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ABSTRACT

Non-stationarity in time series has long posed a fundamental challenge for fore-
casting models, as it leads to distribution shifts between training and test data.
A popular line of research, known as normalization methods, aims to mea-
sure and suppress non-stationarity by removing time-domain low-order statistics.
Nevertheless, low-order statistics may inadequately address the underlying non-
stationary structures manifested as a composition of frequencies. To tackle these
issues, we propose to measure the degree of stationarity of each frequency com-
ponent across distributions via spectral analysis. By identifying and downweight-
ing frequencies that are more non-stationary, we re-represent the original time
series to reduce distributional discrepancies between training and test sets. Con-
cretely, we present FREMEN with threefold contributions. Theoretically, FREMEN
is grounded in a principled formulation and we provide the first spectral analysis
to support its validity. Technically, FREMEN is both novel and effective, incurring
negligible additional computational cost. Experimentally, FREMEN is validated on
four forecasting models across seven datasets, achieving 24 best results out of 28
settings and 28.4% average MSE improvements. Our code is publicly available1.

1 INTRODUCTION

Time series forecasting is vital to decision-making in real-world applications like industrial system
control and stock market tracking (Thompson & Wilson, 2016; Zhao et al., 2024). Recently, deep
learning has shown some promise on benchmark datasets (Nie et al., 2023; Liu et al., 2024; Piao
et al., 2024b; Wang et al., 2025). However, a challenge remains: the non-stationary nature of
time series such as seasonal fluctuations and irregular events often leads to poor generalization
when forecasting models are applied to unseen test data. The non-stationarity baffles training-
patterns-driven forecasting models that assume consistency in the test dataset. Therefore, when the
distribution shift occurs, these models show forecasting degeneration.

To tackle this issue, a recent popular line of research focuses on normalization methods that aim to
measure and suppress non-stationarity in the input samples, thereby reducing distributional discrep-
ancies between the training and test datasets (Kim et al., 2021; Liu et al., 2023; Fan et al., 2023; Han
et al., 2024; Ye et al., 2024). These methods explicitly measure non-stationarity through statistical
metrics (typically mean and variance) computed or learned from the training set. The metrics are
then used to normalize the input, attempting to remove distribution shifts manifested in the location
and scale. Since the normalization is applied consistently during both training and inference, it helps
align the data distributions and thus improves generalization. Importantly, many of these methods
learn to control the normalization strength through adaptive gates (Fan et al., 2023) or residual con-
nections (Liu et al., 2023), balancing between preserving the original distributional information and
measuring statistical stability for more robust forecasting.

Nevertheless, existing methods estimate statistics in the time domain, which may inadequately mea-
sure the non-stationarity due to the following reasons. First, these methods primarily rely on nor-
malizing raw temporal values. While it may be effective for simple scale and temporal variations, it
often fails to account for more complex non-stationary structures in the frequency domain, such as
temporal drift in dominant frequencies, spectral reallocation, or shifts in periodicity (Ye et al., 2024;

1https://anonymous.4open.science/r/Fremen-code-82C8
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Figure 1: (a) The objective of this paper is to measure stationarity of frequencies and reweight them
accordingly for stationary representation. (b) The learnt representation achieves the lowest Jensen-
Shannon divergence between the training and test samples compared to existing methods. A larger
shaded area indicates a smaller distributional discrepancy between the training and test set.

Piao et al., 2024b). As a result, these methods struggle to mitigate distribution shifts that consist
of the underlying spectra of time series data. Second, the use of low-order statistics is insufficient
to characterize complex distributional structures and intricate temporal dependencies (e.g., multi-
modality, higher-order statistics, or changes in its functional form) (Han et al., 2024). Consequently,
the normalization becomes inaccurate, hindering the effectiveness in measuring distribution shifts.

To address these issues, this paper presents FREMEN, a frequency-space, non-stationarity-aware
method to mitigate distribution shifts in time series forecasting. As shown in Figure 1, our idea is to
perform spectral analysis to measure the degree of stationarity of each frequency component across
samples. By identifying and downweighting frequency components that are more non-stationary,
we re-represent the original time series to reduce distributional discrepancies between training and
test sets. While a recent study also attempts to analyze non-stationarity in the frequency domain
(Ye et al., 2024). It heuristically selects the top-k frequency magnitudes, running the risk of low-
frequency dominance and inadequately characterizing the entire spectrum. By contrast, we intro-
duce a kernel representation that is implicitly induced by the Fourier transform, integrating out all
possible distribution shift patterns via the Yaglom’s theorem (Yaglom, 1987). By the one-one cor-
respondence between kernel and spectral weights, learning the weights of frequencies is equivalent
to learning a data-adaptive kernel representation itself, allowing the model to capture subtle distri-
butional discrepancies and prioritize stationary frequency components for improved generalization.

Our contributions are threefold. Theoretically, we provide the first spectral analysis of frequency-
domain non-stationarity to combat distribution shift. Methodologically, we present a simple yet
effective algorithm for learning to weight the frequency components, thereby re-representing the
distribution behind time series data. Experimentally, FREMEN is validated on four mainstream fore-
casting backbone models across seven benchmark datasets, achieving 24 best results out of 28 set-
tings and 28.4% average MSE improvements in multivariate forecasting.

2 RELATED WORKS

Non-stationary Time Series Modeling. Existing methods mainly aim to find a way to measure the
distribution shift in the time domain, thereby helping the model learn a robust data representation
(Du et al., 2021; Kim et al., 2021; Piao et al., 2024a). RevIN (Kim et al., 2021) proposed using mean
and variance to measure the distribution shift. They first set the mean and variance of each sample to
a fixed value. After forecasting, the original values are returned to the forecasting model outputs. A
series of time-domain methods followed this idea: (i) Earlier works consider the evolution of mean
and variance between inputs and outputs and explicitly model them (Fan et al., 2023; Liu et al.,
2023). (ii) Recent works tend to learn a more expressive measure of non-stationarity than low-order
statistics (Han et al., 2024; Liu et al., 2023). Recently, FAN (Ye et al., 2024) took an initial step to-
ward addressing distribution shifts in the frequency domain. FAN identifies high-amplitude frequen-
cies as unstable and seeks to mitigate distribution shifts by removing these frequencies. However,
this heuristic strategy may risk discarding critical patterns and lead to suboptimal performance.
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Frequency Domain Modeling. Non-stationary time series can be seen as a mix of frequencies that
vary over time (Proakis & Manolakis, 1996). Earlier methods often aim to learn frequency features
directly from the raw Fourier coefficients (Wu et al., 2021; Zhou et al., 2022b; Wang et al., 2022;
Wu et al., 2023; Yi et al., 2023). However, the frequency features are often sparse and mixed with
noise and time-varying features (Proakis & Manolakis, 1996; Piao et al., 2024b). Recent methods
tend to learn more informative and robust representations via sparse selection (Zhou et al., 2022b;
Woo et al., 2022; Zhou et al., 2022a; Ye et al., 2024) or normalization (Piao et al., 2024b). However,
these methods often rely on heuristic strategies and do not consider cross-sample variations. To the
best of our knowledge, we are the first to model the frequency variations across samples to mitigate
the impact of non-stationary features on forecasting.

3 PROBLEM SETTING AND PRELIMINARY ANALYSIS

We formulate the problem of distribution shifts in non-stationary time series in Section 3.1, followed
by our novel theoretical analysis in Section 3.2. Based on the analysis, we present a novel forecasting
method FREMEN in Section 4. The key notations used in the paper are summarized in Table 1.

