Under review as a conference paper at ICLR 2026

MEASURING FREQUENCY NON-STATIONARITY FOR
ROBUST TIME SERIES FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Non-stationarity in time series has long posed a fundamental challenge for fore-
casting models, as it leads to distribution shifts between training and test data.
A popular line of research, known as normalization methods, aims to mea-
sure and suppress non-stationarity by removing time-domain low-order statistics.
Nevertheless, low-order statistics may inadequately address the underlying non-
stationary structures manifested as a composition of frequencies. To tackle these
issues, we propose to measure the degree of stationarity of each frequency com-
ponent across distributions via spectral analysis. By identifying and downweight-
ing frequencies that are more non-stationary, we re-represent the original time
series to reduce distributional discrepancies between training and test sets. Con-
cretely, we present FREMEN with threefold contributions. Theoretically, FREMEN
is grounded in a principled formulation and we provide the first spectral analysis
to support its validity. Technically, FREMEN is both novel and effective, incurring
negligible additional computational cost. Experimentally, FREMEN is validated on
four forecasting models across seven datasets, achieving 24 best results out of 28
settings and 28.4% average MSE improvements. Our code is publicly available'.

1 INTRODUCTION

Time series forecasting is vital to decision-making in real-world applications like industrial system
control and stock market tracking (Thompson & Wilson, 2016; Zhao et al., 2024). Recently, deep
learning has shown some promise on benchmark datasets (Nie et al., 2023; Liu et al., 2024; Piao
et al., 2024b; Wang et al., 2025). However, a challenge remains: the non-stationary nature of
time series such as seasonal fluctuations and irregular events often leads to poor generalization
when forecasting models are applied to unseen test data. The non-stationarity baffles training-
patterns-driven forecasting models that assume consistency in the test dataset. Therefore, when the
distribution shift occurs, these models show forecasting degeneration.

To tackle this issue, a recent popular line of research focuses on normalization methods that aim to
measure and suppress non-stationarity in the input samples, thereby reducing distributional discrep-
ancies between the training and test datasets (Kim et al., 2021; Liu et al., 2023; Fan et al., 2023; Han
et al., 2024; Ye et al., 2024). These methods explicitly measure non-stationarity through statistical
metrics (typically mean and variance) computed or learned from the training set. The metrics are
then used to normalize the input, attempting to remove distribution shifts manifested in the location
and scale. Since the normalization is applied consistently during both training and inference, it helps
align the data distributions and thus improves generalization. Importantly, many of these methods
learn to control the normalization strength through adaptive gates (Fan et al., 2023) or residual con-
nections (Liu et al., 2023), balancing between preserving the original distributional information and
measuring statistical stability for more robust forecasting.

Nevertheless, existing methods estimate statistics in the time domain, which may inadequately mea-
sure the non-stationarity due to the following reasons. First, these methods primarily rely on nor-
malizing raw temporal values. While it may be effective for simple scale and temporal variations, it
often fails to account for more complex non-stationary structures in the frequency domain, such as
temporal drift in dominant frequencies, spectral reallocation, or shifts in periodicity (Ye et al., 2024;
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Figure 1: (a) The objective of this paper is to measure stationarity of frequencies and reweight them
accordingly for stationary representation. (b) The learnt representation achieves the lowest Jensen-
Shannon divergence between the training and test samples compared to existing methods. A larger
shaded area indicates a smaller distributional discrepancy between the training and test set.

Piao et al., 2024b). As a result, these methods struggle to mitigate distribution shifts that consist
of the underlying spectra of time series data. Second, the use of low-order statistics is insufficient
to characterize complex distributional structures and intricate temporal dependencies (e.g., multi-
modality, higher-order statistics, or changes in its functional form) (Han et al., 2024). Consequently,
the normalization becomes inaccurate, hindering the effectiveness in measuring distribution shifts.

To address these issues, this paper presents FREMEN, a frequency-space, non-stationarity-aware
method to mitigate distribution shifts in time series forecasting. As shown in Figure 1, our idea is to
perform spectral analysis to measure the degree of stationarity of each frequency component across
samples. By identifying and downweighting frequency components that are more non-stationary,
we re-represent the original time series to reduce distributional discrepancies between training and
test sets. While a recent study also attempts to analyze non-stationarity in the frequency domain
(Ye et al., 2024). It heuristically selects the top-k frequency magnitudes, running the risk of low-
frequency dominance and inadequately characterizing the entire spectrum. By contrast, we intro-
duce a kernel representation that is implicitly induced by the Fourier transform, integrating out all
possible distribution shift patterns via the Yaglom’s theorem (Yaglom, 1987). By the one-one cor-
respondence between kernel and spectral weights, learning the weights of frequencies is equivalent
to learning a data-adaptive kernel representation itself, allowing the model to capture subtle distri-
butional discrepancies and prioritize stationary frequency components for improved generalization.

Our contributions are threefold. Theoretically, we provide the first spectral analysis of frequency-
domain non-stationarity to combat distribution shift. Methodologically, we present a simple yet
effective algorithm for learning to weight the frequency components, thereby re-representing the
distribution behind time series data. Experimentally, FREMEN is validated on four mainstream fore-
casting backbone models across seven benchmark datasets, achieving 24 best results out of 28 set-
tings and 28.4% average MSE improvements in multivariate forecasting.

2 RELATED WORKS

Non-stationary Time Series Modeling. Existing methods mainly aim to find a way to measure the
distribution shift in the time domain, thereby helping the model learn a robust data representation
(Duetal., 2021; Kim et al., 2021; Piao et al., 2024a). RevIN (Kim et al., 2021) proposed using mean
and variance to measure the distribution shift. They first set the mean and variance of each sample to
a fixed value. After forecasting, the original values are returned to the forecasting model outputs. A
series of time-domain methods followed this idea: (i) Earlier works consider the evolution of mean
and variance between inputs and outputs and explicitly model them (Fan et al., 2023; Liu et al.,
2023). (ii) Recent works tend to learn a more expressive measure of non-stationarity than low-order
statistics (Han et al., 2024; Liu et al., 2023). Recently, FAN (Ye et al., 2024) took an initial step to-
ward addressing distribution shifts in the frequency domain. FAN identifies high-amplitude frequen-
cies as unstable and seeks to mitigate distribution shifts by removing these frequencies. However,
this heuristic strategy may risk discarding critical patterns and lead to suboptimal performance.



Under review as a conference paper at ICLR 2026

Frequency Domain Modeling. Non-stationary time series can be seen as a mix of frequencies that
vary over time (Proakis & Manolakis, 1996). Earlier methods often aim to learn frequency features
directly from the raw Fourier coefficients (Wu et al., 2021; Zhou et al., 2022b; Wang et al., 2022;
Wau et al., 2023; Yi et al., 2023). However, the frequency features are often sparse and mixed with
noise and time-varying features (Proakis & Manolakis, 1996; Piao et al., 2024b). Recent methods
tend to learn more informative and robust representations via sparse selection (Zhou et al., 2022b;
Woo et al., 2022; Zhou et al., 2022a; Ye et al., 2024) or normalization (Piao et al., 2024b). However,
these methods often rely on heuristic strategies and do not consider cross-sample variations. To the
best of our knowledge, we are the first to model the frequency variations across samples to mitigate
the impact of non-stationary features on forecasting.

