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ABSTRACT

Matrix inverse (Minv) and singular value decomposition (SVD) are among the
most widely used matrix operations in massive data analysis, machine learning,
and statistics. Although well-studied, they still encounter difficulties in practical
use due to inefficiency and non-differentiability. In this paper, we aim at solving
efficiency and differentiability issues through learning-based methods. First of all,
to perform matrix inverse, we provide a differentiable yet efficient way, named
LD-Minv, which is a learnable deep neural network (DNN) with each layer be-
ing an L-th order matrix polynomial. We show that, with proper initialization,
the difference between LD-Minv’s output and exact pseudo-inverse is in the order
O
(
exp
{
−LK

})
, where K is the depth of the LD-Minv. Moreover, by learning

from data, LD-Minv further reduces the difference between the output and the
exact pseudo-inverse. We prove that gradient descent finds an ε-error minimum
within O(nKL log 1/ε) steps for LD-Minv, where n is the data size. At last,
we provide the generalization bound for LD-Minv in both under-parameterized
and over-parameterized settings. As an application of LD-Minv, we provide a
learning-based optimization method to solve the problem with orthogonality con-
straints and utilize it to differentiate SVD (D-SVD). We also provide a theoretical
generalization guarantee for D-SVD. Finally, we demonstrate the superiority of
our methods on the synthetic and real data in the supplementary materials.

1 INTRODUCTION

Matrix inverse (including matrix pseudo-inverse) and singular value decomposition are fundamental
linear algebra operations, ubiquitous in machine learning, statistics, signal processing, and other
fields. In general, solving scientific computing or optimization problems often need to perform
these two operators, such as matrix (pseudo) inverse for least squares regression, singular value
decomposition (SVD) for dimensionality reduction (PCA), the low-rank related problems (Liu et al.,
2010; Zhang et al., 2018; Liu et al., 2013), the graph-based issues (Wu et al., 2020a; Von Luxburg,
2007), and even for training deep neural networks (DNNs) with structured layers (Ionescu et al.,
2015). Nevertheless, Minv and SVD appear less and less often in the modern machine learning tasks.
One reason is inefficiency. Computing the SVD and the Minv can be extremely time-consuming for
large-scale problems; however, efficiency is a significant concern in the current big data and deep
learning era. Besides, non-differentiability is considered another reason that blocks the use of SVD
and Minv. Usually, most prevalent methods for training DNNs are first-order and are based on the
backpropagation; however, Minv and SVD are not necessarily continuous functions of the matrix
entries (Stewart, 1969). Therefore, derivatives are not always existent. Although Minv and SVD may
be backprop-able due to some specific implementation, they are unstable and are essentially non-
differentiable. Thus the gradients cannot pass through them when backpropagating. Considering the
above problems, one natural question emerges.

Does there exist an efficient and differentiable way to perform Minv and SVD?

Over the last decade, many sketches-based methods have been developed, e.g., Nelson & Nguyen
(2013); Meng & Mahoney (2013); Cohen et al. (2015); Indyk et al. (2019). The main idea of the
sketches-based techniques is to use random projections, which is efficiently computable, to reduce
the problem size before performing SVD and Minv. However, they do not solve the problem of
non-differentiability as smaller-sized SVD and Minv still needs to be computed.
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Recently, “differentiable learning-based” methods (D-LbM) have attracted considerable atten-
tion (Chen et al., 2018; Indyk et al., 2019; Liu et al., 2019; Wu et al., 2020b; Xie et al., 2019). These
methods usually unroll the classical optimization or numerical iterative algorithms and introduce the
learnable parameters to obtain a learnable DNN. In general, the iterative algorithms inspired DNNs
consist of differentiable operators such as matrix polynomials. Benefiting from training on the data,
D-LbMs can execute in much fewer iterations with similar per-iteration cost as original algorithms
but obtain much better performance. Many empirical results, e.g., Gregor & LeCun (2010); Yang
et al. (2016); Peng et al. (2018), show that a well-trained DNN provided by D-LbM—compared
with the original optimization algorithm—can obtain an almost equally good solution using one
or even two order-of-magnitude fewer iterations. Based on these observations, we aim to find a
learning-based iterative way to differentiate Minv and SVD in this paper.

However, all these D-LbMs suffer from two common problems. One is the convergence guarantee.
The forward process of D-LbMs may diverge, even if the original unrolled iterative algorithm has a
well-behaved convergence guarantee. In fact, most D-LbM methods have little or no convergence
guarantees. To the best of our knowledge, there is no work to reveal the behavior of D-LbM during
training. How does the training loss decrease? How big is the gap between the output of D-LbM
and that of the original algorithm? All these questions are still open. Another problem is, both
for D-LbM and the original algorithm, a limited theory exists when the input data obey a common
distribution (e.g., data drawn from a low-dimensional manifold). Essentially, by learning from data,
D-LbMs can obtain a problem-dependent parameter bias. It can help D-LbMs get the better perfor-
mance on a specific data distribution within much fewer computation cost, instead of simply fixing
the parameter ahead of time like traditional iterative methods. But there is no mathematical result to
describe this phenomenon strictly. Moreover, it is unknown whether the trained D-LbMs generalize
well on data from the same distribution.

Remarkably, in this paper we provide a learnable, differentiable and efficient way to perform Minv,
named Learnable Differentiable Matrix Inverse (LD-Minv) and solve the above two problems by our
proposed LD-Minv. First of all, LD-Minv is a DNN with each layer being an L-th order matrix poly-
nomial; and the coefficient of each power is learnable. We show that LD-Minv converges to the Minv
or pseudo-inverse with order L if the coefficients of polynomial are set properly. Namely, the differ-
ence between the output of the DNN and the exact pseudo-inverse is in the order O

(
exp
{
−LK

})
,

where K is the depth of LD-Minv. Secondly, by learning from data, LD-Minv can further improve
the and precision on some specific data distribution. Namely, the distance between the output and
the exact pseudo-inverse can be arbitrarily small. Specifically, the training loss converges to zero
exponentially fast, i.e., gradient descent (GD) finds an ε-error minimum in `2 regression using at
most O(nKL log 1/ε) iterations, where n is the data size. Finally, we provide the generalization
bound for LD-Minv in both under-parameterized and over-parameterized settings.

With LD-Minv at hand, as a direct application, we propose a learning-based optimization to solve
any convex problems with non-convex orthogonality constraints. Then we use it to differentiate
SVD. Note that we also provide a generalization guarantee for our D-SVD. Unlike the previous
work on differentiable SVD (Indyk et al., 2019), which is based on the power method and needs an
assumption on the gap between singular values to ensure convergence, our method can converge to
the solution without any gap assumption. In summary, our main contributions include:

• We propose a differentiable method, LD-Minv, to perform matrix inverse efficiently. LD-
Minv, inspiring a DNN with each layer being a learnable L-th order matrix polynomial,
would be useful for accelerating and differentiating general matrix decompositions. We
show that LD-Minv can converge to the matrix pseudo-inverse with order L.

• By learning, LD-Minv can further improve the approximation performance on some under-
lying data distribution. We prove that GD finds an ε-error minimum in `2 regression using
at most O(nKL log 1/ε) iterations under mild conditions. Moreover, we also provide the
generalization bound for LD-Minv. We reveal that the empirical Rademacher complexity
of the loss function class is bounded by Õ(min{d3L/K1/2,

√
d3K/n}), where Õ(·) hides

log factors, and K and d are the depth and the width of LD-Minv, respectively.

• As a direct application, we further provide a learning-based general framework to solve
the problems with orthogonality constraints. This D-LbM helps us to differentiate SVD.
Finally, we also provide a generalization guarantee for our D-SVD.
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2 DIFFERENTIABLE MATRIX INVERSE

We introduce the proposed D-Minv in this section. We first present an intuitive idea to show how
to approximate the matrix inverse iteratively. Then we generalize the iterative method to obtain our
fixed and learnable D-Minv, separately

2.1 FIXED DIFFERENTIABLE MATRIX INVERSE

Given a matrix A ∈ Rd×d, we want to approximate its inverse A−1 by the matrix X ∈ Rd×d, i.e.,
AX ≈ I, where I ∈ Rd×d is the identity matrix. Ideally, X is the fixed point of the following
equation:

X = X(AX)
−1

= X

( ∞∑
l=0

(I−AX)
l

)
, (1)

where the last equality follows from the Neumann series when AX ≈ I and (I−AX)
l is the

l-order matrix polynomial.

Inspired by the above iterative process, it is obvious that we can obtain the matrix X iteratively.
Hence, we consider the following higher-order iterative method, which is an L-th order matrix
polynomial in each iteration, where L ≥ 4:

Xk+1 = Xk

(
L−1∑
l=0

El
k

)
, Ek = I−AXk. (2)

Note that DNNs can easily implement this method: one layer corresponds to one iterative step.
Since there are no parameters to learn in Eq. (2), and it only involves the matrix multiplication
(thus differentiable), we name it fixed D-Minv 1. One may doubt that the computational cost of each
iteration is high in Eq. (2). However, as shown in Lemma 1, higher-order polynomial usually implies
a faster convergence rate. For obtaining the same precision with different L, the total computational
cost is in the order of O(L/ ln(L)), which is a very slow growth rate w.r.t. L. Although simple,
fixed D-Minv converges to the inverse A−1 or A† extremely fast.
Lemma 1 (Approximation Speed). The generated sequence {Xk ∈ Rd1×d2} by Eq. (2) converges
to the Moore–Penrose inverse A† with order L provided that X0 = 1

c0
A>, c0 > 1

2‖A‖
2, i.e., we

can conclude: ∥∥AA† −AXk

∥∥ = eL
k

0 , in which e0 =
∥∥AA† −AX0

∥∥ < 1,

where ‖·‖ is the spectral norm.

We can see that fixed D-Minv converges with order L, i.e., a shallow D-Minv can approximate the
matrix inverse very well. Moreover, provided with the X0 given in Lemma 1, the column space and
the row space of the matrix Xk are exactly correct from the beginning.
Proposition 1 (Invariant Column and Row Spaces). With the same setting in Lemma 1, for any
k ≥ 0, it holds that:

XkAA† = Xk, A†AXk = Xk.

By Proposition 1, it is easy to see that the zero singular values remain unchanged during computing,
which indicates that D-Minv works consistently on the full and rank-deficient square and rectangle
matrices. Note that this proposition also holds for the upcoming LD-Minv.

2.2 LEARNABLE DIFFERENTIABLE MATRIX INVERSE

We consider the learnable D-Minv (LD-Minv) with the following iterative formula:

Xk+1 = Xk

(
L−1∑
l=0

C{k,l}E
l
k

)
, Ek = I−AXk, L ≥ 4, (3)

1Higher-order method Eq. (2) is already well-known in the applied mathematics community in another
equivalent form, see Climent et al. (2001); Amat et al. (2003); Li et al. (2011).
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where (k, l+ 1) ∈ [K]× [L], C{k,l} ∈ R are learnable coefficients, and ‖·‖F is the Frobenius norm.

LD-Minv is also in the category of LbMs that unroll the conventional numerical iteration methods.
As discussed in the introduction, two problems, i.e., no convergence analysis for the training proce-
dure and no generalization guarantee for the trained DNN, block the further theoretical exploration
of these LbMs. However, in contrast to the previous works, we obtain favorable theoretical results
on both of the two problems for our LD-Minv. First, although fixed D-Minv already converges
extremely fast, LD-Minv can still perform much better on the training data under mild conditions.
Specifically,

∥∥XK −A†
∥∥ converges to zero exponentially fast during training, i.e., GD finds an ε-

error minimum in `2 regression using at mostO(nKL log 1/ε) iterations 2. Second, LD-Minv has a
tight generalization bound to guarantee the performance on the unseen matrix when it comes from
the same distribution as the training instances. We provide the rigorous theoretical results in Sec. 4.

Discussion 1. One can find that the final iterate XK can be written as matrix polynomial of A,
and may argue that approximating the Minv by the polynomial is well-studied. Zero training can
be obtained when the polynomial’s order is large enough, and the approximation error controls the
generalization error. For the sake of distinction, we make three clarifications. First of all, most
traditional results only describe the behavior in the worst case, which holds for any input matrix and
may easily fail in some extreme cases. However, LD-Minv focuses on a more realistic situation, i.e.,
the input matrices obey some common distribution, such as the affinity matrices of Facebook users
or the sampled CT and MRI images. How to learn from the data and design a more efficient method
is still open, not to mention the theoretical generalization guarantee on specific data distribution.
Secondly, the traditional polynomial approximation method is susceptible to the polynomial order
and is very easy to over-fitting when the order is over-parameterized, say order� nd. Without
precise data distribution density, it is impossible to choose the proper order to ensure zero training
and guarantee the small generalization error, simultaneously. To solve this, we may need some
complex and data-driven regularization strategy. In sharp contrast, LD-Minv is robust to the order,
and our theoretical results (i.e., zero training and small generalization error) hold well from under-
parameterized to over-parameterized cases. Thirdly, the exact polynomial fitting can only imply the
existence of zero training solution, while our results describe the convergence behavior (i.e., which
solution we will choose) . Obviously, there exists a big gap between the convergence of training and
the existence of a solution.

Note that we have considered a much easier matrix polynomial: XK =
∑L
l=0 ClA

l. Learning the
coefficients {Cl}Ll=1 becomes an easy-to-solve convex regression problem unlike the convex one in
Eq. (3). Unfortunately, we failed due to some stability issues, e.g, the coefficients in different powers
vary significantly which cause the poor generalization performance.