3.1 PROBLEM SETUP

Definition 1 (Time series data and forecasting.) We consider the multivariate time series fore-
casting problem on a given dataset {X ,Y}, with X = {x(i)}Ni=1,Y = {y(i)}Ni=1 and N de-
notes the number of sequences. Let C,Lx, Ly respectively denote the number of variables,
the input-sequence length and the model prediction length, then the goal can be formulated as
that given an input time series data x(i) ∈ RLx×C , predict the target values y(i) ∈ RLy×C .

Table 1: Key notations used in this paper.

Notation Description

X ,Y input and target time series
Lx, Ly input sequence length, predic-

tion length
N number of variables
C number of channels
Pt time series generation distribu-

tion
t sample index of time series
ω frequency component
S power spectral density
k valid kernel
λ eigenvalue, frequency weight
F frequency coefficient

Definition 2 (Distribution shift issue in forecast-
ing.) We consider the forecasting under distribu-
tion shift issue induced by non-stationarity in time
series data. We assume that the dataX is generated
from an evolving distribution over time Pt(x). A
time series is said to be stationary if its distribution
remains invariant over time, i.e., Pt1(x) = Pt2(x)
for all t1, t2. Conversely, non-stationarity refers
to scenarios where the distribution changes with
time: ∃ t1 ̸= t2 s.t. Pt1(x) ̸= Pt2(x). Such
distribution shifts can manifest through changes in
the mean, variance, feature correlation, or other
latent structure of the input sequences. Formally,
given a training setXtrain = {x(i)}Ntrain

i=1 drawn from
Pt(x) with t ∈ Ttrain, the goal is to make accurate
predictions on future inputs x drawn from a dif-
ferent distribution Pt′(x) with t′ ∈ Ttest, Ttest ∩
Ttrain = ∅, and Pt′(x) ̸= Pt(x).

Problem (Statistical non-stationarity measure.) A common paradigm is the use of statistical
normalization techniques applied directly to the input sequences. These methods normalize the
observations across the temporal dimension before feeding into the model. Formally, it computes
channel-wise µt, σt (e.g., mean and standard deviation at time t), and transforms x into a normalized
time series x̃: x̃t,c =

xt,c−µt,c

σt,c
, ∀t ∈ [1, Lx], c ∈ [1, C]. µt, σt can be empirically computed (Kim

et al., 2021), learned (Fan et al., 2023), or vectorized using sliding windows (Liu et al., 2023).

However, this paradigm implicitly assumes that the data generating distribution Pt(x) can be fully
characterized by its low-order statistics. This assumption rules out the possibility of more complex
distributions. Even in the location-scale family, members like the Student’s t distribution depend on
additional parameters (Zhu et al., 2025). Existing normalization methods thus fail to reflect complex
non-stationary patterns like frequency shift, temporal dynamics, or latent structural changes.

3
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Therefore, our goal is to develop more expressive, learnable measures of non-stationarity that can
adaptively characterize evolving dynamics in the input time series.

3.2 PRELIMINARY ANALYSIS: MEASURING NON-STATIONARITY IN FREQUENCIES

We investigate non-stationarity in time series from a frequency-domain perspective. The Fourier
transform decomposes a time series into basis functions, disentangling temporal structure into inter-
pretable frequency bands. Our theoretical analysis first shows that variations in the power spectrum
reflect underlying distribution shifts (Lemma 1), and that such spectral differences provide a valid
non-stationarity measure (Lemma 2). We further prove that modeling these differences induces a
shift-invariant kernel in the frequency domain, offering a principled way to emphasize stationary
components for robust forecasting (Lemma 3). We begin by formally stating our main theorem.

Theorem 1 The Fourier transform on the timeseries dataset X induces a similarity measure k that
is invariant to the non-stationarity. This measure k can be learned in a data-driven manner by
learning its frequency weights {λi}.

To support this theorem, we present the following lemmas, which respectively establishes that: (i)
spectral representations encode key differences to non-stationarity not apparent in the time domain;
(ii) a measure capable of gauging the differences in the spectral domain holds the potential of dis-
tinguishing distribution shifts; (iii) kernel function is a valid measure that can be adapted to data by
identifying its eigenvalues.

Lemma 1 (Spectral shift and energy redistribution) Let xt and x′
t be two sampled non-

stationary time series, where the distribution shifts over time. Then their spectral representations x̂
and x̂′ exhibit distinct energy distributions across frequency bands:

∃ω s.t. |x̂(ω)|2 ̸= |x̂′(ω)|2.

This redistribution of spectral energy reflects the underlying non-stationary behavior (e.g., seasonal
transitions, structural drifts), which may not be apparent in the time domain.

Thus, power spectral density (PSD) analysis may provide a principled way to quantify time-varying
distributions. We next formalize the discriminative capability of these spectral patterns, thereby
validating the use of frequency-domain representations as a principled measure of non-stationarity.

Lemma 2 (Discriminative power of spectral distribution) Let X1,X2 be two subsets of se-
quences drawn from distributions Pt1 and Pt2 respectively, with Pt1 ̸= Pt2 . Assume their aver-
age power spectral densities are S1(ω) and S2(ω). Then the total variation distance between them
satisfies:

TV(S1,S2) =
1

2

∫
|S1(ω)− S2(ω)| dω > 0.

This implies that frequency-domain statistics can effectively distinguish different time-evolving dis-
tributions, and thus serve as a valid non-stationarity measure.

Having established that spectral differences can measure non-stationarity, we next explore how to
learn a function to model the difference in a principled way. We turn to spectral analysis to show
that a valid similarity measure as a kernel function is implicitly induced by Fourier transform.

Lemma 3 (Yaglom’s Theorem) A continuous bounded function k on RLx is a valid kernel if and
only if it can be represented as

k(x1, x2) =

∫
RLx×RLx

e2πi(ω
⊤
1 x1−ω⊤

2 x2)S(ω1, ω2)dω1dω2

where S(ω1, ω2) can be understood as a joint probability density function (Yaglom, 1987). Because
a kernel can be fully characterized by its eigen-decomposition (Scholkopf & Smola, 2001), Yaglom’s
theorem indicates that the measure k induced by Fourier transform on data can be adapted to data
by learning its eigenvalues {λi}.

4
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Figure 2: FREMEN begins by initializing frequency weights from the training set and refining them
through neural network optimization (Module-1,2). Then, given an input, the weights are applied to
produce a frequency-weighted input for the forecasting backbone to perform prediction (Module-3).

As time-sequential data can be derived from the integration of harmonic waves, the Yaglom’s the-
orem implies that a kernel as the result of integrating over the distribution of power spectra, is
invariant to the time-varying statistical characteristics of time series (Xue et al., 2023).

In summary, our theorem and the lemmas manifest a key point: when we move to the frequency
domain, the differences in power spectra directly capture non-stationarity. This means we can think
of the kernel as a mathematical tool that measures similarity between time series in the frequency
domain. Frequency components capture patterns at different scales, and kernels provide a principled
way to weight them by their stability across training and test data. This naturally emphasizes station-
ary frequencies while suppressing non-stationary ones. Our goal is to identify relatively stationary
frequency weights to mitigate distribution shift in non-stationary time series forecasting.

4 PROPOSED METHOD: FREMEN

Based on our analysis in Section 3.2, we present a novel forecasting framework FREMEN in this
section. FREMEN can be employed as a representation layer that reweights frequency components
of the input to produce non-stationarity-aware features.

4.1 OVERALL FORWARD PROCESS

The forward process is summarized in Figure 2. FREMEN first learns frequency weights from the
training set Xtrain. Specifically, the frequency weight initialization (Module-1) takes samples in
Xtrain as input, outputs the empirical kernel eigenvalue λ̂ as initial frequency weights. Then, λ̂
is fed to the neural network in the frequency weight optimization (Module-2), producing weights for
real and imaginary parts, i.e., λreal

θ and λimag
θ . Finally, when a new input x arrives, the frequency-

weighted representation (Module-3) transforms it into the frequency domain, applies λreal
θ and λimag

θ
to the corresponding frequency components, and transforms it back to the time domain to obtain a
weighted representation x̃, serving as the input for the forecasting model.