3 PROBLEM SETTING AND PRELIMINARY ANALYSIS

We formulate the problem of distribution shifts in non-stationary time series in Section 3.1, followed
by our novel theoretical analysis in Section 3.2. Based on the analysis, we present a novel forecasting
method FREMEN in Section 4. The key notations used in the paper are summarized in Table 1.

3.1 PROBLEM SETUP

Definition 1 (Time series data and forecasting.) We consider the multivariate time series fore-
casting problem on a given dataset {X, Y}, with X = {2O}N ¥ = {y@}¥, and N de-
notes the number of sequences. Let C,L,, L, respectively denote the number of variables,
the input-sequence length and the model prediction length, then the goal can be formulated as
that given an input time series data () € RZ+*C predict the target values y*) € RLv*C,

Definition 2 (Distribution shift issue in forecast- Table 1: Key notations used in this paper.
ing.) We consider the forecasting under distribu-
tion shift issue induced by non-stationarity in time
series data. We assume that the data X is generated

Notation  Description

from an evolving distribution over time P (). A X,Y  inputand target time series
time series is said to be stationary if its distribution Ly, L,  input sequence length, predic-
remains invariant over time, i.e., P, () = P, (x) tion length

for all t1,t,. Conversely, non-stationarity refers N number of variables

to scenarios where the distribution changes with ¢ number of channels

time: 3t; # ta st B, (z) # P(z). Such P, time series generation distribu-
distribution shifts can manifest through changes in tion

sample index of time series
frequency component

power spectral density

valid kernel

eigenvalue, frequency weight
frequency coefficient

the mean, variance, feature correlation, or other
latent structure of the input sequences. Formally,
given a training set Xy, = {2V} ;umin drawn from
Py(x) with t € Ty, the goal is to make accurate
predictions on future inputs x drawn from a dif-
ferent distribution Py (x) with ' € Tiegr, Tregt N
I]Ftrain = @, and Pt/ (JJ) 7& Pt(l‘)

Problem (Statistical non-stationarity measure.) A common paradigm is the use of statistical
normalization techniques applied directly to the input sequences. These methods normalize the
observations across the temporal dimension before feeding into the model. Formally, it computes

channel-wise 14, oy (e.g., mean and standard deviation at time ¢), and transforms x into a normalized
time series &: Ty . = %, vVt € [1, Ly, ¢ € [1,C]. ps, o+ can be empirically computed (Kim

etal., 2021), learned (Fanﬁét al., 2023), or vectorized using sliding windows (Liu et al., 2023).

> >0 E

However, this paradigm implicitly assumes that the data generating distribution P;(z) can be fully
characterized by its low-order statistics. This assumption rules out the possibility of more complex
distributions. Even in the location-scale family, members like the Student’s ¢ distribution depend on
additional parameters (Zhu et al., 2025). Existing normalization methods thus fail to reflect complex
non-stationary patterns like frequency shift, temporal dynamics, or latent structural changes.



Under review as a conference paper at ICLR 2026

Therefore, our goal is to develop more expressive, learnable measures of non-stationarity that can
adaptively characterize evolving dynamics in the input time series.

3.2 PRELIMINARY ANALYSIS: MEASURING NON-STATIONARITY IN FREQUENCIES

We investigate non-stationarity in time series from a frequency-domain perspective. The Fourier
transform decomposes a time series into basis functions, disentangling temporal structure into inter-
pretable frequency bands. Our theoretical analysis first shows that variations in the power spectrum
reflect underlying distribution shifts (Lemma 1), and that such spectral differences provide a valid
non-stationarity measure (Lemma 2). We further prove that modeling these differences induces a
shift-invariant kernel in the frequency domain, offering a principled way to emphasize stationary
components for robust forecasting (Lemma 3). We begin by formally stating our main theorem.

Theorem 1 The Fourier transform on the timeseries dataset X induces a similarity measure k that
is invariant to the non-stationarity. This measure k can be learned in a data-driven manner by
learning its frequency weights {\;}.

To support this theorem, we present the following lemmas, which respectively establishes that: (i)
spectral representations encode key differences to non-stationarity not apparent in the time domain;
(i1) a measure capable of gauging the differences in the spectral domain holds the potential of dis-
tinguishing distribution shifts; (iii) kernel function is a valid measure that can be adapted to data by
identifying its eigenvalues.

Lemma 1 (Spectral shift and energy redistribution) Ler xz; and z; be two sampled non-
stationary time series, where the distribution shifts over time. Then their spectral representations &
and ' exhibit distinct energy distributions across frequency bands:

Jw st |@w)]? # 2 (w)[%

This redistribution of spectral energy reflects the underlying non-stationary behavior (e.g., seasonal
transitions, structural drifts), which may not be apparent in the time domain.

Thus, power spectral density (PSD) analysis may provide a principled way to quantify time-varying
distributions. We next formalize the discriminative capability of these spectral patterns, thereby
validating the use of frequency-domain representations as a principled measure of non-stationarity.

Lemma 2 (Discriminative power of spectral distribution) Let X, X5 be two subsets of se-
quences drawn from distributions P., and P, respectively, with P;, # P,,. Assume their aver-
age power spectral densities are S (w) and Sa(w). Then the total variation distance between them
satisfies:

TV(S1,Ss) = %/\Sl(w) — Sy(w)|dw > 0.

This implies that frequency-domain statistics can effectively distinguish different time-evolving dis-
tributions, and thus serve as a valid non-stationarity measure.

Having established that spectral differences can measure non-stationarity, we next explore how to
learn a function to model the difference in a principled way. We turn to spectral analysis to show
that a valid similarity measure as a kernel function is implicitly induced by Fourier transform.

Lemma 3 (Yaglom’s Theorem) A continuous bounded function k on R+ is a valid kernel if and
only if it can be represented as

T T
k‘(l‘l,l‘g) = / 627”(“)1 1wz “)S(wl,wg)dwlde
RLz xRLz

where S(w1,ws) can be understood as a joint probability density function (Yaglom, 1987). Because
a kernel can be fully characterized by its eigen-decomposition (Scholkopf & Smola, 2001), Yaglom’s
theorem indicates that the measure k induced by Fourier transform on data can be adapted to data
by learning its eigenvalues {)\; }.
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Figure 2: FREMEN begins by initializing frequency weights from the training set and refining them
through neural network optimization (Module-1,2). Then, given an input, the weights are applied to
produce a frequency-weighted input for the forecasting backbone to perform prediction (Module-3).

As time-sequential data can be derived from the integration of harmonic waves, the Yaglom’s the-
orem implies that a kernel as the result of integrating over the distribution of power spectra, is
invariant to the time-varying statistical characteristics of time series (Xue et al., 2023).

In summary, our theorem and the lemmas manifest a key point: when we move to the frequency
domain, the differences in power spectra directly capture non-stationarity. This means we can think
of the kernel as a mathematical tool that measures similarity between time series in the frequency
domain. Frequency components capture patterns at different scales, and kernels provide a principled
way to weight them by their stability across training and test data. This naturally emphasizes station-
ary frequencies while suppressing non-stationary ones. Our goal is to identify relatively stationary
frequency weights to mitigate distribution shift in non-stationary time series forecasting.

