For
example, poorer-richer learning (i.e., small initial weight rank) ends up with a larger radius but
smaller dimension, while it is the opposite for wealthier-lazier learning (i.e., large initial weight
rank). This finding suggests that there are structural biases in RNNs at the manifold geometry level.
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5.2 OUT-OF-DISTRIBUTION GENERALIZATION

Out-of-distribution (OOD) generalization refers to the scenario when the training distribution
(x, y) ∼ Dtrain is different from the test distribution (x, y) ∼ Dtest. Here we focus on the case
where the label set in Dtest is different from that in Dtrain.

Figure 6: Out of distribution generalization. a, CIFAR-10c as a domain adaptation (DA) dataset and
CIFAR-100 as an OOD dataset. b, Test accuracy improves for CIFAR-10 and CIFAR-10C as the
training becomes richer and richer while the linear probe accuracy for CIFAR-100 would drastically
drop in the ultra-rich training regime. c, Effective manifold geometry of CIFAR-100 reveals that the
expansion of manifold radius and the increase of center-axis alignment explain the failure of OOD
generalization in the ultra-rich regime. The color is normalized for each row respectively.

Experimental setup. For each model pre-trained on CIFAR-10, we train a linear classifier (i.e.,
linear probe (Alain & Bengio, 2016)) on top of the last-layer representation with CIFAR-100 train
set, and then evaluate the linear probe’s performance on CIFAR-100 test set (see more details in Ap-
pendix E.4). We also consider a corrupted version of CIFAR-10, the CIFAR-10C dataset (Hendrycks
& Dietterich, 2018) as an example of domain adaptation (DA) task. Finally, we compute the mani-
fold capacity and effective geometric measures on these last-layer representations.

Our findings. We see that the test accuracy of the OOD dataset increases when the network enters
the rich learning regime (η̄ around 0.1) but decreases drastically when the degree of feature learning
is too rich (η̄ around 1.0). The failure in such ultra-rich feature learning regime is different from the
test accuracy of both CIFAR-10 and CIFAR-10C ( Figure 6b). Looking at the capacity and effective
geometry ( Figure 6c), we first see strong correlations between the capacity and test accuracy, which
warrants the use of effective geometry. Next, we find that the expansion of manifold radius and the
increase of center-axis alignment in the ultra-rich regime explain the drop of capacity. Interestingly,
we also see an architectural difference where it is the increment in dimension in the ultra-rich regime
explaining the drop of capacity in ResNet-18 (Figure 21). We leave it as a future direction to extend
our study, applying these geometric insights to improve OOD generalization performance.

6 CONCLUSION AND DISCUSSION

The primary contribution of this work is to demonstrate how the perspective of task-relevant man-
ifold untangling (quantified by manifold capacity and delineated by manifold geometric measures)
can enhance our understanding of feature learning at an intermediate level. We propose several
promising future directions, including extending the theoretical analysis to more realistic settings,
exploring applications in other types of DNN (e.g., recurrent networks, transformers) and addressing
relevant scientific inquiries in neuroscience, such as inferring plasticity mechanisms from observed
learning dynamics in neural data, and predicting learning-induced changes across brain regions.
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A MORE ON RELATED WORK

Visualization. Due to the black-box and complex nature of deep neural networks, various visu-
alization techniques have been developed to attempt to characterize the features that models learn
during training (feature visualization) and identify which input pixel and / or feature activation in
the hidden layers contribute significantly to the final model outputs (feature attribution). Feature vi-
sualization techniques visualize features (e.g convolutional filter in the case of CNNs) by generating
the input sample that maximizes the activation of that given feature via gradient descent (Olah et al.,
2017) (Erhan et al., 2009) (Zeiler & Fergus, 2014). With its vivid visualization, feature visualization
provide good intuition about the qualitative characteristics of the features that DNNs learn across
layers (Zeiler & Fergus, 2014) as well as different types of models (e.g, standard vs adversarially
robust (Engstrom et al., 2019)). Feature attribution techniques generally identify how much each
input and/or hidden features contribute to the final model prediction by computing the gradient of
that input/hidden features to the output (some example techniques include saliency map (Simonyan
et al., 2013), Grad-cam (Selvaraju et al., 2017), integrated gradient (Sundararajan et al., 2017)).
Although both feature visualization and feature attribution offer intuitive understanding about the
model’s feature characteristics, the qualitative nature of visualization makes it difficult to quantify
the degree of relevance of the learned features to a given task.

Kernel dynamics. Kernel methods (Hofmann et al., 2008) have been classic machine learning
techniques, where the primary goal is to design an effective embedding that maps inputs to a fea-
ture space, thus facilitating efficient algorithms to find good solutions (e.g., linear classifier). While
neural networks are inherently complex, seminal works (Jacot et al., 2018; Lee et al., 2019) have
shown that in the infinite width limit, a network can be linearized by its neural tangent kernel (NTK).
Thus, studying the NTK of a network allows an analytical understanding of various properties of
neural networks, such as convergence to global minima (Du et al., 2018; 2019), generalization per-
formance (Allen-Zhu et al., 2019; Arora et al., 2019), implicit bias (Bordelon et al., 2020; Canatar
et al., 2021), and neural scaling laws (Bahri et al., 2021).

When a network is properly initialized (Chizat et al., 2019), gradient descent can converge to the
NTK of the random initialization, a setting known as the kernel regime (a.k.a., lazy training or
random feature regime). On the other hand, a network can also enter what is known as the feature
learning regime (a.k.a., rich training or mean-field limit), where it deviates from the NTK of the
initialization (Geiger et al., 2020). Extensive research has been conducted to characterize lazy versus
rich regimes (Geiger et al., 2020) and to demonstrate instances where feature learning outperforms
lazy training (Yang & Hu, 2021; Ba et al., 2022; Dandi et al., 2023). It is important to note that even
when a network undergoes feature learning, the NTK can still be defined at each epoch. Previous
works also analytically characterized the dynamics of kernel in simpler models (Bordelon et al.,
2020). Studying such kernel dynamics also provides a lens for exploring questions related to feature
learning, such as grokking (Kumar et al., 2024).

Representational geometry. The visualization approaches mentioned above focus on studying the
geometric properties of the feature map itself. Another fruitful direction is to examine the geometric
properties of the neural representations of inputs (i.e., embedding vectors) and their connections to
performance (Chung & Abbott, 2021; Gurnani & Gajic, 2023). Various dimensionality reduction
methods (e.g., principal components analysis (PCA), Isomap, t-SNE, MDS, and UMAP) have been
proposed to build intuitions about the organization of high-dimensional feature spaces. In addition,
there are approaches that study lower-order statistics of embedding vectors, such as representational
similarity (Kriegeskorte & Kievit, 2013) and spectral methods (Rahaman et al., 2019; Bahri et al.,
2021; Ghosh et al., 2022). Methods for extracting higher-level geometric properties (e.g., dimen-
sion) have also been proposed (Chung et al., 2018; Cohen et al., 2020; Chou et al., 2024; Ansuini
et al., 2019), with wide applications in both machine learning (e.g., memorization (Stephenson et al.,
2021), grokking of modular arithmetic (Liu et al., 2022; Nanda et al., 2023)) and neuroscience (e.g.,
perceptual untangling in object categorization (Chung et al., 2018), abstraction (Bernardi et al.,
2020), few-shot learning (Sorscher et al., 2022), social learning (Paraouty et al., 2023)).

7See Figure 3 for examples of how NTK-label alignment and representation-label alignment could fail at
quantifying the amount task-relevant features.
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Our approach
(manifold geometry) Accuracy Weight

changes
NTK-label
alignment

Representation-label
alignment

Detect the changes
in features ✔ ✘ ✔ ✔ ✔

Quantify the amount of
task-relevant features ✔ ✘ ✘ ✘7 ✘7

Representation-based ✔ ✘ ✘ ✘ ✔

Delineate subtypes of
feature learning ✔ ✘ ✘ ✘ ✘

Table 1: Comparison with conventional measures used in lazy versus rich learning.

A.1 PREVIOUS WORK ON STORAGE CAPACITY

Storage capacity is defined as the information load for linear readouts and has been studied in sev-
eral communities, including learning theory (Cover, 1965) and statistical physics of neural net-
works (Gardner & Derrida, 1988; Gardner, 1988). To enable a mathematical treatment, we focus on
the proportional limit (a.k.a. the high-dimensional limit, the thermodynamic limit), i.e., N,P →∞
and limN,P→∞N/P = O(1). For a given network and input data, we denote the representation of
the i-th input xi as Φ(xi) ∈ RN where Φ is the (non-linear) feature map. The storage capacity of Φ
is defined as.

α(Φ) := lim
N→∞

max
P

{
P

N
: Pr

y

[
∃θ ∈ RN , ∀i ∈ [P ], yi⟨θ,Φ(xi)⟩ ≥ 0

]
≥ 1− oN (1)

}
(2)

where y ∈ {±1}P is uniformly random sampled, θ is the linear classifier, and oN (1) denotes van-
ishing terms (i.e., oN (1)→ 0 as N →∞). One can also consider the setting where the distribution
of y is biased toward some task direction (Montanari et al., 2019). Intuitively, α(Φ) quantifies the
number of patterns per neuron that a network can store and decode with linear readouts.

Recall that storage capacity is defined as the critical ratio between the number of stored patterns
and the number of neurons (Equation 2). Cover’s theorem (Cover, 1965) shows that the success
probability of having a linear classifier for P points with random binary labels in general position 8

is p(N,P ) = 21−P
∑N−1
k=0

(
P−1
k

)
. In particular, for P/N < 2 we have limN→∞ p(N,P ) = 0 and

for P/N > 2 we have limN→∞ p(N,P ) = 1. Namely, the storage capacity of points in general
position with random binary label is 2. See also Figure 7 for finite-size and numerical examples.

Figure 7: Storage capacity of random points and labels. Storage capacity is defined as the critical
ration P/N = 2 where the success probability undergoes a phase transition. Left: finite size success
probability curves proved in Cover’s theorem. Right: a numerical check for Cover’s theorem.

In the seminal works of Gardner and Derrida (Gardner & Derrida, 1988; Gardner, 1988), the storage
capacity for random points with non-zero margin is analytically characterized using replica method.
In the context of associative memory, the storage capacity of Hopfield networks (Hopfield, 1982) is
calculated by (Amit et al., 1987).

