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Abstract

Minimum-entropy coupling (MEC)—the process
of finding a joint distribution with minimum en-
tropy for given marginals—has applications in ar-
eas such as causality and steganography. However,
existing algorithms are either computationally in-
tractable for large-support distributions or limited
to specific distribution types and sensitive to hyper-
parameter choices. This work addresses these limi-
tations by unifying a prior family of iterative MEC
(IMEC) approaches into a generalized partition-
based formalism. From this framework, we de-
rive a novel IMEC algorithm called ARIMEC, ca-
pable of handling arbitrary discrete distributions,
and introduce a method to make IMEC robust to
suboptimal hyperparameter settings. These inno-
vations facilitate the application of IMEC to high-
throughput steganography with language models,
among other settings. Our codebase is available at
https://github.com/ssokota/mec.

1 INTRODUCTION

Given two marginal distributions, a coupling is a bivariate
joint distribution with the given marginals. In general, there
may be many couplings for a particular pair of marginals.
The problem of computing a coupling with the minimum
amount of joint entropy among all feasible couplings is
called minimum-entropy coupling (MEC) [Kovacevic et al.|
2015]). Further detailed in|Compton et al.|[2023]], applica-
tions of MEC include causal inference [Kocaoglu et al.|
2017, |Compton et al., 2020, Javidian et al., 2021}, (Compton
et al.| [2022]], communication [Sokota et al.|[2022], steganog-
raphy [Schroeder de Witt et al.l 2023, random number gen-
eration [Li, 2021]], multimodal learning [Liang et al., [2023]],
functional representations [Cicalese et al.,|[2019]], and dimen-
sionality reduction [[Vidyasagar, 2012 |Cicalese et al.,[2016].

While MEC is NP-hard [Kovacevic et al., [2015]], recent
works have provided approaches that achieve provable
approximations of MECs [Kocaoglu et al.| 2017} |Cicalese
et al.,[2019} Rossi, {2019} L1, 2021}, |Compton, [2022} |[Comp{
ton et al., 2023} |Shkel and Yadav, 2023] in log-linear time
(i.e., O(N log N)) in the cardinality of the support of the
marginals. Unfortunately, the supports of many distributions
of interest, such as those of generative Al models, are in-
tractably large for these provable approximation algorithms.

To handle such cases, |Sokota et al.| [2022]] introduced a
class of heuristic algorithms for producing low-entropy
couplings. These algorithms work by iteratively coupling
components of random vectors using provable MEC
approximation algorithms in such a way that guarantees
the aggregate joint distribution is a coupling. In practice,
both [Sokota et al.| [2022] and |Schroeder de Witt et al.
[2023] find that these iterative minimum-entropy coupling
(IMEC) approaches produce low-entropy couplings for
distributions with very large supports—binary images
and trajectories of Atari games [Bellemare et al., [2013]]
in the work of |Sokota et al. [2022]] and binary strings
and generative models (including GPT-2 [Radford et al.,
2019], WaveRNN [Kalchbrenner et al., [2018]], and Image
Transformer [[Parmar et al.} 2018]]) in the work of |Schroeder]
de Witt et al.|[2023]]. Unfortunately, the applicability of the
IMEC algorithms Sokota et al.[[2022] introduced is limited
to problems in which one distribution either has small
support or is factorable. Moreover, these algorithms can
be sensitive to hyperparameter choices, requiring careful
tuning for optimal performance. As a result, at the time of
writing, there exist no techniques for producing low-entropy
couplings of general large-support distributions, let alone
any that are also robust to hyperparameter settings.

In this work, we make multiple contributions regarding
the IMEC line of research. First, we unify existing IMEC
algorithms under a single formalism using sets of partitions,
where each partition is over the sample space of one of the
given marginals. IMEC couples distributions by iteratively
performing (approximate) MECs between a conditional
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distribution of one marginal and the posterior over the
blocks of a partition associated with the other marginal. In
particular, at each iteration, IMEC uses a partition whose
associated posterior maximizes entropy.

Leveraging this formalism, we derive the first algorithm
for computing low-entropy couplings for arbitrary large-
support distributions, which we call autoregressive IMEC
(ARIMEC). ARIMEC uses a set of partitions, which we
call the prefix tree partition set, in which each partition cor-
responds to a node of the prefix tree of one of the sample
spaces. These prefix trees can have large numbers of nodes
(and thereby induce large numbers of partitions). Thus, to
facilitate an efficient implementation, we introduce tech-
niques to 1) lazily update the posterior over different blocks
and 2) quickly search over partitions using pruning.

Finally, recognizing IMEC’s general brittleness to partition
set choice, we introduce a technique, called merging, to
improve its robustness. At each iteration, this technique
merges sample realizations into groups with identical pos-
terior updates. Merging uses these groupings to perform
additional MECs when entropy would otherwise be wasted
due to suboptimal partition sets or other factors.

We empirically validate the utility of our innovations in two
settings: Markov coding games [Sokota et al., [2022] and
steganography [Cachinl [1998]]. In Markov coding games,
the objective is to encode messages into the trajectories
of a Markov decision process while achieving a high ex-
pected return. In steganography, the goal is to embed sen-
sitive information into innocuous content such that an ad-
versary cannot detect the hidden information. Our results
show that ARIMEC achieves substantially improved com-
munication rates in both settings, illustrating its ability to
use autoregressive prior information about realistic mes-
sages. Additionally, we demonstrate that merging signifi-
cantly enhances IMEC’s robustness to suboptimal partition
set choices, thereby facilitating easier out-of-the-box appli-
cation. Overall, our results suggest ARIMEC with merging
as a practical approach to applications involving computing
low-entropy couplings for large-support distributions, such
as high-throughput steganography with language models.

2 BACKGROUND AND NOTATION

For our background, we formally introduce minimum-
entropy coupling and discuss existing techniques for com-
puting and (heuristically) approximating minimum-entropy
couplings. Thereafter, we introduce notation for partitions
of sets, which we will later use to unify existing methods in
one general framework.

2.1 MINIMUM-ENTROPY COUPLING

We begin by formalizing the ideas of couplings and
minimum-entropy couplings.

Definition 2.1 (Coupling). Let i: X — [0, 1] be a probabil-
ity distribution over a finite set X and let v: Y — [0,1]
be a probability distribution over a finite set Y. A cou-
pling of 1 and v is a bivariate joint probability distribution
v: X x Y — [0, 1] that marginalizes to y and v. In other
words, y satisfies

> @ y) = v(y), forally €Y, (1)
r'eX
> ya,y') = p(x), forallz € X. ©)
y'eY

We use T'(u,v) = {v | v satisfies () & (2)} to denote the
set of all couplings for p and v.

Definition 2.2 (Joint Entropy). Given a coupling -, the joint
entropy is defined as

H(’Y) = _]E(X,Y)ny IOg’Y(Xa Y)

Throughout the paper, we will use capital letters to denote
random variables, as is done in the definition above.