4 PROPOSED METHOD: FREMEN

Based on our analysis in Section 3.2, we present a novel forecasting framework FREMEN in this
section. FREMEN can be employed as a representation layer that reweights frequency components
of the input to produce non-stationarity-aware features.

4.1 OVERALL FORWARD PROCESS

The forward process is summarized in Figure 2. FREMEN first learns frequency weights from the
training set Xiin. Specifically, the frequency weight initialization (Module-1) takes samples in
Xlirain as input, outputs the empirical kernel eigenvalue \ as initial frequency weights. Then, A
is fed to the neural network in the frequency weight optimization (Module-2), producing weights for
real and imaginary parts, i.e., ¥ and \;"*®. Finally, when a new input z arrives, the frequency-
weighted representation (Module-3) transforms it into the frequency domain, applies A and A\,
to the corresponding frequency components, and transforms it back to the time domain to obtain a
weighted representation Z, serving as the input for the forecasting model.

4.2 MODULE-1: FREQUENCY WEIGHT INITIALIZATION

As discussed in the preliminary analysis, frequency weights have one-one correspondence with
kernels. To steer the learning process, we assume the commonly adopted RBF kernel (i.e.,
exp (—7||z1 — x2||?), where v := 5L > 0 denotes the kernel width) to initialize the non-
stationarity measure. Then, the corresponding eigenvalues of RBF kernel naturally serve as the
starting point of frequency weights, which can be empirically estimated from the training set. Given
Xirain = {x(i) } lN:I, we first apply Discrete Fourier Transform (DFT) on each time series sample to
obtain the amplitude spectrum A() = Amp(DFT(z(")) € R*+*C, where Amp(-) computes the
amplitude. The frequency-wise RBF eigenvalue A € RL=%C jg then measured by:

" T w? 1
= — —_— h v = - .
Aw) — exp( A>7 where 4 2o (A1) (D

Here, 4 is the only value to be estimated. Frequency-wise standard deviation o(-) is computed for
frequency component w over amplitudes of all training samples.
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4.3 MODULE-2: FREQUENCY WEIGHT OPTIMIZATION

Following the initialization with RBF, one might consider learning the width ~ for the frequency
weights in a data-adaptive way. However, doing so is restricted to the RBF kernel as its func-
tional form remains fixed. By contrast, learning adaptive weights \g corresponds to learning diverse
kernel representations itself, which has greater expressiveness than the fixed RBF. Therefore, we
learn the frequency weights Ay from the RBF initialization by updating the neural networks with
stochastic gradient descent. Specifically, we implement Multi-Layer Perceptrons (MLPs) to opti-
mize frequency weights:

)\reeal(w) _ RGLU( 3 (w)wrleal 4 brleal)Wéeal + béeal’

ASME(w) = ReLU(A(w) W™  bi™E) Wi 4 bire, )

Here Wi € ROH W3 € REXC by € R¥, and by € RY, where * € {real,imag}. H is the
hidden dimension. Notably, we model the weights for real and imaginary frequency components
separately as A\ and g8 € RE=XC The rationale behind this design is that assigning distinct
weights to the real and imaginary components allows the model to capture non-stationarity arising
from shifts in both amplitude and phase. In contrast, a single unified weight per frequency can only
modulate amplitude, leaving phase-related non-stationarity structures unaddressed.

4.4 MODULE-3: FREQUENCY-WEIGHTED REPRESENTATION

Given an input time series © € RP+*C we first transform it to the frequency domain via DFT,
producing real and imaginary coefficients as Feal, Fimag = DFT(z). Then, the learned frequency
weights are applied to the corresponding coefficient using Hadamard product:

Eeal (W) - Freal (w) @Argeal ((.U), Emag (W) = Emag (W) © Aigmag (w) . (3)

The weighted coefficients, i.e., Freal and ﬁ}mag, are supposed to establish a more stationary rep-
resentation with enhanced stationary frequencies and suppressed non-stationary ones, accommo-
dating robust forecasting under distribution shifts. By aggregating all weighted frequencies, the
final time-domain representation is obtained via Inverse Discrete Fourier Transform (IDFT) as
Z = IDFT(Frea1+iFimag) € RL=xC serving as the input for the downstream forecasting backbone
model to perform prediction. The whole framework is trained jointly with the forecasting backbone
using mean squared error (MSE) loss in an end-to-end manner.

5 EXPERIMENTS

We conduct various experiments on widely adopted benchmark datasets to answer the following
questions: RQ1: How does FREMEN enhance the performance of existing time series forecasting
backbone models? RQ2: Does FREMEN mitigate distribution shift issue? RQ3: How effective are
the learned frequency weights Ag? RQ4: How does each design choice of FREMEN contribute to its
performance? RQS: How does the inclusion of FREMEN affect the efficiency of backbone models?

5.1 EXPERIMENT SETUP

Datasets. We use seven widely adopted datasets in multivariate time series forecasting, including:
(1) ETT (Electricity Transformer Temperature) with four subsets of oil temperature and electrical
load recorded at hourly (ETTh1, ETTh2) and 15-minute (ETTm1, ETTm?2) resolutions from July
2016 to July 2018; (2) ECL contains 15-minute-level electricity consumption of 321 clients from
2012 to 2014. (3) Weather includes 21 meteorological features collected every 10 minutes in 2020.
(4) Traffic is comprised of hourly-recorded traffic load by 862 sensors in San Francisco freeways
from 2015 to 2016. All datasets have been published in (Wu et al., 2021). We adopt the split ratio
setting in (Wu et al., 2021), which is 6:2:2 for four ETT datasets and 7:1:2 for the other datasets.
A global normalization is applied to transform the whole dataset to a fixed scale. Note that this
normalization keeps the statistics unchanged; thus, it is unable to handle non-stationarity.

Baselines. We compare FREMEN with state-of-the-art normalization methods for non-stationary
time series forecasting including: RevIN (Kim et al., 2021), SAN (Liu et al., 2023), Dish-TS (Fan
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Table 2: Forecasting results of backbone models with and without FREMEN. Results are averaged
with prediction length L,, € {96,192,336,720}. The best results are highlighted in bold.

