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Abstract
Low-precision formats such as float8 have been
introduced in machine learning accelerated hard-
ware to improve computational efficiency for
large language models training and inference.
Nevertheless, adoption by the ML community
has been slowed down by the complex, and some-
times brittle, techniques required to match higher
precision training accuracy. In this work, we
present SCALIFY, a end-to-end scale propaga-
tion paradigm for computational graphs, gener-
alizing and formalizing existing tensor scaling
methods. Experiment results show that SCAL-
IFY supports out-of-the-box float8 matrix mul-
tiplication and gradients representation, as well
as float16 optimizer state storage. Our JAX
implementation of SCALIFY is open-sourced at
github.com/graphcore-research/jax-scalify.

1. Introduction
As the number of parameters in deep learning models have
progressively increased through the years, machine learning
researchers and engineers have been experimenting with the
use of low precision formats for training and inference to
improve computational efficiency and reduce memory usage
and required bandwidth.

Starting with IEEE float16 format (the only 16-bit format
supported on GPUs initially), Micikevicius et al. (2017) in-
troduced the idea of loss scaling to improve stability of train-
ing and reduce the occurrence of overflow on the backward
pass. This concept was later refined with the introduction
of NaN and max tracking in the backward graph to dynami-
cally adjust loss scaling depending on the training dynamics.
In the landscape of low-precision techniques, loss scaling
can be seen as a proto tensor-scaling method, where a global
tensor scale is set on the backward gradients for numerical
stability, and then compensated when the optimizer update
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Algorithm 1 JAX training loop using SCALIFY transform
(modifications in blue). SCALIFY generalizes previous ap-
proaches with end-to-end scale propagation in the neural
net computational graph (including optimizer).

import jax_scaled_arithmetics as jsa

# Scalify transform on FWD + BWD + optimizer.
# Propagating scale in the computational graph.
@jsa.scalify
def update(state, data, labels):

# Forward and backward pass on the NN model.
loss, grads =

jax.grad(model)(state, data, labels)
# Optimizer applied on scaled state.
state = optimizer.apply(state, grads)
return loss, state

# Model + optimizer state.
state = (model.init(...), optimizer.init(...))
# Transform state to scaled array(s)
sc state = jsa.as scaled array(state)

for (data, labels) in dataset:
# If necessary (e.g. images), scale input data.
data = jsa.as scaled array(data)
# State update, with full scale propagation.
sc_state = update(sc_state, data, labels)
# Optional dynamic rescaling of state.
sc state = jsa.dynamic rescale(sc state)

is applied to the model state.

Dean et al. (2012) and Abadi et al. (2016) introduced the
bfloat16 format (BF16) as a different path to improve 16-
bit training stability. Compared to IEEE float16 (FP16),
bfloat16 trades off mantissa bits for exponent bits, aligning
with float32 exponent width (8 exponent bits compared to
the 5 exponent bits of float16). In the rest of this work, we
use the common notation E8M7 and E5M10 for respectively
designating bfloat16 and float16 formats. Thanks to its
higher dynamic range, bfloat16 has the main benefit of
being a simple drop-in technique in neural net training, not
requiring the complexity of dynamic loss scaling. On the
other hand, as presented in Micikevicius et al. (2017); Peng
et al. (2023), because of the reduction of mantissa bits,
bfloat16 can not be used for master weights, normalization
statistics or optimizer state, meaning that for these quantities
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Table 1. Summary and comparison of most common low-precision training techniques.

METHOD FINE-GRAINED SCALE NO MODEL ALTERATION
SCALING PROPAGATION

Loss scaling (Micikevicius et al., 2017) × implicit ✓
FP8 tensor scaling (Micikevicius et al., 2022) × × custom FP8 layers & kernels
Unit scaling (Blake et al., 2023) ✓ ✓ additional scaling in model
SCALIFY ✓ ✓ ✓for FP16 training

Custom LayerNorm FP8 training

most machine learning practitioners still typically default to
high precision float32.

With the recent emergence of large language models (LLMs)
exceeding 100 billion parameters, researchers and ML hard-
ware vendors have explored the use of float8 formats (FP8)
in matrix multiplication, further improving energy efficiency,
compute time and memory footprint. The literature and prac-
titioners (Wang et al., 2018; Sun et al., 2019; Micikevicius
et al., 2022; Kuzmin et al., 2022; Noune et al., 2022) have
converged towards the definition and use of two FP8 for-
mats: E4M3 and E5M2 (i.e. respectively using 4 bits and
5 bits width exponent). The format E5M2 is used to repre-
sent the dynamic range of gradients in the backward pass,
whereas E4M3 is used for activations and weights in the
forward pass, that necessitate additional precision. With
the introduction of these lower precision formats came the
requirement of ad-hoc tensor scaling with more granular-
ity than global loss scaling. Several papers (Noune et al.,
2022; Micikevicius et al., 2022; NVIDIA, 2022) have shown
that per-tensor scaling of FP8 matrix multiplication (mat-
mul) inputs using the input signals statistics is a reliable
technique that maintains the accuracy of training in higher
precision. In practice, the implementation of efficient FP8
tensor scaling during training required the introduction of
delayed scaling: tensors are scaled using the input signal
statistics of the previous micro-batch, allowing scaling and
statistics gathering to be done simultaneously. Finally, Peng
et al. (2023) recently showed that float16 per-tensor scaling
can also be used to reduce the memory footprint of master
weights and optimizer state.