4.2 MODULE-1: FREQUENCY WEIGHT INITIALIZATION

As discussed in the preliminary analysis, frequency weights have one-one correspondence with
kernels. To steer the learning process, we assume the commonly adopted RBF kernel (i.e.,
exp

(
−γ||x1 − x2||2

)
, where γ := 1

2σ2 > 0 denotes the kernel width) to initialize the non-
stationarity measure. Then, the corresponding eigenvalues of RBF kernel naturally serve as the
starting point of frequency weights, which can be empirically estimated from the training set. Given
Xtrain = {x(i)}Ni=1, we first apply Discrete Fourier Transform (DFT) on each time series sample to
obtain the amplitude spectrum A(i) = Amp(DFT(x(i))) ∈ RLx×C , where Amp(·) computes the
amplitude. The frequency-wise RBF eigenvalue λ̂ ∈ RLx×C is then measured by:

λ̂(ω) =

√
π

γ̂
exp

(
−ω2

4γ̂

)
, where γ̂ =

1

2σ2({A(i)}Ni=1)
. (1)

Here, γ̂ is the only value to be estimated. Frequency-wise standard deviation σ(·) is computed for
frequency component ω over amplitudes of all training samples.

5
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4.3 MODULE-2: FREQUENCY WEIGHT OPTIMIZATION

Following the initialization with RBF, one might consider learning the width γ for the frequency
weights in a data-adaptive way. However, doing so is restricted to the RBF kernel as its func-
tional form remains fixed. By contrast, learning adaptive weights λθ corresponds to learning diverse
kernel representations itself, which has greater expressiveness than the fixed RBF. Therefore, we
learn the frequency weights λθ from the RBF initialization by updating the neural networks with
stochastic gradient descent. Specifically, we implement Multi-Layer Perceptrons (MLPs) to opti-
mize frequency weights:

λreal
θ (ω) = ReLU(λ̂(ω)Wreal

1 + breal
1 )Wreal

2 + breal
2 ,

λimag
θ (ω) = ReLU(λ̂(ω)Wimag

1 + bimag
1 )Wimag

2 + bimag
2 . (2)

Here W∗
1 ∈ RC×H , W∗

2 ∈ RH×C , b∗
1 ∈ RH , and b∗

2 ∈ RC , where ∗ ∈ {real, imag}. H is the
hidden dimension. Notably, we model the weights for real and imaginary frequency components
separately as λreal

θ and λimag
θ ∈ RLx×C . The rationale behind this design is that assigning distinct

weights to the real and imaginary components allows the model to capture non-stationarity arising
from shifts in both amplitude and phase. In contrast, a single unified weight per frequency can only
modulate amplitude, leaving phase-related non-stationarity structures unaddressed.

4.4 MODULE-3: FREQUENCY-WEIGHTED REPRESENTATION

Given an input time series x ∈ RLx×C , we first transform it to the frequency domain via DFT,
producing real and imaginary coefficients as Freal, Fimag = DFT(x). Then, the learned frequency
weights are applied to the corresponding coefficient using Hadamard product:

F̃real(ω)=Freal(ω)⊙λreal
θ (ω), F̃imag(ω)=Fimag(ω)⊙λimag

θ (ω). (3)

The weighted coefficients, i.e., F̃real and F̃imag, are supposed to establish a more stationary rep-
resentation with enhanced stationary frequencies and suppressed non-stationary ones, accommo-
dating robust forecasting under distribution shifts. By aggregating all weighted frequencies, the
final time-domain representation is obtained via Inverse Discrete Fourier Transform (IDFT) as
x̃ = IDFT(F̃real+iF̃imag) ∈ RLx×C , serving as the input for the downstream forecasting backbone
model to perform prediction. The whole framework is trained jointly with the forecasting backbone
using mean squared error (MSE) loss in an end-to-end manner.

5 EXPERIMENTS

We conduct various experiments on widely adopted benchmark datasets to answer the following
questions: RQ1: How does FREMEN enhance the performance of existing time series forecasting
backbone models? RQ2: Does FREMEN mitigate distribution shift issue? RQ3: How effective are
the learned frequency weights λθ? RQ4: How does each design choice of FREMEN contribute to its
performance? RQ5: How does the inclusion of FREMEN affect the efficiency of backbone models?

5.1 EXPERIMENT SETUP

Datasets. We use seven widely adopted datasets in multivariate time series forecasting, including:
(1) ETT (Electricity Transformer Temperature) with four subsets of oil temperature and electrical
load recorded at hourly (ETTh1, ETTh2) and 15-minute (ETTm1, ETTm2) resolutions from July
2016 to July 2018; (2) ECL contains 15-minute-level electricity consumption of 321 clients from
2012 to 2014. (3) Weather includes 21 meteorological features collected every 10 minutes in 2020.
(4) Traffic is comprised of hourly-recorded traffic load by 862 sensors in San Francisco freeways
from 2015 to 2016. All datasets have been published in (Wu et al., 2021). We adopt the split ratio
setting in (Wu et al., 2021), which is 6:2:2 for four ETT datasets and 7:1:2 for the other datasets.
A global normalization is applied to transform the whole dataset to a fixed scale. Note that this
normalization keeps the statistics unchanged; thus, it is unable to handle non-stationarity.

Baselines. We compare FREMEN with state-of-the-art normalization methods for non-stationary
time series forecasting including: RevIN (Kim et al., 2021), SAN (Liu et al., 2023), Dish-TS (Fan

6
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Table 2: Forecasting results of backbone models with and without FREMEN. Results are averaged
with prediction length Ly ∈ {96, 192, 336, 720}. The best results are highlighted in bold.

Methods iTransformer + FREMEN PatchTST + FREMEN DLinear + FREMEN RLinear + FREMEN
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.511 0.500 0.451 0.448 0.495 0.490 0.438 0.439 0.425 0.440 0.407 0.423 0.535 0.504 0.466 0.455
±0.001 ±0.001 ±0.017 ±0.011 ±0.024 ±0.023 ±0.003 ±0.002 ±0.002 ±0.004 ±0.001 ±0.002 ±0.014 ±0.005 ±0.028 ±0.013

ETTh2 0.786 0.642 0.379 0.405 0.649 0.526 0.373 0.401 0.489 0.476 0.335 0.383 0.618 0.553 0.393 0.413
±0.068 ±0.035 ±0.002 ±0.002 ±0.102 ±0.058 ±0.014 ±0.008 ±0.012 ±0.009 ±0.005 ±0.003 ±0.018 ±0.008 ±0.004 ±0.002

ETTm1 0.449 0.454 0.400 0.407 0.419 0.430 0.382 0.396 0.357 0.378 0.355 0.375 0.419 0.419 0.416 0.415
±0.004 ±0.004 ±0.001 ±0.001 ±0.009 ±0.009 ±0.010 ±0.007 ±0.001 ±0.001 ±0.001 ±0.001 ±0.003 ±0.001 ±0.003 ±0.002

ETTm2 0.562 0.523 0.289 0.333 0.392 0.412 0.281 0.326 0.291 0.352 0.256 0.313 0.362 0.407 0.289 0.332
±0.024 ±0.026 ±0.001 ±0.002 ±0.145 ±0.097 ±0.002 ±0.003 ±0.011 ±0.014 ±0.005 ±0.005 ±0.006 ±0.006 ±0.002 ±0.002