Methods iTransformer + FREMEN PatchTST + FREMEN DLinear + FREMEN RLinear + FREMEN
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTh1 0.511 0.500 0.451 0.448 0.495 0.490 0.438 0.439 0.425 0.440 0.407 0.423 0.535 0.504 0.466 0.455

£0.001  £0.001 £0.017 £0.011 | £0.024 +0.023 £0.003 =£0.002 | £0.002 +£0.004 =£0.001 £0.002 | £0.014 =£0.005 =+0.028 +0.013
ETTh2 0.786 0.642 0.379 0.405 0.649 0.526 0.373 0.401 0.489 0.476 0.335 0.383 0.618 0.553 0.393 0.413
£0.068 £0.035 £0.002 £0.002 | £0.102 +0.058 +£0.014 =£0.008 | £0.012 +£0.009 £0.005 =£0.003 | £0.018 =£0.008 +0.004 +0.002

ETTml 0.449 0.454 0.400 0.407 0.419 0.430 0.382 0.396 0.357 0.378 0.355 0.375 0.419 0.419 0.416 0.415

+£0.004  £0.004 £0.001  £0.001 | £0.009 +0.009 £0.010 =£0.007 | £0.001 +£0.001 £0.001 £0.001 | £0.003 £0.001 40.003 +0.002

ETTm2 0.562 0.523 0.289 0.333 0.392 0.412 0.281 0.326 0.291 0.352 0.256 0.313 0.362 0.407 0.289 0.332

m £0.024  £0.026  £0.001  £0.002 | £0.145 £0.097 £0.002 =£0.003 | £0.011 £0.014 =£0.005 =40.005 | £0.006 £0.006 +0.002 +0.002
0.182 0.282 0.172 0.264 0.211 0.309 0.202 0.294 0.173 0.274 0.167 0.260 0.214 0.304 0.211 0.290

ECL ‘iU.OUZ +0.003  £0.002 £0.002 | £0.004 #40.008 £0.003 +£0.005 | £0.001 £0.001 £0.001 +£0.001 | £0.004 +£0.004 =£0.004 =£0.004

0.571 0.314 0.429 0.285 0.594 0.315 0.512 0.329 0.453 0.318 0.436 0.298 0.629 0.390 0.622 0.376
+£0.007  £0.007 £0.013  £0.009 | £0.006 +0.006 £0.009 =£0.009 | £0.000 +£0.001 £0.001 £0.002 | £0.008 £0.003 +0.010 +0.007

0.252 0.300 0.251 0.276 0.248 0.301 0.256 0.279 0.245 0.298 0.226 0.265 0.269 0.319 0.258 0.283
+0.003  £0.007 40.003 £0.002 | £0.004 +0.007 £0.005 40.003 | £0.001 £0.002 +0.001 £0.001 | £0.001 +0.001 £0.003 +0.004

Traffic

Weather

et al., 2023), and FAN (Ye et al., 2024). RevIN, SAN, and Dish-TS conduct time-domain normal-
ization, while FAN focuses on modeling dominant frequencies to overcome non-stationarity.

Backbones. FREMEN is a model-agnostic framework that can be applied to any time series fore-
casting model. To validate its effectiveness, we select four mainstream backbones, including: MLP-
based DLinear (Zeng et al., 2023) and RLinear (Li et al., 2023), and Transformer-based iTransformer
(Liu et al., 2024) and PatchTST (Nie et al., 2022). The normalization baselines and our FREMEN
method are deployed on these backbones for the following experiments.

Experiments Details. The prediction length is set as L, € {96, 192,336, 720} for all backbones.
The input-sequence length L, is set to 336 for DLinear and 96 for the other backbones. We use the
Adam optimizer and report the mean absolute error (MAE) and mean squared error (MSE) as the
evaluation metrics. All experiments are implemented with PyTorch 2.3.0 and conducted on a single
NVIDIA A100 40GB GPU. Details of setup and full experiment results are in the Appendix.

5.2 MAIN RESULTS

Effectiveness on Time Series Forecasting Backbones. To answer RQ1, we present the multivariate
forecasting results in Table 2. Here, the MSE and MAE are presented in the form of mean =+ std
for five runs across four prediction lengths. It is evident that FREMEN consistently enhances the
performance of backbone models by a substantial margin under nearly all experimental settings.
For example, the average MSE improvements for iTransformer are notable on ETTh2 (51.78%),
ETTm2 (48.57%), and Traffic (24.86%), with an average MSE reduction of 28.43% among all
datasets. Comparable improvements are observed for PatchTST, DLinear, and RLinear, with average
MSE reductions of 18.75%, 10.31%, and 12.83%, respectively, over all benchmark datasets. The
superior results can be primarily attributed to the adaptive frequency weights applied, which yields
representations with reduced non-stationarity, thereby benefiting learning of forecasting backbones.

Comparison with Baseline Methods. Continuing the investigation of RQ1, we present the evalua-
tion result of different normalization methods on iTransformer and DLinear in Table 3. We observe
that FREMEN generally outperforms baselines for different forecasting backbones, achieving the
best forecasting results in 24 out of 28 experiment settings on average. Specifically, on the ECL
dataset, FREMEN achieves MSE values of 0.172 and 0.167 for iTransformer and DLinear, outper-
forming the best baseline results (i.e., 0.176 by Dish-TS and 0.171 by SAN). Similarly, on the Traffic
dataset, the MSE of FREMEN averaged across backbones is 0.432, compared to 0.450, 0.467, 0.491,
and 0.456 for RevIN, SAN, FAN, and Dish-TS, respectively. These results may be attributed to the
inadequacy of existing methods in modeling non-stationary structures involving spectral shifts.

5.3 DETAILED ANALYSIS

Distribution Shift Analysis. To answer RQ2, we compare the frequency-domain distributional dis-
tance between the training and test sets for each normalization method. Specifically, the distance
is quantified using the Jensen-Shannon Divergence (JSD) between the empirical distributions of the
training and test samples. As shown in Figure 3 (a), we begin by analyzing the JSD across all chan-
nels. Overall, FREMEN exhibits the best performance in reducing the train-test distributional gaps.
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Table 3: Forecasting results of iTransformer and DLinear with FREMEN and other baseline methods
under prediction lengths L,, € {96,192, 336, 720}. The best results are highlighted in bold.

Models | iTransformer | DLinear

Methods FREMEN RevIN SAN FAN Dish-TS FREMEN RevIN SAN FAN Dish-TS
Metrics | MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE | MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 | 0.389 0405 0394 0409 0385 0402 0403 0417 0398 0418 | 0.369 0.393 0376 0399 0.392 0.409 0400 0421 0383 0404
192 | 0.440 0436 0.447 0440 0442 0437 0456 0448 0453 0452 | 0.406 0418 0413 0422 0437 0436 0452 0460 0414 0424
336 | 0.479 0459 0.490 0463 0473 0453 0512 0485 0499 0481 | 0425 0431 0430 0432 0450 0446 0489 0488 0441 0444
720 | 0.497 0490 0521 0502 0.522 0498 0.554 0.527 0532 0.522 | 0.428 0451 0444 0461 0455 0467 0.622 0.575 0475 0491

96 | 0.299 0.349 0304 0353 0302 0353 0.327 0372 0343 0.391 | 0.272 0336 0275 0.337 0289 0.346 0.300 0363 0.302 0.357
192 | 0376  0.396 0391 0405 0.382 0399 0425 0438 0.533 0.506 | 0.329 0.375 0335 0376 0.356 0.385 0408 0439 0418 0423
336 | 0.415 0429 0431 0439 0422 0434 0481 0479 0.638 0.559 | 0.353 0.397 0358 0.398 0.374 0407 0466 0481 0495 0.468
720 | 0.425 0.444 0437 0452 0496 0482 0847 0.641 0979 0.720 | 0.385 0.424 0392 0428 0406 0441 0867 0.660 0.751 0.577