Definition 2.3 (Minimum-Entropy Coupling). Given two
marginal distributions i, v, a minimum-entropy coupling
is a coupling v € T'(u, v) such that

H(y) = min{H(') [ 7" € T(n,v)}.

2.2 COMPUTING AND APPROXIMATING
MINIMUM-ENTROPY COUPLINGS

While computing an exact minimum-entropy coupling is
NP-hard [Kovacevic et al., 2015]], there has been a series of
recent works that construct O(N log N)) approximation al-
gorithms, where N is the size of the sample space. |Cicalese
et al| [2019] introduce an approximation algorithm that
they show guarantees a coupling within 1 bit of minimum
entropy. Rossi| [2019] show that |[Kocaoglu et al. [2017]’s
greedy approach guarantees a coupling within 1 bit of
minimum entropy. [Li [2021] introduce a third approach for
which he also proved a 1 bit approximation guarantee. Most
recently, Compton et al.|[2023]] show an improved guarantee
for Kocaoglu et al.|[2017]’s greedy approach of about 0.53
bits, while also showing that|Cicalese et al.|[2019] and |Li
[2021]’s algorithms cannot match this guarantee. |(Compton
et al| [2023] also give approaches that guarantee exact
MEC:s, though they require exponential time.



Algorithm 1 Tabular IMEC: Y | X =z

Algorithm 2 Factored IMEC: YV | X=x

procedure TIMEC(u, v, x)
(X)  p(X)
forj=1,...,mdo
V(XY [ Yiij—1) < MEC(v(X | Yi;-1),
v(Yj | Yi;-1))
Y} ~ V(ij ‘ Iaylzj—l)
end for
return Y
end procedure

2.3 ITERATIVE MINIMUM-ENTROPY COUPLING
WITH A TABULAR POSTERIOR

In some settings, it is desirable to (non-provably) approxi-
mate minimum-entropy couplings where one random vari-
able is a vector that ranging over such a large number of
possible outcomes that the approaches described in Sec-
tion [2.2] are inapplicable. [Sokota et al. [2022] propose an
iterative approach to such settings that assumes that this
random vector is autoregressively specified. In this work,
we refer to|[Sokota et al.|[2022]’s algorithm as tabular IMEC
(TIMEC). TIMEC guarantees that the resulting joint dis-
tribution is a coupling, supports conditional sampling and
likelihood queries for both X | Y and Y | X, where Y is
the random vector, and heuristically achieves low entropy.
It can either be defined using the conditional generative
process for sampling Y | X or the conditional generative
process for sampling X | Y, as both induce the same joint
distribution. We focus on the process for generating Y | X,
which is formalized in Algorithm [I] in the main body but
include the process for generating X | Y in Algorithmin
Appendix [A] Algorithm [I|works iteratively in two steps:

1. First, it performs an (approximate) MEC between the
posterior over X given Y7.;_; (inductively defined via
Bayes’ Theorem) and the conditional distribution v/(Y7 |
Yi-1) P_-]The joint posterior over X and Y; given Y7.;_;
is assigned to the output of this coupling.

2. Second, it samples Y; from the posterior over Y; given
both X = z and Y;.;_; (also inductively defined via
Bayes’ Theorem).

2.4 ITERATIVE MINIMUM-ENTROPY COUPLING
WITH A FACTORED POSTERIOR

Unfortunately, requiring approximate MECs over distri-
butions of size |X| makes TIMEC inapplicable to many
settings, such as steganography with large message sizes
[[Schroeder de Witt et al., |2023]]. To ameliorate this issue,
Sokota et al.|[2022] also proposed a second approach, which

'Note that we use upper-bound-inclusive indexing, so Y1.o =
0, Yi.1 = (Y1), Yi.2 = (Y1, Y2), etc.

procedure FIMEC(u, v, )
7(X) < p(X)
forj=1,...,mdo
i* < argmax; H(v(X; | Y1.-1))
V(Xi=, Yj | Yiij-1) <= MEC(v(X-
v(Yj | Yi;-1))
V(XY | Yijo1) = y( X, Y5 | Y1)
[Lizie 7(Xi | Y1i-1)
Y~y (Y [ @, Y1)
end for
return Y
end procedure

5/1:_]'—1)7

we refer to as factored IMEC (FIMEC)] in which X is also
assumed to be a random vector. Furthermore, crucially, it is
assumed to be factorable.

Assumption 2.4 (Factorability). X = (X1,...,X,) isa
random vector with p(x) =[], u(x;) for all x € X.

As with TIMEC, FIMEC guarantees that the resulting distri-
bution is a coupling, supports likelihood queries to both con-
ditionals and the joint distribution, and heuristically achieves
low entropy. It can similarly be defined in terms of either
conditional generative process (X | Y or Y | X). We
again focus on the Y | X case (Algorithm , and defer
the X | Y case to Appendix [A] The basic structure of Al-
gorithm [2 is analogous to that of Algorithm [T} However,
rather than performing MECs using (X | Y1.;_1), FIMEC
uses (X | Y1.;-1), where X;+ is a component of X with
maximum posterior entropy. The other components X; for
i # ¢* are left independent of Y; | Y7.;_1.

2.5 PARTITIONS OF SETS

As discussed in the introduction, we will show the IMEC
algorithms discussed in the previous two sections can be
unified into a single algorithm using partitions over X. We
use the following definitions and notation for partitions.

Definition 2.5 (Partition). A partition P of a set X is a
collection of blocks {B1, ..., By} where:

1. Each block is a subset of X.
2. Each pair of distinct blocks has an empty intersection.
3. The union of blocks is equal to X.

Definition 2.6 (Block Function). For a partition P of a set
X, the block function Bp: X — P maps x to the block of
the partition of which it is an element. When X is a random
variable, we use Bp = Bp(X) to denote the block of P, as
a random variable, to which X belongs.

2Schroeder de Witt et al.|[2023] use the name iMEC for this
approach.



Note that the probability distribution of Bp is defined by

p(Bp=B)=p(X €B) =Y u(X =u).
zeB

3 A UNIFICATION OF ITERATIVE
MINIMUM-ENTROPY COUPLING

We are now ready to describe our unification of existing
IMEC algorithms. In this unification, different instances of
IMEC are specified using different sets of partitions

P C {P | P is a partition of X}.

Instances of this unified perspective guarantee that the re-
sulting distribution is a coupling, support conditional and
likelihood queries for both X | Y and Y | X, and heuristi-
cally produce low entropy. We define this unified perspective
to IMEC using the conditional generative process given in
Algorithm which samples from Y| X. (Equivalently, it is
defined by the generative process given in Algorithm{[7]in
Appendix which samples from X|Y"). Algorithmworks
iteratively in three steps:

1. First, it computes a partition P € ‘B inducing a
maximum-entropy posterior. The entropy induced by
a partition P at iteration j is defined in terms of the prob-
abilities over the blocks of the partition under ~, given
Yl:j—l' That iS,

H(y(Bp | Yij-1))

=Y (X €B|Vi,;_1)logy(X €B| Yy, 1)
BeP

The intuition behind selecting the maximum-entropy par-
tition is that it heuristically offers the opportunity to
reduce the joint entropy by the largest amount

2. Second, it performs an (approximate) MEC between the
posterior over the blocks of the chosen partition P and
the conditional distribution v/(Y; | ¥7.;_1). The joint pos-
terior over the block Bp and Y; given Y7.;_1 is assigned
to the output of this coupling.