Discussion 2. Most matrix iterative methods suffer from the ill-condition problem, which usually
brings instability and makes the analysis and calculation hard to carry on, e.g., for D-Minv, large
condition number may significantly slow the convergence speed (see Lemma 1). However, learning-
based method can greatly alleviate this ill-condition problem by learning from data. LD-Minv can
beat D-Minv easily when the condition number of the input matrix is large and the learned coeffi-
cients for LD-Minv are also valid on the unseen data. See the experimental part for more details.

2.3 TRAINING SETTINGS

We now describe some training settings for D-Minv. Denote by {Ai}ni=1 the training set consisting
of n samples. Let X{k,i} ∈ Rd1×d2 be the output of the k-th layer on the i-th training sample
Ai ∈ Rd2×d1 . We consider a typical regression loss:

Ln(C) :=
1

2nK

n∑
i=1

K∑
k=1

∥∥AiX{k,i}Ai −Ai

∥∥2
F
, (4)

where C = {C{k,l}, (k, l + 1) ∈ [K] × [L]} is the collection of all learnable parameters. Note
that when X = A†, the properties of the Moore–Penrose inverse indicate the equation AXA = A,
which can further indicates the equation XAX = X in our invariant space case, see Proposition 1.
Therefore, we only use the difference term (AXA−A) in the training loss.

2Please distinguish the two “convergence” here. One describes Xk approaching A† w.r.t. k and L, and the
other refers to the behavior of LD-Minv’s loss w.r.t. training iteration.
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Algorithm 1 Gradient descent (GD) with proper initialization for LD-Minv
Input: Training data {Ai}ni=1, number of iterations T , step size η.

1: Generate each C{k,l} ∈ C such that |C{k,l} − 1| = O(K−α), where α > 1
4 .

2: Set X{0,i} = 1
c0

A>i or X̃i, where c0 > 1
2‖Ai‖2, X̃i is the output of a fixed D-Minv.

3: for t = 1, · · · , T do
4: Update C(t+1) = C(t) − η · D

[C=C(t)]
Ln.

5: end for
Output: C(0), . . . ,C(T ).

Thanks to the differentiability of LD-Minv, we adopt GD to minimize the training loss to obtain
the proper coefficients C. We present the initialization strategy and training process in Algorithm
1, where the first derivative of differentiable function Ln(C) : RK×L → R at C(t) is denoted
by D[C=C(t)]Ln(·) :=

(
∂Ln(C(t))

/
∂C
)
∈ RK×L. When K is large, one may notice that our

coefficient is close to the oracle value 1, which may provide a relatively good initial loss L
(
C(0)

)
.

Notably, this does NOT mean that we will treat the learning and initialization as a perturbation
of the fixed D-Minv and bound the loss by the good-enough fixed D-Minv’s performance plus the
perturbation error. On the contrary, as we will show in theoretical results part, learnability indeed
matters, and LD-Minv can obtain better performance than the fixed one by training. The real purpose
of this initialization is to take advantage of D-Minv’s local Lipschitz continuity near C = 1, where
1 is the all one vector. The continuity reduces the complexity of optimization and will benefit the
generalization of D-Minv.

3 LEARNING-BASED OPTIMIZATION WITH ORTHOGONALITY CONSTRAINTS

Considering the following general orthogonality constrained optimization problem:

min
U

f(U), s.t. U>U = I, (5)

where the objective function f(U) : Rm×r → R is differentiable and convex. The usual way
to solve Eq. (5) is to perform the manifold GD on the Stiefel manifold, which evolves along the
manifold geodesics. Specifically, manifold GD first updates the variable in the manifold tangent
space along the objective function’s projected gradient. Then, map the updated variable in the tan-
gent space to a feasible point on the geodesic, and repeat these two steps until convergence (Edel-
man et al., 1998). Usually, the mapping step is non-differentiable and inefficient. Fortunately, the
work (Wen & Yin, 2013; Ren & Lin, 2013) develops a technique to solve the optimization problem
with orthogonal constrains approximately, which only involves matrix multiplication and inverse.

We let U ∈ Rm×r, where r is the Stiefel manifold’s dimension. Denote by G ∈ Rm×r the gradient
of the objective function f(U) in Eq. (5) w.r.t. U at Uk, then the projection of G in the tangent space
of the Stiefel manifold at Uk is PUk

3, where P = GU>k −UkG
> and P ∈ Rm×m. Instead of

parameterizing the geodesic of the Stiefel manifold along direction P using the exponential function,
we generate the feasible points to update Uk by the following Cayley transform (Wen & Yin, 2013):

Uk+1 = U(t) = C(t)Uk, where C(t) =

(
I +

t

2
P

)−1(
I− t

2
P

)
, (6)

where I is the identity matrix and t ∈ R is the step size used for updating the current Uk. In other
words, U(t) is a re-parameterized local geodesic w.r.t. t on the Stiefel manifold. One can easily
verify that U(t) has the following properties, given U>k Uk = I:
(1) d

dtU(0) = −PUk, (2) U(t) is smooth in t, (3) U(0) = Uk, (4) U (t)
>

U (t) = I, ∀t ∈ R.
It is evident that, if t is in a proper range, Uk+1 can lead to a lower objective function value than
U(0) = Uk on the Stiefel manifold. Besides, computing Uk+1 only involves the matrix multiplica-
tion and matrix inverse, which can be easily performed by our LD-Minv in Eq. (3. Therefore, we let
C(t) = LD-Minv (I + tP/2) in Eq. (6). Then we can obtain a learning-based optimization method
for the problem with orthogonality constraints in Eq. (5).

3We choose the canonical metric on the tangent space as the equipped Riemannian metric.
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3.1 APPLICATION: DIFFERENTIABLE SVD BY LD-MINV

In this part, we show how to utilize the previous general learning-based optimization framework to
differentiate SVD. Given an arbitrary matrix M ∈ Rm×n̂ and its skinny SVD M = ŨS̃Ṽ>, the Von
Neumann’s trace inequality, 〈M,X〉 ≤

∑
i σi(M)σi(X), implies that {Ũ ∈ Rm×r, Ṽ ∈ Rn̂×r} is

an optimal solution of the following optimization problem:

min
U,V

f(U,V) :=

(
1

2
‖Dc (Λ)‖2F −

〈
M,UV>

〉)
, s.t. U>U = V>V = I, (7)

where Λ := U>MV, Diag(·) returns the collection of the diagonal entries of the input matrix, and
Dc(Λ) := (Id−Diag)(Λ) := Λ−Diag (Λ) for any input matrix Λ.

Note that solving the problem in Eq. (7) is equivalent to performing SVD. Let {M,U0,V0} be
the inputs of our Differentiable SVD (D-SVD). We adopt the Cayley transform in Eq. (6) to solve
the problem in Eq. (7), and replace the matrix inverse in it by our proposed LD-Minv in Eq. (3).
W.l.o.g, in the following, we only focus on the updating strategy of U due to the similarity between
U and V. We first compute the gradient of the objective function f(U,V) w.r.t. U at {Uk,Vk},
which we shall denote by G = MVk

(
Dc
(
V>k M>Uk

)
− I
)
. Then we find a geodesic curve

U(t) along the gradient on the Stiefel manifold for updating Uk. Referring to Eq. (6), the curve is
U(t) =

(
I + t

2P
)−1(

I− t
2P
)
Uk, where P = GU>k −UkG

>. Given the step size t, we can use
LD-Minv to perform the matrix inverse on the factor

(
I + t

2P
)
. In summery, D-SVD consists of

two steps: (1) find a proper t; (2) update {Uk,Vk} by the Cayley transform.

For finding a proper step size t, we consider the following problem:

t∗U = argmin
0≤t≤ε

f(t) := f(U(t),Vk), (8)

where ε is a given parameter to ensure a small enough magnitude of t∗U . Notice that if t is small
enough to hold

∥∥ t
2P
∥∥ < 1, then we have

(
I + t

2P
)−1

= I +
∑∞
l=1

(
− t

2P
)l

, which implies that

U(t) =
(
I + 2

∑∞
l=1

(
− t

2P
)l)

Uk. Considering that t∗ in Eq. (8) is small, we can approximate
f(t) via its second order Taylor expansion at t = 0:

f(t) = f(0) + f ′(0) · t+
1

2
f ′′(0) · t2 +O

(
t2
)
, (9)

where f ′(0) and f ′′(0) are the first and the second order derivatives of f(t) evaluated at 0, respec-
tively. These two derivatives have closed form and can be computed efficiently. Consequently, we
can obtain an approximated optimal solution t∗ via:

t∗U = min
{
ε, t̃
}
, where ε < 2/‖P‖, and t̃ = −f ′(0)/f ′′(0), (10)

provided that:{
f ′(0) =

〈
Dc
(
U>k MVk

)
,Dc

(
U>k PMVk

)〉
+ 〈MVk,PUk〉 ,

f ′′(0) =
∥∥Dc

(
U>k PMVk

)∥∥2
F

+
〈
Dc
(
U>k MVk

)
,Dc

(
U>k P2MVk

)〉
−
〈
MVk,P

2Uk

〉
.

(11)

Then we can update U by U(t∗U ), i.e., Uk+1 = U(t∗U ). Thanks to the cyclic property of trace
operator, Vk+1 shares a similar update strategy with Uk+1.

Provided the input {M,Uk,Vk}, the complete iterative steps for our D-SVD are as follows4:

GU = MVk

(
Dc
(
V>k M>Uk

)
− I
)
, PU = GUU>k −UkG

>
U ,

t∗U = min

{
2

‖PU‖
,− f

′(U(t),Vk)

f ′′(U(t),Vk)

}
+ t̃Uk , Uk+1 = Cayley (t∗U ,CUk ,PU ,Uk),

GV = M>Uk+1

(
Dc
(
U>k+1MVk

)
− I
)
, PV = GV V>k −VkG

>
V ,

t∗V = min

{
2

‖PV ‖
,− f

′(Uk+1,V(t))

f ′′(Uk+1,V(t))

}
+ t̃Vk , Vk+1 = Cayley (t∗V ,CVk ,PV ,Vk),

(12)

4For convenience and clearing writing, we omit the superscript in the updating rules.

6



Under review as a conference paper at ICLR 2021

Algorithm 2 Forward Propagation for D-SVD
Input: Training data {Mi,Ui,0,Vi,0}ni=1, depth Ksvd of D-SVD, number of iterations Tinv, step

size ηinv and D-SVD’s current parameters t̃.
1: for k = 0, . . . ,Ksvd do
2: Calculate PU,i and t∗U,i with {Mi,Ui,k,Vi,k}ni=1 by Eq. (12).
3: Train LD-Minv with parameters CUk by Algorithm 1 with the data {Ai}ni=1, number of

iterations Tinv and step size ηinv, where Ai = (I + t∗U,iPU,i/2).
4: Repeat Steps 2 and 3 by switching the roles of U and V with the input {Ui,k+1,Vi,k}ni=1.
5: end for

Output: {CUk ,CVk}
Ksvd

k=1 and {Ui,k+1,Vi,k}n,Ksvd

i=1,k=1.

Algorithm 3 Joint Training for D-SVD and LD-Minv
Input: Training data {Mi}ni=1, number of iterations Tinv and Tsvd, step sizes ηsvd and ηinv.

1: Generate {Ui,0,Vi,0}ni=1 randomly from the r-dimensional Stiefel manifold. Set t̃(0) = 0.
2: for t = 1, · · · , Tsvd do
3: Forward propagate by Algorithm 2.
4: Update t̃(t+1) = t̃(t) − ηsvd · D[t̃=t̃(t)]

Mn, whereMn := 1
nKsvd

∑n
i=1

∑Ksvd

k=1 f(Ui,kVi,k).
5: end for

Output: {Ui,k+1,Vi,k}n,Ksvd

i=1,k=1.

where
Cayley (t,C,P,U) := LD-Minv (I + tP/2,C)(I− tP/2)U,

t̃ := {(t̃Uk , t̃Vk) ∈ R2}Ksvd

k=1 is the collection of learnable parameters for D-SVD, and
LD-Minv(·,C) is a LD-Minv module with parameters C. Note that a DNN can easily implement
our D-SVD. Each layer implements the steps in Eq. (12), which are the specific iterative procedures
of the previous general learning-based optimization with orthogonality constraints. We adopt differ-
ent LD-Minvs for different layers, and provide the training process for D-SVD in Algorithms 2 and
3. By introducing LD-Minv into the Cayley transform, we bypass the non-differentiable exact Minv,
and solve the problem in Eq. (7) (i.e., perform SVD) in a differentiable and learning-based way.

4 MAIN RESULTS

In this section, we provide the main theoretical results of D-Minv, including the linear convergence
of GD during training and the generalization performance. All the detailed proofs of these theorems
are provided in the supplementary material. The theoretical results for D-SVD are presented in the
supplementary material due to limited space.

4.1 CONVERGENCE RATE OF GD

We consider the general LD-Minv and large training data size n in this section. We first make the
following assumption on the training data.

Assumption 1 (Bounded Singular Values). Given the training matrices
{
Ai ∈ Rd1×d2

}n
i=1

, we
assume the training matrices’ positive singular value vectors are d-dimensional, where d ≤
min{d1, d2}. Assume these positive singular values have lower and upper bounds, i.e.,

‖xi‖∞ ≤ 1 and min
j∈[d]

[xi]j ≥ b̄a > 0, where xi = σ+(Ai) ∈ Rd, ∀i ∈ [n],

and σ+(·) extract the positive singular values.

In general, the boundedness assumption for the singular values the is weak and easy to satisfy. See
the discussion in the supplementary material (Section C.1.2).