The main drawbacks of current approaches for FP8 train-
ing are the black-box complexity of a fused FP8 matrix
multiplication and statistics gathering kernel as well as the
additional compute requirement to estimate input tensor
statistics at every matrix multiplication (in the forward and
backward passes). The latter issue has been partially solved
by the introduction of delayed scaling, but at the expense of
a more complex model state management. In this work, we
aim at simplifying low precision training by generalizing
and automating tensor-scaling to the entire computational

graph (i.e. forward, backward and optimizer for neural net
training). We introduce the SCALIFY transform which fully
propagates tensor scaling information in the computational
graph, bringing scaled FP8 and FP16 techniques under the
same automated paradigm. Generalizing the existing ap-
proaches proposed in the literature, we believe the proposed
formalization of tensor-scaling has multiple advantages:

• Systematic scale propagation decouples matrix multi-
plication and scaling, allowing a more efficient low-
precision training schemes (reducing tensor statistics
gathering);

• Integration of FP8 formats as “just another datatype”:
no ad-hoc black-box custom C++ kernel is required
(we present in Algorithm 6 a general linear layer im-
plementation);

• Seamless and efficient integration of scaled FP16
weights (Peng et al., 2023) and optimizer state, achiev-
ing similar training robustness and accuracy to FP32
and BF16;

• Model invariance: the SCALIFY transform does not
change the semantics of the computational graph (i.e.
in full precision, results are identical);

Table 1 presents a summary of the most common low-
precision training methods and how they compare to SCAL-
IFY in accuracy and ease of use.

We provide an open-source implementation of SCALIFY
in JAX (Bradbury et al., 2018). In the rest of this
work, we follow the JAX/XLA naming convention to de-
scribe in more details our JAX open-sourced implemen-
tation github.com/graphcore-research/jax-scalify. How-
ever, the same principles can be applied to any other
ML framework (e.g. PyTorch at the ATEN operators and
torch.compile level).
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2. Scaled array representation and
quantization

This work makes use of a “scaled array” representation,
whereby a tensor X is represented by a pair of arrays
(Xd, Xs) satisfying X = Xd ·Xs, where Xd has the same
shape and datatype as X and Xs is a tensor broadcastable to
Xd (in many cases, Xs is a scalar). In practice, for usability
by the ML practitioner, and for automated graph transfor-
mation, we represent scaled arrays using an explicit data
structure ScaledArray as outlined in Algorithm 2. Note
that there is no assumption made in Algorithm 2 on the
datatype used in the array. In fact, the purpose of SCALIFY
is to support out-of-the-box mixed computational graphs
with scaled FP8 and FP16 tensors, generalizing the work of
Peng et al. (2023).

In principle, there is also no restriction on the format used
for the scale component in Xs. Nevertheless, we choose
to follow the common practice of using power-of-two 8-bit
scaling for the following reasons:

• Using general floating point scaling can induce addi-
tional loss of accuracy in the several rescaling opera-
tions added to the graph by the SCALIFY transform.

• Power-of-two rescaling can be implemented very effi-
ciently in accelerated hardware, as a simple add opera-
tion on the exponent of floating point numbers.

• 8-bit power of two scaling (i.e. E8M0 format) is
the standard adopted by the Open Compute Plaftorm
(OCP, 2023) for the recent micro-scaling block formats
(MXFP4, MXFP6 and MXFP8).

As the format E8M0 is not yet directly supported by mod-
ern ML accelerated hardware, in our experiments we have
chosen to simulate the power-of-two scale using float32
(the latter having 8 exponents bits, which is sufficient to rep-
resent any E8M0 value). The additional memory footprint
is negligible: one float32 value per tensor.