96 | 0.329 0.367 0339 0.374 0336 0375 0342 0377 0340 0378 | 0.293 0.341 0301 0343 0295 0343 0319 0359 0300 0.344
192 | 0376 0.391 0.378 0393 0.378 0.398 0.383 0403 0379 0.398 | 0331 0.362 0.336 0.363 0.329 0366 0.363 0.388 0335 0.365
336 | 0411 0.414 0418 0418 0412 0424 0431 0440 0421 0430 | 0370 0.383 0371 0384 0.363 0386 0406 0415 0374 0.392
720 | 0.483 0455 0489 0454 0478 0459 0491 0477 0492 0470 | 0426 0.415 0428 0417 0414 0417 0473 0458 0436 0434

96 | 0.182 0.268 0.187 0.273 0.185 0.278 0.182 0272 0.248 0.340 | 0.163 0.252 0.166 0256 0.167 0253 0.176 0.264 0.171 0.264
192 | 0251 0312 0252 0312 0243 0304 0269 0.331 0455 0467 | 0218 0.291 0220 0.291 0228 0295 0.250 0.314 0249 0.327
336 | 0.311 0.348 0314 0351 0326 0362 0383 0406 0.449 0447 | 0273 0.326 0276 0.327 0282 0331 0323 0363 0324 0.370
720 | 0.412 0405 0411 0406 0425 0423 0557 0502 0.621 0.527 | 0.368 0.383 0.368 0.382 0.365 0.381 0.414 0432 0.582 0.506

96 | 0.143 0.237 0.154 0.247 0.150 0245 0.157 0254 0.152 0.254 | 0.138 0.235 0.147 0.246 0.141 0.240 0.145 0246 0.144 0.246
192 | 0.161 0.252 0.167 0.257 0.164 0258 0.169 0267 0.164 0264 | 0.153 0.247 0.160 0258 0.157 0255 0.161 0.262 0.160 0.261
336 | 0.175 0.269 0.183 0.275 0.184 0282 0.183 0.281 0.180 0.283 | 0.169 0.263 0.177 0.274 0.173 0271 0.178 0.280 0.176 0.278
720 | 0.207 0.298 0.216 0303 0212 0309 0214 0313 0209 0313 | 0207 0.295 0216 0305 0211 0304 0216 0316 0213 0312

96 | 0.399 0274 0411 0270 0441 0286 0490 0310 0404 0.273 | 0413 0.288 0430 0.303 0427 0304 0427 0310 0446 0314
192 | 0.418 0.280 0437 0.280 0463 0292 0502 0306 0432 0283 | 0426 0.292 0.443 0308 0448 0311 0446 0321 0459 0.319
336 | 0432 0.285 0450 0.286 0.480 0.298 0.524 0319 0453 0291 | 0439 0.298 0455 0314 0468 0319 0462 0329 0472 0.326
720 | 0.467 0302 0488 0.303 0516 0.316 0574 0345 0487 0310 | 0.466 0.314 0483 0329 0498 0.335 0503 0.358 0497 0.342
96 | 0165 0208 0.175 0.215 0.171 0.225 0.172 0233 0.167 0226 | 0.149 0.202 0.175 0226 0.152 0208 0.156 0214 0.164 0.226
192 | 0215 0.252 0225 0257 0219 0269 0232 0.291 0215 0.268 | 0.193 0.242 0217 0.260 0.199 0256 0.204 0.265 0202 0.262
336 | 0.274 0.296 0282 0.299 0279 0314 0279 0329 0269 0308 | 0.244 0.281 0265 0.295 0249 0298 0.261 0.309 0252 0.304
720 | 0351 0.348 0.362 0350 0.344 0359 0.335 0366 0333 0.360 | 0.319 0333 0333 0342 0323 0352 0338 0365 0322 0.363
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Figure 3: Train-Test distribution distance of each normalization method over (a) channels and (b)
frequencies. Each scatter in (b) corresponds to the JSD value of a frequency component. A smaller
distance to the center indicates a smaller JSD value.

Furthermore, FREMEN achieves a more compact distance distribution, validating the effectiveness
of frequency weights for most channels. We further investigate the improvements in addressing
distribution shift from a frequency-domain perspective in Figure 3 (b). The results are evaluated
on two datasets with the highest train-test JSD and compared with FAN, which also operates in the
frequency domain. The radius of each circle represents the average JSD value on all frequencies.
Results suggest that FREMEN significantly reduces distribution shift for almost all frequencies. In
contrast, FAN demonstrates noticeable improvements only within a limited frequency range. The
superiority of FREMEN stems from its ability to learn stationary representations across the entire fre-
quency spectrum, in contrast to the mechanism of FAN which heuristically models partial spectral.

Frequency Weight Analysis. To answer RQ3, we compare the learned and the actual stationarity
of frequencies on ECL in Figure 4. The blue line represents the averaged amplitude gap of frequen-
cies between the training and test set, which reflects actual extent of non-stationarity. The red line
represents the weight learned by FREMEN, which measures the stationarity. For case (a), we observe
that the two lines exhibit negative correlation. That is, the weights given by FREMEN is generally
higher for frequencies with smaller amplitude gaps and lower for those with larger amplitude gaps.
Similar results can be found in case (b), where the weights for the two frequencies with significant
amplitude gap are notably lower than those for others. The two examples confirm that FREMEN
correctly assigns weights to frequency components. Additionally, we analyze Ay via inspecting the
corresponding kernel representations. Taking RBF kernels for illustration, Figure 5 shows the kernel
shapes corresponding to four selected frequency weights. There is clear evidence that the learned
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Figure 6: Ablation study with L, € {96,720} 0.70
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DLinear

kernel representations differ significantly from one another, demonstrating the ability of FREMEN to
capture diverse non-stationary patterns in time series data by learning distinct kernels.

Ablation Study. To answer RQ4, this section systematically evaluates the key components of FRE-

MEN. We consider three variants to assess the contribution of each part: “random init” initializes A
with a random vector; “fixed kernel” fixes Ag as the RBF eigenvalue; “single weight” uses shared
weights for real and imaginary frequency coefficients. As shown in Table 6, FREMEN consistently
outperforms all variants. Specifically, the increased forecasting error observed in “random init”

highlights the critical role of initializing with the empirical RBF kernel eigenvalue A, which provides
a meaningful prior and facilitates more effective frequency weight learning. Similar performance
degradation are observed for “single weight” due to inability in handling phase shifts via separately
modeling non-stationarity for real and imaginary frequency components. The most pronounced de-
cline in performance is observed for “fixed kernel”, which is expected since fixing the kernel form
severely restricts the model’s expressiveness and adaptability to diverse non-stationarity patterns.

Model Efficiency Analysis. To address RQS, we evaluate the efficiency of forecasting backbones
integrated with FREMEN, as illustrated in Figure 7 on the ETThl and ETTh2 datasets. In this
figure, each pattern represents the outcome of a specific experimental setting, with the size of the
pattern reflecting the corresponding running time. The results clearly demonstrate that FREMEN is
a lightweight yet highly effective enhancement, introducing only a slight increase in the number of
parameters (approximately 0.04M) and computational overhead (averaging 2.85 seconds per epoch),
while delivering substantial improvements in forecasting performance.