With this assumption, we can obtain the convergence rate of our Algorithm 1.

7
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Theorem 1 (Convergence Rate). Suppose Assumption 1 holds and let d = min{d1, d2}. For any
t, ε > 0, we let K = Ω

(
db̄2a
)
, then with probability at least 1− exp

(
−O

(
K/b̄2a

))
, GD in Algorithm

1 with step size η = Θ(1/dL) can find a collection of coefficients such that:

Ln(C(T )) < ε, for T = Θ
(
dLKnb̄−2a ln (1/ε)

)
,

where b̄a is the lower bound for the positive singular values of training data Ai.

This is known as the linear convergence rate because ε drops exponentially fast in T . Recall that K
and L are from the definition of our LD-Minv.

Remark 1. Different from the traditional theoretical results of DNNs, the randomness in our results
mainly comes from a re-weighting strategy (see Sec. E) rather than initialization. In general, our
results hold for any initialization strategy as long as the condition in Algorithm 1 is met. Notably,
our results do not require the depth or the width to be in the polynomial order of data size n, which
is a prevalent over-parameterization assumption for the current deep learning theories.

Remark 2. To present our convergence result most simply, we choose to focus on GD method
with fixed step size mainly. It shall be easy to extend our results to more general settings, such as
stochastic GD and dynamic step size.

4.2 GENERALIZATION

We characterize the generalization performance of LD-Minv trained by GD in this theorem.

Theorem 2 (Generalization Bound). Denote by PA the distribution of Ai in Assumption 1. Suppose
that α ≥ 1 andK2α−1/2 = Ω(

√
n), then with probability at least 1−δ, the iterate C(t) of Algorithm

1 holds that:

E
A∼PA

[
Ln
(
C(t)

)]
≤ Ln

(
C(t)

)
+ Õ

(
min

{
b̄2wd

3L

Kα/2
,

√
d3K

n

})
+O

(√
ln(1/δ)

n

)
,

for t = 0, 1, · · · , T , where EA∼PA
[Ln] is the expected value of Ln under the probability measure

PA and Õ(·) hides log factors.

We adopt two ways to upper bound the empirical Rademacher complexity, which corresponds to the
cases K < n and K > n, respectively. The final bound is the minimum of them (middle term in the
above upper bound).

Remark 3. The second term in our bound distinguishes our result from most previous work (Allen-
Zhu et al., 2019; Arora et al., 2019; Yehudai & Shamir, 2019; Cao & Gu, 2019; Chen et al., 2019;
Xie et al., 2020) on the generalization bounds of over-parameterized neural networks. Specifically,
most over-parameterized work mainly focus on establishing the bound that does not explode when
the network width goes to infinity. However, their bounds are exponential in the depth, which may
not hold when the depth is large. In contrast, our result covers a wider range of depth K: it covers
the case of both K < n and K > n. One may wonder whether our bound will explore when K
approaches infinity. The answer is no. We can observe a “double descent” trend to certain extent:
the generalization error bound first increases with the network depth K when K < n, then it starts
to decrease when K becomes larger even for K � n.

5 CONCLUSION

We provide a differentiable and learnable way, named LD-Minv, to perform the matrix inverse
by using a L-th order matrix polynomials. Then, we offer some theoretical guarantees about the
convergence during training and generalization ability in both under-parameterization and over-
parameterization setting for LD-Minv. Remarkably, we are the first to provide the strict analysis
for the training process of the differentiable learning-based methods. As an application of LD-Minv,
we propose a learning-based optimization method to solve the problems with non-convex orthogo-
nality constraints, and then utilize it to differentiate SVD. A generalization guarantee for D-SVD is
also provided.
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APPENDIX

A EXPERIMENTAL RESULTS

A.1 EFFECTIVENESS VALIDATION

We conduct experiments on synthetic data to validate the effectiveness of our proposed LD-Minv
and D-SVD. We run our all experiments for 10 times and report the average results.

(a) (c)(b)

Figure 1: Experimental results of LD-Minv and D-Minv. (a) Test loss of LD-Minv with different
K and L; (b) Comparision between LD-Minv and D-Minv with different K and fixed L = 4; (c)
Comparison between LD-Minv and D-Minv with different L and fixed K = 5.

A.1.1 EXPERIMENTS RESULTS FOR LD-MINV

Settings. For LD-Minv, we adopt the square and rectangle matrix to test its performance. It should
be mentioned that our LD-Minv is adaptive to the shape of the input matrix. In general, the square
matrix can better test the performance of the algorithm, since the minimum singular value is near 0
in this case (Vershynin, 2010). And a large condition number of the input may make most numerical
matrix calculation methods unstable. For the square matrix A ∈ Rd×d, its elements are sampled
from i.i.d. Gaussian, namelyAi,j ∼ N (0, 1/

√
d). For the rectangle matrix A ∈ Rm×n̂, its elements

11
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Table 1: Inference time (seconds) of D-Minv/LD-Minv and exact Minv for different matrix size with
batch size 100. The efficiency advantage of our LD-Minv/D-Minv is obvious through all cases.

Matrix Size 10× 15 50× 75 100× 150 200× 300 500× 750 1000× 1500
L = 4,K = 4 0.0030 0.0070 0.010 0.025 0.40 1.23
L = 4,K = 8 0.0052 0.0088 0.016 0.047 0.56 2.22
L = 4,K = 12 0.0083 0.0133 0.019 0.055 0.64 3.08
L = 4,K = 5 0.0035 0.0050 0.013 0.025 0.38 1.38
L = 8,K = 5 0.0058 0.0076 0.014 0.051 0.55 2.42
L = 12,K = 5 0.0084 0.013 0.020 0.059 0.68 3.53
Exact Pseudo Minv 0.46 0.58 1.21 2.60 11.39 39.49

are also sampled from Ai,j ∼ N (0, 1/
√
d), where d = max{m, n̂}. We adopt the SGD to optimize

the parameters. Note that our theoretical results in Sec. 4 hold for GD, but they can easily extend to
the SGD case. The learning rate is set to 1e-4, and it is reduced by half every 300 iterations. We also
fix the batch size as 100, while the number of iteration is set to 1200. Note that, in the experiments,
the adopted exact Pseudo matrix inverse (Minv) is implemented by Pytorch.

We adopt the following test loss to measure the performace:

Test Loss :=
1

n

n∑
i=1

∥∥AiX{Kinv,i}Ai −Ai

∥∥2
F
,

where X{Kinv,i} is the final output of D-Minv or LD-Minv. Here n = 100 is the size of test data.
With d = 100, we first test the influence of L and K, which correspond to the order of matrix
polynomial and the number of layers in our LD-Minv, respectively. Due to high precision of LD-
Minv and D-Minv, for visualization, we take a base-10 logarithm on loss in this experiment.

Results. From Fig. 1(a), we can see that the number of layer K plays a more critical role for LD-
Minv than the order L of polynomial. When settingK = 7, the log of the test error drops from−1.0
for L = 4 to −4.6 for L = 9. However, the log of the test error drops from 0.32 for K = 2 to −4.6
for K = 7, when fixing L = 9. Hence, for efficiency, we suggest utilizing large K and small L for
LD-Minv.

Compared with D-Minv, according to Fig. 1(b) and Fig. 1(c), LD-Minv can obtain a better test
performance even for largeK andL, although D-Minv converges to Minv extremely fast in this case.
Our result demonstrates that learning can help LD-Minv obtain better performance on a problem-
dependent data distribution rather than merely fixing the coefficients ahead for time. We notice
that LD-Minv and D-Minv obtain a similar precision when K > 15, and the reason is that the
approximation error for D-Minv is in the order of 1e− 8 in this case, which lifts very limited space
for the improvement by learning.

Fig. 1(b) further verifies the importance of K. As shown in our theoretical results (Theorem 1 and
Theorem 2); large K indicates smaller generalization bound and higher probability to obtain the
linear convergence rate for Algorithm 1.

Another significant advantage of our proposed method is efficiency. D-Minv and LD-Minv can in-
verse the input matrix with high precision meanwhile with the low computational cost. The benefits
of D-Minv and LD-Minv are apparent when the matrix dimension is large. As shown in Table 1,
even for large K and L, the inference time of LD-Minv is less than a tenth of the time of exact
matrix inverse when the size is 1000 × 1500. It is well-known that the Minv and matrix multipli-
cation (MatMul) share the same computation complexity theoretically, while their speeds vary a lot
numerically. The computation of our method is mostly spent on MatMul, which can be easily accel-
erated by GPU and is much cheaper than Minv. MatMul and Minv only share the same complexity
asymptotically. The constants in the orderO(·) vary significantly, especially when matrix dimension
d � ∞. Moreover, the general MatMul algorithm with a complexity of O

(
d3
)

isn’t optimal, and
there exist algorithms that own a complexity of only O

(
d2.3

)
.

To further investigate the importance of the learning procedure, we conduct the experiments on the
matrices with different condition numbers. Given the condition number κ ≥ 1, we generate the
data matrix by Ai = UiSiVi, where Ui and Vi are randomly sampled from a 100-dimensional
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Table 2: − log10(Test Loss) (the bigger the better) on the test data for LD-Minv and D-Minv with
various condition number κ. D-Minv performs better when κ = 1. However, LD-Minv shows its
strong robustness in the more complex case κ� 1. The network parameters. e.g., K and L, mainly
determines the final results of LD-Minv rather than the condition number.

Condition Number κ 1 2 3 4 5 10 50 100 1000
D-Minv 7.64 2.83 2.49 2.36 2.30 2.27 2.26 2.26 2.25
LD-Minv 5.95 5.01 4.19 3.62 3.49 3.30 3.21 3.22 3.21

Stiefel manifold. Here Si is a diagonal matrix whose diagonal entries are i.i.d. and obey a uniform
distribution U(1/κ, 1) with distribution boundaries being [1/κ, 1]. We let K = 4, L = 10 and
the batch size be 100. We show the results in Table 2. Not surprisingly, D-Minv suffers from
ill-condition problems, e.g., the large condition number deteriorates the performance of D-Minv.
However, LD-Minv is not sensitive to the condition number, and it can beat D-Minv easily when the
condition number is large. Note that all the results are reported on the unseen data.

A.1.2 EXPERIMENTAL RESULTS FOR D-SVD

Settings. For D-SVD, we adopt the rectangle matrix to run the experiments. Similarly, our algo-
rithms also work for the square matrix. For the rectangle matrix A ∈ Rm×n̂, its elements are also
sampled from i.i.d. Gaussian, namely Ai,j ∼ N (0, 1/

√
d), where d = max{m, n̂}. We let m = 50

and n̂ = 100, and utilize Algorithm 3 to solve our learning problem5. Similarly, we also perform
the batch training with batch size 30. The learning rate is set to 1e − 2 for D-SVD and 1e − 4 for
LD-Minv contained in D-SVD. We do not decay the learning rate during training, and let the number
of iterations for D-SVD and LD-Minv be 200 and 100, respectively. For LD-Minv in each layer, we
let L = 4 and K = 6.

Same as Sec. 3, we adopt the following loss to train our D-SVD:

Training Loss :=
1

nKsvd

n∑
i=1

Ksvd∑
k=1

(
1

2
‖Λi,k −Diag (Λi,k)‖2F −

〈
Mi,Ui,kV

>
i,k

〉)
,

where Ui,k and Vi,k are the k-th layer’s output of D-SVD, and Λi,k := U>i,kMiVi,k. The rea-

son that we introduce the regularization term
∥∥∥U>i,kMiVi,k −Diag

(
U>i,kMiVi,k

)∥∥∥2
F

is the non-

uniqueness. In general, any pair (U,V) ∈
{

(ŨR, ṼR) : M = ŨS̃Ṽ>, R>R = RR> = I
}

can

maximize the function
(〈

M,UV>
〉)

. However, in order to obtain the exact singular vectors of M,

the matrix
(
U>i,kMiVi,k

)
should have zero off-diagonal entries. Thus, the regularization term is

necessary for the training of D-SVD.

We use the following test loss to report the results:

Test Loss :=
1

n

n∑
i=1

(
1

2
‖Λi,Ksvd

−Diag (Λi,Ksvd
)‖2F −

〈
Mi,Ui,Ksvd

V>i,Ksvd

〉)
,

where Ui,Ksvd
and Vi,Ksvd

is the final layer’s output of D-SVD, and Λi,Ksvd
:= U>i,Ksvd

MiVi,Ksvd
.

Note that we also utilize the following quantity to measure the test performance.

SVD MSE :=
1

n

n∑
i=1

∥∥Sort
(
Diag

(
U>i,KsvdMiVi,Ksvd

))
− SVD (Mi)

∥∥2
F
,

where Sort(·) is the operator that sort the input elements in the descending order, Diag(·) returns
the collection of the entries at the diagonal of the input matrix, and SVD(·) gives out the singular
values.

For convenience, we add the mean of the sum of SVD(Mi) to the loss in Table 3 to make the loss
non-negative. Although increasingKsvd also can improve the performance in the non-learning case,

5We replace the GD part by SGD for the generality of the experiment.
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Table 3: Training loss and SVD MSE on the test data for D-SVD with various depth Ksvd. The first
two rows are the quantities that measured without training which, to certain extent, are equivalent to
the results of the original optimization algorithm (Wen & Yin, 2013; Li et al., 2019). The last two
rows are the quantities measured after training on the same test data. The decline of the loss and the
MSE is obvious, which demonstrates the matters of learning.