8Meaning that every N ′ ≤ N points are linearly independent. Note that random points are in general
position with probability 1− o(1).
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B MANIFOLD CAPACITY THEORY AND EFFECTIVE GEOMETRY

Manifold capacity theory (MCT)(Chung et al., 2018; Chung & Abbott, 2021; Wakhloo et al., 2023;
Chou et al., 2024) was originally developed for the study of manifold untangling (DiCarlo & Cox,
2007) in theoretical/computational neuroscience. Intuitively, manifold untangling refers to the in-
creased separation of high-dimensional manifolds (e.g., point cloud manifolds) in the eyes of a
downstream readout. MCT quantifies this intuition via modeling a downstream neuron as a linear
classifier, and uses the packing efficiency of the neural representational space to evaluate the de-
gree of manifold untangling. Mathematically, such packing efficiency coincides with support vector
machine (SVM) in an average-case setting.

B.1 NEURAL MANIFOLDS AS CONVEX HULLS OF PRE-READOUT REPRESENTATIONS

As we are studying feature learning, we are interested in the neural representations that correspond to
activations obtained from the pre-linear readout layer neurons. The readers can refer to Appendix D
and Appendix E for details on activation extraction. Notation wise, let N be the number of neurons.
Therefore, all neural representations live in RN space.

Next, we group neural representations by their category labels assigned during training to obtain
P data manifolds. For i ∈ {1, . . . , P}, the i-th data manifold, denoted as Mi, is a convex set in
RN . To ensure convexity in practice, we take Mi to be the convex hull of a collection of vectors
Mi = {xi1, . . . ,xiMi

} where Mi is the number of points in the i-th manifold.

Notice that the each data manifold lives in its own subspace of dimension Di ≤ N . Therefore, we
can rewrite each data manifold in its own coordinate system:

Mi =

ui0 +

Di∑
j=1

sju
i
j

∣∣∣∣∣ s = (s1, . . . , sDi) ∈ Si

 (3)

Here, ui0 is the center of the i-th manifold and {uij}
Di
j=1 is an orthonormal basis. The shape set

Si ⊂ RDi is a convex set denoting coordinates of the manifold points in its subspace. In practice,
the manifold axes and shape sets Si are completely data driven.

B.2 A SIMULATION DEFINITION FOR MANIFOLD CAPACITY

Recall from Section 2 that the simulation version of manifold capacity is defined as follows.

Definition 1 (Simulated manifold capacity (Chung et al., 2018)). Let P,N ∈ N andMi ⊆ RN be
convex sets for each i ∈ [P ] = {1, . . . , P}. For each n ∈ [N ], define

pn := Pr
y,Πn

[∃θ ∈ Rn : yi⟨θ, s⟩ ≥ 0, ∀i ∈ [P ], s ∈Mi)]

where y is a random dichotomy sampled from {±1}P and Πn is a random projection operator from
RN to Rn. Suppose pN = 1, the simulated capacity of {Mi}i∈[P ] is defined as

αsim :=
P

minn : pn≥0.5{n}
.

Intuitively, the simulated manifold capacity measures the packability (Chung et al., 2018) of man-
ifolds by determining the smallest dimensional subspace needed to ensure they can be separated.
Namely, manifolds that are more packable9 (i.e., separable when projected to smaller dimensional
subspaces) exhibit higher manifold capacity. Note that the simulated capacity can be estimated
from data by empirically estimate pn and perform binary search to find the critical dimension
minpn≥0.5{n}. This procedure is computationally expensive and requires some choices of hyper-
parameters (which makes the definition a little ad hoc). Nevertheless, Definition 1 provides good
intuition on how to think about manifold capacity (and its connection to packing).

9The reason why this is called “packing” is that projecting manifolds into smaller dimensional subspace is
like packing them into a smaller neural representational space.
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B.3 A MEAN-FIELD DEFINITION FOR MANIFOLD CAPACITY

To overcome the above-mentioned drawbacks of simulated manifold capacity, previous
work (Chung et al., 2018; Wakhloo et al., 2023; Chou et al., 2024) defined some mean-field models
to enable a nice mathematical definition of manifold capacity while still being a good approximation
to the simulated manifold capacity.

Mean-field model from (Chou et al., 2024). Given a collection of (finite) data manifolds
{Mi}Pµ=1. A mean-field model is to generate infinitely many (Pmf) manifolds in an infinite-
dimensional (Nmf) space and characterizing the largest possible Pmf/Nmf such that these “mean-
field” manifolds are separable. The key idea is that if this generating process nicely preserve the
structure in the data manifolds, then the packing property of these mean-field manifolds will be very
similar
Definition 2 (Mean-field model from (Chou et al., 2024)). Let {Mi}i∈[P ] be a collection of data
manifolds in RN as defined in Equation 3. Let α ∈ R≥0 and Pmf, Nmf be integers with the following
properties: (i) Pmf, Nmf →∞ and (ii) Pmf/Nmf = α <∞, and Pmf be divisible by P . We define the
mean-field manifoldsMmf(Pmf, Nmf) = {Ma,i

mf }a∈[Pmf/P ],i∈[P ] as follows.

• First, find an orthogonal basis {ek}Nk=1 in RN for the basis vectors of all the data mani-
folds. Namely, for each i ∈ [P ], there exists a linear transformationQi ∈ R(Di+1)×N such
that uij =

∑
kQ

i,j
k ek for each j ∈ {0, 1, . . . , Di}.

• Next, for each a ∈ [Pmf/P ], generate va1 , . . . ,v
a
N ∼ N (0, INmf) independently and let Va

be the Nmf ×N matrix with vaj on its columns.

• Define Ma,i
mf =

{
(VaQi)0 +

∑Di
j=1 sj(V

aQi)j : s = (s1, . . . , sDi) ∈ Si
}

as the i-th

manifold in the a-th cloud where (VaQi)i =
∑
k v

a
kQ

i,j
k for every a ∈ [Pmf/P ] and

i ∈ [P ].

Now, we are ready to formally define the mean-field version of manifold capacity.
Definition 3 (Mean-field manifold capacity Chung et al. (2018); Chou et al. (2024)). Let {Mi}i∈[P ]

be a collection of data manifolds in RN as defined in Equation 3. The manifold capacity of
{Mi}i∈[P ] is defined as

αmf := lim
Nmf→∞

max
Pmf

{
Pmf

Nmf
: Pr

y,Mmf(Pmf,Nmf)

[
∃θ∈RNmf , ∀a∈[Pmf/P ], i∈[P ],

min
s∈Ma,i

mf
yi⟨θ,s⟩≥0

]
≥ 1− oNmf(1)

}
where and oNmf(1)→ 0 as Nmf →∞.

Finally, previous work (Chung et al., 2018; Chou et al., 2024) derived a formula for mean-field
manifold capacity as follows.

α−1
mf =

1

P
E

y∼{±1}P
T∼N (0,IN )

[
max
si∈Mi

{
∥projcone({yisi})T∥

2
2

}]
(4)

=
1

P
E

y∼{±1}P
T∼N (0,IN )

 max
si∈Mi
λi≥0

{(
−T ·

∑
i λiyisi

∥
∑
i λiyisi∥2

)2

+

}
where N (µ,Σ) denotes the multivariate Gaussian distribution with mean µ and covariance Σ and
cone(·) is the convex cone spanned by the vectors, i.e., cone({yisi}) = {

∑
i λiyisi : λi ≥ 0}.

B.4 EFFECTIVE GEOMETRIC MEASURES FROM CAPACITY FORMULA

The advantages of mean-field manifold capacity are: (i) αmf can be estimated via solving a quadratic
program (Algorithm 1) and (ii) Equation 1 connects manifold capacity to the structure of the mani-
folds {Mi}. Specifically, for each y, T , define{si(y, T )} = yi · argmax{si} ∥projcone({yisi})T∥

2
2
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as the anchor points with respect to y and T . Intuitively, these anchor points are the support vectors
with respect to some random projection and dichotomy as in Definition 1. Specifically, these anchor
points are analytically linked to manifold capacity via Equation 1 and are distributed over the mani-
folds {Mi}. This connection inspired the previous work (Chung et al., 2018; Chou et al., 2024) to
define the following effective manifold geometric measures that capture the structure of manifolds
while being analytically connected to capacity.

The first key idea of defining effective geometric measure is the segregation of anchor points into
their center part and their axis part. Concretely, for each i ∈ [P ], define s0i := Ey,T [si(y, T )] as
the center of the i-th manifold and define s1i (y, T ) := si(y, T ) − s0i to be the axis part of si(y, T )
for each pair of (y, T ).

Next, (Chung et al., 2018) used an identity: a = b
1+ b−a

a

, and set a = ∥projcone({si(y,T )}i)T∥
2
2 and

b = ∥projcone({s1i (y,T )}i)T∥
2
2 to rewrite the capacity formula (Equation 4) as follows.

α−1
mf =

1

P
E
y,T

[
∥projcone({si(y,T )}i)T∥

2
2

]

=
1

P
E
y,T

 ∥projcone({s1i (y,T )}i)T∥
2
2

1 +
∥projcone({s1

i
(y,T )}i)

T∥2
2−∥projcone({si(y,T )}i)

T∥2
2

∥projcone({si(y,T )}i)
T∥2

2

 .
Then, they proceeded with the following approximation.

≈
1
P Ey,T

[
∥projcone({s1i (y,T )}i)T∥

2
2

]
Ey,T

[
1 +

∥projcone({s1
i
(y,T )}i)

T∥2
2−∥projcone({si(y,T )}i)

T∥2
2

∥projcone({si(y,T )}i)
T∥2

2

] . (5)

(Chung et al., 2018; Chou et al., 2024) found that the above approximation empirically performs
well. Furthermore, as the numerator mimics the notion of Gaussian width of a convex body and the
denominator behaves like (normalized) radius of a sphere, they defined effective manifold dimension
and radius as follows.

• Manifold dimension captures the degree of freedom of the noises/variations within the mani-
folds. Formally, it is defined as Dmf := Ey,T [∥projcone({s1i (y,T )}i)T∥

2
2].

• Manifold radius captures the noise-to-signal ratio of the manifolds. Formally, it is defiend as

Rmf :=

√
Ey,T

[
∥projcone({si(y,T )}i)

T∥2

∥projcone({s1
i
(y,T )}i)

T∥2−∥projcone({si(y,T )}i)
T∥2

]
.

While (Chung et al., 2018) focusing on the cases where there are no correlations between mani-
folds, (Chou et al., 2024) extended the theory to incorporate manifold correlations. Hence, they
further defined the following metrics for measuring the alignment between manifolds.