3. Third, it samples Y} from the posterior over Y; given
both the block Bp () and Y7.;_1.

3A justification is as follows. Recall that
max(H(C), H(D)) < H(C, D) < H(C) + H(D),

where H(C, D) achieves its upper bound when C' and D are inde-
pendent. Thus, the maximum reduction in joint entropy achievable
by performing a coupling is upper bounded by

H(C) + H(D) — max(H(C), H(D)) = min(H(C), H(D)).

Therefore, maximizing H(C') maximizes an upper bound on the
joint entropy reduction.

Algorithm 3 IMEC (Generic Form): Y | X =z

procedure IMEC(u, v, z, )
Y(X) = pu(X)
forj=1,...,mdo
P+ argmaxpeyp H(y(Bp | Y1,j-1))
Y(Bp,Yj | Y1.j-1) +~ MEC(y(Bp | Y1.j-1),
v(Yj | Yi;-1))
Y ~ (Y | Bp(x), Yiij-1)
end for
return Y
end procedure

3.1 THEORY

The general form of IMEC possesses the following two
properties, which reduce to the results of|Sokota et al.|[2022]
as a special case.

Proposition 3.1 (Coupling). IMEC induces a coupling of 1
and v.

Proposition 3.2 (Greediness). If the partition of singletons
is in B, IMEC approximately minimizes H (X, Y1.;) subject
to p,v,y(X,Y1.5-1) on the jth iteration, for each j.

Proofs for these statements are provided in Appendix [B.Z]
and Appendix respectively.

The general form of IMEC also possesses the following run-
time guarantee, which says that IMEC can be implemented
efficiently whenever maximum-entropy posterior partition
computation is efficient.

Proposition 3.3 (IMEC Runtime). Given a polynomial-
time function for computing the maximum-entropy posterior
partition, IMEC can be implemented in polynomial time in
max; |Y;|, max; |X;|, m, n.

We prove Proposition [3.3]in Appendix

3.2 SPECIAL CASES

Tabular Posterior To implement TIMEC using Algo-
rithm 3] we can select the partition set 3 to be the set of
all partitions of X. As per Lemma|[B.3] which is stated and
derived in Appendix [B.4] the partition of singletons (or a
partition that is equivalent up to measure zero) will always
be selected, as it achieves maximum entropy. Coupling with
the partition of singletons is equivalent to coupling over the
whole set, which is exactly what TIMEC does.

Using Proposition [3.3] we derive the following runtime
guarantee for TIMEC in Appendix [B.1]

Corollary 3.1 (TIMEC Runtime). TIMEC can be imple-
mented in polynomial time in max; |Y;|, |X|, m.
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Figure 1: (Left) A set X of sequences of length 3; (right) a
partition Py used by FIMEC.

Note that TIMEC’s polynomial time guarantee is in contrast
to a direct application of an approximate MEC algorithm,
which would require exponential time as a function of the
same quantities.

Factored Posterior To implement FIMEC using Al-
gorithm we can select the partition set as P =
{P1,...,Pn}, where for each i,

P = {X1X' : 'XXZ‘_1X{I‘¢}XXZ’+1X' - x X, ‘ x; € Xz}
and where X; denotes the sample space for X;. An example
is shown in Figure [T} From this perspective, selecting P;
on a particular iteration is equivalent to selecting X; as the
component with which to couple.

Using Proposition [3.3] we derive the following runtime
guarantee for FIMEC in Appendix [B.1}

Corollary 3.2 (FIMEC Runtime). Let Assumption[2.4|hold.
Then FIMEC can be implemented in polynomial time in
max; |Y;|, max; |X;|, m, n.

Note that FIMEC’s polynomial-time guarantee is in contrast
to a direct application of both an approximate MEC algo-
rithm and TIMEC, which would each require exponential
time in the same quantities.

4 ITERATIVE MINIMUM-ENTROPY
COUPLING WITH AN
AUTOREGRESSIVE POSTERIOR

Building on our unified framework, we now derive a
new IMEC algorithm, which we call autoregressive IMEC
(ARIMEC). ARIMEC improves upon the applicability of
FIMEC by eliminating the factorability assumption. We
present ARIMEC in two parts. First, we introduce the pre-
fix tree partition set, which allows us to formally define
ARIMEC using Algorithm 3] Second, we detail insights to
make a practical implementation of ARIMEC.

4.1 MATHEMATICAL FORMALIZATION

In the framing of Algorithm 3] the defining characteristic
of IMEC algorithms is their partition sets. Therefore, to
develop an IMEC algorithm of maximal applicability, it is

essential to choose a partition set compatible with a univer-
sal model of distributions (i.e., one capable of representing
any distribution). The autoregressive model, which de-
composes a distribution over vectors into component-wise
conditional distributions via the chain rule of probability, is
one such universal model. This section formalizes ARIMEC
using a partition set specifically tailored to align with the
tree-like output structure inherent in autoregressive models.

In order to define this partition set, which we call the prefix
tree partition set, we first define prefixes.

Definition 4.1 (Prefix/Extension). We write v T v’ fo mean
that v is a prefix of V' in the substring sense and, equivalently,
that v' is an extension of v in the substring sense.

Definition 4.2 (Immediate Prefix/Extension). We say v is
the immediate prefix of v' and, equivalently, that v’ is the
immediate extension of v, if v C v’ and v’ is one character
longer than v.

Next, we define the prefix tree of a set of vectors. The prefix
tree is a directed graph over prefixes of vectors with edges
pointing to immediate extensions, as stated below. (Note
that our usage of the term is graph theoretic and does not
pertain to the trie data structure.)

Definition 4.3 (Prefix Tree). The prefix tree for a set of
vectors X is a directed graph (V,E), where the vertex set

V={vCz|zeX}
is the set of prefixes of elements of X and the set of edges
E = {(v,¢) | v,c €V, cis an immediate extension of v}

is the set of pairs of vertices and their immediate extensions.
For distinct vertices v, u, we use the notation V,,_,,, to mean
the subset of V \ {v} touchable by paths that start from v
and contain u.

We can view each vertex v in the prefix tree as partitioning
X'in a manner that aligns with the sampling paths of autore-
gressive models. This perspective naturally induces what
we call the prefix tree partition set, where each partition
corresponds to a prefix upon which an autoregressive model
could be conditioned.