ECL 0.182 0.282 0.172 0.264 0.211 0.309 0.202 0.294 0.173 0.274 0.167 0.260 0.214 0.304 0.211 0.290
±0.002 ±0.003 ±0.002 ±0.002 ±0.004 ±0.008 ±0.003 ±0.005 ±0.001 ±0.001 ±0.001 ±0.001 ±0.004 ±0.004 ±0.004 ±0.004

Traffic 0.571 0.314 0.429 0.285 0.594 0.315 0.512 0.329 0.453 0.318 0.436 0.298 0.629 0.390 0.622 0.376
±0.007 ±0.007 ±0.013 ±0.009 ±0.006 ±0.006 ±0.009 ±0.009 ±0.000 ±0.001 ±0.001 ±0.002 ±0.008 ±0.003 ±0.010 ±0.007

Weather 0.252 0.300 0.251 0.276 0.248 0.301 0.256 0.279 0.245 0.298 0.226 0.265 0.269 0.319 0.258 0.283
±0.003 ±0.007 ±0.003 ±0.002 ±0.004 ±0.007 ±0.005 ±0.003 ±0.001 ±0.002 ±0.001 ±0.001 ±0.001 ±0.001 ±0.003 ±0.004

et al., 2023), and FAN (Ye et al., 2024). RevIN, SAN, and Dish-TS conduct time-domain normal-
ization, while FAN focuses on modeling dominant frequencies to overcome non-stationarity.

Backbones. FREMEN is a model-agnostic framework that can be applied to any time series fore-
casting model. To validate its effectiveness, we select four mainstream backbones, including: MLP-
based DLinear (Zeng et al., 2023) and RLinear (Li et al., 2023), and Transformer-based iTransformer
(Liu et al., 2024) and PatchTST (Nie et al., 2022). The normalization baselines and our FREMEN
method are deployed on these backbones for the following experiments.

Experiments Details. The prediction length is set as Ly ∈ {96, 192, 336, 720} for all backbones.
The input-sequence length Lx is set to 336 for DLinear and 96 for the other backbones. We use the
Adam optimizer and report the mean absolute error (MAE) and mean squared error (MSE) as the
evaluation metrics. All experiments are implemented with PyTorch 2.3.0 and conducted on a single
NVIDIA A100 40GB GPU. Details of setup and full experiment results are in the Appendix.

5.2 MAIN RESULTS

Effectiveness on Time Series Forecasting Backbones. To answer RQ1, we present the multivariate
forecasting results in Table 2. Here, the MSE and MAE are presented in the form of mean ± std
for five runs across four prediction lengths. It is evident that FREMEN consistently enhances the
performance of backbone models by a substantial margin under nearly all experimental settings.
For example, the average MSE improvements for iTransformer are notable on ETTh2 (51.78%),
ETTm2 (48.57%), and Traffic (24.86%), with an average MSE reduction of 28.43% among all
datasets. Comparable improvements are observed for PatchTST, DLinear, and RLinear, with average
MSE reductions of 18.75%, 10.31%, and 12.83%, respectively, over all benchmark datasets. The
superior results can be primarily attributed to the adaptive frequency weights applied, which yields
representations with reduced non-stationarity, thereby benefiting learning of forecasting backbones.

Comparison with Baseline Methods. Continuing the investigation of RQ1, we present the evalua-
tion result of different normalization methods on iTransformer and DLinear in Table 3. We observe
that FREMEN generally outperforms baselines for different forecasting backbones, achieving the
best forecasting results in 24 out of 28 experiment settings on average. Specifically, on the ECL
dataset, FREMEN achieves MSE values of 0.172 and 0.167 for iTransformer and DLinear, outper-
forming the best baseline results (i.e., 0.176 by Dish-TS and 0.171 by SAN). Similarly, on the Traffic
dataset, the MSE of FREMEN averaged across backbones is 0.432, compared to 0.450, 0.467, 0.491,
and 0.456 for RevIN, SAN, FAN, and Dish-TS, respectively. These results may be attributed to the
inadequacy of existing methods in modeling non-stationary structures involving spectral shifts.

5.3 DETAILED ANALYSIS

Distribution Shift Analysis. To answer RQ2, we compare the frequency-domain distributional dis-
tance between the training and test sets for each normalization method. Specifically, the distance
is quantified using the Jensen-Shannon Divergence (JSD) between the empirical distributions of the
training and test samples. As shown in Figure 3 (a), we begin by analyzing the JSD across all chan-
nels. Overall, FREMEN exhibits the best performance in reducing the train-test distributional gaps.
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Table 3: Forecasting results of iTransformer and DLinear with FREMEN and other baseline methods
under prediction lengths Ly ∈ {96, 192, 336, 720}. The best results are highlighted in bold.

Models iTransformer DLinear

Methods FREMEN RevIN SAN FAN Dish-TS FREMEN RevIN SAN FAN Dish-TS
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.389 0.405 0.394 0.409 0.385 0.402 0.403 0.417 0.398 0.418 0.369 0.393 0.376 0.399 0.392 0.409 0.400 0.421 0.383 0.404
192 0.440 0.436 0.447 0.440 0.442 0.437 0.456 0.448 0.453 0.452 0.406 0.418 0.413 0.422 0.437 0.436 0.452 0.460 0.414 0.424
336 0.479 0.459 0.490 0.463 0.473 0.453 0.512 0.485 0.499 0.481 0.425 0.431 0.430 0.432 0.450 0.446 0.489 0.488 0.441 0.444
720 0.497 0.490 0.521 0.502 0.522 0.498 0.554 0.527 0.532 0.522 0.428 0.451 0.444 0.461 0.455 0.467 0.622 0.575 0.475 0.491

E
T

T
h2

96 0.299 0.349 0.304 0.353 0.302 0.353 0.327 0.372 0.343 0.391 0.272 0.336 0.275 0.337 0.289 0.346 0.300 0.363 0.302 0.357
192 0.376 0.396 0.391 0.405 0.382 0.399 0.425 0.438 0.533 0.506 0.329 0.375 0.335 0.376 0.356 0.385 0.408 0.439 0.418 0.423
336 0.415 0.429 0.431 0.439 0.422 0.434 0.481 0.479 0.638 0.559 0.353 0.397 0.358 0.398 0.374 0.407 0.466 0.481 0.495 0.468
720 0.425 0.444 0.437 0.452 0.496 0.482 0.847 0.641 0.979 0.720 0.385 0.424 0.392 0.428 0.406 0.441 0.867 0.660 0.751 0.577

E
T

T
m

1 96 0.329 0.367 0.339 0.374 0.336 0.375 0.342 0.377 0.340 0.378 0.293 0.341 0.301 0.343 0.295 0.343 0.319 0.359 0.300 0.344
192 0.376 0.391 0.378 0.393 0.378 0.398 0.383 0.403 0.379 0.398 0.331 0.362 0.336 0.363 0.329 0.366 0.363 0.388 0.335 0.365
336 0.411 0.414 0.418 0.418 0.412 0.424 0.431 0.440 0.421 0.430 0.370 0.383 0.371 0.384 0.363 0.386 0.406 0.415 0.374 0.392
720 0.483 0.455 0.489 0.454 0.478 0.459 0.491 0.477 0.492 0.470 0.426 0.415 0.428 0.417 0.414 0.417 0.473 0.458 0.436 0.434