• Center alignment captures the correlation between the center of different manifolds. Formally,
it is defined as ρcmf :=

1
P (P−1)

∑
i ̸=j |⟨s0i , s0j ⟩|.

• Axis alignment captures the correlation between the axis of different manifolds. Formally, it is
defined as ρamf :=

1
P (P−1)

∑
i ̸=j Ey,T [|⟨s1i (y, T ), s1j (y, T )⟩|].

• Center-axis alignment captures the correlation between the center and axis of different mani-
folds. Formally, it is defined as ψmf :=

1
P (P−1)

∑
i ̸=j Ey,T [|⟨si, s1j (y, T )⟩|].

A capacity approximation formula by dimension and radius. Recall that in Equation 5 previous
work (Chung et al., 2018) used the identity a = b

1+ b−a
a

to approximate the manifold capacity. After
defining manifold dimension and radius, one can then plug them back to Equation 5 and get the
following approximation of manifold capacity via effective manifold dimension and radius.

αmf ≈
1 +R−2

mf
Dmf

. (6)
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B.5 CONNECTIONS BETWEEN MANIFOLD CAPACITY AND ITS EFFECTIVE GEOMETRIC
MEASURES

Here, we demonstrate the connections between manifold capacity and its effective geometric mea-
sures by synthetic manifolds. In particular, we consider isotropic Gaussian clouds parametrized
by a set of ground truth latent parameters: dimension Dground, radius Rground, center correlations
ρcground, axis correlations ρaground, and center-axis correlations ψground. See Section D.1.1 for more
details on the generative process. In this section, we focus on showing that the effective geometric
measures Dmf, Rmf, ρ

c
mf, ρ

a
mf, ψmf capture the corresponding ground truth parameter.

Effective manifold dimension and radius. We first set all the manifold correlations to be zero
and vary the ground truth radius and dimension. Here we pick N = 1000 neurons, P = 2 manifold,
M = 200 points per manifold, varying the underlying dimension from 2 to 10, and varying the
underlying radius from 0.8 to 2. In Figure 8, we vary the ground truth dimension in the x-axis, and
in Figure 9, we vary the ground truth radius in the x-axis.

Figure 8: Effective manifold dimension tracks the ground truth dimension of uncorrelated isotropic
Gaussian clouds. Note that the higher the dimension, the smaller capacity, as discussed in Figure 2c.

Figure 9: Effective manifold radius tracks the ground truth radius of uncorrelated isotropic Gaussian
clouds. Note that the higher the radius, the smaller capacity, as discussed in Figure 2c.

Effective alignment measures. Next, we fix the ground truth dimension to be Dground = 4 and
radius to be Rground = 1 and vary ρcground, ρaground, ψground from 0 to 0.8. In Figure 10, we vary
the center correlations, and in Figure 11, we vary the axis correlations.

Figure 10: Effective manifold center alignment tracks the ground truth center correlations of
isotropic Gaussian clouds. Note that the higher the center alignment, the smaller capacity, as dis-
cussed in Figure 2c. Also, in the large center correlations regime, the effective radius increases.

B.6 ALGORITHMS FOR ESTIMATING MANIFOLD CAPACITY AND EFFECTIVE GEOMETRIC
MEASURE

We provide pseudocodes for estimating manifold capacity and effective geometric measure in Al-
gorithm 1.
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Algorithm 1 Estimate manifold capacity and effective geometric measures

Input: {Mi}: P point clouds, each containing M points in an N -dimensional ambient space; nt:
number of samples for estimating the expectation.
Output: αmf: Manifold capacity; Dmf: Effective dimension; Rmf: Effective radius; ρamf: Effective
axis alignment; ρcmf: Effective center alignment; ψmf: Effective center-axis alignment.

% Step 1: Sample anchor points.
for k from 1 to nt do

Tk ← a vector sampled from isotropic N -dimensional Gaussian distribution.
y← a random dichotomy vector from {±1}P .
A← IN ; q← −Tk; h← 0N .
G← (y ⊙ {Mi}Pi=1). ▷Gi,j = yis is a row vector where s is the j-th point inMi.
output← qp(A,q,G,h). ▷ minx

1
2x

⊤Ax+ q⊤x s.t. Gx ≤ h.
zdual ← output[“dual′′] ▷ The support vectors
for i from 1 to P do

si[k]←
∑
j(zdual)

⊤
i,jG/

∑
j(zdual)i,j

end for
end for

% Step 2: Estimate (anchor) manifold centers.
for i from 1 to P do

s0i ← 1
nt

∑nt
k=1 si[k]).

end for
G0 ←

∑
i s

0
i (s

0
i )

⊤. ▷ Anchor center gram matrix.

% Step 3: Separate the center and axis part of anchor points.
for k from 1 to nt do

for i from 1 to P do
s1i [k]← si[k]− s0i . ▷ The axis part of the anchor poitn in the i-th manifold.

end for
T 1[k]←

∑
i s

1
i [k]Tk.

G1[k]←
∑
i s

1
i [k](s

1
i [k])

⊤. ▷ Anchor axis gram matrix.
end for

% Step 4: Estimate manifold capacity and effective geometric measures.
αmf ← ( 1

ntP

∑nt
k=1(si[k]Tk)

⊤(si[k](si[k]
⊤)†(si[k]Tk))

−1.
Dmf ← 1

ntP

∑nt
k=1 T

1[k]⊤G1[k]†T 1[k].

Rmf ←
√

1
nt

∑nt
k=1

T 1[k]⊤(G1[k]+G0)†T1[k]
T1[k]⊤(G1[k]+G1[k](G0)†G1[k])†T 1[k]

. ▷ Equivalent to the definition of radius
after applying the Woodbury formula for numerical stabiltiy.

ρcmf ←
1

P (P−1)

∑P
i=1

∑
i ̸=j

(s0i )
⊤s0j

∥s0i ∥2·∥s0j∥2
.

ρamf ←
1

P (P−1)

∑P
i=1

∑
j ̸=i

1
nk

∑nk
k=1

s1i [k]
⊤s1j [k]

∥s1i [k]∥2·∥s1j [k]∥2
.

ψmf ← 1
P (P−1)

∑P
i=1

∑
j ̸=i

1
nk

∑nk
k=1

(s0i )
⊤s1j [k]

∥s0i ∥2·∥s1j [k]∥2
.

return αmf, Dmf, Rmf, ρ
a
mf, ρ

c
mf, ψmf.
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Figure 11: Effective manifold axis alignment tracks the ground truth axis correlations of isotropic
Gaussian clouds. Note that the higher the axis alignment, the higher capacity, as discussed in Fig-
ure 2c. Also, in the large axis correlations regime, the effective dimension decreases.

C THEORETICAL RESULTS

C.1 FORMAL STATEMENT OF THEOREM 1

Let d ∈ N be the input dimension and N ∈ N be the number of hidden units. Let W0 ∈ RN×d

be the weight matrix of a fully connected 2-layer neural network. The feature of an input vector is
defined as Φ0(x) = σ(W0x) where σ(·) : R→ R is a non-linear activation function, e.g., ReLU or
tanh. The readout weight is denoted as a ∈ RN . Finally, the output of the 2-layer NN is the sign of
the readout, i.e., f(x) = sgn(a⊤Φ(x)).

Let {(xi, yi)}i∈[Ptrain] be the collection of training data. We consider gradient descent over the mean
square error (MSE) of the 2-layer NN, i.e., L(f) = 1

Ptrain

∑
i∈[Ptrain]

ℓ(f(xi), yi) where ℓ(zi, yi) =
1
2 (z − y)

2. The gradient update with learning rate η > 0 is Wt+1 =Wt + ηGt where

Gt =
1

Ptrain

∑
i∈[Ptrain]

[
(yi − a⊤σ(Wtxi))a⊙ σ′(Wtxi)

]
x⊤
i

and σ′(·) denotes the first order derivative of σ(·).

Assumption 1. We adopt the following assumptions used in (Montanari et al., 2019; Ba et al.,
2022).

1. (Proportional limit) Ptrain, d,N →∞ with ψ1 = N/d, ψ2 = Ptrain/d, and 0 < ψ1, ψ2 <∞.

2. (Gaussian initialization) [W0]kj ∼ N (0, 1/N) for each k ∈ [N ] and j ∈ [d].

3. (Gaussian readout) ak ∼ N (0, 1/N) for each k ∈ [N ].

4. (Normalized activation) The non-linear activation function σ(·) has O(1)-bounded first three
derivatives almost surely. In addition, E[σ(G)] = 0 and E[Gσ(G)] ̸= 0 for G ∼ N (0, 1).

5. (Non-degenerate label function) Let F : R→ [0, 1] be a continuous function satisfying

inf {x : Pr[T < x] > 0} = −∞ and sup {x : Pr[T > x] > 0} =∞

where T = Y G, G ∼ N (0, 1), and Pr[Y = 1 |G] = 1− Pr[Y = −1 |G] = F (G).

Setting 1. We consider the following data generation process. Let F : R → [0, 1] be a function
satisfying Assumption 1. Let β∗ ∈ Rd be a hidden vector with ∥β∗∥2 = 1. The data distribution
DF (β∗) is defined by the following two steps: (i) sample x ∼ N (0, Id), and (ii) sample y with
Pr[y = 1] = 1−Pr[y = −1] = F (⟨β∗,x⟩). Finally, the prediction accuracy of a network is defined
as the expected accuracy of a fresh sample, i.e., Pr(x,y)∼DF (β∗)[yf(x) ≥ 0].
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Parameter 1. Given ψ1, ψ2, F, β∗ from Assumption 1 and Setting 1. We define the following pa-
rameters.

γ1 = E
G∼N (0,1)

[Gσ(G)]

γ22 = E
G∼N (0,1)

[σ(G)2]− E
G∼N (0,1)

[Gσ(G)]2

θ1 = E
X∼µψ1

[
γ21

γ21X + γ22

]
θ2 = ψ1 E

X∼µψ1

[
γ21X

γ21X + γ22

]
θ3 = E

(G,Y )∼DF
[Y G]

θ4 =

(
1

ψ2
+ E

(G,Y ),(G′,Y ′)
i.i.d.∼DF

[Y Y ′GG′]

)
where µψ1

is the Marchenko-Pastur distribution with the ratio parameter being ψ1 and (G, Y ) ∼
DF is defined as the sampling process: G ∼ N (0, 1) and Pr[Y = 1] = 1− Pr[Y = −1] = F (G).
Theorem 2. Given Assumption 1 and consider 0 < ψ1, ψ2, η <∞.