Assuming X is represented in full precision, finding
the optimal ScaledArray low-precision representation
(q(Xd), Xs) of X is a quantization error problem (where
q is the quantization method corresponding to the datatype
selected). Using the signal-to-noise ratio (SNR) as the un-
derlying metric, one wants to solve:

Xs = argmaxσ∈E8 s.t. X=σXd

E[X2]

E[(X − σq(Xd))2]

= argmaxσ∈E8 s.t. X=σXd

E[X2
d ]

E[(Xd − q(Xd))2]
,

where E8 is the set of finite (valid) values in E8M0. In other
words, the quantization problem is reduced to optimal quan-
tization of the term Xd, under the scale constraint Xs ∈ E8

(i.e. Xs being a power-of-two). In practice, we approxi-
mate the optimal solution of this problem with a two stage
algorithm:

1. Quantizing Xd under the unit scaling constraint
E[X2

d ] ≃ 1, generating a floating scale tensor Xs;

2. Rounding Xs to a power of two, and correcting accord-
ingly the quantized tensor q(Xd).

For the first step of estimating the optimal q(Xd), we follow
the path of the unit-scaling work (Blake et al., 2023) by
using E[X2

d ] ≃ 1 as the sweet spot for maximizing the SNR
of Xd. In short, it falls into the optimal SNR interval for FP8
and FP16 floating point representations (see Fig. 2 in (Blake
et al., 2023)), while still allowing accurate representation of
large outliers (common in LLMs training and inference as
shown by Dettmers et al. (2022a)). In other words, it can
properly represent a tensor distribution that is the combina-
tion of a main mode (Gaussian or heavy-tailed) and large
outliers. Note that Blake et al. (2023) considers the variance
of tensors, but the same argument holds on the mean squared
error (MSE) using the bias-variance decomposition.

Assuming ScaledArray inputs satisfying E[X2
d ] ≃ 1,

the SCALIFY graph transform aims at propagating this prop-
erty in the computational graph, using a combination of
unit-scaling rules for every operation to re-balance the Xd

and Xs terms, and dynamic rescaling using Xd tensor statis-
tics.

In the case of neural-network (NN) training (see Algo-
rithm 1), estimating the scale in the model state can be
done as following:

• At initialization, the scale is usually known by the
user (e.g. random Gaussian initialization with known
variance or zeroed tensors);

• At every state update, SCALIFY will propagate a
new scale into the updated state. Additionally,
the scale can be dynamically re-estimated every N
step by gathering statistics on the current state (see
dynamic rescale in Algorithm 1).

In practice, as presented in Blake et al. (2023), the prob-
ability distribution of weights evolves only slowly during
training. As a consequence, with a proper scale initialization
of the state, our experiments presented in Section 4 did not
show dynamic rescaling of the model state is required.

3. SCALIFY transform
The SCALIFY graph tracer propagates ScaledArray in-
puts (as defined in Algorithm 2) in the computational graph.
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Algorithm 2 ScaledArray data structure propagated
through the graph by the SCALIFY transform

@dataclass
class ScaledArray:

"""Scaled array generic representation.
data: Main data tensor.
scale: Scale tensor

Usually scalar and power-of-two.
"""
data: Array
scale: Array

def __array__(self) -> Array:
"""Reconstruct represented array."""
dtype = self.data.dtype
return self.data * self.scale.astype(dtype)

In the case no scaled arrays are passed (e.g. omitting
the calls to as scaled array in the training loop Algo-
rithm 1), the computational graph after SCALIFY will remain
unchanged. On the other hand, passing ScaledArray
model state and input data, the example update function
will then return an updated ScaledArray model state as
well as a ScaledArray loss (which can be trivially con-
verted to a scalar) by propagating scaling in the forward
pass, backward pass, and optimizer update.

Note that even in the case where all inputs were
ScaledArray instances, the computational graph may
still contain unscaled tensors (typically broadcasted con-
stants), meaning that SCALIFY must be able to handle prop-
erly mixed unscaled-scaled tensors combination. Addition-
ally, as presented in Section 3.3, supporting unscaled arrays
is necessary to dynamic and delayed rescaling features.

3.1. ScaledArray representation, bundling and
unbundling

As shown in Algorithm 2, ScaledArray objects are sim-
ply a pair of a main data array Xd and a scale array Xs,
broadcastable to the former. In this work, we focus on the
case where the scaleXs a scalar, but more general shapes
can cover channel scaling (e.g. van Baalen et al. (2023)) and
block scaling formats such as MX (OCP, 2023).

As presented above, the SCALIFY tracer should support
mixed unscaled/scaled computational graphs. As a conse-
quence, there is a need to explicitly control and represent
in the graph the switch between unscaled and scaled repre-
sentations of an array. For that purpose, we introduce the
following two bundling/unbundling primitives to JAX:

• set scaling: Always transform the input into a
ScaledArray using the scale provided. If the input
is already a ScaledArray, the data component is
rescaled using the ratio of existing and new scales.

Algorithm 3 Scale propagation in basic primitives

def scaled_add(X: ScaledArray, Y: ScaledArray):
# Scale using Gaussian independent assumption
Zs = pow2_round(sqrt(X.scale**2 + Y.scale**2))
Zd = (X.scale / Zs) * X.data

+ (Y.scale / Zs) * Y.data
return ScaledArray(Zd, Zs)

def scaled_matmul(X: ScaledArray, Y: ScaledArray):
# Rescaling using reduction axis size.
rescale = pow2_round(sqrt(X.shape[1]))
Zs = rescale * X.scale * Y.scale
Zd = matmul(X.data, Y.data) / rescale
return ScaledArray(Zd, Zs)

• get data and scale: Unbundling an input tensor
into its data and scale components. If the input
is not a ScaledArray instance, the method directly
returns the input paired with a constant scale 1.