Definition 4.4 (Prefix Tree Partition Set). Ler (V,E) be the
prefix tree for X. Then the prefix tree partition set is defined
as P ={P, | v eV}, where

Py, ={Ber | (v,¢) e E}U{B,} U{B,=},
and where

* B.r = {z € X | ¢ C «x} denotes the subset of X that is
an extension of the child c;

does not extend v;
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Figure 2: (Left) A set X of sequences of length 2; (middle) the prefix tree for X; (right) the partition induced by the left-most

depth one node of the prefix tree.

* B,— = {z € X | v = a} denotes the (either singleton or
empty) subset of X equal to v.

For distinct vertices v, u, we use the notation B,,_,,, to mean
the subset of P, \ {B=} touchable by paths that start from
v and contain u.

A visualization of the prefix tree and one partition that it
induces is shown in Figure 2}

Having defined the prefix tree partition set, ARIMEC’s for-
malization is immediate.

Definition 4.5 (ARIMEC). ARIMEC is the instance of
Algorithm3|in which the set of partitions B is selected to
be the prefix tree partition set.

ARIMEC can be thought of as, at each iteration, operat-
ing at a working prefix v whose associated partition P,
maximizes posterior entropy. As information is gained, the
likelihood of one the blocks (such as some B.-) will be-
come large. As a result, the entropy associated with the
working prefix’s partition P, will become small, causing
the (entropy-maximizing) working prefix to change—often
to a child of the existing working prefix. Over iterations, the
working prefix will tend to traverse downward in the prefix
tree toward the true value of X. However, it is also possible
for it to move upward if the probability of B, (for working
prefix v) becomes large. This backtracking mechanism al-
lows ARIMEC to recover from cases in which the working
prefix deviates from prefixes of X.

We provide visual intuition for ARIMEC in Figure 3] show-
ing example iterations for marginals of length two and its
corresponding path down the tree in Figure 4]

4.2 EFFICIENT IMPLEMENTATION

While Definition &3] formalizes ARIMEC at a mathematical
level, constructing a practical implementation is challenging
due to the exponentially large number of nodes in the prefix
tree, which makes naive maximum-entropy posterior parti-
tion computations intractable. To address this challenge, we
propose a procedure that seeks to prove a maximum-entropy
partition by searching over as few partitions as possible,

while lazily and (provably) efficiently computing the pos-
terior (and posterior entropy) of each partition that it does
search. This procedure has two components. The first is a
polynomial time algorithm for lazily computing posteriors
(and posterior entropies) for particular partitions. The sec-
ond is a search procedure for finding a maximum-entropy
partition that prunes partitions that are provably not max-
imum entropy. In practice, we observe that the procedure
is highly efficient, often only requiring the evaluation of
one or two nodes to prove a maximum-entropy partition,
though we do not formally prove its runtime complexity;
see Appendix [D.T]for further details.

Posterior Updates The core idea behind our approach to
posterior updates is that, given an updated posterior for the
partition associated to node v, we can immediately derive
the posterior of the partition for any adjacent node u. The
posterior over P, is dictated by two rules. First, that

’Y(Bu%v | Yl:j) =1- 7<BU~>u | Yl:j),

by the complement law of probability. Second, that
V(B | Y1) o< y(B | Y1:5-1)

for B € P, \ By, as direct evidence about Bp, does not
differentiate between the elements of P, \ B,_,,. These
ideas are formalized in Lemma[B.4]

We can compute the posterior for any partition P,, in poly-
nomial time by iteratively applying Lemma[B.4]to the par-
titions along the undirected path from v to u, as is stated
below and proven in Appendix B3]

Proposition 4.1 (Posterior Updates). Assume that the pos-
terior over a partition is updated if and only if its corre-
sponding node is touched and that nodes are touched by
traversing edges of the tree (i.e., without jumps). Let P, be
a partition whose posterior was updated on iteration j. If
v, u are neighbors and u was last visited on iteration j' < j,
then the iteration j posterior for any partition P, can be
computed in polynomial time in max; |X;|,n

Maximum-Entropy Posterior Partition Search The
core idea behind our search procedure is to prune nodes
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of the prefix tree whose partitions provably cannot be max-
imal entropy. To prune nodes, we make use of an upper
bound on entropy. This upper bound—stated formally in
Lemma [B.5}—shows, roughly speaking, that the entropy of
any distribution with one sufficiently probable element can-
not exceed the entropy of the distribution that would divide
the remaining mass uniformly.

We can apply this upper bound on large numbers of nodes
simultaneously: If a prefix v is unlikely, then (B, | Y1.;)
will be large for every u in the subtree rooted at v. On the
other hand, if a prefix v is likely, then (B, | Y1.;) will
be large for every v in complement of the subtree rooted at
v. We prove this result, stated in Proposition [4.2] below, in

Appendix [B.6]
Proposition 4.2 (Maximum-Entropy Partition). Let

>
r 2 max[{B € P | u(B) > 0}

be an upper bound on the number of blocks with positive
probability. Define

1—gq

U:qH—qlogq—(l—Q)logH

For any neighbor u of v, if
'Y(Bv%u | yl:j) <1l- 1/"‘%
then, for all v’ € V,_,,,

IH(’Y(B'P,J/ | yl:j)) < U(V(Bu—w | ylzj))~

Using Proposition 4.2} we can prove a maximum-entropy
partition by searching only over the nodes for which we can-
not prove an upper bound that is smaller than a previously
observed entropy, as is described in Algorithm 4]

5 MITIGATING ENTROPY WASTE VIA
MERGING

One suboptimality of ARIMEC, and more generally of all
IMEC algorithms, results from the fact that, on a particular
iteration, it may be the case that

Hw(Y; | Y1ij-1)) = H(y(Bp | Y1;j-1)) > 0.



Algorithm 4 Maximum-Entropy Partition Search

procedure MAXENTPARTITION(v, ¥(- | Y7.5))
queue <— [Py]
while queue non-empty do
P < queue.pop()
if H(v(Bp, | Y1:;)) is max ent so far then
max ent partition < P,
end if
for each node v’ adjacent to v do
q < Y(Busw | Y1)
if ¢ >1— L orl/(q) > max ent so far then
queue.append(P,)
end if
end for
end while
return max ent partition
end procedure

In such a case, IMEC necessarily wastes at least 7 (v (Y |
Yi.j-1)) — H(v(Bp | Y1.j_1)) bits of information because
Y; possesses more information than is necessary to encode
Bp. This waste can stem from bad hyperparameter selec-
tion (i.e., the partitions in 3 are low entropy) or reduced
uncertainty about X due to previous approximate MECs.
While the latter is typically desirable (as it indicates we’ve
achieved low conditional entropy), the former can negatively
impact performance [Schroeder de Witt et al.| 2023|.

To address this, we introduce a technique that we call merg-
ing. At each iteration j, after performing a coupling, merg-
ing groups the possible realizations of Y; by the posterior
update over Bp they induce. Instead of sampling a real-
ization of Y}, merging samples one of these groups. If the
sampled group contains multiple elements, merging per-
forms an additional coupling between the posterior over
that group and the new maximum-entropy partition. This
process repeats until the sampled group consists of a single
element, at which point iteration j + 1 begins.