1. (Capacity tracks the degree of feature learning) The storage capacity of 2-layer network trained
with synthetic data defined in Setting 1 after one gradient step is αPtrain,d,N (ψ1, ψ2, η) and

αPtrain,d,N (ψ1, ψ2, η)
Ptrain,d,N→∞−−−−−−−−→ α(ψ1, ψ2, η)

Here the function α(·) is defined as

α(ψ1, ψ2, η) =

(
min
c∈R

E
(Z,G,Y )∼Dψ1,ψ2,η

[
(−cY G− Z)2+

])−1

where (Z,G, Y ) ∼ Dψ1,ψ2,η is defined as the following sampling process
Z ∼ N (0, 1), G ∼ N (0, 1), Pr[Y = 1] = 1− Pr[Y = −1] = fτ(ψ1,ψ2,η)(G)

and the scalar function fτ (·) and τ(ψ1, ψ2, η) are defined as

fτ (G) = E
G′∼N (0,1)

[
F (
√

1− τ2G+ τG′)
]

and
τ = τ(ψ1, ψ2, η) =

√
τ0(ψ1, ψ2)2 − τ∆(ψ1, ψ2, η)2

where τ0(·) and τ∆(·) are scalar functions defined as

τ0(ψ1, ψ2)
2 = 1− θ2

and

τ∆(ψ1, ψ2, η)
2 =

η2θ1(1− θ2)2θ23
1 + η2θ1(1− θ2)θ4

where the parameters θi’s are defined in Parameter 1. In particular, 0 < α(ψ1, ψ2, η) <
α(ψ1, ψ2, η

′) for all 0 < η < η′.

2. (Capacity analytically links to prediction accuracy) The prediction accuracy of 2-layer network
trained with synthetic data defined in Setting 1 after one gradient step is AccPtrain,d,N (ψ1, ψ2, η)
and

AccPtrain,d,N (ψ1, ψ2, η)
Ptrain,d,N→∞−−−−−−−−→ Acc(ψ1, ψ2, η)

Here the function Acc(·) is defined as

Acc(ψ1, ψ2, η) = E
(G,Y )∼DF

Φ
 ηγ21θ3√

η2γ4
1

ψ2
+ γ21 + γ2∗

Y G


In particular, there exists an increasing and invertible function gψ1,ψ2

: [0, 1]→ R+ such that
Acc(ψ1, ψ2, η) = gψ1,ψ2(α(ψ1, ψ2, η)) .
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C.2 PROOF FOR THEOREM 2

Step 1: Rank-1 approximation of gradient descent in 2-layer networks by ref. (Ba et al., 2022).
When the learning rate is constant, i.e., η = O(1), ref. (Ba et al., 2022) shows that the gradient
update matrix can be approximated by a rank-1 matrix. In particular, the following is a restatement
of Proposition 2 in (Ba et al., 2022).

Proposition 1 (Proposition 2 in (Ba et al., 2022)). Given Assumption 1 and Setting 1, there exist
some constants c, C > 0 such that for all large Ptrain, N, d, the following holds∥∥∥∥G0 − γ1a

(∑
i yix

⊤
i

Ptrain

)∥∥∥∥ ≤ C log2 Ptrain√
Ptrain

· ∥G0∥

with probability at least 1− Ptraine
−c log2 Ptrain and ∥ · ∥ denotes the operator norm.

Step 2: A formula for the storage capacity of a Gaussian model by ref. (Montanari et al., 2019).
The storage capacity of a Gaussian model is proven in (Montanari et al., 2019). In particular, the
following is a restatement of the Proposition 5.1 in (Montanari et al., 2019).

Definition 4 (Gaussian model). Let θ∗ ∈ RN be some latent vector. A sample (xi, yi) ∈ RN×{±1}
is i.i.d. sampled as follows. First, sample xi fromN (0,Σ) where Σ is a covariance matrix satisfying
certain technical condition as defined in Assumption 1-2 in (Montanari et al., 2019). Next, let
yi = +1 with probability f(⟨θ∗,xi⟩) for some function f satisfying Assumption 3 in (Montanari
et al., 2019).

Proposition 2 (Theorem 3 in (Montanari et al., 2019)). Consider a Gaussian model satisfying Def-
inition 4. As Ptrain, N, d→∞, the storage capacity converges to

α∗ =

(
min
c∈R

E
(Z,G,Y )∼Df

[
(−cY G− Z)2+

])−1

where (Z,G, Y ) ∼ Df is defined as the following sampling process

Z ∼ N (0, 1), G ∼ N (0, 1), Pr[Y = 1] = 1− Pr[Y = −1] = f(ρ ·G) .

where ρ is some scalar related to the Gaussian model as defined in Assumption 2 of (Montanari
et al., 2019).

Note that the capacity only depends on the alignment between data and task (as encoded in f ) and
does not depend on the covariance structure. The dependence on the covariance structure will appear
when one considers the non-zero margin version of capacity.

Step 3: A Gaussian equivalent model for 2-layer NNs after one gradient step. Next, we com-
bine a Gaussian equivalent model for random feature 2-layer NNs in (Montanari et al., 2019) (The-
orem 3) and the rank-1 approximation of gradient step in Proposition 1 to get a Gaussian equivalent
model for 2-layer NNs after one gradient step.

Proposition 3. Given Assumption 1 and 0 < ψ1, ψ2, η < ∞. Let d ∈ N and (W1, β∗, F ) be the
weight matrix, hidden vector, and label function from Setting 1. Let αGM

Ptrain,d,N
(ψ1, ψ2, η) be the

capacity of the following Gaussian model:

Σd,η = γ21W1W
⊤
1 + γ2∗I

θ∗,d,η = α−1
d,ηγ1(γ

2
1W1W

⊤
1 + γ2∗I)

−1W1β∗

α2
d,η = γ21β

⊤
∗ W

⊤
1 (γ21W1W

⊤
1 + γ2∗I)

−1W1β∗

τ2d,η = 1− α2
d,η (7)

fd,η(x) = E
G∼N (0,1)

[F (αd,ηx+ τd,ηG)] .

We have that
lim

Ptrain,d,N→∞
|αPtrain,d,N (ψ1, ψ2, η)− αGM

Ptrain,d,N (ψ1, ψ2, η)| = 0
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and
αGM
Ptrain,d,N (ψ1, ψ2, η)

Ptrain,d,N→∞−−−−−−−−→ α(ψ1, ψ2, η).

Here the function α(·) is defined as

α(ψ1, ψ2, η) =

(
min
c∈R

E
(Z,G,Y )∼Dfτ (ψ1,ψ2,η)

[
(−cY G− Z)2+

])−1

where the scalar function fτ (·) and τ(ψ1, ψ2, η) are defined as

fτ (G) = E
G′∼N (0,1)

[
F (
√

1− τ2G+ τG′)
]

and
τ = τ(ψ1, ψ2, η) = lim

d→∞
τd,η =

√
τ0(ψ1, ψ2)2 − τ∆(ψ1, ψ2, η)2 .

where τ0(ψ1, ψ2) = limd→∞ τd,0.

To derive the Gaussian equivalent model in Proposition 3 of the random features model after one
gradient step defined in Setting 1, we analyze the following random features and their associated
labels:

Φ0(xi) = σ(W1xi), Pr[yi = 1|xi] = 1− Pr[yi = −1|xi] = F (⟨β∗,xi⟩), ∥β∗∥2 = 1

where xi ∼ N (0, Id) and W1 = W0 + ηG0 while G0 satisfies the bound given in Proposition 1.
Given the assumptions in Assumption 1, we can decompose the nonlinear activation function σ into
Hermite polynomials. Following our parameters in Parameter 1, we define the Gaussian equivalent
features of our model as the linearization of Equation C.2:

gi = γ1W1xi + γ2hi

where hi ∼ N (0, IN ) are independent from everything else. Now, we wish to find a similar lin-
earized Gaussian model for the labels yi given the Gaussian equivalent features gi. It is easy to
check that the Gaussian features has the following covariance:

gi ∼ N (0,Σd,η), Σd,η = γ21W1W
⊤
1 + γ2∗I

By matching covariance through Equation C.2, we obtain

xi = γ1W
⊤
1 Σ−1

d,ηgi +Q1/2h̃i

where Q = γ22(γ
2
2IN +γ21W

⊤
1 W1)

−1 and h̃i ∼ N (0, IN ) are independent of xi. Therefore, we can
rewrite the label function parameter as

⟨β∗,xi⟩ = αd,η⟨θ∗,d,η,gi⟩+ εi

where εi ∼ N (0, τ2d,η) are independent of gi. Effectively, we obtain an equivalent label function

fd,η(x) = E
G∼N (0,1)

[F (αd,ηx+ τd,ηG)]

such that Pr[yi = 1|xi] = 1 − Pr[yi = −1|xi] = fd,η(⟨θ∗,d,η,gi⟩). It is easy to verify that this
Gaussian model satisfies the assumptions in Definition 4.

Step 4: Analysis of τ . Finally, we combine Proposition 1 and Proposition 3 to get the formula for
the right hand side of Equation 7. From Proposition 1, we approximate W1 as W1 = W0 + au⊤

where u = η
∑
i yix

⊤
i /Ptrain. To rewrite the right hand side of Equation 7, we first deal with the

matrix inverse term using the same trick as in ref. (Ba et al., 2022). Let Σt = γ21WtW
⊤
t + γ2∗I .

Observe that

Σ1 = Σ0 + γ21 [a c]

[
L1 1
1 0

] [
a⊤

c⊤

]
where c =W0u. By Sherman-Morrison-Woodbury formula, we have

Σ−1
1 = Σ−1

0 − γ21Σ
−1
0 [a c]

([
L1 1
1 0

]−1

+ γ21

[
a⊤

c⊤

]
Σ−1

0 [a c]

)−1 [
a⊤

c⊤

]
Σ−1

0

= Σ−1
0 −∆aa −∆cc +∆ac +∆ca
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where

∆aa = γ21
L4 − L1

D
Σ−1

0 aa⊤Σ−1
0

∆cc = γ21
L3

D
Σ−1

0 cc⊤Σ−1
0

∆ac = γ21
1 + L6

D
Σ−1

0 ac⊤Σ−1
0

∆ca = γ21
1 + L6

D
Σ−1

0 ca⊤Σ−1
0

and

L0 = γ21β
⊤
∗ W

⊤
0 Σ−1

0 W0β∗

L1 = u⊤u

L2 = u⊤β∗

L3 = γ21a
⊤Σ−1

0 a

L4 = γ21c
⊤Σ−1

0 c

L5 = γ21c
⊤Σ−1

0 W0β∗

L6 = γ21a
⊤Σ−1

0 c

L7 = a⊤c

L8 = γ21a
⊤Σ−1

0 W0β∗

D = L3(L4 − L1)− (1 + L6)
2

Thus, we can rewrite the right hand side of Equation 7 as follows.