Defining set scaling and get data and scale
with proper no-op semantics when the SCALIFY transform
is not used allows full backward compatibility in the model
definition: any additional scaling logic added to improve
numerical stability (e.g., any dynamic rescaling strategies
presented in Section 3.3) does not change the semantic of
the computational graph (i.e. the neural net model definition
or optimizer update).

3.2. Scale propagation in basic primitives

To propagate scale arrays in the computational graph, SCAL-
IFY requires to implement for every basic JAX primitive
(or PyTorch ATEN operation) a mathematically equivalent
operation on ScaledArray. More formally, if f is a basic
primitive with

(Y1, . . . , Ym) = f(X1, . . . , Xn)

we need to define a mathematically equivalent method
fscaled:

(Y1,d, Y1,s, . . . , Ym,d, Ym,s)

= fscaled(X1,d, X1,s, . . . , Xn,d, Xn,s)

such that if the inputs satisfy unit-scaling E[X2
i,d] ≃ 1, then

the outputs also verify E[Y 2
j,d] ≃ 1.

A trivial (and universal) way to satisfy the previous property
would be to simply un-scale the inputs X1, . . . , Xn, and
compute Y1, . . . , Yk by directly calling f , and then rescale
the outputs using tensor statistics. Obviously, doing this
would erase the main benefits of doing scale propagation
through the graph, as the unscaling step would potentially
reintroduce underflow or overflow in Xi (or require higher
floating point precision). Additionally, we aim at keeping
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SCALIFY computationally light by default, meaning estimat-
ing Xd statistics is opt-out by default (see Section 3.3 for
explicit dynamic rescaling).

As a consequence, we adopt the same unit-scaling strategy
as Blake et al. (2023): define a set of static rules for every
primitive operation, relying only on the inputs scale and
shape to approximate output scaling. To estimate the former,
we employ the same simplifying assumption as Blake et al.
(2023): for every operation f , X1, . . . , Xn are independent
Gaussian tensors. Under this hypothesis, one can estimate
the scaling of the outputs Y1, . . . , Yk for most common
NN operators. We provide in Algorithm 3 the (simplified)
implementation of scale propagation for the primitives add
and matmul.

As presented in Section 2 and in Algorithm 3, the scale value
is always rounded to a power-of-two to avoid additional
floating point errors. In our experiments, rounding down of
the scale is used instead of round-to-nearest (or stochastic
rounding), as experimental data tends to show it improves
preservation of the unit-scaling property E[X2

d ] ≃ 1 in the
graph.

3.2.1. CUSTOM SCALE PROPAGATION RULE

Similarly to automatic differentiation available in ML frame-
works, automatic scale propagation using basic primitive
decomposition of the graph can be sub-optimal in terms of
numerical accuracy and computational efficiency. As a con-
sequence, we also provide a mechanism, custom scale
(similar to JAX custom jvp and custom vjp), to de-
fine custom scale propagation rules. The custom scale
feature happens to be typically useful in two common types
of neural-net layers: activation and normalization layers.

In the first case, scale propagation through a complex non-
linear function like gelu can be brittle, whereas from the
high level semantic point of view of activation functions,
it is clear these functions aims at propagating positive val-
ues unchanged while clipping negative ones to zero (with
a more or less smooth transition between the two regimes).
While the L2 norm of the clipped tensor is smaller than the
original one (meaning we could potentially assign a smaller
scale to the output), we take the position of propagating the
same scale to the output in order to avoid overflowing of
large outliers. Appendix C.1 presents in more details the
implementation of scale propagation in activation functions.

Similarly, it is inefficient and unnecessary to perform full
scale propagation through a normalization layer (when ex-
cluding the affine correction part). The purpose of normal-
ization layer is to provide an output with (approximately)
mean 0 and variance 1, and as a consequence, using the
scale invariance of the mean-variance normalization, it is
more efficient and numerically stable to directly normal-

Algorithm 4 Implementation of dynamic rescaling using
set scaling and get data and scale primitives.

def rebalance_scale(arr: ScaledArray, delta: Array):
# Apply a `delta` correction on scaling.
_, scale = get_data_and_scale(arr)
out_scale = scale * delta
return set_scaling(arr, out_scale)

def dynamic_rescaling_l2(arr: ScaledArray):
# Set scaling based on L2 statistic.
data, _ = get_data_and_scale(arr)
delta = pow2_round(compute_l2_norm(data))
return rebalance_scale(arr, delta)

ize the component Xd and assign a constant scale 1 to the
output (see Appendix C.2 for more details).