6 CONCLUSION

This paper studies the problem of learning robust representations for non-stationary time series
forecasting. Existing methods mainly focus on measuring non-stationarity in the time domain using
low-order statistics. This paper proposed a novel, non-stationarity-aware representation learning
method to capture complex temporal structures and variations. We provided theoretical analysis to
show that learning a valid non-stationarity measure in frequencies induced a kernel representation,
which can be further represented as an orthonormal set of frequency components weights. We
introduced FREMEN, that applied frequency weighting on the input time series to learn a more robust
representation for forecasting. FREMEN demonstrated effectiveness via extensive experiments. The
results confirmed that FREMEN improved mainstream forecasting models by a large margin and
outperformed other state-of-the-art normalization methods.
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7 REPRODUCIBILITY STATEMENT

We make our code publicly available’ which contains detailed implementation of our method. The
code and hyperparameters for forecasting backbones adopted in this paper are based on the Time-
Series-Library®. For normalization baseline methods, we utilize the code from their official github
repository together with the configurations.
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APPENDIX/SUPPLEMENTARY MATERIALS

A LARGE LANGUAGE MODELS (LLMS) USAGE STATEMENT

Large Language Models (LLMs) were used solely to assist with the English writing and language
polishing of this manuscript. All research ideas, experimental design, data analysis, and scientific
content were conceived and executed by the authors without the involvement of LLMs.
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B ADDITIONAL EXPERIMENTAL DETAILS

B.1 DATASET DETAILS

The statistical properties of the seven benchmark datasets are summarized in Table 4. To quantify
the distribution shift between training and test samples, we employ the Jensen-Shannon Divergence
(JSD), which serves as a measure of dataset non-stationarity (Mateos et al., 2017). The JSD is com-
puted between the empirical distributions derived from the training and test sets. The computational
procedure for JSD between two sample sets is formally described in Algorithm 1. Our implemen-
tation utilizes the “jensenshannon” function from the SciPy library, which computes the square root
of the JSD. Then, the squared output is considered as the distributional divergence measure.

Table 4: Statistics of benchmark datasets.

Datasets \ ETThl ETTh2 ETTml1 ETTm2 ECL Traffic Weather
# Channels 7 7 7 7 321 862 21
# Timesteps 17,420 17,420 69,680 69,680 26,304 17,544 52,969
Sample Frequency 1h 1h 15mins 15mins 1h 1h 10mins
Time Range 2016-2017 2017-2018 2016-2017 2017-2018 2012-2014 2015-2016 2020
JSD* 0.2091 0.2839 0.1225 0.3138 0.0716 0.0627 0.1524

* A smaller JSD indicates a more stationary time series dataset

Algorithm 1: Computation of Jensen-Shannon Divergence between two sets of samples

Input: arrays a, b; number of bins B
Output: Jensen-Shannon Divergence D%,

: Umin < min(min(a), min(b))

{ Umaz < max(max(a), max(b))

he < histogram(a; B, [Vmin, Umaz])

hy < histogram(b; B, [Vmin, Vmaz))
p<ha/ ha

q <— hb/ Z hb

Djsp « jensenshannon(p, ¢, base = 2)
: return Diq

A A o e

B.2 BASELINE METHOD DETAILS

In this study, we study four state-of-the-art normalization methods as baselines: RevIN, SAN, Dish-
TS, and FAN. The technical details of each approach are presented below:

Reversible Instance Normalization (RevIN) (Kim et al., 2021). RevIN proposes a symmetric
normalization-denormalization framework to address distribution shifts in time series data. The
method first applies instance-wise z-score normalization to input samples, effectively eliminating
non-stationary components. The normalized data is then fed into the forecasting model for fore-
casting. After which the original statistical properties (i.e., mean and variance) are restored to the
forecasting result through a denormalization process. This reversible transformation maintains cru-
cial distributional characteristics while enabling models to operate on stationary representations.

Slice-level Adaptive Normalization (SAN) (Liu et al., 2023). SAN introduces a fine-grained nor-
malization approach that operates at the sub-series level instead of the whole input and output series.
Unlike direct statistical transfer, SAN employs a dedicated statistics prediction module to explicitly
model the evolution of mean and variance of the data distribution. During training, this module is
first pre-trained to predict future statistics. Then, it is frozen and used to produce normalized input
data for the downstream forecasting models training.

Dish-TS (Fan et al., 2023). Dish-TS provides a systematic framework that classifies distribution
shifts into intra-space (within input/output spaces) and inter-space (between input/output spaces)
variations. The method introduces a specialized network architecture for input and output distribu-
tion estimation, augmented with learnable adaptive distribution statistics. Notably, Dish-TS incor-
porates empirical mean values as prior knowledge to enhance statistical learning.

12
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Frequency Adaptive Normalization (FAN) (Ye et al., 2024). FAN represents the first normal-
ization approach that addresses non-stationarity through frequency-domain analysis. The method
classifies the whole frequency spectrum into two sets where the top-k dominant frequency compo-
nents are considered as non-stationary components which are fed into an MLP network to model the
future statistical variations. The remaining stationary frequency components are directly fed into
the forecasting models for prediction. Combining the two parts of outputs, FAN effectively captures
potential variants in frequencies to mitigate non-stationarity.

B.3 FORECASTING BACKBONE DETAILS

In this work, we evaluate our method on four prominent time series forecasting architectures: the
MLP-based DLinear and RLinear, and the Transformer-based iTransformer and PatchTST. We pro-
vide an overview of their key design principles:

DLinear (Zeng et al., 2023). DLinear establishes a decomposition-based linear architecture. The
method first decomposes the input series into trend and seasonal components using moving average
smoothing. These components are then processed independently through dedicated linear layers,
with their outputs aggregated to produce the final prediction result.

RLinear (Li et al., 2023). RLinear adopts an extremely light-weight architecture comprising a sin-
gle linear layer enhanced with reversible normalization. The approach capitalizes on the inherent
capability of linear mappings to capture periodic patterns, while the normalization scheme trans-
forms trend components into seasonality-like representations.

iTransformer (Liu et al., 2024). iTransformer reconfigures the standard Transformer architecture
for time series analysis. Rather than tokenizing multivariate points at each timestep, it represents en-
tire univariate series as individual tokens. This inverted paradigm enables self-attention mechanisms
to focus on cross-variate dependencies while feed-forward networks handle temporal patterns, better
accommodating the unique characteristics of time series data.

PatchTST (Nie et al., 2022). PatchTST employs a Transformer encoder architecture with two core
modifications: First, time series are divided into overlapping or non-overlapping patches that serve
as input tokens, reducing sequence length while preserving local patterns. Second, it processes each
channel independently with shared weights, enabling efficient multivariate forecasting.

B.4 OTHER EXPERIMENTAL DETAILS

Implementation details. We mainly tune the value of the hidden dimension H within the range of
{16, 64, 128,256,512} and select the one with the best forecasting accuracy on the validation set
as the final hyperparameter for each experimental setting. We repeat each experiment for five times
with fixed seed and report the average evaluation results.

Loss Functions. We employ mean squared error (MSE) as the loss function for all forecasting
backbones, which quantifies the averaged squared difference between the predicted and actual target
time series. Mathematically, the MSE loss is expressive as: Lysg = % Zf\il(g)l — y;)?%, where N
is the number of samples, ¢; represents the predicted value, and y; represents the actual value.