E
T

T
m

2 96 0.182 0.268 0.187 0.273 0.185 0.278 0.182 0.272 0.248 0.340 0.163 0.252 0.166 0.256 0.167 0.253 0.176 0.264 0.171 0.264
192 0.251 0.312 0.252 0.312 0.243 0.304 0.269 0.331 0.455 0.467 0.218 0.291 0.220 0.291 0.228 0.295 0.250 0.314 0.249 0.327
336 0.311 0.348 0.314 0.351 0.326 0.362 0.383 0.406 0.449 0.447 0.273 0.326 0.276 0.327 0.282 0.331 0.323 0.363 0.324 0.370
720 0.412 0.405 0.411 0.406 0.425 0.423 0.557 0.502 0.621 0.527 0.368 0.383 0.368 0.382 0.365 0.381 0.414 0.432 0.582 0.506

E
C

L

96 0.143 0.237 0.154 0.247 0.150 0.245 0.157 0.254 0.152 0.254 0.138 0.235 0.147 0.246 0.141 0.240 0.145 0.246 0.144 0.246
192 0.161 0.252 0.167 0.257 0.164 0.258 0.169 0.267 0.164 0.264 0.153 0.247 0.160 0.258 0.157 0.255 0.161 0.262 0.160 0.261
336 0.175 0.269 0.183 0.275 0.184 0.282 0.183 0.281 0.180 0.283 0.169 0.263 0.177 0.274 0.173 0.271 0.178 0.280 0.176 0.278
720 0.207 0.298 0.216 0.303 0.212 0.309 0.214 0.313 0.209 0.313 0.207 0.295 0.216 0.305 0.211 0.304 0.216 0.316 0.213 0.312

Tr
af

fic

96 0.399 0.274 0.411 0.270 0.441 0.286 0.490 0.310 0.404 0.273 0.413 0.288 0.430 0.303 0.427 0.304 0.427 0.310 0.446 0.314
192 0.418 0.280 0.437 0.280 0.463 0.292 0.502 0.306 0.432 0.283 0.426 0.292 0.443 0.308 0.448 0.311 0.446 0.321 0.459 0.319
336 0.432 0.285 0.450 0.286 0.480 0.298 0.524 0.319 0.453 0.291 0.439 0.298 0.455 0.314 0.468 0.319 0.462 0.329 0.472 0.326
720 0.467 0.302 0.488 0.303 0.516 0.316 0.574 0.345 0.487 0.310 0.466 0.314 0.483 0.329 0.498 0.335 0.503 0.358 0.497 0.342

W
ea

th
er 96 0.165 0.208 0.175 0.215 0.171 0.225 0.172 0.233 0.167 0.226 0.149 0.202 0.175 0.226 0.152 0.208 0.156 0.214 0.164 0.226

192 0.215 0.252 0.225 0.257 0.219 0.269 0.232 0.291 0.215 0.268 0.193 0.242 0.217 0.260 0.199 0.256 0.204 0.265 0.202 0.262
336 0.274 0.296 0.282 0.299 0.279 0.314 0.279 0.329 0.269 0.308 0.244 0.281 0.265 0.295 0.249 0.298 0.261 0.309 0.252 0.304
720 0.351 0.348 0.362 0.350 0.344 0.359 0.335 0.366 0.333 0.360 0.319 0.333 0.333 0.342 0.323 0.352 0.338 0.365 0.322 0.363

1st count 21 23 1 3 4 3 1 0 3 0 24 27 0 1 4 1 0 0 0 0

(a) (b)

𝜔0

𝜔6

𝜔12

𝜔18
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𝜔30

𝜔36

𝜔42

𝜔0

𝜔6

𝜔12

𝜔18

𝜔24

𝜔30

𝜔36

𝜔42

ETTh2 ETTm2

Figure 3: Train-Test distribution distance of each normalization method over (a) channels and (b)
frequencies. Each scatter in (b) corresponds to the JSD value of a frequency component. A smaller
distance to the center indicates a smaller JSD value.

Furthermore, FREMEN achieves a more compact distance distribution, validating the effectiveness
of frequency weights for most channels. We further investigate the improvements in addressing
distribution shift from a frequency-domain perspective in Figure 3 (b). The results are evaluated
on two datasets with the highest train-test JSD and compared with FAN, which also operates in the
frequency domain. The radius of each circle represents the average JSD value on all frequencies.
Results suggest that FREMEN significantly reduces distribution shift for almost all frequencies. In
contrast, FAN demonstrates noticeable improvements only within a limited frequency range. The
superiority of FREMEN stems from its ability to learn stationary representations across the entire fre-
quency spectrum, in contrast to the mechanism of FAN which heuristically models partial spectral.

Frequency Weight Analysis. To answer RQ3, we compare the learned and the actual stationarity
of frequencies on ECL in Figure 4. The blue line represents the averaged amplitude gap of frequen-
cies between the training and test set, which reflects actual extent of non-stationarity. The red line
represents the weight learned by FREMEN, which measures the stationarity. For case (a), we observe
that the two lines exhibit negative correlation. That is, the weights given by FREMEN is generally
higher for frequencies with smaller amplitude gaps and lower for those with larger amplitude gaps.
Similar results can be found in case (b), where the weights for the two frequencies with significant
amplitude gap are notably lower than those for others. The two examples confirm that FREMEN
correctly assigns weights to frequency components. Additionally, we analyze λθ via inspecting the
corresponding kernel representations. Taking RBF kernels for illustration, Figure 5 shows the kernel
shapes corresponding to four selected frequency weights. There is clear evidence that the learned
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(a) (b)

Figure 4: Comparison between the learned fre-
quency weight and the Train-Test amplitude gap.

𝜎1=2.042

𝜎2=0.861

𝜎3=3.533

𝜎4=2.731

𝜎1=0.458

𝜎2=1.568

𝜎3=2.791

𝜎4=5.053

Kernel for 𝜆𝜃
𝑟𝑒𝑎𝑙 Kernel for 𝜆𝜃

𝑖𝑚𝑎𝑔

Figure 5: Kernel representations corresponded to
the learned frequency weights.

Figure 6: Ablation study with Ly ∈ {96, 720}.
Best MSE results are highlighted in bold.

Method Variant
ETTh1 ECL Weather

96 720 96 720 96 720

iT
ra

ns
fo

rm
er + FREMEN 0.389 0.497 0.143 0.207 0.165 0.351

+ random init 0.406 0.532 0.164 0.235 0.174 0.357
+ fixed kernel 0.416 0.548 0.166 0.237 0.177 0.359

+ single weight 0.396 0.534 0.148 0.217 0.168 0.357

D
L

in
ea

r + FREMEN 0.369 0.428 0.138 0.207 0.149 0.319
+ random init 0.379 0.440 0.142 0.211 0.154 0.323
+ fixed kernel 0.380 0.437 0.154 0.221 0.160 0.325

+ single weight 0.376 0.433 0.141 0.209 0.152 0.321

RLinear

0.06M,1.22s

RLinear (Fremen)

0.09M,3.32s

iTransformer

0.30M,14.42s

iTransformer (Fremen)

0.32M,17.83s DLinear

0.48M,1.77s

DLinear (Fremen)

0.57M,5.04s

PatchTST

10.73M,16.17s

PatchTST (Fremen)

10.76M,18.80s

Figure 7: Efficiency analysis of forecasting back-
bones with (circle) and without FREMEN (star).

kernel representations differ significantly from one another, demonstrating the ability of FREMEN to
capture diverse non-stationary patterns in time series data by learning distinct kernels.

Ablation Study. To answer RQ4, this section systematically evaluates the key components of FRE-
MEN. We consider three variants to assess the contribution of each part: “random init” initializes λ̂
with a random vector; “fixed kernel” fixes λθ as the RBF eigenvalue; “single weight” uses shared
weights for real and imaginary frequency coefficients. As shown in Table 6, FREMEN consistently
outperforms all variants. Specifically, the increased forecasting error observed in “random init”
highlights the critical role of initializing with the empirical RBF kernel eigenvalue λ̂, which provides
a meaningful prior and facilitates more effective frequency weight learning. Similar performance
degradation are observed for “single weight” due to inability in handling phase shifts via separately
modeling non-stationarity for real and imaginary frequency components. The most pronounced de-
cline in performance is observed for “fixed kernel”, which is expected since fixing the kernel form
severely restricts the model’s expressiveness and adaptability to diverse non-stationarity patterns.