Finally, the custom scale feature allows properly tuning
scale propagation and precision in attention layers, whether
it is optimized standard softmax attention (Dao et al., 2022)
or more recent alternative approaches such as Mamba (Gu
& Dao, 2023). We believe that SCALIFY formalized scale
propagation will incentivize ML researchers and engineers
publishing new type of NN layers to investigate low preci-
sion accuracy and release optimal scale propagation rules.

3.3. Dynamic and delayed re-scaling with tensor
statistics

A large literature on low-precision FP16 and FP8 training
relies on tensor statistics gathering and dynamic rescaling
to keep the training dynamic stable (see FP16 automatic-
loss scaling (Micikevicius et al., 2017) and FP8 training
(Micikevicius et al., 2022; Noune et al., 2022; Peng et al.,
2023)). One main goal of SCALIFY scale propagation is
to reduce the amount of dynamic rescaling necessary to
integrate into a NN model in order to match higher precision
accuracy, leading to more efficient FP8 and FP16 training
schemes.

One major benefit of scale propagation is to be able to decou-
ple dynamic rescaling of tensors from operations using FP8
low precision in the computational graph (typically matrix
multiplication or reduce operations). More specifically, stan-
dard FP8 training requires dynamic rescaling of inputs at
every matrix multiplication (see TransformerEngine
implementation NVIDIA (2022)). SCALIFY scale propaga-
tion allows decoupling and finer control of when dynamic
rescaling is applied, meaning the overhead of tensor statis-
tics gathering can be reduced. For instance, in the example
of Algorithm 1, we decide to update scaling at the end of
the entire training iteration, following the optimizer update
(with the straight-forward optimization of only doing this
rescaling every N micro-batches).

As presented in Algorithm 4, the implementation of dy-
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namic rescaling (or delayed rescaling) can be done directly
in pure Python using the two primitives set scaling
and get data and scale introduced in Section 2. This
highlights another benefit of SCALIFY scale propagation:
the rescaling logic appears explicitly in the computation
graph instead of being embedded in a low level C++ kernel
(NVIDIA, 2022).

More specifically, the implementation of Algo-
rithm 4 shows that it is useful to first introduce a
generic rebalance scale method operating on
ScaledArray: instead of setting the scale, the semantic
of this method is to perform a relative correction on the scale.
As for set scaling and get data and scale, we
note that this method is a simple no-op when applied to
unscaled array, keeping backward compatibility when using
rescaling inside a model definition.

Implementing dynamic rescaling using L2 moment
(or any other statistic) is then a simple combina-
tion of get data and scale and rebalance scale
method. Delayed rescaling can be similarly implemented
by decoupling the compute of statistics and rebalancing in
Algorithm 4, keeping track of the first one in the model
state.

3.4. Handling special scaled tensors

Accurate scale propagation through an entire computational
graph requires careful handling of special tensors. More
specifically, we keep track in the SCALIFY tracer of two
categories of tensors:

• Unscaled arrays which are broadcasted scalars;

• Scaled tensors indifferent to the scale value (i.e. com-
bining 0, Infinite and NaN values);

Both type of tensors are commonly generated during the
tracing of an ML graph (see for instance the tracing of
the method logsoftmax in Appendix B). As they get
incorporated with other scaled arrays in scaled operations,
the tracer requires this additional metadata to estimate the
optimal output scaling.

In the first case, broadcasted scalars are commonly gen-
erated by the JAX (or PyTorch) graph tracer from scalar
constants (with potential intermediate unary operations ap-
plied). When combined with scaled array inputs, the SCAL-
IFY tracer needs to be able to estimate a scale (or otherwise
will throw an error). In the general case, this would require
gathering expensive statistics, but in the case of a broad-
casted scalar, it is trivial: it simply corresponds to a split
between the mantissa and the exponent in the floating point
representation.

In the second case, scaled tensors invariant to the scale value,

Table 2. GPT2 model and training configuration

MODEL

# of parameters 168M
dimension 1024
n heads 16
n layers 8

TRAINING

dataset WikiText-103
max learning rate 2 · 10−4

learning rate schedule cosine
optimizer Adam (β1 = 0.9, β2 = 0.95)
batch size 32768
n tokens 800M ( 6 epochs)
warmup 1 epoch

these tensors are typically appearing in masking and error
correcting parts of the computational graph (i.e. combine
with a select operation). Keeping track of which tensors
are invariant to scale allows more accurate scale propagation
as the SCALIFY tracer knows it can just use the scale value
from other inputs to properly estimate the output scaling. In
practice, we reserve a special encoding ANY SCALE in E8
to propagate this information.

4. Experiments and results
In this section, we assess the effectiveness of SCALIFY ap-
proach for training GPT-style LLMs. Our experiments focus
on the training of a GPT2 (Radford et al., 2019)-like model
with 168M parameters on the WikiText-103 dataset (Mer-
ity et al., 2017). The configuration of the decoder-only
Transformer (Vaswani et al., 2017) architecture and training
hyper-parameters are detailed in Table 2. Our JAX im-
plementation is heavily inspired by open-source NanoGPT
repositories (Karpathy, 2023; Garcia, 2023).