C ADDITIONAL EVALUATION RESULTS

C.1 EFFECTIVENESS ON TIME SERIES FORECASTING BACKBONES

Table 5 presents comprehensive evaluation results across all prediction lengths and benchmark
datasets for the four forecasting backbones. The results demonstrate that FREMEN consistently en-
hances the performance of all four baseline architectures. Quantitative analysis reveals that FREMEN
outperforms the original models in 210 out of 224 evaluation scenarios (4 backbones x 7 datasets X
4 prediction lengths x 2 metrics). More specifically, FREMEN achieves average MSE reductions of
12.62%, 12.47%, 17.41%, and 25.97% for prediction lengths of 96, 192, 336, and 720 steps, respec-
tively. Notably, the performance gains become increasingly pronounced as the prediction horizon
lengthens. These findings provide strong evidence for the effectiveness of the frequency weighting
mechanism in FREMEN, particularly in the context of long-term time series forecasting tasks.

13
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C.2 COMPARISON WITH BASELINE METHODS

Tables 6 presents comprehensive evaluation results comparing FREMEN against existing normal-
ization approaches on PatchTST and RLinear. The experimental results demonstrate FREMEN’s
superior performance, particularly on the ETTh2 and ETTm2 datasets which exhibit significant
non-stationarity (as quantified by their high JSD values in Table 4). FREMEN achieves remarkable
improvements of 17.85% and 19.32% in average MSE reduction on ETTh2 and ETTm?2 respectively,
significantly outperforming all baseline normalization methods.

Table 5: Full forecasting results of backbones with and without FREMEN under prediction lengths
L, € {96,192,336,720}. The best results are highlighted in bold.

Methods | iTransformer + FREMEN PatchTST + FREMEN DLinear + FREMEN RLinear + FREMEN
Metrics | MSE MAE MSE MAE | MSE MAE MSE MAE | MSE MAE MSE MAE | MSE MAE MSE MAE
— 96 | 0419 0432 0389 0.405 | 0394 0418 0376 0.396 | 0.375 0398 0.369 0.393 | 0480 0.464 0410 0419
£ 1920476 0472 0440 0.436 | 0455 0456 0423 0.424 | 0412 0423 0406 0418 | 0.522 0.490 0.465 0.450
E 336 | 0.547 0.525 0.479 0459 | 0.512 0.503 0.468 0.451 | 0438 0.444 0.425 0431 | 0.556 0510 0.497 0.466
720 | 0.600 0.572 0.497 0.490 | 0.620 0.583 0.484 0.483 | 0.474 0.494 0.428 0451 | 0.583 0.552 0.490 0.483
« 96 | 0460 0473 0.299 0349 | 0413 0392 0.290 0.343 | 0.307 0.369 0.272 0.336 | 0.404 0.443 0.310 0.356
£ 192 | 0656 0593 0.376 0396 | 0.479 0473 0367 0.392 | 0.402 0431 0329 0.375 | 0.530 0.511 0.397 0.408
E 336 | 0.887 0.702 0.415 0429 | 0.576 0517 0.413 0.426 | 0.488 0.485 0.353 0.397 | 0.648 0.573 0.430 0.437
720 | 1.142 0799 0.425 0444 | 1.128 0.722 0423 0442 | 0.760 0.619 0.385 0.424 | 0.888 0.684 0.434 0.450
— 96 | 0382 0411 0329 0367 | 0373 0.401 0317 0.359 | 0.300 0.343 0.293 0.341 | 0.364 0386 0.354 0.382
E 192 | 0410 0425 0376 0.391 | 0.391 0.409 0364 0.383 | 0.334 0365 0331 0.362 | 0.396 0.402 0395 0.401
[; 336 | 0457 0461 0411 0414 | 0422 0433 0395 0.403 | 0.369 0385 0.370 0.383 | 0.426 0.423 0.426 0.421
720 | 0.546 0518 0483 0455 | 0491 0478 0453 0440 | 0.424 0420 0426 0.415 | 0488 0463 0490 0.454
o 96 | 0238 0327 0182 0.268 | 0.255 0.337 0.178 0.261 | 0.169 0.265 0.163 0.252 | 0.207 0.306 0.186 0.270
E 192 | 0327 0397 0.251 0.312 | 0.319 0368 0.242 0.303 | 0.235 0316 0.218 0.291 | 0.288 0363 0.250 0.309
E 336 | 0.617 0581 0.311 0.348 | 0463 0.456 0.305 0.344 | 0304 0.365 0.273 0.326 | 0.392 0435 0.310 0.346
720 | 1.066 0.786 0.412 0.405 | 0.529 0.488 0.399 0.397 | 0.456 0.463 0.368 0.383 | 0.559 0.525 0.410 0.401
96 | 0.150 0.247 0.143 0.237 | 0.187 0.285 0.175 0.271 | 0.147 0.248 0.138 0.235 | 0.199 0.286 0.192 0.273
d 192 | 0.163 0.262 0.161 0.252 | 0.193 0.293 0.186 0.280 | 0.160 0.261 0.153 0.247 | 0.198 0.289 0.193 0.275
D 336 | 0.196 0299 0.175 0.269 | 0.211 0.312 0.203 0.296 | 0.175 0.277 0.169 0.263 | 0.211 0304 0.208 0.290
720 | 0.217 0318 0.207 0.298 | 0.251 0.347 0.245 0.329 | 0.209 0.309 0.207 0.295 | 0.246 0.336 0.249 0.323
o 96 0543 0306 0.399 0274 | 0.569 0.306 0.496 0.321 | 0430 0.306 0.413 0.288 | 0.653 0.402 0.644 0.387
& 192 | 0.549 0.300 0.418 0.280 | 0.581 0.308 0.493 0321 | 0443 0311 0426 0.292 | 0.602 0.377 0.597 0.364
E 336 | 0.583 0316 0.432 0.285 | 0.595 0.314 0.511 0.327 | 0456 0.319 0.439 0.298 | 0.609 0.379 0.605 0.365
720 | 0.610 0332 0.467 0.302 | 0.632 0.332 0.547 0.346 | 0.484 0.336 0.466 0.314 | 0.650 0.400 0.643 0.386
5 96 | 0.168 0226 0.165 0.208 | 0.172 0238 0.173 0.216 | 0.174 0.233 0.149 0.202 | 0.200 0.260 0.175 0.220
'::';,' 192 | 0.218 0.280 0.215 0.252 | 0.209 0.268 0218 0.255 | 0.216 0275 0.193 0.242 | 0.240 0.297 0.223 0.262
g 336 | 0.274 0324 0274 0.296 | 0.266 0315 0.277 0.298 | 0.261 0.312 0.244 0.281 | 0.285 0.334 0.278 0.301
720 | 0.349 0368 0.351 0.348 | 0.346 0.384 0.355 0.348 | 0.328 0.370 0.319 0.333 | 0.349 0.384 0.356 0.350

Table 6: Forecasting results of PatchTST and RLinear with FREMEN and other baseline methods
under prediction lengths L, € {96,192, 336, 720}. The best results are highlighted in bold.