Ksvd 1 5 10 20 30 40 60
Init Test Loss 44.9983 35.8998 26.6607 15.6132 10.3556 7.7057 5.0146

Init SVD MSE 0.8782 0.5721 0.3373 0.1502 0.0879 0.0568 0.0274
Final Test Loss 23.1838 0.9565 0.4043 0.2694 0.2018 0.1243 0.0305

Final SVD MSE 0.2528 0.0711 0.0626 0.0167 0.0064 0.0052 0.0029

learning can strengthen the role of Ksvd. Without training, the test loss for Ksvd = 60 is one eighth
of the loss for Ksvd = 1; in sharp contrast, the reduction can reach one thousandth after training.
Due to the introduced regularizer for the training loss, we can obtain a small SVD MSE rather than
the small difference between the sum of singular values.

During the training of LD-SVD, we observe that our results are robust to the setting of K and L.
In general, the forward process can converge even with very inexact matrix inverse (Li et al., 2019).
Moreover, our introduced learnable step size

{
t̃Uk , t̃Vk

}
further provides the freedom to adjust the

update direction for Uk and Vk. Thus, for efficiency, a relative small K and L is enough for each
layer’s LD-Minv.

A.1.3 PLUG-AND-PLAY: DIFFERENTIABLE NON-BLIND DECONVOLUTION

Non-blind deconvolution (NbD) aims to restore the latent image z from corrupted observation y
with known blur kernel b. In this experiment, we consider a well-known sparse coding formulation:

y = b⊗ z + n = BW>x + n,

where ⊗ is the convolution operator, x and n are the sparse code and unknown noises, respectively.
B is the matrix form of kernel b, and W> is the inverse of the wavelet transform W (i.e., x = Wz
and z = W>x). We utilize the following optimization to perform the non-blind deconvolution:

min
x,z

g(x, z) :=
1

2
‖y −Bz‖22 + λ‖x‖1, s.t. z = W>x,

where λ > 0 is the balance parameter. A usual way to solve this problem is linearized ADMM
(L-ADMM) (Lin et al., 2011), read as:

ak = zk − αk
(
λk + β

(
zk −W>xk

))
, zk+1 =

(
αkBB> + I

)−1(
ak + αkB

>y
)
,

bk = xk − γkW>(λk + β
(
zk+1 −W>xk

))
, xk+1 = sgn (bk)�max

(
bk −

γk
λ
, 0
)
,

λk+1 = λk + β
(
zk+1 −W>xk+1

)
,

(13)
where αk > 0, γk > 0 and β > 0 are penalty parameters, � is the Hadamard product, and λ is the
Lagrange multiplier.

Differentiable NbD. Inspired by the Eq. (13), we can easily obtain the learning-based non-blind
deconvolution method:

ak = zk − αk Ĩk
(
λk + β

(
zk −W>xk

))
, Tk = LD-Minv

(
αkBB> + I,Ck

)
zk+1 = Tk

(
ak + αkB

>y
)
,

bk = xk − γkW̃k

(
λk + β

(
zk+1 −W>xk

))
, xk+1 = ReLU

(
bk −

γk
λ

)
− ReLU

(
−bk −

γk
λ

)
,

λk+1 = λk + β
(
zk+1 −W>xk+1

)
,

(14)
where SNbD := {Ĩk,W̃k, αk, γk, β}KNbD

k=1 is the collection of all learnable parameters, Ĩk and W̃k

are introduced learnable matrices (in the implementation, we choose them as the convolution layer
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Algorithm 4 Joint Training for D-NbD and LD-Minv
Input: Training data {yi}ni=1, number of iterations TNbD and Tinv, step sizes ηNbD and ηinv.

1: Set xi,0 = yi, zi,0 = W>xi,0 and λ0 = 0.
2: for t = 1, · · · , Tsvd do
3: Fix the learnable parameters S(t)NbD and train each layer’s LD-Minvs by Algorithm 1.
4: Update S(t+1)

NbD = S(t)NbD − ηNbD · D
[S(t)

NbD=SNbD]
Qn, where Qn is presented in Eq.(15).

5: end for
Output: {zi,k}n,KNbD

i=1,k=1.

Table 4: Averaged PSNR and Inference Time(s) on the test images randomly selected from Schmidt
& Roth (2014). Here fL-ADMM denote the L-ADMM given in Eq. (13) with fixed αk, γk for all k,
aL-ADMM represents the L-ADMM with adaptive αk = max{0.98kα0, ε}, γk = max{0.98kγ0, ε}
with ε =1e-4. When D-NbD in Eq. (14) utilizes D-Minv and LD-Minv to perform Minv during the
forward propagation, we denote them by D-NbD(D-Minv) and D-NbD(LD-Minv), respectively.

Noise level Metric fL-ADMM aL-ADMM D-NbD(D-Minv) D-NbD(LD-Minv)

1%
PSNR 26.13 27.50 28.97 30.00

Time(s) 7.83 21.48 1.27 1.20

2%
PSNR 24.06 25.33 27.82 28.11

Time(s) 5.26 14.35 1.28 1.19

3%
PSNR 23.38 24.67 26.94 27.13

Time(s) 5.72 13.90 1.28 1.20

with compatible size), Ck is the learnable parameters for each layer’s LD-Minv, and ReLU(a) =
max{a, 0} is the Rectified Linear Unit (ReLU) function. Note that

sgn (b)�max (b− γ, 0) = ReLU (b− γ)− ReLU (−b− γ).

Eq. (14) can be implemented by a DNN. Given the training images {yi}ni=1, we adopt the following
loss to train our D-NbD:

Qn(SNbD) :=
1

nKNbD

n∑
i=1

KNbD∑
k=1

(
g(xi,k,W

>xi,k)
)
, (15)

where xi,k is the k-th layer’s output of D-NbD. The training process for D-NbD is given in Algo-
rithm 4.

Settings. The training and test images come from Schmidt & Roth (2014), in which 300 (random
selected) have been used for training and the others are used for test. We add different levels of the
Gaussian noise to generate our corrupted observations {yi}ni=1. We set the patch size as 160× 160,
and let the batch size be 15. Finally, Adam is adopted and executed 1000 epochs for learning rate
ranging from 1e-4 to 1e-6 (it is reduced by half every 140 iterations). The observations {yi} are
corrupted by blur kernel with size ranging from 17× 17 to 57× 57 and the levels of Gaussian noise
varying from 1% to 3%.

Results. From Table 4, we find that fL-ADMM is much more efficient than aL-ADMM. fL-ADMM
does not need to perform the inverse balbala since αk, γk are fixed, which however is also why fL-
ADMM performs poorly. It can not find the universal αk, γk for all test images. aL-ADMM can
perform better with adaptive step size, but it needs exact Minv in each iteration. Compared to them,
D-NbD outperforms L-ADMM by a large margin in terms of speed and performance. Note that, for
one iteration, the computation complexity of fL-ADMM is much lower than the other three since
it only involves the MatMul. However, it consumes more than 600 iterations to obtain a relatively
good solution. In fact, just comparing the Minv time in one iteration for aL-ADMM and D-NbD, our
methods’ time is only almost half of that of exact Minv in PyTorch. Fortunately, the learnability of D-
NbD helps us obtain a better or equally good solution using one order-of-magnitude fewer iterations.
Hence, the total time can only be one-tenth of that of aL-ADMM. Moreover, the learnability of LD-
Minv further introduces more flexibility, which allows D-NbD(LD-Minv) to achieve better results
within fewer layers. Thus, D-NbD(LD-Minv) is more efficient due to less calculation.
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A.2 DISCUSSION

Not only D-NbD, based on the LD-Minv and D-SVD, but there are also rich potential applica-
tions, including image recovery or denoising, numerical algorithm acceleration, blind deconvolu-
tion, sparse coding, subspace clustering, etc. All these compelling applications may be beyond this
paper’s scope, and we leave them as future work. Moreover, due to the differentiability, D-SVD can
help us design more abundant singular-value-related training loss for DNN, which is impossible in
the previous non-differentiable situation.

B NOTATION

Positive definite matrix A is denoted by A � 0. Transpose of the matrix A ∈ Rm×n is A>. We de-
note by A−1 and A† the matrix inverse and Moore–Penrose inverse, respectively. The Euclidean in-
ner product between two matrices A ∈ Rm×n and B ∈ Rm×n is defined as 〈A,B〉 := Tr

(
A>B

)
,

where Tr(·) is the trace of a matrix. κ(A) := ‖A†‖‖A‖ is the generalized condition number of a
matrix, where ‖·‖ is the spectral norm. We denote by σ(A) the singular values vectors (no need to
be ordered) of the matrix A. Similarly, we denote by σ+(A) the positive singular values vectors.

Let ‖·‖F be Frobenius norm. Given a differentiable function the first and second derivative of F
at Y are denoted by: linear operator D[X=Y]F(·) : Rm → Rn :=

(
∂Fi(Y)
∂Xj

)
(·) and quadratic

operator D2
[X=Y]F(·, ·) : Rm × Rm → Rn :=

(
∂2Fi(Y)
∂Xj∂Xk

)
(·, ·), respectively, where Xi is the i-th

entry of X. We also denote by F−1 the inverse of the function F and let the composition map
f ◦ g(x) := f(g(x)). � is the Hadamard product and [K] = {1, 2, · · · ,K}.

C ADDITIONAL THEORETICAL RESULTS

In this section, we provide the additional theoretical results of D-Minv and D-SVD. We start by a
warm-up case for D-Minv.

C.1 RESULTS FOR LD-MINV

C.1.1 WARM-UP: ONE PARAMETER FOR ONE LAYER

As a warm-up case, we consider only to learn one coefficient for each layer, as a special case of
learnable D-Minv:

Xk+1 = Xk

(
L−1∑
l=0

El
k + CkE

L
k

)
, Ek = I−AXk, (16)

where Ck ∈ R are the learnable coefficients. By setting X0 = 1
c0

A>, where c0 > ‖A‖2, and let

Ck = 0 for all k, by Lemma 1, we know that
∥∥AA† −AXk

∥∥ = eL
k

0 . One important question is
if we let the coefficient of EL

k to be learnable, by training, will D-Minv obtain a faster convergence
rate?

In general, previous works show that learning-based methods share the same convergence order with
their fixed version but with a better statistical constant. Interestingly, beyond the constant, we found
that D-Minv can improve the order of convergence by learning.
Lemma 2 (Learnability Matters). Assume these is only one training data A. Provided that X0 =
1
c0

A>, where c0 > ‖A‖2, then we have:

ek+1 = (1− Ck) · eLk + Ck · eL+1
k , where ek =

∥∥AA† −AXk

∥∥, and k ∈ [K], L ≥ 4.

Moreover, the gradient of L w.r.t. Ck is negative, i.e., D[Ck]L < 0 for all Ck ∈ [0, 1 + ε], where
ε > 0 depends on ek−1. Additionally, D[Ck]L ≈ 0 for k ∈ [K − 1] when Ck ∈ [1− ε, 1 + ε].

Starting from 0, according to the gradient’s negativeness, the coefficients Ck for k ∈ [K − 1] will
converge to the range [1 − ε, 1 + ε] when adopting a proper step size for GD. In this case, i.e., Ck
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are around 1 for all k, the sequence {Xk} converges to the Moore–Penrose inverse in L̃-th order,
where L < L̃ ≤ L+ 1. In other words, by learning from one data, D-Minv finds a way to improve
the order of convergence for any input. Remarkably, Ck = 1 for all k is not a global or even local
minimum for the training loss L. For the learnable coefficient CK at the last layer, satisfying its first
order condition usually implies obtaining the exact solution, i.e., eK+1 = 0. In summary, not only
improve the convergence speed, learnable D-Minv makes the exact fitting come true.

C.1.2 DISCUSSION FOR ASSUMPTION 1

In general, the bounded assumption for the singular values the is weak and easy to satisfy. For ex-
ample, singular values of the matrices with i.i.d. zero mean and unit variance entries asymptotically
obey the Quadrant Law (Dozier & Silverstein, 2007; Shen, 2001), i.e., σ ∼ 1

π

√
4− σ2, σ ∈ [0, 2],

which implies the singular values have an upper bound. On the other hand, a well-known fact from
the random matrix theory is a zero mean and unit variance random matrix is non-singular with
high probability. Even for the square matrix A, with probability at least 1 − δ, we still we have
σmin(A) ≥ δd−1/2 (Rudelson & Vershynin, 2008), where σmin(A) is the smallest singular value of
the matrix A.

C.1.3 LIPSCHITZ SMOOTHNESS BEFORE GENERALIZATION

We would also like to remark that our generalization result can easily be extended to the stochastic
case. The proof is the same as the Lemma 4.3 in Ji & Telgarsky (2019) or Theorem 3.3 in Cao &
Gu (2019).

In general, smoothness plays an important role in the generalization analysis. The covering number
of a smooth function usually is small. We start by showing the local smoothness of learnable D-
Minv.

Proposition 2 (Local Lipschitz smoothness). Define a set of coefficients collection:

C∗ :=

{
C | ∀ C{k,l} ∈ C,

∣∣C{k,l} − 1
∣∣ ≤ 1

8

}
, (k, l) ∈ [K]× [L], L ≥ 4.

Let PA = AA†. Given any coefficients collection C ∈ C, we denote by Gk(·) the map from PAEk

to PAEk+1 in (3), i.e., Gk(E) := PA−PA(I−E)
(∑L−1

l=0 C{k,l}E
l
)

, and letHk(·) := R◦GK−1◦

· · · ◦ Gk(·), whereR(E) :=
∑K
k̂=k

∥∥Wk̂Ek̂A
∥∥2
F

. Suppose ‖A‖2 ≤ 1 and ∀k ‖Wk‖ = O(1), then
we have: ∣∣∣Hk(Ê

)
−Hk

(
Ẽ
)∣∣∣ ≤ 2

∥∥∥PAÊ−PAẼ
∥∥∥
∗
, ∀k ∈ [K],

where Ê and Ẽ are with the same size and same norm upper bound as Ek, d is the dimension of
positive singular value vector σ+(A), and ‖·‖∗ is the matrix nuclear norm.