An Example of Merging To illustrate this process, con-
sider a case in which

V(Y} | Ylij—1> = [1/47 1/4a 1/2]7

V(Bp [ Yi-1) = [1/2,1/2].

Then the following is a minimum-entropy coupling:

Y1 Y2 Y3
by | 1/4 | 1/4 0 |
by 0 0 172

In this coupling, the posterior over Bp remains the same
whether Y is realized as y; or y» (specifically, the proba-
bility of b; is one), indicating wasted entropy over y1, ys.
Merging post-processes such couplings to yield:
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Figure 5: Results for the Markov coding games CodeCart
and CodePong using MaxEntRL policies with different tem-
peratures with 95% bootstrap confidence intervals drawn
from 100 games.
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Under merging, if the group {y1,y2} is sampled, the sub-
sequent coupling is performed between the new maximum-
entropy partition and

v(Y; | Yij-1,Y5 € {y1,92})-

If the sampled group has more than two elements, this pro-
cess may repeat multiple times before proceeding to itera-
tion j + 1.

6 EXPERIMENTS

To demonstrate the effectiveness of ARIMEC and merging,
we perform experiments in two settings: Markov coding
games [Sokota et al.l [2022]] and steganography [Cachin|
1998].

6.1 MARKOV CODING GAMES

In a Markov coding game (MCG) [Sokota et al.l [2022],
the goal is to communicate messages via the trajectories of
a Markov decision process (MDP), while simultaneously
achieving a high expected return in the MDP. Messages are
sampled independently from a distribution known to both
the player sending them and the player receiving them. For
a more complete description, see Appendix

Sokota et al.|[2022] give a principled approach to this setting
called MEME that works in two steps. First, MEME trains
a maximum-entropy reinforcement learning (MaxEntRL)



[Ziebart et al., 2008]] policy for the MDP. (The intuition is
that this policy balances between performing well in the
MDP and having high bandwidth through which informa-
tion can be communicated.) Second, MEME computes (or
approximates) a minimum-entropy coupling between the
distribution over messages and, roughly speaking, the distri-
bution over trajectories induced by the MaxEntRL policyE]
MEME guarantees that the expected return in the MCG is
the same as in the MDP; furthermore, at each time step,
MEME greedily maximizes the amount of information en-
coded into the trajectory. For a more complete description,

see Appendix [D.3]

Because the second step of MEME requires computing or
approximating a MEC, prior to this work, it was only ap-
plicable to MCGs whose message distributions had small
or factorable supports. Thus our extension of IMEC to arbi-
trary distributions also serves as an extension of MEME to
arbitrary MCGs.

To illustrate the benefits of MEME’s extended applicability,
we perform experiments in two MCGs based on Cartpole
and Pong [Bellemare et al., 2013]], which we call CodeCart
and CodePong, that were previously beyond MEME'’s ap-
plicability. For these MCGs, the distribution over messages
is dictated by GPT-2 [Radford et al.,[2019] with top-50 sam-
pling. For each game, we trained two policies with using
different entropy bonus temperatures that each achieved per-
fect scores in 100 of 100 games. As a baseline, we compare
against a naive version of MEME that assumes that the mes-
sage was sampled from a uniform distribution over tokens
and uses FIMEC. Note that this baseline sacrifices MEME’s
expected return guarantee.

We show the rate at which trajectories are decoded incor-
rectly for each variant of IMEC in these settings (Figure [5).
While both FIMEC and ARIMEC maintain perfect expected
return in the MDP, ARIMEC produces substantially more
efficient encodings.

6.2 STEGANOGRAPHY

In steganography, the goal is to encode information (called
plaintext) into innocuous-seeming content (called stegotext),
such that an adversary would not realize that the innocuous-
seeming content contains hidden information. We consider
two kinds of steganography for our experiments.

Information-Theoretic Steganography The first is
information-theoretic steganography [Cachin), [1998]], which
seeks formal security guarantees. |Schroeder de Witt et al.
[2023]] proved that this problem can be reduced to minimum-
entropy coupling distributions of ciphertext (random bit-

*To be more precise about the latter distribution requires nu-
ance since environment transitions cannot be correlated with the
message. See |Sokota et al.|[2022] for details.
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strings generated using shared private keys) with distribu-
tions of covertext (innocuous content). For a more complete
description, see Appendix [D.4]

In this setting, Assumption [2.4]holds; thus, we would expect
FIMEC to perform well relative to the ARIMEC. We show
both the resulting joint entropy and the rate at which the ci-
phertext is decoded incorrectly in Figure[f] using 100 tokens
sampled from GPT-2 as the covertext. This error rate can be
written as ExxEy v x)I[X # argmax,y(z | Y)].
Interestingly, while FIMEC produces lower joint entropy
than ARIMEC, ARIMEC appears to produce a lower error
rate. This could be because the ARIMEC focuses on maxi-
mizing the certainty of the bytes earlier in the string, while
FIMEC focuses on reducing the uncertainty about the most
uncertain bytes.

Linguistic Steganography The second setting is linguis-
tic steganography, a broader concept than language-based
information-theoretic steganography. Unlike the latter, lin-
guistic steganography does not necessarily involve shared
private keys. While not using private keys results in less



robust security guarantees, it offers two significant advan-
tages. First, applicability is widened to settings in which a
private key exchange is not possible. Second, potential in-
formation throughput is much higher, as the sender can use
realistic priors about plaintext messages, which have signifi-
cantly lower entropy compared to the uniform distribution
of ciphertexts in information-theoretic steganography.

In the specific setting we consider, we aim to encode the
output of one language model into that of another language
model. The first language model acts as a prior on the plain-
text messages that the sender may send, while the second
language model serves as an approximate covertext distri-
bution. In practice, one could achieve high throughput by
first constructing a desired plaintext message and then trans-
lating it into a semantically equivalent message with a high
likelihood under the prior.

For our experiments, the covertext distribution is gener-
ated by sampling 100 tokens from GPT-2 with the prompt
“Here’s an innocuous message:” and the plaintext message
distribution is generated by GPT-2 with the prompt “Here’s
a secret message:”. We compared ARIMEC with the correct
prior against FIMEC under an assumed uniform prior over
tokens. The results of this experiment are shown in Figure[7]
Our findings indicate that ARIMEC substantially outper-
forms FIMEC in terms of information throughput, reflecting
its ability to leverage the prior.

6.3 MERGING

To evaluate the performance of our merging technique, we
consider a setting in which the objective is to transmit 10
bytes of ciphertext via GPT-2 stegotext. The results of this
experiment, which we conducted using FIMEC, are depicted
in Figure[§] The y-axis represents the joint entropy in bits,
while the x-axis shows the dimension of the random vector
X —i.e., n in our notation.