We aim to address three main questions with our GPT2
training experiments:

• Is SCALIFY a drop-in replacement of loss scaling strate-
gies for pure FP16 training?

• Does FP8 SCALIFY training accuracy match higher
precision, with minimal dynamic rescaling introduced?

• Can master weights and optimizer state be stored in
scaled FP16 using SCALIFY?

We summarize the configurations of our main experiments
in Table 3, and present in Figure 1 the profile of training
losses. In all experiments, scale propagation is performed
end-to-end using SCALIFY, following the simplified training
loop presented in Algorithm 1.
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Table 3. SCALIFY FP8 and FP16 experiments, decoupling low precision use in compute, master state, gradients and optimizer state.
Except for the FP32 baseline, ScaledArray are used in state representation and propagated end-to-end in the computational graph.

EXPERIMENT MATMUL MASTER STATE OPTIMIZER DYNAMIC TRAINING
(GEMM) STATE GRADS. STATE RESCALING LOSS

FP32 baseline #0 FP32 FP32 FP32 FP32 x 2.87± 0.12
SCALIFY FP16 #1 FP16 FP32 FP16 FP32 x 2.87± 0.12
SCALIFY FP16 #2 FP16 FP16 FP16 FP32 LayerNorm bwd 2.92± 0.12
SCALIFY FP8 #3 FP8 FP16 FP8 FP32 LayerNorm bwd 2.92± 0.12
SCALIFY FP8 #4 FP8 FP16 FP8 FP16 LayerNorm bwd & grads 2.93± 0.12
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Figure 1. Training loss of SCALIFY GPT2 experiments. Table 3
details the low-precision settings used in these experiments.

Our first experiment SCALIFY FP16 #1 shows that SCALIFY
can be used as drop-in replacement of loss-scaling for FP16
training. In this setting, the main advantage of SCALIFY
is to avoid the addition of another hyper-parameter (loss
scaling), or a complex automatic loss scaling strategy (i.e.
no dynamic rescaling of activations, gradients or state is
required). We believe that even this most simple SCALIFY
setting could be of interest to machine learning practioners,
as a drop-in replacement of BF16 while benefitting from
additional precision brought additional mantissa bits in the
IEEE FP16 format.

For our experiments #2, #3 and #4, we added dynamic
rescaling on the backward pass of LayerNorm layers in
every transformer block. The main motivation and justifi-
cation is the following: LayerNorm layers are implicitly
dynamically re-scaling activations on the forward pass (see
Appendix C.2, ensuring that ScaledArray inputs to the
multi-head-attention and feed-forward residual paths are
well calibrated. As a consequence, FP8 matmuls on the
forward pass have already accurately scaled inputs. On the
other hand, no operation in the computational graph is pro-
viding (implicit) dynamic rescaling of gradients, meaning

that despite the use of unit-scaling type rules described in
Section 3.2, the distribution of the gradients will tend to shift
away from the ideal unit-scaling property E[X2

d ] ≃ 1 in the
backward pass graph. As a consequence, it is natural to in-
sert some dynamic rescaling operations on gradients in the
backward pass, and we decided to follow a similar strategy
to forward pass normalization by adding one in each resid-
ual path of the Transformer layer. Algorithm 5 presents the
simple implementation of the custom LayerNorm layer
with dynamic rescaling of input gradient.

With the additional LayerNorm gradient dynamic rescal-
ing, experiment SCALIFY FP16 #2 shows similarly to the
work of Peng et al. (2023) that per-tensor scaling FP16 can
be used for master weight representation without loss in
accuracy, optimizing memory footprint during training.

Experiments SCALIFY FP8 #3 and #4 aim to demonstrate
that SCALIFY supports as well out-of-the-box low precision
FP8 training. In the first one, we use FP8 to speed-up
matrix multiplications and reduce memory footprint of the
weight gradients. Similarly to the previous FP16 training
experiment, matching higher precision training only requires
2 dynamic rescaling in every Transformer layer instead
of 18 (all forward and backward matrix multiplications) in
common FP8 training approaches such as NVIDIA (2022).

Finally, as presented in Peng et al. (2023), we show that
reducing the optimizer state precision to FP16 can also be
achieved with SCALIFY, at the cost of adding additional
dynamic rescaling of the state gradients. This is in line
with the findings of the latter work which also presents a
dynamic rescaling strategy of FP8 gradients, called “auto-
scale”, in order to match higher precision accuracy. We
believe this last experiments highlights one of the main ben-
efit of SCALIFY in terms of usability and expressibility for
ML practitioners: it only requires a 2 lines code change (cast
of the optimizer state and ‘dynamic rescale‘ of gradients)
to integrate low precision optimizer state representation in a
training loop.