Model Efficiency Analysis. To address RQ5, we evaluate the efficiency of forecasting backbones
integrated with FREMEN, as illustrated in Figure 7 on the ETTh1 and ETTh2 datasets. In this
figure, each pattern represents the outcome of a specific experimental setting, with the size of the
pattern reflecting the corresponding running time. The results clearly demonstrate that FREMEN is
a lightweight yet highly effective enhancement, introducing only a slight increase in the number of
parameters (approximately 0.04M) and computational overhead (averaging 2.85 seconds per epoch),
while delivering substantial improvements in forecasting performance.

6 CONCLUSION

This paper studies the problem of learning robust representations for non-stationary time series
forecasting. Existing methods mainly focus on measuring non-stationarity in the time domain using
low-order statistics. This paper proposed a novel, non-stationarity-aware representation learning
method to capture complex temporal structures and variations. We provided theoretical analysis to
show that learning a valid non-stationarity measure in frequencies induced a kernel representation,
which can be further represented as an orthonormal set of frequency components weights. We
introduced FREMEN, that applied frequency weighting on the input time series to learn a more robust
representation for forecasting. FREMEN demonstrated effectiveness via extensive experiments. The
results confirmed that FREMEN improved mainstream forecasting models by a large margin and
outperformed other state-of-the-art normalization methods.
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7 REPRODUCIBILITY STATEMENT

We make our code publicly available2 which contains detailed implementation of our method. The
code and hyperparameters for forecasting backbones adopted in this paper are based on the Time-
Series-Library3. For normalization baseline methods, we utilize the code from their official github
repository together with the configurations.
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APPENDIX/SUPPLEMENTARY MATERIALS

A LARGE LANGUAGE MODELS (LLMS) USAGE STATEMENT

Large Language Models (LLMs) were used solely to assist with the English writing and language
polishing of this manuscript. All research ideas, experimental design, data analysis, and scientific
content were conceived and executed by the authors without the involvement of LLMs.
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B ADDITIONAL EXPERIMENTAL DETAILS

B.1 DATASET DETAILS

The statistical properties of the seven benchmark datasets are summarized in Table 4. To quantify
the distribution shift between training and test samples, we employ the Jensen-Shannon Divergence
(JSD), which serves as a measure of dataset non-stationarity (Mateos et al., 2017). The JSD is com-
puted between the empirical distributions derived from the training and test sets. The computational
procedure for JSD between two sample sets is formally described in Algorithm 1. Our implemen-
tation utilizes the “jensenshannon” function from the SciPy library, which computes the square root
of the JSD. Then, the squared output is considered as the distributional divergence measure.

Table 4: Statistics of benchmark datasets.

Datasets ETTh1 ETTh2 ETTm1 ETTm2 ECL Traffic Weather

# Channels 7 7 7 7 321 862 21
# Timesteps 17,420 17,420 69,680 69,680 26,304 17,544 52,969

Sample Frequency 1h 1h 15mins 15mins 1h 1h 10mins
Time Range 2016-2017 2017-2018 2016-2017 2017-2018 2012-2014 2015-2016 2020

JSD* 0.2091 0.2839 0.1225 0.3138 0.0716 0.0627 0.1524

* A smaller JSD indicates a more stationary time series dataset

Algorithm 1: Computation of Jensen-Shannon Divergence between two sets of samples
Input: arrays a, b; number of bins B
Output: Jensen-Shannon Divergence D2

JSD

1: vmin ← min(min(a),min(b))
2: vmax ← max(max(a),max(b))
3: ha ← histogram(a;B, [vmin, vmax])
4: hb ← histogram(b;B, [vmin, vmax])
5: p← ha/

∑
ha

6: q ← hb/
∑

hb

7: DJSD ← jensenshannon(p, q, base = 2)
8: return D2

JSD

B.2 BASELINE METHOD DETAILS

In this study, we study four state-of-the-art normalization methods as baselines: RevIN, SAN, Dish-
TS, and FAN. The technical details of each approach are presented below:

Reversible Instance Normalization (RevIN) (Kim et al., 2021). RevIN proposes a symmetric
normalization-denormalization framework to address distribution shifts in time series data. The
method first applies instance-wise z-score normalization to input samples, effectively eliminating
non-stationary components. The normalized data is then fed into the forecasting model for fore-
casting. After which the original statistical properties (i.e., mean and variance) are restored to the
forecasting result through a denormalization process. This reversible transformation maintains cru-
cial distributional characteristics while enabling models to operate on stationary representations.

Slice-level Adaptive Normalization (SAN) (Liu et al., 2023). SAN introduces a fine-grained nor-
malization approach that operates at the sub-series level instead of the whole input and output series.
Unlike direct statistical transfer, SAN employs a dedicated statistics prediction module to explicitly
model the evolution of mean and variance of the data distribution. During training, this module is
first pre-trained to predict future statistics. Then, it is frozen and used to produce normalized input
data for the downstream forecasting models training.

Dish-TS (Fan et al., 2023). Dish-TS provides a systematic framework that classifies distribution
shifts into intra-space (within input/output spaces) and inter-space (between input/output spaces)
variations. The method introduces a specialized network architecture for input and output distribu-
tion estimation, augmented with learnable adaptive distribution statistics. Notably, Dish-TS incor-
porates empirical mean values as prior knowledge to enhance statistical learning.
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Frequency Adaptive Normalization (FAN) (Ye et al., 2024). FAN represents the first normal-
ization approach that addresses non-stationarity through frequency-domain analysis. The method
classifies the whole frequency spectrum into two sets where the top-k dominant frequency compo-
nents are considered as non-stationary components which are fed into an MLP network to model the
future statistical variations. The remaining stationary frequency components are directly fed into
the forecasting models for prediction. Combining the two parts of outputs, FAN effectively captures
potential variants in frequencies to mitigate non-stationarity.

B.3 FORECASTING BACKBONE DETAILS

In this work, we evaluate our method on four prominent time series forecasting architectures: the
MLP-based DLinear and RLinear, and the Transformer-based iTransformer and PatchTST. We pro-
vide an overview of their key design principles:

DLinear (Zeng et al., 2023). DLinear establishes a decomposition-based linear architecture. The
method first decomposes the input series into trend and seasonal components using moving average
smoothing. These components are then processed independently through dedicated linear layers,
with their outputs aggregated to produce the final prediction result.

RLinear (Li et al., 2023). RLinear adopts an extremely light-weight architecture comprising a sin-
gle linear layer enhanced with reversible normalization. The approach capitalizes on the inherent
capability of linear mappings to capture periodic patterns, while the normalization scheme trans-
forms trend components into seasonality-like representations.

iTransformer (Liu et al., 2024). iTransformer reconfigures the standard Transformer architecture
for time series analysis. Rather than tokenizing multivariate points at each timestep, it represents en-
tire univariate series as individual tokens. This inverted paradigm enables self-attention mechanisms
to focus on cross-variate dependencies while feed-forward networks handle temporal patterns, better
accommodating the unique characteristics of time series data.

PatchTST (Nie et al., 2022). PatchTST employs a Transformer encoder architecture with two core
modifications: First, time series are divided into overlapping or non-overlapping patches that serve
as input tokens, reducing sequence length while preserving local patterns. Second, it processes each
channel independently with shared weights, enabling efficient multivariate forecasting.