τd,η = 1− γ21β⊤
∗ (W0 + au⊤)⊤Σ−1

0 (W0 + au⊤)β∗

+ γ21β
⊤
∗ (W0 + au⊤)⊤∆aa(W0 + au⊤)β∗

+ γ21β
⊤
∗ (W0 + au⊤)⊤∆cc(W0 + au⊤)β∗

− γ21β⊤
∗ (W0 + au⊤)⊤∆ac(W0 + au⊤)β∗

− γ21β⊤
∗ (W0 + au⊤)⊤∆ca(W0 + au⊤)β∗

= 1− L0 − L2
2L3 − 2L2L8

+
L4 − L1

D
(L2L3 + L8)

2

+
L3

D
(L5 + L2L6)

2

− 2
1 + L6

D
(L2L3 + L8)(L5 + L2L6) .
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Similar to Proposition 29 in (Ba et al., 2022), by Hanson-Wright inequality, we have that
L6, L8, L7 → 0.

L0 → θ2

L1 → η2θ4

L2 = ηθ3

L3 → γ21 E
X∼µψ1

[
1

γ21X + γ22

]
= θ1

L4 → γ21η
2θ4 · ψ1 E

X∼µψ1

[
X

γ21X + γ22

]
= η2θ2θ4

L5 → γ21ηθ3 · ψ1 E
X∼µψ1

[
X

γ21X + γ22

]
= ηθ2θ3

L6, L7, L8 → 0

D → L3(L4 − L1)− 1→ η2θ1(θ2 − 1)θ4 − 1

To sum up, we have

lim
d→∞

τd,η = 1− θ2 −
η2θ1θ

2
3(η

2θ1(θ2 − 1)θ4 − 1)

η2θ1(θ2 − 1)θ4 − 1

+
η4θ21(θ2 − 1)θ23θ4
η2θ1(θ2 − 1)θ4 − 1

+
θ1θ

2
2θ

2
3

η2θ1(θ2 − 1)θ4 − 1

− 2
η2θ1θ2θ

2
3

η2θ1(θ2 − 1)θ4 − 1

= 1− θ2 −
η2θ1(1− θ2)2θ23

1 + η2θ1(1− θ2)θ4
.

This completes the proof for the first part of Theorem 2.

Step 5: Analysis for prediction accuracy. Recall from Setting 1 the definition of prediction
accuracy of the network after a gradient step is Pr(x,y)∼DF (β∗)[ya

⊤σ(W1x) ≥ 0]. By Gaussian
equivalence and Proposition 1, we have that the following.

AccPtrain,d,N (ψ1, ψ2, η)

= Pr
(x,y)∼DF (β∗)

a,W1

[ya⊤σ(W1x) ≥ 0] .

By Proposition 1, we can further approximate the equation as follows.

= Pr
(x,y)∼DF (β∗)

a,W0,u

[ya⊤σ((W0 + au⊤)x) ≥ 0] + o(1) .

By Gaussian equivalence, we can further approximate the equation as follows.

= Pr
(x,y)∼DF (β∗)
a,W0,W∗,u

[ya⊤(γ1(W0 + au⊤) + γ∗W∗)x) ≥ 0] + o(1)

where W∗ ∈ RN×d and ([W∗]kj ∼ N (0, 1/N)) for each k ∈ [N ], j ∈ [d]. Note that as a,W0,W∗
are independent, we can further simplify the equation as follows.

= Pr
(x,y)∼DF (β∗)

a,W ′
∗,u

[yγ1u
⊤x+

√
γ21 + γ2∗ · ya⊤W ′

∗x+ o(1) ≥ 0] + o(1)
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where W ′
∗ ∈ RN×d and ([W ′

∗]kj ∼ N (0, 1/N)) for each k ∈ [N ], j ∈ [d]. Note that as a,W ′
∗ are

independent, we can further simplify the equation as follows.

= Pr
(x,y)∼DF (β∗)
Z∼N (0,1)

[
ηγ21 E

(x′,y′)∼DF (β∗)
[yy′x′⊤x] +

√
γ21 + γ2∗ · Z + o(1) ≥ 0

]
+ o(1) .

Note that by decomposing x and x′ to direction that’s parallel to β∗ and orthogonal to β∗, we can
further simplify the equation as follows.

= Pr
(G,Y )∼DF
Z,Z′∼N (0,1)

[
ηγ21

(
E

(G′,Y ′)∼DF
[Y Y ′GG′] +

√
1/ψ2Z

′
)
+
√
γ21 + γ2∗ · Z + o(1) ≥ 0

]
+ o(1)

= Pr
(G,Y )∼DF
Z∼N (0,1)

ηγ21θ3Y G+

√
η2γ41
ψ2

+ γ21 + γ2∗ · Z + o(1) ≥ 0

+ o(1)

= E
(G,Y )∼DF

Φ
 ηγ21θ3√

η2γ4
1

ψ2
+ γ21 + γ2∗

Y G

+ o(1) .

Note that when fixing ψ1, ψ2 and non-trivial F , both capacity formula and prediction accuracy
formula are increasing and invertible with respect to η. As a consequence, the two quantities are
also analytically connected by an increasing and invertible function. This completes the proof for
the second part of Theorem 2. We also provide numeric checks for the formulas in Figure 12.

Figure 12: Numerical checks for the formulas in Theorem 2. We run the simulation with d = 2000,
ψ1 = 1, ReLU activation, and label function f(x) = 1

1+e−4x for 50 repetitions. Left: numerical
checks for the capacity formula. Right: numerical checks for the prediction accuracy formula.

D 2-LAYER NON-LINEAR NEURAL NETWORKS

In this paper, we use 2-layer non-linear neural networks and Gaussian mixture models (for input data
generation) as a convenient experimental setup to systematically explore different regimes in feature
learning. Moreover, given its medium level of complexity, it might be possible to have an analytical
characterization of our numerical findings, and we leave it as an interesting future direction.

D.1 EXPERIMENTAL SETUP

D.1.1 SYNTHETIC DATA GENERATION

We focus on point manifold, which consists of data points associated with the same label. As dis-
cussed in the previous section, we are particularly interested in the effective radius, dimension, center
alignment, axes alignment, and center-axes alignment of the representation manifolds. Therefore,
we consider a synthetic model to generate training and test data with relevant geometric interpreta-
tions. Namely, construct P ∈ N synthetic data manifolds with radius R ∈ R+, intrinsic dimension
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D ∈ N, size M ∈ N. The manifold layouts are further determined by center correlation strength
ρC ∈ [0, 1), axes correlation strength ρA ∈ [0, 1), and center-axes correlation strength ψ ∈ [0, 1),
all of which we would detail in the following subsections.

Isotropic spherical manifolds. First, we consider the simplest case: manifolds with isotropic
Gaussian center distribution and axes distribution with no correlations. This is the scenario consid-
ered in Section 3 and Section 4.

Let d ∈ N be the dimension of the data. We consider P point manifolds {Mi}i∈[P ] with manifold
size M ∈ N and radius R that lies in a subspace of dimension D. Each manifold is defined as

Mi = {u0 +R ·
D∑
j=1

skjuj + ϵvk}k∈[M ]

where the axes uj ∼ N(0, Id/d), the coordinates skj ∼ N(0, 1), the noise vectors vk ∼ N(0, Id/d),
and ϵ = 10−2. The pre-scaled points in the manifolds {

∑D
j=1 s

k
juj}k∈[M ] are well-normalized to

unit norm.

Test manifolds share the same model except that the noise vectors vj are sampled again in the same
distribution.

Isotropic Gaussian manifolds. In certain experiments, we drop in the intrinsic dimension D and
directly consider manifolds defined as

Mi = {u0 +R · vk}k∈[M ]

where the noise vectors are vk ∼ N(0, Id/d). Test manifolds share the same model except that the
noise vectors vk are sampled again in the same distribution.

Correlated spherical manifolds. To generated correlated manifolds, we consider an auto-
regressive model described by the covariance matrix C = (ρ|i−j|)ij ∈ RP×P , where ρ ∈ [0, 1)
is either the center correlation strength ρC or axes correlation strength ρA. The center covariance
CC is then mixed into the isotropic manifold centers {uj0 ∼ N(0, Id/d)}j∈[M ]. The axes covariance
matrices CiA is mixed into the isotropic axes {uji ∼ N(0, Id/d)}j∈[M ] for each i = 1, 2, . . . , D re-
spectively. The mixing is performed through multiplying the column matrix MC or M j

A ∈ RP×d

of centers or each axes with the Cholesky decomposition of CC or CiA. To incorporate center-axes
correlation, we scale each center vector u0 by a factor of (1 + ψ · q) where q ∼ N(0, 1).

Labels. For P manifolds with manifold size M , the P labels are randomly sampled from a uni-
form distribution on {±1}. Each label is associated with M data points in the individual manifold.
When learning with binary cross entropy, the labels are reassigned as {0, 1} during loss and gradient
computation.

D.1.2 2-LAYER NEURAL NETWORK ARCHITECTURE

The model architecture we consider is similar to the architecture mentioned in Appendix C.

Let d ∈ N be the input data dimension, N ∈ N be the number of hidden neurons, K ∈ N be the
number of linear readouts, α ∈ R+ be the scaling factor of the readout weights.

Let W =W0 ∈ RN×d be the initial weight matrix of a fully connected 2-layer neural network. Let
{ai0}i∈[K] be a list of initial readout weights where ai0 ∈ RN . Let σ(·) : R → R be a non-linear
activation function, e.g. ReLU or tanh.