In our experiments, dynamic rescaling of the model state
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Algorithm 5 Custom LayerNorm implementation with back-
ward gradient dynamic rescaling.

class CustomLayerNorm(flax.linen.LayerNorm):
"""Custom LayerNorm with backward
gradient dynamic rescaling.
"""
@compact
def __call__(self, x):

# Dynamic rescaling of input gradient
# No-op from the model def. perspective.
x = jsa.ops.dynamic_rescale_l2_grad(x)
# FLAX default LayerNorm implementation.
return super()(x)

such as presented Algorithm 1 was not necessary to match
the baseline accuracy. It still needs to be investigated
whether larger scale LLMs training would require it.

5. Related work
Most large models are trained with mixed precision (Mi-
cikevicius et al., 2017; NVIDIA, 2019) where half precision
is used for most operations but sensitive operations such
as gradient accumulation and softmax operations are main-
tained in FP32. Generally loss scaling is required to ensure
gradients remain stable. Stability issues have also been
noted when using FP16 for training large models (Zhang
et al., 2022; Brown et al., 2020). Therefore, bfloat16 is
often preferred for its increased dynamic range (Kalamkar
et al., 2019; Almazrouei et al., 2023) and block scaled data
formats have been developed to increase dynamic range
while maintaining low precision (Rouhani et al., 2023). It
is generally required to keep the optimizer state in high
precision. However, there has been work reducing this
to 8 bits by employing blockwise quantization methods
(Dettmers et al., 2022b). Some recent methods have gone
further to reduce mixed precision down to FP8 for many
operations (Peng et al., 2023; NVIDIA, 2022), however of-
ten complex heuristics are required to determine when low
precision can be used or overhead is introduced by empiri-
cally rescaling tensors to maintain stability. The work most
closely related to ours is Unit Sclaing (Blake et al., 2023)
which makes similar assumptions about how scale propa-
gates. Unit scaling uses these assumptions to change the
model, whereas SCALIFY maintains separate scaling factors
alongside a consistently-scaled representation, leaving the
model definition unchanged.

Many methods have been developed to quantize LLMs for
interference (Bondarenko et al., 2021; Frantar et al., 2023).
These methods require varying degrees of finetuning or
knowledge distillation to achieve similar performance to
their high precision baselines and there is usually a tradeoff

between degree of quantization and inference performance.
Quantization to 8 bits (Xiao et al., 2024) can be achieved
with little drop in accuracy and several methods have been
developed to quantize more aggressively to 4 bits (Lin et al.,
2024; Zhao et al., 2024) or beyond (Kim et al., 2024). Al-
though these extremely low precision methods generally
lead to accuracy loss compared to FP16 baselines (Wu et al.,
2023), they allow extremely efficient deployment of large
models. Efficient hardware support is generally only avail-
able for quantization to powers of 2. Nonetheless, work has
been done to alleviate this issue by developing kernel design
schemes with provide support for arbitrary quantization bit
widths (Xia et al., 2024).

6. Conclusion
In this work, we explore end-to-end scale propagation in
neural net training. We introduce SCALIFY, a transform
automatically performing scale propagation in a computa-
tional graph, formalizing and generalizing several previous
works on low precision FP8 and FP16 training. Our experi-
ments demonstrate that using unit-scaling type scale propa-
gation, SCALIFY allows out-of-the box training FP8 LLM
training, with minimal tensor dynamic rescaling required.
Additionally, it supports FP16 scaled tensor representation
of model and optimizer state, improving memory usage
in large models training. SCALIFY integrates seamlessly
in JAX ML framework without black-box custom opera-
tions and kernels, allowing machine learning practitioners
to easily customize their low-precision training setup. In
future work, we plan to scale up the size and training of the
LLM models and extend to more recent architectures such
as Llama.
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Algorithm 6 General neural net Linear layer, with its FP8
specialization

def general_linear_layer(
x: Array, w: Array, bias: Array, *,
fwd_dtype: DType, bwd_dtype: DType):

# Forward casting. No-op on gradient.
w = cast_on_forward(w, fwd_dtype)
x = cast_on_forward(x, fwd_dtype)
# Matrix multiplication, with
# potentially different output dtype.
out = jnp.dot(x, w)
# Backward casting. No-op on activation.
out = cast_on_backward(out, bwd_dtype)
# Adding bias, using output precision.
out = out + bias
return out

# Using E4M3 for weights + activations.
# Using E5M2 for backward gradient.
linear_layer_fp8 = partial(general_linear_layer,

fwd_dtype=ml_dtypes.float8_e4m3fn,
bwd_dtype=ml_dtypes.float8_e5m2fn)

A. General linear layer
Independently of per tensor scaling, the recent introduction
of FP8 formats E4M3 and E5M2 requires a more general
definition of the Linear layer used in neural net models.
More specifically, FP8 matrix multiplications differ in two
ways from classic 16-bit and 32-bit matrix multiplications:

• Mixed inputs: FP8 hardware supports matrix multipli-
cation between mixed E4M3 and E5M2 inputs, on the
contrary to 16-bit matmuls (i.e. no mixed FP16/BF16);

• Higher precision output: accumulation is performed
in higher precision than FP8 in machine earning hard-
ware, meaning FP8 matmuls output by default higher
precision than FP8 (FP16 or BF16 typically).