B.4 OTHER EXPERIMENTAL DETAILS

Implementation details. We mainly tune the value of the hidden dimension H within the range of
{16, 64, 128, 256, 512} and select the one with the best forecasting accuracy on the validation set
as the final hyperparameter for each experimental setting. We repeat each experiment for five times
with fixed seed and report the average evaluation results.

Loss Functions. We employ mean squared error (MSE) as the loss function for all forecasting
backbones, which quantifies the averaged squared difference between the predicted and actual target
time series. Mathematically, the MSE loss is expressive as: LMSE = 1

N

∑N
i=1(ŷi − yi)

2, where N
is the number of samples, ŷi represents the predicted value, and yi represents the actual value.

C ADDITIONAL EVALUATION RESULTS

C.1 EFFECTIVENESS ON TIME SERIES FORECASTING BACKBONES

Table 5 presents comprehensive evaluation results across all prediction lengths and benchmark
datasets for the four forecasting backbones. The results demonstrate that FREMEN consistently en-
hances the performance of all four baseline architectures. Quantitative analysis reveals that FREMEN
outperforms the original models in 210 out of 224 evaluation scenarios (4 backbones× 7 datasets×
4 prediction lengths × 2 metrics). More specifically, FREMEN achieves average MSE reductions of
12.62%, 12.47%, 17.41%, and 25.97% for prediction lengths of 96, 192, 336, and 720 steps, respec-
tively. Notably, the performance gains become increasingly pronounced as the prediction horizon
lengthens. These findings provide strong evidence for the effectiveness of the frequency weighting
mechanism in FREMEN, particularly in the context of long-term time series forecasting tasks.
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C.2 COMPARISON WITH BASELINE METHODS

Tables 6 presents comprehensive evaluation results comparing FREMEN against existing normal-
ization approaches on PatchTST and RLinear. The experimental results demonstrate FREMEN’s
superior performance, particularly on the ETTh2 and ETTm2 datasets which exhibit significant
non-stationarity (as quantified by their high JSD values in Table 4). FREMEN achieves remarkable
improvements of 17.85% and 19.32% in average MSE reduction on ETTh2 and ETTm2 respectively,
significantly outperforming all baseline normalization methods.

Table 5: Full forecasting results of backbones with and without FREMEN under prediction lengths
Ly ∈ {96, 192, 336, 720}. The best results are highlighted in bold.

Methods iTransformer + FREMEN PatchTST + FREMEN DLinear + FREMEN RLinear + FREMEN
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.419 0.432 0.389 0.405 0.394 0.418 0.376 0.396 0.375 0.398 0.369 0.393 0.480 0.464 0.410 0.419
192 0.476 0.472 0.440 0.436 0.455 0.456 0.423 0.424 0.412 0.423 0.406 0.418 0.522 0.490 0.465 0.450
336 0.547 0.525 0.479 0.459 0.512 0.503 0.468 0.451 0.438 0.444 0.425 0.431 0.556 0.510 0.497 0.466
720 0.600 0.572 0.497 0.490 0.620 0.583 0.484 0.483 0.474 0.494 0.428 0.451 0.583 0.552 0.490 0.483

E
T

T
h2

96 0.460 0.473 0.299 0.349 0.413 0.392 0.290 0.343 0.307 0.369 0.272 0.336 0.404 0.443 0.310 0.356
192 0.656 0.593 0.376 0.396 0.479 0.473 0.367 0.392 0.402 0.431 0.329 0.375 0.530 0.511 0.397 0.408
336 0.887 0.702 0.415 0.429 0.576 0.517 0.413 0.426 0.488 0.485 0.353 0.397 0.648 0.573 0.430 0.437
720 1.142 0.799 0.425 0.444 1.128 0.722 0.423 0.442 0.760 0.619 0.385 0.424 0.888 0.684 0.434 0.450

E
T

T
m

1 96 0.382 0.411 0.329 0.367 0.373 0.401 0.317 0.359 0.300 0.343 0.293 0.341 0.364 0.386 0.354 0.382
192 0.410 0.425 0.376 0.391 0.391 0.409 0.364 0.383 0.334 0.365 0.331 0.362 0.396 0.402 0.395 0.401
336 0.457 0.461 0.411 0.414 0.422 0.433 0.395 0.403 0.369 0.385 0.370 0.383 0.426 0.423 0.426 0.421
720 0.546 0.518 0.483 0.455 0.491 0.478 0.453 0.440 0.424 0.420 0.426 0.415 0.488 0.463 0.490 0.454

E
T

T
m

2 96 0.238 0.327 0.182 0.268 0.255 0.337 0.178 0.261 0.169 0.265 0.163 0.252 0.207 0.306 0.186 0.270
192 0.327 0.397 0.251 0.312 0.319 0.368 0.242 0.303 0.235 0.316 0.218 0.291 0.288 0.363 0.250 0.309
336 0.617 0.581 0.311 0.348 0.463 0.456 0.305 0.344 0.304 0.365 0.273 0.326 0.392 0.435 0.310 0.346
720 1.066 0.786 0.412 0.405 0.529 0.488 0.399 0.397 0.456 0.463 0.368 0.383 0.559 0.525 0.410 0.401

E
C

L

96 0.150 0.247 0.143 0.237 0.187 0.285 0.175 0.271 0.147 0.248 0.138 0.235 0.199 0.286 0.192 0.273
192 0.163 0.262 0.161 0.252 0.193 0.293 0.186 0.280 0.160 0.261 0.153 0.247 0.198 0.289 0.193 0.275
336 0.196 0.299 0.175 0.269 0.211 0.312 0.203 0.296 0.175 0.277 0.169 0.263 0.211 0.304 0.208 0.290
720 0.217 0.318 0.207 0.298 0.251 0.347 0.245 0.329 0.209 0.309 0.207 0.295 0.246 0.336 0.249 0.323

Tr
af

fic

96 0.543 0.306 0.399 0.274 0.569 0.306 0.496 0.321 0.430 0.306 0.413 0.288 0.653 0.402 0.644 0.387
192 0.549 0.300 0.418 0.280 0.581 0.308 0.493 0.321 0.443 0.311 0.426 0.292 0.602 0.377 0.597 0.364
336 0.583 0.316 0.432 0.285 0.595 0.314 0.511 0.327 0.456 0.319 0.439 0.298 0.609 0.379 0.605 0.365
720 0.610 0.332 0.467 0.302 0.632 0.332 0.547 0.346 0.484 0.336 0.466 0.314 0.650 0.400 0.643 0.386

W
ea

th
er 96 0.168 0.226 0.165 0.208 0.172 0.238 0.173 0.216 0.174 0.233 0.149 0.202 0.200 0.260 0.175 0.220

192 0.218 0.280 0.215 0.252 0.209 0.268 0.218 0.255 0.216 0.275 0.193 0.242 0.240 0.297 0.223 0.262
336 0.274 0.324 0.274 0.296 0.266 0.315 0.277 0.298 0.261 0.312 0.244 0.281 0.285 0.334 0.278 0.301
720 0.349 0.368 0.351 0.348 0.346 0.384 0.355 0.348 0.328 0.370 0.319 0.333 0.349 0.384 0.356 0.350

Table 6: Forecasting results of PatchTST and RLinear with FREMEN and other baseline methods
under prediction lengths Ly ∈ {96, 192, 336, 720}. The best results are highlighted in bold.