In general, the composition of two Lipschitz continuous functions leads to a worse Lipschitz
constant. However, our LD-Minv shares a consistent constant for all layers. This is important
since the layer-wisely local smoothness usually implies a small covering number of the whole D-
Minv (Bartlett et al., 2017; Wei & Ma, 2019), which results in a tight generalization bound.

C.2 RESULTS FOR D-SVD

We characterize the generalization performance of D-SVD trained by GD in this theorem. First of
all, we present several definitions. Let

Mn(t̃,C) :=
1

nKsvd

n∑
i=1

Ksvd∑
k=1

〈
Mi,Ui,kV

>
i,k

〉
,

where (t̃,C) are the collection of the parameters of D-SVD and the LD-Minvs in each layer. Denote
by f(U | V,M, t̃k,Ck) the operations in Eq. (12) that map Uk to Uk+1, i.e.,

Uk+1 := f(Uk | Vk,M, t̃k,Ck), (17)
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where (t̃k,Ck) ∈ R×RLKinv are the learnable parameters of D-SVD and LD-Minv at the k-th layer
of D-SVD. We define the coefficients set:

Ck :=
[
−εu

2
,+

εu
2

]
×
{

C :
∥∥∥C−C(0)

∥∥∥
F

= Õ
(

1√
Kinv

)}
,

where
εu := min

i

1

‖Pi‖
, in which Pi = MiVkU

>
k −UkV

>M>
i , ∀i ∈ [n],

Proposition 3 (Covering Number of Single Layer). Denote F the class of function in Eq. (17), i.e.,

Fk :=
{
f(Uk | Vk,M, t̃k,Ck) :

(
t̃k,Ck

)
∈ Ck

}
.

Then we have:

lnN (Fk, ε, ‖·‖)) = O
(
LKinv ln

(
1

ε
√
Kinv

)
+ ln

(
‖M‖
ε

))
.

Theorem 3 (Generalization Bound for D-SVD). Denote by PM the distribution of Mi and let
d := max{m, n̂}. Suppose that ‖Mi‖ ≤ 1, ∀i ∈ [n] and Kinv = Ω

(
max{nd,K2

svd}
)
, then with

probability at least 1− δ, the iterate t̃(t) of Algorithm 3 holds that:

E
M∼PM

[
Mn

(
t̃(t)
)]
≤Mn

(
t̃(t)
)

+ Õ

(√
K3

svdL

n

)
+O

(√
ln(1/δ)

n

)
,

for t = 0, 1, · · · , Tsvd, where EM∼PM
[Mn] is the expected value of Mn under the probability

measure PM and Õ(·) hides log factors.

D OMITTED PROOF FOR FIXED D-MINV IN SECTION 2

D.1 PROOF OF LEMMA 1

We first verify that e0 < 1, suppose rank(A) = r.

e0 =
∥∥AA† −AX0

∥∥ =

∥∥∥∥UU> − 1

c
UΣ2U>

∥∥∥∥ =

∥∥∥∥Ir − 1

c
Σ2

∥∥∥∥ < 1,

where A = UΣV>, Ir ∈ Rr×r is the identity matrix, and the last inequality comes from the fact
c > 1

2‖A‖
2. Form Eq. (2), we have

AA† −AXk+1 = AA†(I−AXk+1) = AA†

(
I−AXk

(
L−1∑
l=0

El
k

))

=AA†

(
I− (I−Ek)

(
L−1∑
l=0

El
k

))
= AA†

(
I−

L−1∑
l=0

El
k +

L−1∑
l=0

El+1
k

)
=AA†

(
EL
k

)
= AA†(I−AXk)

L
=
(
AA† −AXk

)L
,

i.e., ∥∥AA† −AXk

∥∥ =
∥∥AA† −AXk−1

∥∥L = eL
k

0 .

We finish the proof.

D.2 PROOF OF PROPOSITION 1

Note that for any matrix X, the matrix polynomial of X share the same column and row space
with X. In general, the iterative equation (2) does not change the column and row space from the
begining. We finish the proof by induction. The conclusion is obvious for X0 due to X0 = 1

c0
A>.

We assume the proposition holds for Xk, then:

A†AXk+1 = A†AXk

(
L−1∑
l=0

El
k

)
= Xk

(
L−1∑
l=0

El
k

)
= Xk+1,
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and

Xk+1AA† = Xk

(
L−1∑
l=0

El
k

)
AA† = Xk

(
L−1∑
l=0

(I−AXk)
l

)
AA†

=XkAA†

(
L−1∑
l=0

(I−AXk)
l

)
= Xk+1,

Hence, we can conclude that:
A†AXk = Xk, XkAA†, ∀k.

We finish the proof.

E OMITTED PROOF FOR LEARNABLE D-MINV IN SECTIONS 4 AND C

In the theoretical part, we consider a more general training regression loss:

Ln(C) :=
1

2nK

n∑
i=1

K∑
k=1

∥∥V{k,i}(AiX{k,i}Ai −Ai

)∥∥2
F
, (18)

where C = {C{k,l}, (k, l + 1) ∈ [K] × [L]} is the collection of all learnable parameters, V{k,i}
is a diagonal matrix whose diagonal entries are i.i.d. and obey a zero mean bounded distribution
(w.l.o.g. we let the bound be ±b̄v).

Note that V{k,i}’s are fixed during training and testing. Introducing V{k,i} has two advantages.
One is re-weighting the error term. As we can see from the fixed D-Minv, the error term decays
exponentially. In that way, the smallest positive singular value dominate the gradient flow. However,
for LD-Minv, we hope that the gradient flow comes from all positive singular values’ loss during
training. The random re-weighting strategy is a good choice for numerical calculation when the
order of singular values is unknown. Another advantage is that the introduced V{k,i}s, with very
high probability (see Claim 1 in Sec. E.2), make the landscape of the training loss locally strongly
convex, which is an excellent benefit from the optimization perspective.

Notably, by setting the diagonal entries of V{k,i} as the independent symmetric Bernoulli random
variables, the training loss here in Eq. (18) will degenerate into the loss given in Eq. (4). Hence, all
the theoretical results in this section proven for Eq. (18) also hold for Eq. (4).

It is worth mentioning that the weight matrices {V{k,i}} here has nothing to do with the learned
singular vectors {Vi,k} for D-SVD. Please distinguish them.

E.1 GENERAL ANALYSIS

Before start the proof, we first make some general analysis. It is easy to see that Proposition 1 also
holds for learnable D-Minv. Thus, we can observe that:

XkE
l
k = XkAA†El

k, ∀(k, l).
Hence, we obtain an equivalent form of Eq. (3):

Xk+1 = Xk

(
L−1∑
l=0

C{k,l}Ẽ
l
k

)
, Ẽk = AA† −AXk, L ≥ 4, (19)

Due to the invariance of the row and column space, we can only concern on the singular values
vectors and rewrite Eq. (19) as :

xk+1 = xk �

(
L−1∑
l=0

C{k,l}e
l
k

)
, ek = 1− a� xk, L ≥ 4, (20)

where 1 ∈ Rd is the all-one vector (d is the dimension of the positive singular vector σ+(A)), and:

a = σ+(A), xk = σ+(Xk), ek = σ+

(
Ẽk

)
, elk = ek � · · · � ek︸ ︷︷ ︸

l

; (21)

recall that σ(A) the singular values vectors (no need to
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Remark 4. We only utilize Eq. (19), the equivalent form of Eq. (3), in this section for the conve-
nience of theoretical analysis. For implementation, we still use Eq. (3) and do NOT calculate the
pseudo inverse A† throughout learning.

Now we continue the derivation:

ek+1 = 1− a� xk+1 = 1− a� xk �

(
L−1∑
l=0

C{k,l}e
l
k

)

= 1− (1− ek)�

(
L−1∑
l=0

C{k,l}e
l
k

)
= 1−

(
L−1∑
l=0

C{k,l}e
l
k −

L−1∑
l=0

C{k,l}e
l+1
k

)

= eLk + (1− Ck,0)1 +

(
L−1∑
l=1

(
C{k,l−1} − C{k,l}

)
elk

)
+
(
C{k,L−1} − 1

)
eLk

= eLk + Êkck,

(22)

where e0
k = 1,

Êk ∈ Rd×(L+1) :=
[
e0
k; e1

k; · · · ; eLk
]
, (23)

and

ck ∈ RL+1 :=
[
1− Ck,0, C{k,0} − C{k,1}, · · · , C{k,L−2} − C{k,L−1}, C{k,L−1} − 1

]>
. (24)

We define:

`(C,A) :=
1

2

K∑
k=1

‖Vk(AXkA−A)‖2F =
1

2

∥∥∥∥∥
K∑
k=1

vj �
(
a2 � xk − a

)∥∥∥∥∥
2

2

=
1

2

K∑
j=1

‖vk � a� ek‖22,

(25)
where C = {C{k,l}, (k, l+1) ∈ [K]× [L]} is the collection of all learnable parameters for D-Minv,
Vk is a diagonal matrix whose diagonal entries vk = diag (Vk) are i.i.d. and obey a zero mean
bounded distribution (w.l.o.g. we let the bound be ±b̄v), and ‖·‖2 is the vector `2 norm; recall the
definitions of a, ek and xk from Eq. (21). Note that vk, ∀k is fixed during training.

From Lemma 1, we know that
∥∥AA† −AXk

∥∥ decays extremely fast. We can run fixed D-Minv for
several times before training learnable D-Minv. In this case, X0 is the output of the K̃-layer fixed
D-Minv. Hence, without loss of generality (w.l.o.g.), we suppose the following assumption holds in
this section.

Assumption 2 (Well-Bounded E0). Assume
∥∥∥Ẽ0

∥∥∥ = ‖e0‖∞ ≤
1
2 .

We first provide several propositions of learnable D-Minv.
Proposition 4 (Upper Bound for Perturbation). Suppose that

∣∣C{k,l} − 1
∣∣ = δ < 1

8 , ∀ (k, l + 1) ∈
[K]× [L], then we have: ∥∥∥Ẽk

∥∥∥ = ‖ek‖∞ ≤ e
Lk

0 +
17

8
δ, ∀k ∈ [K].

Proof. We first show that ‖ek‖∞ < 1
2 for all k by induction. By Eq. (22), for k = 0, we know that:

‖e1‖∞ ≤ ‖e0‖L∞ +
∥∥∥Ê0c0

∥∥∥
∞
≤ ‖e0‖L∞ +

max
1≤i≤d

L+1∑
j=1

∣∣∣∣[Ê0

]
i,j

∣∣∣∣
‖c0‖∞ ≤ ‖e0‖L∞ + 2δ <

1

2
.

Now, we assume ‖ek‖∞ < 1
2 holds. Then,

‖ek+1‖∞ ≤ ‖ek‖
L
∞+

∥∥∥Êkck

∥∥∥
∞
≤ ‖ek‖L∞+

max
1≤i≤d

L+1∑
j=1

∣∣∣∣[Êk

]
i,j

∣∣∣∣
‖ck‖∞ ≤ ‖ek‖L∞+2δ <

1

2
.

Since δ < 1
8 , we have 2δ < 1

4 . By Lemma 3, we can conclude that:

‖ek‖∞ ≤ e
Lk

0 + (1 + ε)2δ, where
1

16
> ε→ 0 as k →∞.

We finish the proof.
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Proposition 5 (Upper Bound First-Order Derivative). Suppose that
∣∣C{k,l} − 1

∣∣ = δ < 1
8 , ∀ (k, l+

1) ∈ [K]× [L] and ‖a‖∞ ≤ 1, then we have:

∂`(C,A)

∂C{k,l}
≤ 4

(
1

3

)l
b̄2vd.

Proof. Note that:

∂`(C,A)

∂C{k,l}
=

K∑
k̂=k

〈
∂`(C,A)

∂ek̂
,
∂ek̂
∂ek̂−1

◦ · · · ◦ ∂ek+1

∂C{k,l}

〉
.

By Eq. (22), we also have:
∂ek+1

∂ek
= Diag

(
LeL−1k + Ê′kck

)
,

where Diag(e) is a diagonal matrix with the diagonal entries being e, and:

Ê′k ∈ Rd×(L+1) :=
[
0; e0

k; · · · ;LeL−1k

]
;

here 0 ∈ Rd is the all zero vector. Hence, it holds that:∥∥∥∥∂ek+1

∂ek

∥∥∥∥ =
∥∥∥LeL−1k + Ê′kck

∥∥∥
∞
≤ LeL−1k +

ek

(1− ek)
2 · δ, (26)

where ek = ‖ek‖∞. By Proposition 4, we know that ek ≤ eL
k

0 + 17
8 δ <

1
3 . Thus, we have:∥∥∥∥∂ek+1

∂ek

∥∥∥∥ ≤ 1

4
. (27)

It is easy to see:

∂`(C,A)

∂ek
=

K∑
k̂=k

〈
∂`(C,A)

∂ek̂
,
∂ek̂
∂ek̂−1

◦ · · · ◦ ∂ek+1

∂ek

〉
.

Hence, we have∥∥∥∥∂`(C,A)

∂ek̂

∥∥∥∥
2

≤
K∑
k̂=k

(∥∥vk̂ � a�
(
vk̂ � a� ek̂

)∥∥
2

)
· 4k−k̂ < 2b̄2v

√
d.