The feature of an input vector is defined as ϕ(x) = σ(Wx). The 2-layer neural network parameter-
ized by W and ai is defined as

f(W,ai;x) =
α√
N

a⊤ϕ(x)

where the label prediction for data point x is sgn(f(x)) when learning with the mean squared error
loss function. When learning with binary cross entropy loss function, we use {0, 1} as labels and
ς(f(x)) as prediction instead, where ς is the standard sigmoid function.
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D.1.3 LEARNING RULE

Loss function and gradient update. Let η ∈ R+ be the learning rate of the weight matrix, c ∈ R+

be the scaling factor of the readout learning rate, and let {(xi, yi)}i∈[PM ] be the collection of training
data, where P is the number of manifolds and M is the manifold size.

We consider gradient descent over the loss function

L(f) = 1

α2

1

PM

∑
i∈[PM ]

ℓ(f(xi), yi)

where ℓ : R× {±1} → R is either the mean squared error (MSE)

ℓMSE(z, y) =
1

2
(z − y)2

or l : R× {0, 1} → R is the binary cross entropy (BCE)

ℓBCE(z, y) = y · log(1 + e−z) + (1− y) · log(1 + ez)

Mean squared error. For the weight matrix, the gradient update with learning rate η > 0 is
Wt+1 =Wt + ηGt where

Gt =
1

α2

1

PM

∑
i∈[PM ]

1

K

∑
j∈[K]

[
(yi −

α√
N

ajt
⊤
σ(Wtxi))

α√
N

ajt ⊙ σ′(Wtxi)

]
x⊤
i

and σ′(·) denotes the first order derivative of σ(·). For each linear readout, the gradient update is
at+1 = at + cηgt where

gt =
1

α2

1

PM

∑
i∈[PM ]

[
yi −

α√
N

a⊤t σ(Wtxi)

]
α√
N
σ(Wtxi)

Note that the α−2 multiplier on the loss function to ensure common convergence time when α→∞
as mentioned in (Geiger et al., 2020).

Binary cross entropy. For the weight matrix, the gradient update with learning rate η > 0 is
Wt+1 =Wt + ηGt where

Gt =
1

α2

1

PM

∑
i∈[PM ]

1

K

∑
j∈[K]

[
(yi − ς[

α√
N

ajt
⊤
σ(Wtxi)])

α√
N

ajt ⊙ σ′(Wtxi)

]
x⊤
i

where ς denotes the standard sigmoid function and σ denotes the activation function. For each linear
readout, the gradient update is at+1 = at + cηgt where

gt =
1

α2

1

PM

∑
i∈[PM ]

[
yi − ς[

α√
N

a⊤t σ(Wtxi)]

]
α√
N
σ(Wtxi)

If not otherwise noted, we conduct experiments with the MSE loss function and ReLU activation
function by default.

A Note on Learning rate. We define η̄ = ηα−1 as the normalized effective learning rate. During
training, We implicitly scale the learning rate η by a factor of

√
N in the experiments to enter the

rich regime as mentioned in (Ba et al., 2022).

D.1.4 TRAINING

For each 2-layer neural network experiment conducted in the paper, forty random seeds are chosen
from 0 to 39000 with an interval of 1000 to train forty models in parallel for 105 epochs. All training
are conducted on the Flatiron Institute high performance computing clusters.
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D.1.5 FEATURE EXTRACTION

During analysis, fifty epochs are sampled uniformly in log-scale. For each model at checkpoint
epoch t, we extract total P size M manifold representations {Φt(xi)}i∈[PM ] associated with labels
{yi}i∈[PM ]. We perform conventional analysis and manifold capacity analysis described in Ap-
pendix A and Appendix B respectively. We will present more details in the following experiment
sections.

D.2 CAPACITY IS A ROBUST MEASURE OF FEATURE LEARNING ACROSS ARCHITECTURE,
DATA, AND LEARNING RULE VARIATIONS

The purpose of this section is to support Section 3 by showcasing that capacity is able to quantify
feature learning even when model architecture, data distribution, and learning rule varies.

D.2.1 FEATURE ANALYSIS METHODS

Here, we briefly present the conventional feature analysis methods and capacity analysis method
and how they are computed in the experimental setup.

Representation level analysis. Activation stability is a representation level metric that intuitively
captures how much neurons are activated in hidden units. Formally, we define it as∑PM

i=1

∑N
j=1 1>0(ϕj(xi))

PMN
Another conventional method to disentangle feature learning at representation level is tracking the
norm of deviation from initial weights (Jacot et al., 2020)

∥Wt −W0∥
∥W0∥

On the other hand, the cosine similarity (Liu et al., 2024) can be used to study alignment at repre-
sentation level

ΦtΦ0

∥Φt∥∥Φ0∥
where (Φt)ij = ϕt(xi) · ϕt(xj) ∈ RPM×PM is the gram matrix of features over the test data.

Kernel methods. The kernel methods for quantifying feature learning involves computing the
Neural Tangent Kernel (NTK) (Jacot et al., 2020) for each pair of test data points:

Θt(x1,x2) = ∇wtf(x1) · ∇wf(x2)

where ∇wtf denotes the total gradient of the neural network at epoch t with respect to the hidden
weights Wt and readout weights {ajt}. Note that we scale the readout contribution to the total
gradient by the readout learning rate factor c ∈ R+ aforementioned. Hence,

∇wf(x) = ∇Wt
f(x) +

1

K

K∑
j=1

∇ajtf(x)

After obtaining the gram matrix Θt = Θt(xi,xj)ij ∈ RPM×PM from the test data, we can compute
the NTK change defined as

∥Θt −Θ0∥
∥Θ0∥

which can be interpreted as the relative deviation of the the kernel from initialization in the Frobe-
nius norm metric. Conventionally studied, NTK change disentangles lazy and feature learning, as
detailed in (Jacot et al., 2020). We present NTK change in Section 3 Figure 3 to compare it with
capacity as the metric to track feature learning.

The kernel alignment can be similarly defined as the cosine similarity of initial and current NTK
gram matrices:

ΘtΘ0

∥Θt∥∥Θ0∥
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which can be interpreted as the relative deviation of the kernel from initialization in terms of align-
ment. Kernel alignment is also studied in (Liu et al., 2024) to disentangle lazy and feature learning.

The centered kernel alignment (Kornblith et al., 2019) is another approximation method to study
kernel evolution when the gram matrices is large:

HSIC(Θt,Θ0)√
HSIC(Θt,Θt)HSIC(Θ0,Θ0)

where

HSIC =
Tr(ΘtLΘ0L)

(n− 1)2

These kernel metrics can be readily computed from the trained models and extracted features.

Capacity and effective geometry. For more details on data-driven manifold capacity analysis,
please refer to Appendix B.

D.2.2 EXTENDED DISCUSSION OF FIGURE 2A

Setup. In Figure 3a, we showcase that the degree of feature learning is controlled by the effective
learning rate η̄ with the following standard setup:

• Data: Isotropic Gaussian manifolds with R = 0.5,M = 15.

• Model: We set σ = ReLU, N = 1500, d = 1000, P = 100,K = 1.

• Learning rule: We set ℓ = ℓMSE , η = 50, c = 0 and

α = 10/128, 10/112, 10/96, 10/80, 10/64, 10/16, 10/4, 10/1

so that the normalized effective learning rates are

η̄ = 128, 112, 96, 80, 64, 16, 4, 1

which is computed by η̄ = ηα−1

5 where the division by 5 normalizes the smallest ηα−1 to
be 1.

• Training: We trained the models for 100000 epochs with 40 repetitions per parameter com-
bination.

• Plotting: We use sample mean and 95% confidence interval for each data point.

Result. In Figure 13, we present the full range of conventional feature learning metrics, capacity,
and effective manifold geometric measures of the same experiment presented in Figure 3a.

Figure 13: Conventional feature learning metrics, capacity, and effective geometric measures in a
2-layer neural network with same setup as in Figure 3a
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D.2.3 PROPORTIONAL LIMIT OF EXTENSIVE QUANTITIES

Finally, we study the degree of feature learning at the proportional limit of the 2-layer neural network
in the sense that N,P, d → ∞ where P/N → ψ1, d/N → ψ2. Here, we consider ψ1 = 1/15 and
ψ2 = 2/3.

Setup. For each experiment, we only changeN,P, d together while keeping P/N = 1/15, d/N =
2/3. We keep the other parameters fixed:

• Data: Isotropic Gaussian manifolds with R = 0.5,M = 15.
• Model: We set σ = ReLU, N = 300s, d = 200s, P = 20s,K = 1 where the scaling

factor s = 1, 2, 3, 4, 5.
• Learning rule: We set ℓ = ℓMSE , η = 10, α = 1, c = 0 so that the normalized effec-

tive learning rates is η̄ = 1 which is computed by η̄ = ηα−1

10 where the division by 10

normalizes the smallest ηα−1 to be 1.
• Training: We trained the models for 100000 epochs with 40 repetitions per parameter com-

bination.
• Plotting: We use sample mean and standard deviation for each data point.

Result. In Figure 14, we see that capacity is able to track the degree of feature learning at the
proportional limit as N,P, d scales up from 300, 20, 200 to 1500, 100, 1000. In particular, capacity
and geometric measures saturate as we scale the extensive quantities.

Figure 14: Conventional feature learning metrics, capacity, and effective geometric measures for
different scaling factors s = 1, 2, 3, 4, 5 on N,P, d in a 2-layer neural network.

D.2.4 DIFFERENT ACTIVATION FUNCTIONS

In Figure 3a, we showed that capacity quantifies the degree of feature learning for the ReLU acti-
vation function. In this section, we show that capacity is a robust measure for different activation
functions.

Setup. We consider a standard setup with the tanh activation replacing the ReLU activation:

• Data: Isotropic Gaussian manifolds with R = 0.5,M = 15.
• Model: We set σ = tanh, N = 300, d = 200, P = 20,K = 1.
• Learning rule: We set ℓ = ℓMSE , η = 100, c = 0 and

α = 10/16, 10/14, 10/12, 10/10, 10/8, 10/5, 10/4, 10/3, 10/2, 10/1

so that the normalized effective learning rates are
η̄ = 16, 14, 12, 10, 8, 5, 4, 3, 2, 1

which are computed by η̄ = ηα−1

10 where the division by 10 normalizes the smallest ηα−1

to be 1.
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• Training: We trained the models for 100000 epochs with 40 repetitions per parameter com-
bination.

• Plotting: We use sample mean and standard deviation for each data point.

Result. In Figure 15, we see that capacity is also able to track the degree of feature learning for
tanh activation function.

Figure 15: Conventional feature learning metrics, capacity, and effective geometric measures in a
2-layer neural network with tanh activation function.