Models PatchTST RLinear

Methods FREMEN RevIN SAN FAN Dish-TS FREMEN RevIN SAN FAN Dish-TS
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.376 0.396 0.379 0.399 0.385 0.400 0.394 0.409 0.400 0.419 0.410 0.419 0.435 0.435 0.418 0.426 0.411 0.423 0.482 0.476
192 0.423 0.424 0.426 0.432 0.438 0.435 0.452 0.445 0.452 0.453 0.465 0.450 0.479 0.458 0.467 0.453 0.467 0.457 0.535 0.507
336 0.468 0.451 0.469 0.457 0.490 0.462 0.508 0.482 0.543 0.511 0.497 0.466 0.517 0.476 0.506 0.472 0.525 0.496 0.579 0.530
720 0.484 0.483 0.528 0.510 0.548 0.513 0.558 0.528 0.672 0.600 0.490 0.483 0.517 0.497 0.502 0.488 0.568 0.537 0.612 0.571

E
T

T
h2

96 0.290 0.343 0.292 0.345 0.309 0.359 0.335 0.377 0.340 0.383 0.310 0.356 0.322 0.366 0.313 0.361 0.337 0.379 0.444 0.468
192 0.367 0.392 0.379 0.403 0.396 0.413 0.420 0.436 0.393 0.419 0.397 0.408 0.406 0.415 0.393 0.412 0.428 0.440 0.588 0.542
336 0.413 0.426 0.425 0.440 0.490 0.474 0.472 0.477 0.558 0.507 0.430 0.437 0.443 0.445 0.436 0.445 0.484 0.477 0.742 0.614
720 0.423 0.442 0.441 0.458 0.491 0.483 0.796 0.627 0.821 0.626 0.434 0.450 0.444 0.456 0.442 0.460 0.833 0.637 1.202 0.783

E
T

T
m

1 96 0.317 0.359 0.322 0.361 0.329 0.372 0.339 0.375 0.351 0.391 0.354 0.382 0.366 0.384 0.368 0.393 0.365 0.393 0.365 0.395
192 0.364 0.383 0.366 0.385 0.366 0.387 0.381 0.399 0.383 0.409 0.395 0.401 0.402 0.401 0.392 0.404 0.410 0.419 0.400 0.412
336 0.395 0.403 0.397 0.408 0.396 0.407 0.426 0.433 0.410 0.430 0.426 0.421 0.434 0.422 0.426 0.426 0.452 0.446 0.432 0.436
720 0.453 0.440 0.455 0.444 0.456 0.442 0.495 0.476 0.479 0.473 0.490 0.454 0.495 0.455 0.491 0.460 0.519 0.491 0.501 0.476

E
T

T
m

2 96 0.178 0.261 0.181 0.267 0.178 0.263 0.187 0.279 0.203 0.300 0.186 0.270 0.189 0.273 0.184 0.272 0.188 0.278 0.217 0.316
192 0.242 0.303 0.245 0.305 0.255 0.320 0.265 0.332 0.330 0.390 0.250 0.309 0.253 0.312 0.250 0.311 0.284 0.344 0.311 0.379
336 0.305 0.344 0.309 0.348 0.359 0.371 0.407 0.418 0.453 0.461 0.310 0.346 0.314 0.349 0.309 0.347 0.397 0.407 0.490 0.479
720 0.399 0.397 0.417 0.412 0.410 0.416 0.570 0.516 0.650 0.564 0.410 0.401 0.414 0.404 0.407 0.406 0.573 0.512 1.096 0.689

E
C

L

96 0.175 0.271 0.180 0.279 0.185 0.277 0.181 0.271 0.186 0.289 0.192 0.273 0.201 0.280 0.190 0.278 0.187 0.276 0.192 0.284
192 0.186 0.280 0.188 0.285 0.190 0.282 0.187 0.277 0.192 0.294 0.193 0.275 0.200 0.283 0.193 0.281 0.194 0.285 0.197 0.289
336 0.203 0.296 0.209 0.306 0.205 0.297 0.202 0.294 0.207 0.311 0.208 0.290 0.215 0.298 0.207 0.297 0.205 0.298 0.210 0.304
720 0.245 0.329 0.245 0.330 0.244 0.329 0.239 0.327 0.243 0.340 0.249 0.323 0.256 0.330 0.247 0.330 0.243 0.332 0.245 0.336

Tr
af

fic

96 0.496 0.321 0.485 0.297 0.515 0.322 0.535 0.325 0.471 0.300 0.644 0.387 0.648 0.388 0.620 0.394 0.670 0.423 0.650 0.406
192 0.493 0.321 0.496 0.304 0.523 0.324 0.543 0.323 0.483 0.304 0.597 0.364 0.601 0.365 0.595 0.373 0.566 0.370 0.606 0.382
336 0.511 0.327 0.519 0.307 0.540 0.330 0.558 0.329 0.493 0.309 0.605 0.365 0.608 0.368 0.602 0.375 0.580 0.374 0.613 0.384
720 0.547 0.346 0.559 0.325 0.582 0.350 0.608 0.348 0.530 0.329 0.643 0.386 0.647 0.387 0.658 0.394 0.626 0.394 0.655 0.404

W
ea

th
er 96 0.173 0.216 0.166 0.212 0.172 0.225 0.170 0.230 0.167 0.232 0.175 0.220 0.198 0.238 0.181 0.230 0.188 0.240 0.193 0.267

192 0.218 0.255 0.213 0.252 0.215 0.267 0.215 0.277 0.214 0.282 0.223 0.262 0.242 0.272 0.227 0.270 0.229 0.279 0.242 0.312
336 0.277 0.298 0.277 0.297 0.268 0.303 0.265 0.313 0.283 0.342 0.278 0.301 0.292 0.307 0.281 0.312 0.276 0.319 0.290 0.349
720 0.355 0.348 0.353 0.348 0.339 0.362 0.334 0.355 0.351 0.388 0.356 0.350 0.364 0.353 0.358 0.365 0.343 0.368 0.360 0.400

1st count 18 19 2 8 1 0 4 3 4 1 14 28 0 1 9 0 8 0 0 0
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C.3 FREQUENCY-WISE DISTRIBUTION SHIFT ANALYSIS

Figure 8 provides additional examples illustrating the frequency-wise train-test distribution discrep-
ancies. Although variables across different datasets exhibit diverse spectral distributions, FREMEN
demonstrates effectiveness in addressing distributional differents between the training and test set.

(a) ETTh1, Channel 4
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(b) ETTm1, Channel 2
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(c) ECL, Channel 251
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(d) Traffic, Channel 200
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(e) Weather, Channel 18

Figure 8: Additional showcases on the Train-Test distribution distance over all frequencies. Each
scatter corresponds to the JSD value of a frequency component. A smaller distance to the center
indicates a smaller JSD value.

C.4 FREQUENCY WEIGHT ANALYSIS

To investigate the dynamics of the learned frequency weights, we visualize both the training loss
and the evolution of λreal

θ in Figure 9, using DLinear on the Traffic dataset. The upper subfigure
demonstrates a clear positive correlation between increasing λreal

θ and improved model accuracy. As
discussed in our preliminary analysis from the main paper, λreal

θ governs kernel representation in
the frequency domain. While its exact closed-form kernel mapping remains analytically intractable,
we hypothesize its membership within common kernel families and empirically analyze the induced
representational transformations. The lower subfigure illustrates the kernel evolution under two
constrained settings: RBF and Cauchy kernels, sampled across five training epochs. Notably, we
observe divergent trends in the scale parameters σ: the RBF kernel’s σ exhibits monotonic growth,
while the Cauchy kernel’s σ demonstrates consistent decay. This antithetical behavior underscores
the expressive flexibility of λreal

θ , validating its capacity to adaptively model heterogeneous non-
stationary patterns through implicit kernel learning.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

# Epochs

Figure 9: Training process of DLinear with FREMEN on the Traffic dataset. Upper subgraph: the
change of the training loss and weights for frequency components. Lower subgraph: the evolution
of kernels corresponding to the frequency weights.
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