According to Eq. (22), we notice:∥∥∥∥ ∂ek+1

∂C{k,l}

∥∥∥∥
2

=
∥∥el+1

k − elk
∥∥
2
≤ 2
∥∥elk∥∥2.

Combing all things together, we conclude that:∣∣∣∣∂`(C,A)

∂C{k,l}

∣∣∣∣ ≤ K∑
k̂=k

4k−k̂
(

4b̄2v
√
d
∥∥elk∥∥2) ≤ 4

(
1

3

)l
b̄2vd.

We finish the proof.

Proposition 6 (Second Order Approximation). Define a set of coefficient collection around 1:

C∗ :=

{
C | ∀ C{k,l} ∈ C,

∣∣C{k,l} − 1
∣∣ ≤ 1

8

}
, (k, l) ∈ [K]× [L], L ≥ 4.

For any C1,C2 ∈ C∗, we have:

`(C1,A) = `(C2,A) +

〈
∂`(C2,A)

∂C
,C1 −C2

〉
+O

(
b̄2vdKL

)
‖C1 −C2‖22.
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Proof. Note that for any C ∈ C∗, we have:

∂2`(C,A)

∂C{k,l}∂C{k′,l′}
=

〈
∂`(C,A)

∂eK
,

∂2eK
∂C{k,l}∂C{k′,l′}

〉
+

〈
∂eK
∂C{k,l}

,
∂2`(C,A)

∂eK∂eK

∂eK
∂C{k′,l′}

〉
=

〈
∂`(C,A)

∂eK
,
∂eK
∂eK−1

◦ ∂2eK−1
∂C{k,l}∂C{k′,l′}

〉
+

〈
∂`(C,A)

∂eK
,

∂2eK
∂eK−1∂eK−1

(
∂eK−1
∂C{k,l}

,
∂eK−1
∂C{k′,l′}

)〉
+

〈
∂eK
∂C{k,l}

,
∂2`(C,A)

∂eK∂eK

∂eK
∂C{k′,l′}

〉

=

K∑
k̂=max{k,k′}

〈
∂`(C,A)

∂eK
,
∂eK
∂eK−1

◦ · · · ◦
∂2ek̂+1

∂ek̂∂ek̂

(
∂ek̂

∂C{k,l}
,

∂ek̂
∂C{k′,l′}

)〉
+ ∆(k, k′, l, l′),

where we let ek+1 := `(C,A) with a little abuse of notation, and:

∆(k, k′, l, l′) =


0 if (k, l) = (k′, l′),〈

∂`(C,A)
∂eK

, ∂eK
∂eK−1

◦ · · · ◦ ∂(e
l+1
k −elk)

∂C{k′,l′}

〉
otherwise.

Hence we can get the upper bound for the entry ∂2`(C,A)
∂C{k,l}∂C{k′,l′}

. From the proof in Proposition 5,
we know that:∥∥∥∥∂ek+1

∂ek

∥∥∥∥ ≤ 1

4
,

∥∥∥∥ ∂ek̂
∂C{k,l}

∥∥∥∥
1

≤ d
(

1

4

)k̂−k+l
, and

∥∥∥∥ ∂ek̂
∂C{k,l}

∥∥∥∥
2

≤ 2
√
d

(
1

4

)k̂−k+l
.

Note that:
∂2ek+1

∂ek∂ek
= TDiag

(
L(L− 1)eL−2k + Ê′′kck

)
,

where TDiag(e) is a three-dimensional diagonal tensor with the diagonal entries being e, and:

Ê′′k ∈ Rd×(L+1) :=
[
0; 0; e0

k; · · · ;L(L− 1)eL−2k

]
.

Hence, similar to Eq. (26), it holds that:∥∥∥∥ ∂2ek+1

∂ek∂ek

∥∥∥∥ =
∥∥∥L(L− 1)eL−2k + Ê′kck

∥∥∥
∞
≤ L(L− 1)eL−2k +

1 + 2ek − 2e2k
(1− ek)

4 · δ < 3,

where ek = ‖ek‖∞ < 1
3 by Proposition 4. Moreover, we also note that:∥∥∥∥∂2`(C,A)

∂eK∂eK

∥∥∥∥ = ‖Diag (v � a)‖2 ≤ b̄2v.

We also have: ∥∥∥∥∂`(C,A)

∂ek̂

∥∥∥∥
∞
≤

K∑
k̂=k

(∥∥vk̂ � a�
(
vk̂ � a� ek̂

)∥∥
∞

)
· 4k−k̂ < 2b̄2v.

Hence, we have∣∣∣∣ ∂2`(C,A)

∂C{k,l}∂C{k′,l′}

∣∣∣∣ ≤ 4b̄2vd

(
1

4

)2K−(k+k′)+l+l′

+ 3 · 2b̄2v4d
(

1

4

)2K−(k+k′)+l+l′−1
+ · · ·

= 4b̄2vd

(
1

4

)2K−(k+k′)+l+l′

+ 24b̄2vd

K−max{k,k′}∑
k̂=1

(
1

4

)2K−(k+k′)+l+l′−k̂

< 29b̄2vd,

where we omit the term ∆(k, k′, l, l′) since it is much smaller than the other sum term. Thus, we
can conclude that∥∥∥∥∂2`(C,A,V)

∂C∂C

∥∥∥∥
F

=

∥∥∥∥∥
(

∂2`(C,A,V)

∂C{k,l}∂C{k′,l′}

)
(k,k′,l,l′)

∥∥∥∥∥
F

≤ 29b̄2vKLd. (28)
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Combing all things together, we can see:

`(C1,A) = `(C2,A) +

〈
∂`(C2,A)

∂C
,C1 −C2

〉
+

〈
C1 −C2,

∂2`(Cδ,A)

∂C∂C
(C1 −C2)

〉
,

where the first equality comes from the second-order Taylor expansion, Cδ := C1 + δ(C2 −C1)
and δ ∈ (0, 1) depends on C1 and C2. Due to Eq. (28), we conclude:

`(C1,A) = `(C2,A) +

〈
∂`(C2,A)

∂C
,C1 −C2

〉
+O

(
b̄2vdKL

)
‖C1 −C2‖22.

We finish the proof.

E.2 PROOF OF THEOREM 1: CONVERGENCE RATE

Proof. Let us assume that C(t) ∈ C∗ for all t ∈ [T ], where

C∗ :=

{
C | ∀ C{k,l} ∈ C,

∣∣C{k,l} − 1
∣∣ ≤ 1

8

}
, (k, l) ∈ [K]× [L], L ≥ 4.

We will verity the boundness at the end.

We first provide the lower bound for the gradients.

Claim 1. Under the same setting of this theorem, given:

Ln(C) :=
1

2

n∑
i=1

K∑
k=1

∥∥V{k,i}(AiX{k,i}Ai −Ai

)∥∥2
F
.

Suppose K = Ω
(
ndb̄2v b̄

2
a

)
, then with probability at least 1− exp

(
−O

(
K/
(
b̄2v b̄

2
a

)))
, We have:∥∥∥D[C=C(t)]Ln

∥∥∥2
2
≥ 2b̄2v b̄

2
a

3
Ln(C).

Proof. First of all, we let
υ{k,i} := v{k,i} � ai � e

(t)
{k,i},

where e
(t)
{k,i} is the k-th layer error term of learnable D-Minv with the equivalent form Eq. (20), the

subscript {k, i} indicates the input is Ai and k-th layer, and ai = σ+(Ai). We already have:

D[C=C(t)]Ln =

n∑
i=1

K∑
k=1

〈
υ{k,i},

∂
(
υ{k,i}

)
∂C

〉
.

Derivative for the last layer: We now consider the derivative for C{K,0}, the first entry of
D

[C=C(t)]
Ln. According to Eq. (22), we notice:

∂ek+1

∂C{k,l}
= el+1

k − elk.

Hence, we have
∂
(
υ{K,i}

)
∂C{K,0}

= v{K,i} � ai �
(
e
(t)
{K−1,i} − 1

)
∈ Rd.

Then, we can get

D
[C{K,0}=C

(t)

{K,0}]
Ln =

n∑
i=1

〈
υ{K,i},

∂
(
υ{K,i}

)
∂C{K,0}

〉
=

n∑
i=1

(
v{K,i}

)>(
υ{K,i} � ai �

(
e
(t)
{K−1,i} − 1

))
,

where υ{K,i} = v{K,i} � ai � e
(t)
{K,i}. Note that each entry of v{j,i} obeys mean-zero bounded

distribution; hence, it is a mean-zero b̄2v-sub-Gaussian variable (subG(0, b̄2v)). Then, we have
n∑
i=1

(
v{K,i}

)>(
υ{K,i} � ai �

(
e
(t)
{K−1,i} − 1

))
∼ subG

(
0, σ2

K

)
, where σ2

K >
4b̄2v b̄

2
a

9

(
n∑
i=1

∥∥υ{K,i}∥∥22
)
,
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where the lower bound comes from the assumption ‖ai‖∞ > b̄a, and
∥∥∥e(t)
{K−1,i} − 1

∥∥∥
∞
> 2

3 (by
Propostion 4). Hence, we have:

D
[C{K,0}=C

(t)

{K,0}]
Ln ∼ subG

(
0, σ2

K

)
, where σ2

K >
4b̄2v b̄

2
a

9

(
n∑
i=1

∥∥υ{K,i}∥∥22
)
,

and (
D

[C{K,0}=C
(t)

{K,0}]
Ln
)2

∼ subE
(
σ2
K , (σE)K

)
, where (σE)K ≥ σ

2
K ,

here subE(a, b) represents a sub-exponential variable with mean being a and sub-exponential norm
being b. The above conclusion comes from the fact “sub-exponential is sub-gaussian squared” (see
Lemma 5.14 in Vershynin (2010)).

Derivative for the other layer: Now, we consider the derivative for C{k̂,0} for k̂ < K, Note that:

D
[C{k̂,0}=C

(t)

{k̂,0}
]
Ln =

n∑
i=1

K∑
k=k̂

〈
υ{k,i},

∂
(
υ{k,i}

)
∂C{k̂,0}

〉
=

n∑
i=1

K∑
k=k̂

〈
υ{k,i},

∂
(
υ{k,i}

)
∂e{k−1,i}

◦ · · · ◦
∂
(
e{k̂,i}

)
∂C{k̂,0}

〉
.

We note that: ∥∥∥∥∥∂
(
υ{j,i}

)
∂e{j−1,i}

∥∥∥∥∥ =
∥∥Diag

(
v{j,i} � ai

)∥∥ < b̄v, and
∥∥∥∥∂ej+1

∂ej

∥∥∥∥ ≤ 1

4
.

The shrink property comes from Proposition 5. Due to the exponential decay term
∥∥∥∂ej+1

∂ej

∥∥∥, the
leading term of the derivative for C{k̂,0} is

n∑
i=1

〈
υ{k̂,i},

∂
(
υ{k̂,i}

)
∂C{k̂,0}

〉
,

where we omit the term for all k > k̂. Hence, similar to the case in the last layer, we have:

D
[C{k̂,0}=C

(t)

{k̂,0}
]
Ln ∼ subG

(
0, σ2

k̂

)
, where σ2

k̂
>

4b̄2v b̄
2
a

9

(
n∑
i=1

∥∥∥υ{k̂,i}∥∥∥2
2

)
,

and (
D

[C{k̂,0}=C
(t)

{k̂,0}
]
Ln
)2

∼ subE
(
σ2
k̂
, (σE)k̂

)
, where (σE)k̂ ≥ σ

2
k̂
.

Sum the square of derivative: Note that, we have:∥∥∥D[C=C(t)]Ln
∥∥∥2
2
≥

K∑
k=1

(
D

[C{k,0}=C
(t)

{k,0}]
Ln
)2

.

Then by Bernstein-type inequality for the sub-exponential random variable, with probability at least
1− exp

(
−O

(
K/
(
b̄2v b̄

2
a

)))
, it holds that

K∑
j=1

(
D

[C{j,0}=C
(t)

{j,0}]
Ln
)2

>
b̄2v b̄

2
a

3

(
n∑
i=1

K∑
k=1

∥∥υ{k,i}∥∥22
)

=
2b̄2v b̄

2
a

3
Ln(C).

Till now we have completed the proof for one particular vector collection {υ{k,i}}. In general, when(
K/
(
b̄2v b̄

2
a

))
is large enough, we can prove that the above inequality holds for arbitrary {υ{k,i}}

with high probability. Taking ε-net over all possible vectors {υ{k,i}}, then applying union bound,
the above inequality holds with probability at least:

1− exp
(
−O

(
K/
(
b̄2v b̄

2
a

)
− d ln(d)

))
,

where the ε-net has nothing to do with K and n since any υ{k,i} is contained in a `∞ ball with the
radius less than b̄v/3. Due to the assumption that K = Ω

(
db̄2v b̄

2
a

)
, we can conclude that the desired

result holds for all choices of {υ{k,i}}. Now, we finish the proof.
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We continue the proof for the convergence. Recall that

Ln(C) :=
1

2nK

n∑
i=1

K∑
k=1

∥∥V{k,i}(AiX{k,i}Ai −Ai

)∥∥2
F
,

By Proposition 6, we have:

Ln(C(t+1)) = Ln(C(t)) +

〈
∂Ln(C(t))

∂C
,C(t+1) −C(t)

〉
+O

(
b̄2vdL

)∥∥∥C(t+1) −C(t)
∥∥∥2
2
,

where the order of K is 0 than 1 since we have a factor 1
K compared to the function in Proposition

6. Since we adopt the GD method, we have

C(t) −C(t+1) = η
∂Ln(C(t))

∂C
,

i.e.,

Ln(C(t+1)) = Ln(C(t))− η
∥∥∥∥∂Ln(C(t))

∂C

∥∥∥∥2
2

+ η2O
(
b̄2vdL

)∥∥∥∥∂Ln(C(t))

∂C

∥∥∥∥2
2

. (29)

By Claim 1, when K = Ω
(
db̄2v b̄

2
a

)
, with probability at least 1− exp

(
−O

(
K/
(
b̄2v b̄

2
a

)))
, we already

have: ∥∥∥∥∂Ln(C(t))

∂C

∥∥∥∥2
2

≥ 2b̄2v b̄
2
a

3nK
Ln(C).