D.2.5 DIFFERENT DATA CORRELATIONS AND TASK DIFFICULTIES

In this section, we study the effect of data and task variations on the degree of feature learning
and effective geometry. In particular, we are interested in data correlations parameterized by axes,
center, and center-axes correlation strengths ρA, ρC , ψ; task difficulty parameterized by the number
of linear readouts K, radius of data manifolds R, number of manifolds P , and the dimension of data
d.

Setup. For each experiment, we only change one of the interested parameters (denoted in the
legends of the plots) and keep the following set of default parameters fixed:

• Data: Correlated spherical manifolds with R = 0.5, D = 8,M = 15, ρA = 0, ρC =
0, ψ = 0.

• Model: We set σ = ReLU, N = 300, d = 200, P = 20,K = 1.

• Learning rule: we set ℓ = ℓMSE , α = 1, c = 0, η = 10 so that the normalized effective
learning rate is η̄ = ηα−1

10 where the division normalizes the smallest ηα−1 to be 1.

• Training: We trained the models for 100000 epochs with 40 repetitions per parameter com-
bination.

• Plotting: We use sample mean and standard deviation for each data point.

Result. In Figure 16, we compare conventional measures of feature learning with capacity when
varying one of the data or task parameter. We see that capacity is able to consistently reflect the
degree of feature learning when there is data or task variations.

In Figure 17, we showcase the effective geometric measures of the same experiments. In particular,
we note that data correlations are well-captured and disentangled by relevant effective alignment
measures while not necessarily captured by conventional methods such as kernel or representation
alignment. Meanwhile, we see that as number of tasks K and data manifold radius R increases,
capacity and geometric measures saturate. Finally, we see that P/N and d/N ratios affects the
learning strategy. For higher P/N ratio, capacity increment is driven by lower effective dimen-
sion while effective radius increases. For higher d/N ratio, capacity increment is driven by lower
effective radius instead while effective dimension increases.
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Figure 16: Capacity and conventional measures of feature learning for different data correlations
and task difficulties in a 2-layer neural network.

D.3 EFFECTIVE GEOMETRY REVEALS DISTINCT LEARNING DYNAMICS

D.3.1 LEARNING STRATEGIES

Compression strategy setup In Figure 4b where the networks performs the compression strategy,
we use a difficult-task setup with higher data manifold radius and more readout tasks:

• Data: Isotropic spherical manifolds with R = 1.0, D = 8,M = 15.
• Model: We set σ = ReLU, N = 300, d = 200, P = 20,K = 27.
• Learning rule: we set ℓ = ℓMSE , α = 1, c = 0 and

η = 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150

so that the normalized effective learning rates are

η̄ = 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150.

• Training: We trained the models for 100000 epochs with 40 repetitions per parameter com-
bination.

• Plotting: We use sample mean for each data point.
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Figure 17: Capacity and effective geometric measures for different data correlations and task diffi-
culties in a 2-layer neural network.

Flattening strategy setup. In Figure 4b where the networks performs the flattening strategy, we
use an easy-task setup with smaller data manifold radius and very few readout tasks:
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• Data: Isotropic spherical manifolds with R = 0.5, D = 8,M = 15.

• Model: We set σ = ReLU, N = 300, d = 200, P = 20,K = 3.

• Learning rule: we set ℓ = ℓMSE , α = 1, c = 0 and

η = 80, 90, 100, 110, 120, 130, 140, 150, 160, 170

so that the normalized effective learning rates are

η̄ = 80, 90, 100, 110, 120, 130, 140, 150, 160, 170.

• Training: We trained the models for 100000 epochs with 40 repetitions per parameter com-
bination.

• Plotting: We use sample mean for each data point.

Contour plot of learning strategies. In Figure 4b and c, we use contour plots to visualize the
different learning strategies adopted by the network. We use Equation 34 in (Chung et al., 2018) to
approximate capacity using effective radius and dimension:

α =
1 +

(
1
R2
M

)
DM

The scatter points with the same color correspond to a model trained with the same normalized
effective learning rate η̄ over different epochs.

D.3.2 LEARNING STAGES

Setup. In Figure 4a, we adopt a setup with moderate radius and number of readout tasks that shows
clean learning stages:

• Data: Isotropic spherical manifolds with R = 1, D = 8,M = 15.

• Model: We set σ = ReLU, N = 300, d = 200, P = 20,K = 5.

• Learning rule: we set ℓ = ℓMSE , η = 10, α = 1, c = 0 so that the normalized effective
learning rate is η̄ = 10.

• Training: We trained the models for 100000 epochs with 40 repetitions per parameter com-
bination.

• Plotting: We use sample mean for each data point.

Hidden Markov Model and learning stages plot. In Figure 4a, we use heat map to visualize the
learning stages of a particular model. In each row, we present the values of capacity, effective radius,
dimension, axes alignment, center alignment, and center-axes alignment normalized between [0, 1].
In each column, we present one epoch sampled uniformly in log-scale from the training progress.
The three vertical dotted lines separates four learning stages learned by a Hidden Markov Model
(HMM).

Inspired by (Hu et al., 2024), we fit a Hidden Markov Model (Baum & Petrie, 1966) with the
features obtained from manifold capacity and effective geometry. For each epoch, we concatenate
these mesoscopic variables into feature vectors {z1:T }, where T is the number of sampled epochs.
We then apply z-score normalization to ensure each feature have a zero mean and unit variance, as
HMMs are sensitive to the scale of features:

zt =

f1(wt)
...

fd(wt)

 , z̃t =


f1(wt)−µ(f1(w1:T ))

σ(f1(w1:T ))

...
fd(wt)−µ(fd(w1:T ))

σ(fd(w1:T ))


Note that each fi here represents the function that takes the weights of the model at epoch t and
outputs the mesoscopic varaible we obtained from manifold capacity analysis.
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We collect {z̃1:T }
Nrep
1 for different random seeds and fit the HMM using the Baum-Welch algorithm

(Baum et al., 1970) with the hyperparameter being the number the hidden states over the sampled
epochs. We choose the HMM with the number of hidden states with highest Bayesian information
criterion (BIC), as it provides simpler and more interpretable models. Finally, we use the predicted
hidden states to assign learning stages to each epoch.

E DEEP NEURAL NETWORKS

E.1 EXPERIMENTAL SETUP

In this section, we provide detailed information about the experimental setup for deep neural net-
works, including model architectures, datasets, training procedure, and manifold capacity measure-
ments.

E.1.1 MODELS

We use the VGG-11 models (Simonyan & Zisserman, 2014) for experimental results in the
main paper. We also repeat these experiments on ResNet-18 (He et al., 2016). The spe-
cific implementation follows a similar setting in (Chizat et al., 2019) and is adapted from
https://github.com/edouardoyallon/lazy-training-CNN.

Output rescaling . As previously studied in (Chizat et al., 2019), multiplying the model outputs
by a large scaling factor β can induce lazy learning (we use the notation β instead of α in (Chizat
et al., 2019) to avoid confusion with the notation α as capacity in Equation 2 ). In this section, we
use the inverse scaling factor β−1 as the parameter to control the degree of feature learning. We
define the normalized effective learning rate η = β−1. We also note several adjustments to the
common training framework to adapt to using the inverse scaling factor β−1 as the parameter to
control the degree of feature learning.

• Rescaled loss function: To adjust for using the scaling factor β, we use the rescaled loss
function Lβ = L

β2 with L denotes the loss function to accommodate for the time parame-
terization of the loss dynamic for large β as previously indicated in (Chizat et al., 2019)
and (Geiger et al., 2020).

• Model’s initial outputs as 0: As mentioned in (Chizat et al., 2019), for the scaling factor β
to be able to control the rate of feature learning, the model output as initialization f(W0)
must be equal 0. To ensure this condition, we set f(Wt) = h(Wt)−h(W0) with Wt be the
model’s weight at training step t, h be the output of the network, and f be the final adjusted
network output.

Number of repetitions. All model measurements (train accuracy, test accuracy, activation sta-
bility, etc.) are reported as the mean of 5 independently trained model (with different ran-
dom seeds). The error bar indicates the bootstraped 95% confidence interval calculated using
seaborn.lineplot(errorbar=(’ci’, 95)).

E.1.2 DATASET

In this section, we list detailed information about the dataset used in the paper.

CIFAR-10. The CIFAR-10 dataset (Krizhevsky & Hinton, 2009) consists of 60000 32x32 colour
images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test
images.

CIFAR-100. The CIFAR-100 dataset (Krizhevsky & Hinton, 2009) is similar to CIFAR-10, ex-
cept that it has 100 classes containing 600 images each. There are 500 training images and 100
testing images per class. Note that the images in CIFAR-10 and CIFAR-100 are mutually exclusive.
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CIFAR-10C. The CIFAR-10C dataset (Hendrycks & Dietterich, 2018) includes images from the
CIFAR-10 evaluation set with common corruptions such as Gaussian noise, fog, motion blur, etc.
The dataset has 15 different common corruption types, and 5 different severity levels for each cor-
ruption type.

E.1.3 TRAINING PROCEDURE

• Loss function: We follow the theoretical results and practice used in (Chizat et al., 2019)
to use mean-squared error loss to train all DNNs mentioned in the paper.

• Optimizer: We use Stochastic Gradient Descent with momentum (implemented as
torch.optim.SGD(momentum=0.9)) to train the models.

• Data augmentation: We apply the following data augmentation during training:
RandomCrop(32, padding=4), RandomHorizontalFlip.

• Learning rate and learning schedule: We follow the practice in (Chizat et al., 2019) and set
initial learning rate η0 = 1.0 for VGG-11 and η0 = 0.2 for ResNet-18. The learning rate
schedule is defined as ηt = η0

1+ 1
3 t

.

• Initialization: We follow the practice in (Chizat et al., 2019) to initialize the model’s weight
using Xavier initialization (Glorot & Bengio, 2010) and the bias to be 0.

• Batch size: We use batch size of 128 during training and batch size of 100 during evalua-
tion.

E.1.4 MANIFOLD CAPACITY MEASUREMENTS

In this section, we provide detailed information about how we define object manifolds from the
model’s representations and measure the manifold capacity and geometric properties (Chung et al.,
2018).

• Features extraction: For each image, we extract the object representation from the last
linear layer (dimension 512) before the classification layer (dimension 10).