As discussed in Section [5] poor choices of partition sets can
negatively impact the performance of IMEC. In this case,
FIMEC’s performance significantly decreases (i.e., joint
entropy increases) with the number of components, even
though the entropy of X is held constant. However, our
merging technique substantially reduces IMEC’s vulnerabil-
ity to this issue, as desired.

7 CONCLUSION AND FUTURE WORK

In this work, we investigated the problem of computing low-
entropy couplings for large-support distributions, making
four main contributions. First, we unify existing algorithms
under the formalism of partition sets. Second, using this uni-
fied perspective, we introduce ARIMEC—the first approach
to computing low-entropy couplings for large-support distri-
butions that can be applied to arbitrary distributions. Third,
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Figure 8: Comparing merging and not merging with 95%
bootstrap confidence intervals drawn from 1000 samples.

we increase the robustness of IMEC algorithms to the choice
of partition set by introducing a merging technique. Finally,
we empirically show the utility of these innovations in MCG
and steganography applications.

For future work, there are at least two application direc-
tions in which it would be interesting to push further with
ARIMEC and merging. First is linguistic steganography.
This direction is promising because ARIMEC can achieve
high throughput rates, as we observed in Figure[7] and be-
cause of the recent proliferation of effective language mod-
els. Thus, there may be real-world settings in which it is
applicable. Second, because ARIMEC is the first IMEC
algorithm capable of handling arbitrary discrete distribu-
tions, it potentially opens the door to using large-support
distributions for other minimum-entropy coupling applica-
tions in which the distributions may not be factorable, such
as entropic causal inference, random number generation,
functional representations, and dimensionality reduction.
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A INVERSE GENERATIVE PROCESSES

Algorithm 5 Tabular IMEC: X | Y =y

procedure TIMEC(y, v, y)
Y(X) & p(X)
forj=1,...,mdo
V(XY | yrij—1) < MEC(y(X | y1:j-1), v(Y | y1:-1))
end for
X~ (X [y)
return X
end procedure

Algorithm 6 Factored IMEC: X | Y =y

procedure FIMEC(, v, y)
Y(X)  p(X)
forj=1,...,mdo
i« argmax, H(y(X; | y1;j-1))
Y( X, Yy | yrj—1) < MEC(y(Xix | y1:5-1), (Y [ y1:5-1))

VXY [yrj—1) < (X, Y | yrij—1) - (Hm* Y(X; | ylij—l)>
end for
X ~y(X |y)
return X
end procedure

Algorithm 7 IMEC (Generic Form): X |Y =y

procedure IMEC(u, v, y, 1)
Y(X) < v(w)
forj=1,...,mdo
P « argmaxpeyp H(Y(Bp | y1:j-1))
Y(Bp,Yj | y1:-1) + MEC(y(Bp | y1.5-1), v(Y | y1:5-1))
end for
X ~ (X | )
return X
end procedure

B THEORY

B.1 RUNTIME COMPLEXITY

Proposition 3.3 (IMEC Runtime). Given a polynomial-time function for computing the maximum-entropy posterior partition,
IMEC can be implemented in polynomial time in max; |Y;|, max; |X;|, m, n.

Proof. Let M = max; |Y,| and N = max; |X;]|.
It suffices to show that each of the operations in the main loop requires only polynomial time, as the main loop runs m times.

* By assumption, the maximum-entropy posterior partition requires only polynomial time.

¢ Performing an approximate minimum-entropy coupling on distributions of size O(max (M, N)) requires only polyno-
mial time.

* Marginalizing a joint distribution for variables of support O(M), O(N) requires only polynomial time.



 Sampling from a distribution of support O(M) requires only polynomial time.

Corollary B.1 (TIMEC Runtime). TIMEC can be implemented in polynomial time in max; |Y;|, |X|, m

Proof. Let M = max; |Y;|. Per Proposition it suffices to show that maximum-entropy posterior partition computation
is a polynomial time operation. Per Lemma the partition of singletons is always maximum entropy. Thus, since
computing the posterior over X is polynomial time in M, |X|, the result follows. O

Corollary B.2 (FIMEC Runtime). Let Assumption hold. Then FIMEC can be implemented in polynomial time in
max; |Y;|, max; |X;|, m, n.

Proof. Let M = max; |Y;| and N = max; |X;]|. Per Proposition[3.3] it suffices to show that maximum-entropy posterior
partition computation is a polynomial time operation. Since computing the posterior over each block—and the entropy of
that posterior—is polynomial in N, M, and there are only n blocks, the result follows. O

B.2 COUPLING
Proposition 3.1 (Coupling). IMEC induces a coupling of v and v.

Proof. We proceed by induction on m. For the base case, consider m = 1. Then for any y € Y

D @ y) = @y ) 3)

zeX xeX

= Z ZM v(y | B) 4
BeP(1) z€B

=Y AW IB) Y ) )
BeP® z€B

= > Wy B)u®) 6)
BeP)

= > B @)
BeP®)

=v(y), (®)

where P("™) denotes the partition selected at step 1. Step (3)) follows from chain rule; step (4) follows by construction; step
follows by chain rule; step (8) follows by the definition of a coupling. Now, assume the result holds up to m = 1, and
consider m = m + 1. Observe, for any y € Y

Z’Y(Zuy) = Z N(I)V(yl:m | :E)")/(ym+1 | 177y1:m) (9)

zeX zeX

> vWim )Y Wmrr | B, yim) (10)

Bep(m+1) z€B

= > AWaa | Boyrw) > v Wm, ) (11)

Bep(m+1) z€B

= > YWmsr | Byrm)y@im, B) (12)
Bep(m+1)

= > B ym) (13)
Bep(m+1)

= v(y) (14)

Step (9) follows from chain rule; step (I0) follows by construction; step (I3)) follows by chain rule; step (T4) follows by
definition of a coupling. O



B.3 GREEDINESS

Proposition 3.2 (Greediness). If the partition of singletons is in 3, IMEC approximately minimizes H(X,Y1.;) subject to
W, v, Y(X, Y1.-1) on the jth iteration, for each j.

Proof. Consider that performing a coupling with the partition of singletons (or a partition that it is equivalent up to elements
with zero probability) is equivalent to performing a partition with X itself. Then, invoking Lemma [B.3] it suffices to show
that the statement holds for X.

To see this, first recall
HX,)Y)=HY | X)+H(X)

Because the entropy of X is fixed (as it is determined by its marginal p), minimum-entropy coupling is equivalent to
minimum-conditional-entropy coupling. Then, note that, by chain rule, we have

J j—1
H(Yiy | X) =D HYe | X, Yigo1) = H(Y; | X, Vi) + Y HV | X, Vi)
k=1 k=1

At iteration j, all terms below j have already been determined. Thus, the rightmost summation term is fixed and minimizing
H(X,Y;_1) is reduced to minimizing H(Y; | X, Y1.;_1). By again invoking the equivalence between minimum-entropy
coupling and minimum-conditional-entropy coupling, this is equivalent to minimizing #(X,Y; | Y1.;_1), which is exactly
what IMEC minimizes at iteration j. O

B.4 CONDITION SATISFACTION FOR SPECIAL CASES

Lemma B.3. Let B3 be the set of all partitions over X. For any distribution over X, any maximum-entropy partition is
equivalent to the partition of singletons up to zero-probability elements.