By our choice of η = Θ
(
1/b̄2vdL

)
, we conclude

Ln(C(t+1)) =

(
1− Ω

(
ηb̄2v b̄

2
a

nK

))
Ln(C(t)).

Hence, in order to achieve accuracy ε, we require

T =
nK

b̄2v b̄
2
aη

ln

(
1

ε

)
Ln(C(0)) = O

(
dLKn

b̄2a
ln

(
1

ε

))
= O

(
dLKnb̄−2a ln(1/ε)

)
,

where the first equality comes from our choice of η.

Verify the boundness: At last, we verify that C(t) ∈ C∗ for all t ∈ [T ]. Form Eq. (29), we have:

η

∥∥∥∥∂Ln(C(t))

∂C

∥∥∥∥2
2

≤ 2
(
Ln(C(t))− Ln(C(t+1))

)
,

then:∥∥∥C(T ) −C(0)
∥∥∥
∞

=

∥∥∥∥∥η
T∑
t=1

∂Ln(C(t))

∂C

∥∥∥∥∥
∞

≤ η

∥∥∥∥∥
T∑
t=1

∂Ln(C(t))

∂C

∥∥∥∥∥
2

≤ η
T∑
t=1

∥∥∥∥∂Ln(C(t))

∂C

∥∥∥∥
2

≤
√

2η

T∑
t=1

√
Ln(C(t))− Ln(C(t+1)) ≤

√
2ηTLn(C(1)) ≤

√
2nK

b̄2v b̄
2
a

ln

(
1

ε

)
Ln(C(0))Ln(C(1))

= O
(
d
√
n ln(1/ε)

K2α−1/2

)
,

where the last equality is from the fact
∥∥C(0) − 1

∥∥
∞ < K−α, which implies Ln(C(0)) = O

(
1

K2α

)
according to Proposition 4. By setting large enough K, we can easily have∥∥∥C(T ) −C(0)

∥∥∥
∞
≤ 1

16
.

Recall that our setting for C(0) in Algorithms 1, we have
∥∥C(0) − 1

∥∥
∞ < 1

16 . Hence, we can
conclude that ∥∥∥C(T ) − 1

∥∥∥
∞
≤
∥∥∥C(T ) −C(0)

∥∥∥
∞

+
∥∥∥C(0) − 1

∥∥∥
∞
≤ 1

8
.

We now can conclude C(t) ∈ C∗ for all t ∈ [T ], and finish the whole proof.
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E.3 PROOF OF PROPOSITION 2: LOCAL LIPSCHITZ SMOOTHNESS

Proof. Note that PAEk = Ẽk, where Ẽk comes from Eq. (19). By Proposition 4, we know∥∥∥Ẽk

∥∥∥ < 1
3 , hence, by the “same norm upper bound” assumption, we have:∥∥∥PAẼ

∥∥∥ < 1

3
, and

∥∥∥PAÊ
∥∥∥ < 1

3
.

By the mean value theorem, we have:

Hk
(
Ê
)
−Hk

(
Ẽ
)

= D[Ek=Eδ]
Hk
(
Ê− Ẽ

)
,

where Eδ = Ẽ + δ
(
Ẽ− Ê

)
for some δ ∈ (0, 1). Then∣∣∣Hk(Ê
)
−Hk

(
Ẽ
)∣∣∣ ≤ ∥∥∥D[Ek=Eδ]

Hk
∥∥∥ · ∥∥∥(Ê− Ẽ

)∥∥∥
∗
,

where ‖·‖∗ is the nuclear norm. Hence, the Lipschitz constant ofHk is bounded by
∥∥∥D[Ek=Eδ]

Hk
∥∥∥.

By the chain rule, we have:

D[Ek=Eδ]
Hk =

K∑
k̂=k

∂R
(
Gk̂,δ

)
∂Gk̂−1

◦
∂Gk̂−1

(
Gk̂−2,δ

)
∂Gk̂−2

◦ · · · ◦ ∂Gk(Eδ)

∂E

,
where Gk̂,δ

:= Gk̂ ◦ · · · ◦ Gk(Eδ). Then, it holds that:

∥∥∥D[Ek=Eδ]
Hk
∥∥∥ ≤ K∑

k̂=k

∥∥∥∥∥∥
∂R
(
Gk̂,δ

)
∂Gk̂−1

∥∥∥∥∥∥ ·
∥∥∥∥∥∥
∂Gk̂−1

(
Gk̂−2,δ

)
∂Gk̂−2

∥∥∥∥∥∥ · · ·
∥∥∥∥∥∂Gk(Eδ)

∂E

∥∥∥∥∥
,

On one hand, for any k̂ ≥ k, similar to Eq.(26) and Eq. (27), we have:∥∥∥∥∥∥
∂Gk̂+1

(
Gk̂,δ

)
∂Gk̂

∥∥∥∥∥∥ ≤ LgL−1k̂
+

gk̂(
1− gk̂

)2 · δ < 1

4
,

Given ‖PAEδ‖ < 1
3 , it is easy to see that

∥∥∥Gk̂,δ

∥∥∥ < 1
3 for all k̂ ≥ k by Proposition 4, then:∥∥∥∥∥∥

∂R
(
Gk̂,δ

)
∂Gk̂−1

∥∥∥∥∥∥ =
∥∥∥vk̂ � a�

(
vk̂ � a� σ+

(
Gk̂,δ

))∥∥∥
∞

= O(1).

where gk̂ =
∥∥∥Gk̂,δ

∥∥∥. Combing all things together, we can conclude that:

∥∥∥D[Ek=Eδ]
Hk
∥∥∥
∗
≤ C

K∑
k̂=k

((
1

4

)K−k)
≤ 2,

where C > 0 is some proper constant. We finish the proof.

E.4 PROOF OF THEOREM 2: GENERALIZATION

Proof. When let
∥∥C(t) − 1

∥∥ = O(K−α), we can easily conclude that Ln(C(0)) = O
(

1
K2α−1

)
by

Proposition 4. By the last part of Theorem 1’s proof, we know that C(t) ∈ C∗d for all t ≤ T , where:

C∗d :=

{
C :

∥∥∥C−C(0)
∥∥∥
F
≤ Õ

( √
nd

K2α−1/2

)}

26



Under review as a conference paper at ICLR 2021

Part One: We first find the upper bound for the empirical Rademacher complexity Radn(L) of our
loss function class L (see Section G for definitions), where

L̃n :=

{
1

K
`(C,A) : C ∈ C∗d

}
.

See Eq. (25) for the definition of `(C,A). To bound the Rademacher complexity of L, we invoke
covering numbers by Lemma 5. First of all, we can easily verify the condition of Lemma 5 by
Proposition 4 and Proposition 2. Due to Lemma 5, we have:

lnN

(
L̃n,

K∑
k=1

2εk, L2(Pn, ‖·‖)

)
≤

K∑
k=1

lnN (Gk, εk, L2(Pn, ‖·‖)) + lnN (R, εk, L2(Pn, ‖·‖)),

where we refer to Proposition 2 for the definition of Gk and R. We first note that the term
lnN (R, εk, L2(Pn, ‖·‖)) is simply 0 because there is no learnable parameters for the output func-
tionR(·). By our general analysis in Eq. (22), we have:

lnN (Gk, εk, L2(Pn, ‖·‖)) = lnN
({

Êkc : c ∈ RL, ‖c‖∞ ≤
1

4

}
, εk, ‖·‖F

)
.

Note that
∥∥∥Êk

∥∥∥2
F

= O(d). Moreover, by proof in Claim 1, if K2α−1/2 = Ω(
√
n), similar to the

proof of the boundness verification, it holds that

‖c‖22 < Õ(d),

where Õ(·) hides log factors, and then according to Lemma 4, we have:

lnN (Gk, εk, L2(Pn, ‖·‖)) ≤
⌈
d3

ε2k

⌉
ln (2L),

By setting εk = ε, we have
∑K
k=1

1
K εk = ε, where the factor 1

K is from the fact Proposition 2.
Then, according to Lemma 5, we have:

lnN
(
L̃n, ε, L2(Pn, ‖·‖)

)
≤ Õ

(
d3K

ε2

)
where Õ(·) hides log factors. By Dudley’s entropy theorem (Lemma 7), we can get:

Radn(L̃n) = Õ

(√
d3K

n

)
.

Thus, applying the standard Rademacher generalization bound (Lemma 6), with probability 1 − δ
over the training data, it holds that:

E
A∼PA

[
Ln
(
C(t)

)]
≤ Ln

(
C(t)

)
+ Õ

(√
d3K

n

)
+O

(√
ln(1/δ)

n

)
.

Part Two: We now ready to provide the generalization bound for the case K � n, w.o.l.g. we let
K = Ω(n). When let

∥∥C(t) − 1
∥∥ = O(K−α), we can easily conclude that Ln(C(0)) = O

(
1

K2α

)
by Proposition 4. Recall the last part of Theorem 1’s proof (boundness verification), we have:∥∥∥C(t) −C(0)

∥∥∥
F

= Õ
( √

nd

K2α−1/2

)
, ∀t ∈ [T ].

Hence, by Proposition 6, with ˜̀(·) := 1
K `(·), we have:

˜̀(C(t)) = ˜̀(C(0)) +

〈
∂ ˜̀(C(0))

∂C
,C(t) −C(0)

〉
+O

(
b̄2vdL

)∥∥∥C(t) −C(0)
∥∥∥2
2

= ˜̀(C(0)) +

〈
∂ ˜̀(C(0))

∂C
,C(t) −C(0)

〉
+ Õ

(
b̄2vd

3nL

K4α−1

)

= ˜̀(C(0)) +

〈
∂ ˜̀(C(0))

∂C
,C(t) −C(0)

〉
+ Õ

(
b̄2vd

3L

Kα/2

)
,
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where Õ(·) hides log factors, and the last equality is due to K = Ω(n) and α ≥ 1. Thus, it holds
that:

Radn(L̃n) ≤ Radn

({〈
∂ ˜̀(C(0))

∂C
,C−C(0)

〉
: C ∈ C∗d

})
+ Õ

(
b̄2vd

3L

Kα/2

)
,

where L̃n :=
{

˜̀(C,A) : C ∈ C∗d
}

, and we omit the term ˜̀(C(0)) due to Radn

(
˜̀(C(0))

)
= 0. By

Cauchy-Schwarz inequality, we have:

Radn

({〈
∂ ˜̀(C(0))

∂C
,C−C(0)

〉
: C ∈ C∗d

})

≤ Õ
( √

nd

K2α−1/2

)
E
αi

[∥∥∥∥∥ 1

n

n∑
i=1

αi
∂ ˜̀(C(0),Ai)

∂C

∥∥∥∥∥
F

]
≤ Õ

(
d√

nK2α−1/2

)√√√√√E
αi

∥∥∥∥∥
n∑
i=1

αi
∂ ˜̀(C(0),Ai)

∂C

∥∥∥∥∥
2

F

,
where we apply Jensen’s inequality to obtain the last inequality. Notice that:√√√√√E

αi

∥∥∥∥∥
n∑
i=1

αi
∂ ˜̀(C(0),Ai)

∂C

∥∥∥∥∥
2

F

 =

√√√√ n∑
i=1

∥∥∥∥∥∂ ˜̀(C(0),Ai)

∂C

∥∥∥∥∥
2

F

.

By Proposition 5, we have: ∥∥∥∥∥∂ ˜̀(C(0),Ai)

∂C

∥∥∥∥∥
2

F

= O
(
b̄4vd

2
)
,

which implies: √√√√ n∑
i=1

∥∥∥∥∥∂ ˜̀(C(0),Ai)

∂C

∥∥∥∥∥
2

F

= O
(√
nb̄2vd

)
.

Hence, we have:

Radn

({〈
∂ ˜̀(C(0))

∂C
,C−C(0)

〉
: C ∈ C∗d

})
= Õ

(
b̄2vd

2

K2α−1/2

)
.

Combing all things together, we conclude:

Radn(L̃n) = Õ
(
b̄2vd

3L

Kα/2

)
.

Similar to the part one, we have:

E
A∼PA

[
Ln
(
C(t)

)]
≤ Ln

(
C(t)

)
+ Õ

(
b̄2vd

3L

Kα/2

)
+O

(√
ln(1/δ)

n

)
.

We now finish the whole proof.

F OMITTED PROOF FOR D-SVD IN SECTIONS C

F.1 PROOF OF PROPOSITION 3

Proof. First of all, we provide the Lipschitz constant w.r.t.
(
t̃k,Ck

)
. Note that:

Uk+1 =

(
I +

t∗U
2

PU

)−1
(I−EKinv)

(
I− t∗U

2
PU

)
Uk (30)

where

EKinv
= I−

(
I +

t∗U
2

PU

)
LD-MinvU

(
I +

t∗U
2

PU ,C

)
.
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On one hand, by Eq. (26) in Proposition 5,we have:∥∥∥∥∂Ek+1

∂Ek

∥∥∥∥ = O
(

1

Kinv

)
, ∀k ∈ [Kinv]

On the other hand, we get:

∂EKinv

∂t∗U
=

∂EKinv

∂EKinv−1

∂EKinv−1

∂EKinv−2
· · · ∂E1

∂t∗U
.