• Number of manifolds: We use 10 object manifolds for each measurement.
• Number of points per manifold: For each object manifold, we randomly sample 50 images

from the interested class.
• Number of repetitions: Every capacity and geometry measurement is repeated 10

times per model instance (50 times if we have 5 model repetitions) and we report the
mean and the error bar as the bootstraped 95% confidence interval calculated using
seaborn.lineplot(errorbar=(’ci’, 95)).

E.2 CAPACITY QUANTIFIES THE DEGREE OF FEATURE LEARNING IN DEEP NEURAL
NETWORKS

Capacity and manifold geometry for VGG-11 models. In Figure 3, we show manifold capac-
ity along with other common metrics used to identify feature learning such as train accuracy, test
accuracy, relative weight norm change, and activation stability. In this section, we provide other
manifold geometric measurements along with manifold capacity in Figure 18.

Figure 18: Manifold capacity and geometry for VGG-11 models trained with different η
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Capacity quantifies the degree of feature learning in ResNet-18 models. In section Section 3,
we show that manifold capacity can capture the degree of feature learning in DNNs, specifically
in VGG models. In this section, we empirically show this statement can also be extended to other
model architectures, specifically ResNets, in Figure 19.

(a) Manifold capacity captures the degree of feature learning in ResNet-18

(b) Manifold geometry for ResNet-18 models trained with different η

Figure 19: Manifold capacity and geometry of ResNet-18 models trained with different scale factor.

Capacity quantifies the degree of feature learning in VGG-11 models trained with weight
regularizer. While most theoretical work in the lazy vs rich learning literature are formulated
with vanilla mean squared error (MSE) loss (Jacot et al., 2020) (Chizat et al., 2019), in prac-
tice, MSE with weight regularizer (or weight decay) is used widely to prevent over-fitting and
improve model generalization. In Figure 20, we explore the effect of weight decay to fea-
ture learning and demonstrate empirically that capacity can still quantify the degree of fea-
ture learning in models trained with L2-regularizer. We implemented L2-regularizer by setting
torch.optim.SGD(weight decay=0.0002). We leave further study about the impact be-
tween the magnitude of weight regularizer and effective learning rate (and/or scaling factor) to the
degree of feature learning as a potential future direction.

E.3 MANIFOLD CAPACITY AND MANIFOLD GEOMETRY DELINEATE LEARNING STAGES IN
DEEP NEURAL NETWORKS

In section Section 4.2, we have demonstrated the use of effective manifold geometry to uncover
hidden learning stages in 2-layer neural networks. In this section, we showed that using similar
technique, we can also discover geometric learning stages in deep neural networks as well.

Experiment setup We used similar setup mentioned in Section E.1. In this section, to give a
higher resolution into the learning dynamic, we extracted the model checkpoint at each training step
(after each training batch, with batch size=100) instead of each training epoch (after a whole
train dataset iteration).

E.4 FEATURE LEARNING AND DOWNSTREAM TASK: OUT-OF-DISTRIBUTION
GENERALIZATION

In this section, we measure the performance of the models trained with different degree of feature
learning (quantified by effective learning rate η) on the downstream tasks for OOD using CIFAR-
100, a dataset with no overlap with CIFAR-10, the dataset used to train the model.
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(a) Manifold capacity captures the degree of feature learning in VGG-11 models trained with L2-regularizer

(b) Manifold geometry for VGG-11 models with L2-regularizer trained with different η

Figure 20: Manifold capacity and geometry of VGG-11 models with L2-regularizer trained with
different scale factor.

E.4.1 EXPERIMENTAL SETUP

We use linear probe (Alain & Bengio, 2016) on representation from the last linear layer (dimension
512) to measure the performance of models trained on CIFAR-10 on the out-of-distribution dataset,
CIFAR-100. Linear probes are linear classifiers trained on top of the representation to probe how
much information the representations encode about a particular task or characteristic. This approach
has been used widely in different fields including natural language processing (Belinkov et al.,
2017) and computer vision (Raghu et al., 2021).

Here we provide detailed information about how we construct the linear probes.

Optimizer. We use Adam optimizer with initial learning rate η0 = 0.1 and learning rate schedule
is defined as ηt = η0

1+ 1
3 t

. Other parameters are default Pytorch parameters.

Number of epochs. The linear probe is trained for 50 epochs, unless it is stopped early, as de-
scribed by the early stop method below.

Early stop. During training, if the validation loss is greater than the minimum validation loss so
far for more than Npatience epoch, then training is stopped. We set Npatience = 3.

E.4.2 OOD PERFORMANCE FOR RESNET-18

In Section 5.2, we demonstrate how capacity and effective manifold geometry can be used to char-
acterize the OOD performance of VGG-11 models trained with different effective learning rate η. In
this section, we show OOD performance and effective geometry of ResNet-18 models trained with
different effective learning rate η in Figure 21. Interestingly, unlike VGG-11, for ResNet-18, the
failure of models in the ultra-rich regime is characterized by the expansion of manifold dimension,
not manifold radius.
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b Ultra-richRichLazya

Figure 21: OOD performance and effective geometric measure of ResNet-18 models trained with
different scale factor.

F RECURRENT NEURAL NETWORKS

F.1 EXPERIMENTAL SETUP

In this section, we provide detailed information about the experimental setup for recurrent neural
network in 5.1, including model architectures, datasets, training procedure, and manifold capacity
measurements.

F.1.1 DATASET

We used the package neurogym (Molano-Mazon et al., 2022) to simulate common cognitive
tasks. In this paper, we trained recurrent neural networks to perform the following cognitive tasks:
perceptual decision making, context decision making, and delay match sample. We followed the
task configuration used in (Liu et al., 2024). We list detailed information of task configuration and
descriptions below.

Perceptual decision making (Britten et al., 1992) (documentation page)

• Task description: In each trial, given two noisy stimulus, the agent needs to integrate the
stimulus over time to determine which stimuli has stronger signal.

• Task configuration: We set up the task using the following parameters: {timing:
{fixation: 0, stimulus: 700, delay: 0, decision: 100},
dt: 100, seq len: 8}

Context decision making (Mante et al., 2013) (documentation page)

• Task description: In each trial, given two noisy stimulus, each has two modalities, the agent
needs to integrate the stimulus in one specific modal while ignoring the other modal. The
interested modal is given by the context.

• Task configuration: We set up the task using the following parameters: {timing:
{fixation: 0, stimulus: 200, delay: 500, decision: 100},
dt: 100, seq len: 8}

Delay match sample (Miller et al., 1996) (documentation page)

• Task description: In each trial, a sample stimulus is shown during the sample period, which
followed by a delay period. Afterwards, the test stimulus is shown. The agent needs to
determine whether the sample and the test stimuli are matched.
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• Task configuration: We set up the task using the following parameters: {timing:
{fixation: 0, sample: 100, delay: 500, test: 100,
decision: 100}, dt: 100, seq len: 8}

F.1.2 MODELS

Model architecture We consider time-continuous recurrent neural networks (RNNs) architecture
that are commonly used to model neural circuits (Liu et al., 2024; Ehrlich et al., 2021). Specifically,
we consider RNNs with 1 hidden layer, ReLU activation, Nin input units, Nhidden hidden units, and
Nout output unit. Let xt ∈ RNin , yt ∈ RNout be the corresponding input and output at time-step
t. The model’s hidden representation ht and outputs ŷt at time step t can be defined by the given
equations:

ht+1 = ρht + (1− ρ)(Whσ(ht) +Wixt) (8)
ŷt =Woσ(ht) (9)

In the above equation, Wi ∈ RNin×Nhidden , Wh ∈ RNhidden×Nhidden , Wo ∈ RNhidden×Nout . σ(.)
is the non-linear activation function, in which we used ReLU, and ρ is the decay factor which is
defined by ρ = e

−dt
τ with time step dt and time constant τ . We use Nhidden = 300 for all RNNs

models.

Weight rank initialization Following the practice in (Liu et al., 2024), we initialize the recurrence
weightWh by initializing an initial full-ranked random Gaussian matrix, and then use Singular Value
Decomposition to truncate the weight rank to the desired rank. The truncated weight matrix is then
re-scaled to ensure that weight matrices with varying ranks have the same weight norm.

F.1.3 TRAINING PROCEDURE

• Loss function: Since all three tasks that we consider are classification tasks, we use cross
entropy loss.

• Optimizer: We use Stochastic Gradient Descent with momentum (implemented as
torch.optim.SGD(lr=0.003, momentum=0.9)) to train the models.

• Batch size: We use batch size of 32 for each training step.

The models are trained for 10000 iterations and all models being compared achieved similar loss
and accuracy after training (see Figure 22, 23, 24 for more details).

F.1.4 MANIFOLD CAPACITY MEASUREMENTS

In this section, we provide detailed information about how we define object manifolds from the
model’s representations and measure the manifold capacity and geometric properties (Chung et al.,
2018).

• Features extraction: We extract the representation ht (in Equation 8) from the hidden layer
(dimension 300) with t being the decision period of the trial.

• Number of manifolds: The number of possible choices in the decision period of all the
three tasks that we consider is 2, so the number of manifolds are 2.

• Number of points per manifold: For each task-relevant manifold, we randomly sample 50
trials of the corresponding ground truth choices.

• Number of repetitions: Every capacity and geometry measurement is repeated 50 times and
we report the mean and the error bar as the bootstraped 95% confidence interval calculated
using seaborn.lineplot(errorbar=(’ci’, 95)).

F.2 ADDITIONAL RESULTS ON OTHER COGNITIVE TASKS

In section 5.1, we present the results on how the initial structural connectivity bias (initialized
by varying the rank of the weight matrix) affects the feature learning regime and representational
geometry of a given model in the perceptual decision making task (also called the two-alternative
forced choice task) (Britten et al., 1992). In this section, we show more detailed results (including
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accuracy and loss) on the perceptual decision making task in Figure 22, along with two other
cognitive tasks, which are context decision making task (Mante et al., 2013) in Figure 23 and delay
match sample task (Miller et al., 1996) in Figure 24.

Figure 22: Structural connectivity bias in the two-alternative forced choice task. a. Model train and
loss accuracy b. Weight change and alignment measurements c. Manifold capacity measurements
d. Effective manifold geometry measurements.

Figure 23: Structural connectivity bias in the context decision making task a. Model train and loss
accuracy b. Weight change and alignment measurements c. Manifold capacity measurements d.
Effective manifold geometry measurements.

Figure 24: Structural connectivity bias in the delay mataching sample task. a. Model train and loss
accuracy b. Weight change and alignment measurements c. Manifold capacity measurements d.
Effective manifold geometry measurements.
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