Proof. Consider a block B of some partition P of X. The entropy that B contributes is

—(B) log v(B).
The first derivative of this function is

—logy(B) — 1.
The second derivative is

1
v(B)

Since the second derivative is always negative, the contribution of B to the total entropy is strictly concave. Thus, further
subdividing B increases its contribution to the total entropy, up to elements with zero probability. O

B.5 POSTERIOR UPDATES

Lemma B.4 (Posterior Updates). Let (V,[E) be the prefix tree for X. Assume that the posterior over a partition is updated if
and only if its corresponding node is touched and that nodes are touched by traversing edges of the tree (without jumps).
Let P, be a partition whose posterior was updated on iteration j. If v, u are neighbors and u was last visited on iteration
j' < j, then

YBuso | Y1:5) =1 = v(Bosu | Yii5)

and, for B' € P, such that B’ # B,,_,.,
V(B | Y1) o< y(B | Y1 ).



Proof. First consider that B,,_,,,, B,,_,,, are pairs of complementary events. Thus, their probabilities must sum to one by the
complement rule.

Now, consider that, if u was last visited on iteration j’, it follows that no element of B,,_,, can have been visited since
iteration j'. (This follows because every path from B,_,,, to v must touch by definition of a tree.) Therefore, every partition
updated since P,, was last updated must correspond to a vertex in V,,_,,,. Partitions corresponding to vertices in V,,_,,, can
only influence the blocks of P, via B,_,,,. Thus, because B, ., = Ugep, \BHUIB, direct evidence about B,,_,,, changes the
probability of each element of P, \ B, by the same factor. O

Proposition 4.1 (Posterior Updates). Assume that the posterior over a partition is updated if and only if its corresponding
node is touched and that nodes are touched by traversing edges of the tree (i.e., without jumps). Let P,, be a partition whose
posterior was updated on iteration j. If v, u are neighbors and u was last visited on iteration j' < j, then the iteration j
posterior for any partition P,, can be computed in polynomial time in max; |X;|, n

Proof. Let N = max; |X;|. If u is a neighbor of v, then, using Lemma the posterior over P,, can be computed in
O(max; |X;|) time. If u is not a neighbor of v, then we can compute the posterior over P,, by iteratively applying Lemma
along the path from v to u. Because path length is upper bounded by O(n), the total time is polynomial in max; |X;|,n. O

B.6 ENTROPY UPPER BOUND

Lemma B.5 (Entropy Upper Bound). Let p1 be a probability distribution over & elements. Fix any element ji(x*). Then for
any q such that % < g < p(x*), we have

Hi) < —qlogg — (1 —q)log U=2 g [1/x,1)
10 q=1.

Proof. First note that if p(x*) = 1 then H(u) = 0 and the upper bound holds trivially.

Next, consider the case in which p(z*) < 1. We will show that this upper bound holds in the case when ¢ = p(z*). We first
observe that the entropy is given by

Zu )log () = —p(a*)log p(z*) — Y p(x) log p(x)

rHET*
Now, we can consider another probability distribution ' over n — 1 values (everything except x*), which is given by
p(x) = 5 #;E 27+ V& # a*. Since entropy is maximized by a uniform distribution, we have that H(p') < —log(715).

We observe that

H)=— Y p(2)logy(x)

rFT*
1
=3 u(x)log ' (x)
P
1
_ . (z) (log u(x) — log(1 — p(z*))
(1 = p(z*)) gz: ( )
1
= p(z)log p(z) ) +log(l — p(z™))
0= @) ;( )

Then, plugging this into the inequality for H(u') gives us that

= 3 ) toge) < (1~ e (—tos (2 ) ~ tost1 — e

THET* o

(1= e tog (115

n—1



Thus, this gives us that

H(p) < —p(a”)log p(x”) — (1 — p(z")) log (W)

as desired.

Next, we will show that this upper bound decreases in q. We can consider taking the partial derivative with the upper bound
with respect to g, which gives us that

1-— 1-— 1-—
D, —qlogq—(l—q)log( 9) :—logq—l—Hog( q)+1=—logq+log(7q).
n—1 n—1 n—1
Setting this equal to zero gives us that
1—
log g — log 7 _9
n —
1
—— q = —,
n
Next, we observe that the second derivative of the upper bound with respect to ¢ is given by
1—-q) (1-q) 1
D,D, | —ql —(1—-q)l =D, -1 1 = .
g q< qlogg —(1—g)log=— g | —logg+log=— =D

Thus, this is negative for all values of 0 < g < 1, which gives us that the upper bound is decreasing in ¢ on the interval
[1,1). Therefore, since it holds for ¢ = x(2*), it must hold for ¢ € [1/n, u(z*)]. O

Proposition 4.2 (Maximum-Entropy Partition). Let
>m BeP|u@B) >0
k=1 g% { | 1(B) H

be an upper bound on the number of blocks with positive probability. Define

: —qlogq— (1 —q)l :
U: g —qlogg— (1 -g)log —

For any neighbor u of v, if
’Y(Bv%u | yl:j) <1l- 1/"@

then, for all v’ € V,_,,,
H(v(Bp,,

yl:j)) < u(’)/(Bqu | yl:j))-

Proof. Observe

Y Byoy | Y1) <1—-1/k
= —Y(Bysu | Y1) > -1+1/k
= 1—7(Byou | Y1) > 1/k
Y Bysv | Y1:5) > 1/k.

Fix any v’ € V,_,,. Then, B,_,, C By/_,,. Therefore, we have y(B,/_, | Y1.;) > 7(Bu—y | Y1:;). The bound follows
from applying Lemma|[B.3] O



C VISUALIZATIONS

Generative Process for Y| X =z (FIMEC) X = ixi Y = H P i
» =

Partition P; maximizes entropy MEC Sample Yi

{OF wH} iD; T Own~On
/,MEC

Partition Py maximizes entropy Sample Yz
o

(B0 &w) — O o e

Figure 9: Visualization of two iterations of FIMEC.
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For comparison to ARIMEC, Figure 9 shows two iterations of FIMEC.

D EXPERIMENTS

D.1 MAXIMUM-ENTROPY PARTITION SEARCH

In Proposition 3.3} we demonstrated that instances of IMEC are efficient if and only if the maximum-entropy posterior
partition can be computed efficiently. For ARIMEC, we established in Proposition {i.1] that the posterior of individual nodes
can be computed efficiently. However, we did not prove that Algorithm ] searches through only a polynomial number of
nodes, raising concerns about the practical efficiency of ARIMEC. Fortunately, our empirical observations indicate that the
search procedure is highly effective. To illustrate this, in Figure[TI0] we show the number of nodes the search procedure
required, on average, to compute the maximum-entropy posterior partition as a function of the number of nodes in the prefix
tree for two distributions: GPT-2 and random bytestrings. We find that, even as the prefix tree grows very large, average the
number of nodes touched per iteration remains manageable.