When Kinv is large enough, we can ignore EKinv
’s impact, and conclude that the Lipschitz constant

of f w.r.t. t̃k dominate by the other term in Eq. (30) rather than EKinv
. Recall that by Proposition

1, EKinv
share the same row and the same column space with I +

t∗U
2 PU . W.o.l.g. we can assume

EKinv
is diagonal, and by Proposition 4, we have EKinv

= O
(
1/
√
Kinv

)
. Thus, for large Kinv, we

have ∥∥∥∥∂Uk+1

∂t̃Uk

∥∥∥∥ =

∥∥∥∥∂Uk+1

∂t∗U

∥∥∥∥ = O


∥∥∥∥∥∥∥∥
∂

((
I +

t∗U
2 PU

)−1(
I− t∗U

2 PU

)
Uk

)
∂t∗U

∥∥∥∥∥∥∥∥


From the spectral theorem, for a real skew-symmetric matrix the nonzero eigenvalues are all pure
imaginary and thus are of the form λ1i,−λ1i, λ2i,−λ2i, . . .λ1i,−λ1i, λ2i,−λ2i, . . . where each of
the λi are real. Hence, let PU = UPΛU∗P , where the entries of the diagonal of Λ are ±λii, and
UP is the unitary matrix, we have(

I +
t∗U
2

PU

)−1(
I− t∗U

2
PU

)
Uk = UP

((
I +

t∗U
2

Λ

)−1(
I− t∗U

2
Λ

))
U∗PUk,

then
∂
(
I +

t∗U
2 PU

)−1(
I− t∗U

2 PU

)
Uk

∂t∗U
= −UP

(
Λ(I +

t∗U
2

Λ)−2
)

U∗PUk.

Hence, we can easily obtain that:

∥∥∥∥∂Uk+1

∂t∗U

∥∥∥∥ = O


∥∥∥∥∥∥∥∥
∂

((
I +

t∗U
2 PU

)−1(
I− t∗U

2 PU

)
Uk

)
∂t∗U

∥∥∥∥∥∥∥∥
 = O(‖Λ‖) = O(‖M‖),

where the second and the third equations come from the facts:∣∣∣∣∣∣∣
λi(

1 +
t∗U
2 λi

)2
∣∣∣∣∣∣∣ < |λ| and |λ1(P)| ≤ σ1(P),

where |λ1(·)| and σ1(·) are the largest scale eigenvalue and singular value, respectively. Hence, we
can conclude that the Lipschitz constant of f w.r.t. t̃Uk is in the order of O(‖M‖).

By the proof in Proposition 5, we have∥∥∥∥ ∂Ek+1

∂C{k,l}

∥∥∥∥ =
∥∥El+1

k −El
k

∥∥ ≤ 2
∥∥El

k

∥∥, ∀k ∈ [Kinv].

Hence, we get: ∥∥∥∥∂EKinv

∂C{k,l}

∥∥∥∥ = O
(
Kinv

(k−Kinv)2
∥∥El

k

∥∥) = O
(
Kinv

(k−Kinv−l/2)
)
,

where the last equation is from ‖Ek‖ = O
(

1
Kinv

)
. Then, we can get:∥∥∥∥ ∂Uk+1

∂C{k,l}

∥∥∥∥ ≤ ∥∥∥∥∂EKinv

∂C{k,l}

∥∥∥∥ = O
(
Kinv

(k−Kinv−l/2)
)
,
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where this equation is from the fact that EKinv
share the same row and the same column space with

I± t∗U
2 PU , and: ∥∥∥∥∥

(
I +

t∗U
2

PU

)−1(
I− t∗U

2
PU

)∥∥∥∥∥ = 1.

Thus, we can easily verify that:

Kinv∑
k=1

L∑
l=0

∥∥∥∥ ∂Uk+1

∂C{k,l}

∥∥∥∥ = O(1).

Hence, we can conclude that the Lipschitz constant of f w.r.t. C is in the order of O(1).

Because of the Lipschitz condition, we can have:

lnN (Fk, ε, ‖·‖) ≤ lnN
(
Ck,

ε

Lip(f)
, `∞

)
,

where Lip(f) is the Lipschitz constant of f w.r.t. the spectral norm ‖·‖. Note that:

lnN
(
Ck,

ε

Lip(f)
, `∞

)
= O

(
lnN

(
{t̃Uk},

ε

‖M‖
, `∞

)
+ lnN

(
{C}, ε

√
Kinv, `∞

))
.

Note the bounds on covering number:

N
(
{C}, ε

√
Kinv, `∞

)
≤
(

1 +
2

ε
√
Kinv

)LKinv

.

Finally, we get:

lnN (Fk, ε, ‖·‖) = O
(
LKinv ln

(
1

ε
√
Kinv

)
+ ln

(
‖M‖
ε

))
.

We now finish the proof.

F.2 PROOF OF THEOREM 3

Proof. Before adopting Lemma 5, we first verify the conditions of this Lemma. The boundness
condition of the intermediate results is obvious since {Uk,i} and {Vk,i} are both from the Stiefel
manifold.

On the other hand, we can easily verify the Lipschitz condition when Kinv ≥ Ksvd. Let d =
max{m, n̂}. Recall the last part of Theorem 1’s proof (boundness verification), we have:∥∥∥C(t) −C(0)

∥∥∥
F

= Õ
(√

nd

Kinv

)
, ∀t ∈ [T ].

By the assumption K = Ω(nd), we have∥∥∥C(t) −C(0)
∥∥∥
F

= Õ
(

1√
Kinv

)
, ∀t ∈ [T ].

By Eq. (30) in the proof of Proposition 3, we have the Lipschitz constant of f(Uk | Vk,M, t̃k,Ck)
w.r.t. Uk is bounded by:∥∥∥∥∥

(
I +

t∗U
2

PU

)−1
(I−EKinv

)

(
I− t∗U

2
PU

)∥∥∥∥∥ ≤ 1 + ‖EKinv
‖.

where this inequality is from the fact that EKinv
share the same row and the same column space with

I± t∗U
2 PU , and: ∥∥∥∥∥

(
I +

t∗U
2

PU

)−1(
I− t∗U

2
PU

)∥∥∥∥∥ = 1.
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Due to
∥∥C(t) −C(0)

∥∥
F

= Õ
(

1√
Kinv

)
, we have:∥∥∥∥∥

(
I +

t∗U
2

PU

)−1
(I−EKinv)

(
I− t∗U

2
PU

)∥∥∥∥∥ = Õ
(

1 +
1√
Kinv

)
.

Thus, the Lipschitz constant from any intermediate layer to output layer of D-SVD is bounded by:

Õ

((
1 +

1√
Kinv

)2Ksvd
)

= Õ

((
1 +

1

Ksvd

)2Ksvd
)

= Õ(1).

where we use the assumption that
√
Kinv = Ω(Ksvd). We have verified the two conditions in

Lemma 5.

By setting εk = ε/Ksvd, we have
∑Ksvd

k=1 εk = ε. Due to Lemma 5 and Proposition 3, we obtain:

lnN
(
M̃n, ε, L2(Pn, ‖·‖)

)
= Õ

(
KsvdLKinv ln

(
Ksvd√
Kinvε

))
.

where Õ(·) hides some log factors.

By Dudley’s entropy theorem (Lemma 7), we can get:

Radn(M̃n) = Õ

(√
K3

svdL

n

)
,

where we utilize the fact that the integral of
√

ln
(

Ksvd

ε
√
Kinv

)
evaluated near zero is in the order of

O
(
Ksvd√
Kinv

)
. Thus, applying the standard Rademacher generalization bound (Lemma 6), with prob-

ability 1− δ over the training data, it holds that:

E
M∼PM

[
Mn

(
t̃(t)
)]
≤Mn

(
t̃(t)
)

+ Õ

(√
K3

svdL

n

)
+O

(√
ln(1/δ)

n

)
.

We now finish the proof.

G AUXILIARY LEMMAS

Lemma 3 (Bounded Iterates). For q ∈ N ≥ 4, given x0, e ∈ R, such that x0 ≤ 1
2 and e ≤ 1

4 , let
xk = xqk−1 + e, then:

xk ≤ xq
k

0 + (1 + ε)e, ∀k ≥ 0, where ε→ 0 as k →∞, and ε ≤ 1

16
.

Proof. W.l.o.g, in this proof, we assume xq
k

0 � e, otherwise, the conclusion is obvious. We prove
this lemma by induction. For k = 0, we have x0 = xq

0

0 , the conclusion is obvious. Now, we assume
the inequality holds for xk, then:

xk+1 = xqk + e ≤
(
xq

k

0 +
17e

16

)q
+ e

(a)

≤ xq
k+1

0 + 2q(
17e

16
)q−1xq

k

0 + e,

where (a) come from the Binomial theorem for
(
xq

k

0 + 17e
16

)q
with xq

k

0 � e. It is easy to verify
that:

0.8 ·
(

17e

16

)q−2
<

1

16
, and 1 > 1.25 · 17

8
q · xq

k

0 → 0 as k →∞,

hence
xk+1 ≤ xq

k+1

0 + e+ e
(

4q(2e)
q−2

xq
k

0

)
< xq

k+1

0 + (1 + ε)e.

By the induction, we finish the proof.
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Let N (U, ε, |||·|||) denote the least cardinality of any subset V ⊆ U that covers U at scale ε with
norm |||·|||, meaning:

sup
A∈U

min
B∈V
|||A−B||| ≤ ε.

Then we have the following lemma.
Lemma 4 (Matrix Covering, Bartlett et al. (2017) Lemma 3.2). Let matrix X ∈ Rd×L be given with
‖X‖F ≤ b. Then

lnN
({

XC : C ∈ RL×m, ‖C‖2,1 ≤ a
}
, ε, ‖·‖F

)
≤
⌈
a2b2

ε2

⌉
ln (2Lm),

where ‖C‖2,1 =
∑m
i=1 ‖C:,i‖2.

Let Pn be a uniform distribution over n points data Xn := {x1, x2, · · · , xn}. Then the L2(Pn, |||·|||)
norm of the function f is defined as

‖f‖L2(Pn,|||·|||) :=

(
1

n

n∑
i=1

|||f |||2
) 1

2

.

LetF1, · · · ,Fk be a sequence of families of functions (which corresponds to families of single layer
neural nets in the deep learning setting) and ` be a Lipschitz loss function. We study the family of
compositions of ` and functions in Fi’s:

L := ` ◦ Fk ◦ Fk−1 · · · ◦ F1 = {` ◦ fk ◦ fk−1 ◦ · · · ◦ f1 : ∀i, fi ∈ Fi} .
Lemma 5 (Abstraction of Techniques in Bartlett et al. (2017); Wei & Ma (2019)). Assume:

1. Given the data set Xn and norm |||·|||, for any x ∈ X , |||fi ◦ · · · ◦ f1(x)||| ≤ si.

2. ` ◦ fk ◦ · · · ◦ fi+1 is κi-Lipschitz for all i.

Then, we have the following covering number bound for L (for any choice ε1, . . . , εk > 0):

lnN

(
L,

k∑
i=1

κiεi, L2(Pn, |||·|||)

)
≤

k∑
i=1

lnN (Fi, εi, L2(Pn, |||·|||)).

The above lemma lemma says that if the intermediate variable (or the hidden layer) fi ◦· · ·◦f1(x) is
bounded, and the composition of the rest of the functions `◦fk◦· · ·◦fi+1(x) is Lipschitz, then small
covering number of local functions imply small covering number for the composition of functions.

Finally, we present two classical results about Rademacher complexity. For a class of real-valued
functions L and dataset Xn with data size n, define the empirical Rademacher complexity of the
function class L by:

Radn(L) = E
αi

[
sup
l∈L

(
1

n

n∑
i=1

αil(xi)

)]
,

where xi ∈ Xn, and αi’s are independent uniform ±1 random variables. Now we present the
Rademacher complexity regression bounds.
Lemma 6 (Rademacher complexity regression bounds, Mohri et al. (2018) Theorem 11.3 ). Let
` : U ⊂ Rd → R be a nonnegative loss upper bounded by M > 0, and ` is µ-Lipschitz for
some µ > 0, then for any δ > 0, with probability at least 1 − δ over the draw of an i.i.d. sample
Xn = {x1, x2, · · · , xn} of size n according the distribution Pr, the following holds for all ` ∈ L:

E
x∼P

[`(x)] ≤ 1

n

n∑
i=1

`(xi) + 2µRadn(L) + 3M

√
ln(2/δ)

2n
.

Lemma 7 (Dudley’s entropy theorem, Dudley (1967)). For any function class L containing func-
tions ` : X → R, where ∀x ∈ X is bounded, we have that:

Radn(L) ≤ inf
α>0

(
4α+ 12

∫ sup`∈L
√

Ex∼P [`2]

α

√
lnN (L, ε, L2(Pn, |||·|||))

n

)
.
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Corollary 1. Let us use Õ(·) to hide any factor that is sub-polynomial. Then we basically have that
if lnN (L, ε, L2(Pn, |||·|||)) = O∗

(
1
εp

)
, then:

Radn(L) =


O
(

1√
n

)
p < 2,

Õ
(

1√
n

)
p = 2,

Õ
(

1
n1/p

)
p > 2.
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