Models | PatchTST | RLinear

Methods FREMEN RevIN SAN FAN Dish-TS FREMEN RevIN SAN FAN Dish-TS
Metrics | MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE | MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 | 0376 0.396 0379 0399 0.385 0400 0.394 0409 0400 0419 | 0410 0.419 0435 0435 0418 0426 0411 0423 0482 0476
192 | 0423 0424 0426 0432 0438 0435 0452 0445 0452 0453 | 0.465 0450 0479 0458 0467 0453 0467 0457 0535 0.507
336 | 0.468 0451 0469 0457 0490 0462 0508 0482 0543 0.511 | 0497 0466 0517 0476 0.506 0472 0.525 049 0579 0.530
720 | 0.484 0.483 0.528 0.510 0.548 0.513 0.558 0.528 0.672 0.600 | 0.490 0.483 0.517 0.497 0.502 0488 0.568 0.537 0.612 0.571

96 | 0290 0.343 0292 0.345 0309 0.359 0.335 0377 0340 0383 | 0.310 0.356 0.322 0366 0.313 0361 0337 0379 0444 0468
192 | 0367 0.392 0379 0403 0396 0413 0420 0436 0393 0419 | 0397 0408 0406 0415 0393 0412 0428 0440 0588 0.542
336 | 0413 0.426 0425 0440 0490 0474 0472 0477 0.558 0.507 | 0.430 0437 0443 0445 0436 0445 0484 0477 0.742 0614
720 | 0.423 0.442 0441 0458 0491 0483 0.796 0.627 0.821 0.626 | 0.434 0450 0444 0456 0442 0460 0833 0.637 1202 0.783

96 | 0317 0359 0322 0361 0329 0372 0339 0375 0351 0391 | 0354 0.382 0366 0384 0368 0393 0.365 0.393 0365 0.395
192 | 0.364 0.383 0366 0385 0.366 0.387 0381 0.399 0.383 0409 | 0395 0401 0402 0401 0.392 0404 0410 0419 0400 0412
336 | 0.395 0.403 0397 0408 0396 0.407 0426 0433 0410 0430 | 0426 0421 0434 0422 0426 0426 0452 0446 0432 0436
720 | 0.453 0.440 0455 0444 0456 0442 0495 0476 0479 0473 | 0490 0454 0495 0455 0491 0460 0519 0491 0501 0476

9 | 0178 0.261 0.181 0.267 0.178 0263 0.187 0279 0203 0.300 | 0.186 0.270 0.189 0.273 0.184 0.272 0.188 0278 0.217 0.316
192 | 0.242 0.303 0245 0305 0255 0320 0265 0332 0330 0390 | 0.250 0309 0253 0312 0.250 0311 0.284 0.344 0311 0.379
336 | 0.305 0.344 0309 0.348 0.359 0371 0407 0418 0453 0461 | 0310 0.346 0314 0.349 0309 0347 0397 0407 0490 0.479
720 | 0.399 0397 0417 0412 0410 0416 0570 0.516 0.650 0.564 | 0.410 0.401 0414 0404 0407 0406 0573 0512 1.09 0.689

96 | 0.175 0271 0.180 0.279 0.185 0277 0.181 0271 0.186 0.289 | 0.192 0.273 0201 0.280 0.190 0278 0.187 0276 0.192 0.284
192 | 0.186 0.280 0.188 0285 0.190 0282 0.187 0.277 0.192 0.294 | 0.193 0.275 0200 0.283 0.193 0281 0.194 0.285 0.197 0.289
336 | 0.203 0296 0209 0.306 0205 0.297 0.202 0294 0207 0311 | 0208 0.290 0215 0298 0207 0297 0.205 0298 0210 0.304
720 | 0245 0329 0.245 0330 0.244 0.329 0239 0327 0243 0340 | 0249 0323 0256 0330 0.247 0.330 0.243 0.332 0.245 0.336

96 | 0496 0.321 0485 0.297 0515 0322 0535 0325 0471 0300 | 0.644 0.387 0.648 0388 0.620 0.394 0.670 0423 0.650 0.406
192 | 0.493 0.321 0496 0304 0.523 0324 0543 0.323 0483 0304 | 0.597 0.364 0.601 0.365 0.595 0373 0.566 0.370 0.606 0.382
336 | 0.511 0327 0519 0.307 0540 0.330 0.558 0329 0.493 0309 | 0.605 0.365 0.608 0368 0.602 0375 0.580 0.374 0.613 0.384
720 | 0.547 0.346 0.559 0325 0.582 0350 0.608 0.348 0.530 0.329 | 0.643 0.386 0.647 0.387 0.658 0.394 0.626 0.394 0.655 0.404

9 | 0.173 0216 0.166 0.212 0.172 0225 0.170 0230 0.167 0.232 | 0.175 0.220 0.198 0.238 0.181 0.230 0.188 0240 0.193 0.267
192 | 0218 0.255 0213 0.252 0215 0267 0215 0277 0214 0282|0223 0.262 0242 0272 0227 0270 0.229 0279 0242 0312
336 | 0.277 0.298 0277 0.297 0268 0303 0.265 0.313 0283 0.342 | 0.278 0.301 0292 0.307 0.281 0312 0.276 0.319 0290 0.349
720 | 0355 0.348 0.353 0.348 0.339 0362 0.334 0355 0351 0.388 | 0.356 0350 0.364 0.353 0.358 0.365 0.343 0.368 0.360 0.400
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C.3 FREQUENCY-WISE DISTRIBUTION SHIFT ANALYSIS

Figure 8 provides additional examples illustrating the frequency-wise train-test distribution discrep-
ancies. Although variables across different datasets exhibit diverse spectral distributions, FREMEN
demonstrates effectiveness in addressing distributional differents between the training and test set.

e  Original
FAN
Wo wWo e  Fremen

W1g

W24
(b) ETTm1, Channel 2 (c) ECL, Channel 251

Wo
We Wy
W12 W36
Wi1g W30
Wo4 W24
(d) Traffic, Channel 200 (e) Weather, Channel 18

Figure 8: Additional showcases on the Train-Test distribution distance over all frequencies. Each
scatter corresponds to the JSD value of a frequency component. A smaller distance to the center
indicates a smaller JSD value.

C.4 FREQUENCY WEIGHT ANALYSIS

To investigate the dynamics of the learned frequency weights, we visualize both the training loss
and the evolution of A in Figure 9, using DLinear on the Traffic dataset. The upper subfigure
demonstrates a clear positive correlation between increasing )\geal and improved model accuracy. As
discussed in our preliminary analysis from the main paper, A governs kernel representation in
the frequency domain. While its exact closed-form kernel mapping remains analytically intractable,
we hypothesize its membership within common kernel families and empirically analyze the induced
representational transformations. The lower subfigure illustrates the kernel evolution under two
constrained settings: RBF and Cauchy kernels, sampled across five training epochs. Notably, we
observe divergent trends in the scale parameters o: the RBF kernel’s o exhibits monotonic growth,
while the Cauchy kernel’s o demonstrates consistent decay. This antithetical behavior underscores
the expressive flexibility of A, validating its capacity to adaptively model heterogeneous non-
stationary patterns through implicit kernel learning.
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Figure 9: Training process of DLinear with FREMEN on the Traffic dataset. Upper subgraph: the
change of the training loss and weights for frequency components. Lower subgraph: the evolution
of kernels corresponding to the frequency weights.
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