D.2 MARKOV CODING GAMES

Sokota et al.| [2022] specify Markov coding games as the following setting:

An MCG is a tuple ((S, 4,7, R), M, i1, (), where (S, A, T,R) is a Markov decision process, M is a set of
messages, u is a distribution over M (i.e., the prior over messages), and ( is a non-negative real number we call
the message priority. An MCG proceeds in the following steps:

1. First, a message M ~ p is sampled from the prior over messages and revealed to the sender.
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Figure 10: Results for number of nodes touched with 95% bootstrap confidence intervals drawn from 100 samples.

2. Second, the sender uses a message conditional policy 7|y, which takes states s € S and messages m € M as
input and outputs distributions over MDP actions A(.A), to generate a trajectory Z ~ (7, 7|7 ) from the MDP.

. Third, the sender’s terminal MDP trajectory Z is given to the receiver as an observation.

4. Fourth, the receiver uses a terminal MDP trajectory conditional policy 7|z, which takes terminal trajectories
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z € Z as input and outputs distributions over messages A(M ), to estimate the message M ~ mz(2).
The objective of the agents is to maximize the expected weighted sum of the return and the accuracy of the
receiver’s estimate E {R(Z )+ CI[M = M] | T\ M 7| Z] Optionally, in cases in which a reasonable distance

function is available, we allow for the objective to be modified to minimizing the distance between the message
and the guess d(M, M), rather than maximizing the probability that the guess is correct.

D.3 MEME

Sokota et al.|[2022] specify MEME as follows:

Step One: Maximum Entropy Reinforcement Learning In the first step, MEME uses MaxEnt RL to construct
an MDP policy 7. This policy is an MDP policy, not an MCG policy, and therefore does not depend on the
message. Note that this policy depends on the choice of temperature o used for the MaxEnt RL algorithm.

Step Two: Minimum Entropy Coupling In the second step, at execution time, MEME constructs a message-
conditional policy online using MECs. Say that, up to time ¢, the sender is in state s, history h* and has played
according to the state and message conditional policy ﬂ‘ﬁw so far. Let

bt =P(M | ht,7ihy)

be the posterior over the message, conditioned on the history and the historical policy. MEME performs a MEC
between the posterior over the message b® and distribution over actions (s?), as determined by the MDP policy.
Let v = MEC(b?, 7r(s')) denote joint distribution over messages and actions resulting from the coupling. Then
MEME sets the sender to act according to the message conditional distribution

wrM(st,m) =v(A" | M =m)

of the coupling distribution v = MEC(b?, 7(s?)).



Given the sender’s MDP trajectory, MEME’s receiver uses the sender’s MDP policy and MEC procedure to
reconstruct the sender’s message conditional policy along the trajectory; thereafter, the receiver computes the
posterior and guesses the maximum a posteriori (MAP) message.

D.4 INFORMATION-THEORETIC STEGANOGRAPHY

Schroeder de Witt et al.| [2023]] summarize [Cachin| [1998]]’s information-theoretic steganography setting as follows:

Problem Setting The objects involved in information-theoretic steganography can be divided into two classes:
those which are externally specified and those which require algorithmic specification. Each class contains three
objects. The externally specified objects include the distribution over plaintext messages M, the distribution over
covertext C, and the random source generator.

* The distribution over plaintext messages M may be known by the adversary, but is not known by the sender or
the receiver. However, the sender and receiver are aware of the domain M over which M ranges. The sampled
plaintext message M is explicitly known by the sender, but not to the receiver or the adversary.

¢ The covertext distribution C is assumed to be known by the sender, the receiver, and the adversary.

* The random source generator provides the sender with a mechanism to take random samples from distributions.
This random source is known to the sender but not to the receiver or adversary.

The objects requiring algorithmic specification, which are collectively referred to as a stegosystem, are the key
generator, the encoder, and the decoder.

» The key generator produces a private key K in the form of a binary string. This private key is shared between
the sender and receiver over a secure channel prior to the start of the stegoprocess and can be used to coordinate
encryption and decryption. The key generation process may be known to the adversary, but the realization of the
key K is not.

» The encoder takes a private key K, a plaintext message M, and a source of randomness R as input and produces
a stegotext S in the space of covertexts C.

* The decoder takes a private key K and a stegotext .S as input and returns an estimated plaintext message M.

They specify the following objectives and methodological outline for the setting:

Definition D.1. [|Cachin||1998] Given covertext distribution C and plaintext message space M, a stegosystem
is e-secure against passive adversaries if the KL divergence between the distribution of covertext C and the
distribution of stegotext S less than ¢; i.e., KL(C,S) < e. It is perfectly secure if the KL divergence is zero; i.e.,
KL(C,S) =0.

In other words, a steganographic system is perfectly secure if the distribution of stegotext S communicated by the
sender is exactly the same as the distribution of covertext C.

In addition to security, it is desirable for stegosystems to transmit information efficiently. Mutual information
between messages and stegotexts is one way to quantify efficiency.

Definition D.2. The mutual information T(M;S) = H(M) — H(M | S) between the message M and stegotext
S is the expected amount of uncertainty in the message M that is removed by conditioning on the stegotext S.

Methodological Outline A common class of stegosystems uses two-step encoding and two-step decoding
processes, as described below:

1. The sender uses the private key K to injectively map the plaintext message M into ciphertext X = {0, 1} in
such a way that the induced distribution over ciphertext X" is uniformly random, regardless of the distribution

of MF

>For example, if K is drawn from a uniform random distribution, bin(M) denotes a deterministic binarization of M, and XOR
represents the component-wise exclusive-or function, then X = XOR(bin(M), K) is guaranteed to be distributed uniformly randomly,
regardless of the distribution of messages M.



2. The sender uses a (potentially stochastic) mapping f: X ~» C to transform the ciphertext X into stegotext S
(which exists in the space of covertexts C).

3. The receiver estimates the ciphertext X from the stegotext S.
4. The receiver inverts the estimated ciphertext Xtoa plaintext message M with private key K EI

Given the definition below Schroeder de Witt et al.| [2023]] show the following guarantees:

Definition D.3. We say that an encoding procedure f: X ~» C is induced by a coupling if there exists v € T'(X,C)
such that for all x € X, c € C, P(f(x)=c) = y(C=c | X=x).

Theorem D.4. A steganographic encoding procedure is perfectly secure if and only if it is induced by a coupling.

Theorem D.S. Among perfectly secure encoding procedures, a procedure f: X ~» C maximizes the mutual
information Z(M; S) if and only if f is induced by a minimum entropy coupling.

SFor the example in footnote|3| the receiver can recover the binarized message bin(M) using the mapping X — XOR(X, K) and
invert the binarization to recover the plaintext M.
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