This more general setting is a consequence of the machine
learning research (Noune et al., 2022; Peng et al., 2023) on
low-precision training which has demonstrated that neural
net activations and backward gradients have different sta-
tistical distribution, and thus, require different FP8 formats
(E4M3 and E5M2 respectively).

As a consequence, we present in Algorithm 6 a more gen-
eral definition of a Linear layer, supporting any kind
of compute format. As presented in the code, it only re-
quires a more granular parametrization of the data types
used in the forward activation and weight, and the back-
ward gradient, which can be done using casting operators
cast on forward and cast on backward that act
respectively only the forward or backward passes.

As mentioned above, Algorithm 6 general Linear layer
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Algorithm 7 logsumexp decomposition in JAX primi-
tives.

{ lambda ; a:f32[3,5]. let
b:f32[3] = reduce_max[axes=(1,)] a
c:bool[3] = is_finite b
d:f32[3] = broadcast_in_dim[

broadcast_dimensions=() shape=(3,)] 0.0
e:f32[3] = select_n c d b
f:f32[3] = stop_gradient e
g:f32[3,1] = broadcast_in_dim[

broadcast_dimensions=(0,) shape=(3, 1)] f
h:f32[3,5] = sub a g
i:f32[3,5] = exp h
j:f32[3] = reduce_sum[axes=(1,)] i
k:f32[3] = abs j
l:f32[3] = log k
m:f32[3] = add l f

in (m,) }

definition is completely independent of tensor scaling, on
the contrary to existing FP8 training approaches such as
NVIDIA (2022) which requires combining the two aspects
in the same complex low level C++ kernel. We believe
this decoupling and simplification of FP8 layers and APIs
will help ML practitioners adopt more widely low precision
training.

B. logsumexp JAX decomposition
logsumexp is an example of a function requiring proper
handling a special values tensors (see Section 3.4). More
specifically, as shown in Algorithm 7, it presents the typical
case of a broadcasted 0 constant then used in a select
operation to correct for potential invalid values. In order to
handle properly scale propagation in the call e:f32[3] =
select c d b, SCALIFY tracer needs to know that the
tensor d is actually a scalar tensor filled with 0, meaning that
any scale is valid for the former and the select primitive
can just directly propagate the second operand b scale.

C. Custom scale propagation in some common
neural net layers

We detail in this section the implementation of custom scale
propagation in activation and normalization layers.

C.1. Activation layers

As mentioned in Section 3.2.1, it is more efficient and ac-
curate to use custom scale propagation for activation layers
instead of automatic SCALIFY graph tracing (similarly to
custom backward pass instead of automatic differentiation
for activation functions).

Common activation functions in deep learning (i.e. relu,

gelu, swish, ...) can be represented as:

f(X) = X · g(X)

where g is a (bounded) gating function satisfying
lim−∞ g = 0 and lim+∞ g = 1.

As presented in Section 3.2.1, it is reasonable to propagate
the same scale through an activation function. The main
question remaining is how to implement the scaled version
efficiently and accurately. From the decomposition above,
one can simply write:

fscaled(Xd, Xs) = (Xd · g(Xd ·Xs), Xs).

Compared to the unscaled version f , fscaled only requires an
additional (scalar) multiplication Xd ·Xs in low precision.
Additionally, in the case the previous product overflows
±∞, the estimate will still be accurate as we know that g is
well defined on ±∞ values, meaning that conversion to a
higher precision format such as FP32 is not required.

Scaled backward gradient propagation can be estimated
similarly using:

f ′(X) = g(X) +X · g′(X) where lim
±∞

X · g′(X) = 0.

f ′ is therefore a bounded function, meaning that based on
the chain rule, we can similarly propagated the backward
gradient scale unchanged as a first order approximation.

C.2. Normalization

Common normalization layers are the composition of a
mean-variance normalization followed by an affine trans-
form. We approximate scale propagation in the former as
following:

X −E[X]√
Var[X] + ε

=
Xd −E[Xd]√
Var[Xd] +

ε
Xs

≃ Xd −E[Xd]√
Var[Xd] + ε

.

Based on the last line estimate, we therefore implement scale
propagation through a normalization layer by normalizing
its data component, and assigning scale 1 to the output.

From our perspective, the approximation introduced in the
previous equation is actually a more accurate estimate of the
normalization of a tensor in the case of very small variance.
More specifically, assuming the simple case where X is a
sampled from a normal distribution N (m,σ), and the scale
is estimated accurately (i.e. Xs ≃ σ), then our estimate will
return as expected a tensor approximately sampled from
N (0, 1) for any σ > 0, whereas the original normalization
will converge to zero as σ → 0 due to the numerical stability
term ε.
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