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Abstract

Deep learning models can encounter unexpected failures, especially when dealing with chal-
lenging sub-populations. One common reason for these failures is the occurrence of objects
in backgrounds that are rarely seen during training. To gain a better understanding of these
failure modes, human-interpretable descriptions are crucial for further analysis and improve-
ment which is expensive. In this study, we propose an end-to-end framework that utilizes the
capabilities of large language models (ChatGPT) and vision-language deep models (CLIP)
to generate text descriptions of failure modes associated with spurious correlations (e.g.
rarely seen backgrounds) without human-in-the-loop intervention. These descriptions can
be used to generate synthetic data using generative models, such as di�usion models. The
model can now use this generated data to learn from its weaknesses and enhance its perfor-
mance on backgrounds that are uncommon for each class of data. Our approach serves as
a broad solution, promising progress in comprehending model failure modes and strength-
ening deep learning models across a wide range of failure scenarios (e.g. bacckgrounds,
colors) automatically in a few-shot manner. Our experiments have shown remarkable im-
provements in accuracy (≥ 21%) on hard sub-populations (particularly for wrong back-
ground association) across 40 di�erent models, such as ResNets, E�cientNets, DenseNets,
Vision Transformer (ViT), SwAVs, MoCos, DINOs, and CLIPs on various datasets such as
ImageNet-1000, CIFAR-10, and CIFAR-100.

1 Introduction

The quality of training data directly impacts the performance and robustness of machine learning models.
Despite careful curation of training data, models can still exhibit failure modes where their performance
deteriorates in specific sub-populations of data, leading to misclassifications or inaccurate predictions Jiang
et al. (2018); Arpit et al. (2017). The failure modes of deep networks can arise from various factors, such
as noisy labels Sukhbaatar et al. (2014); Jiang et al. (2018); Reed et al. (2015), multi-labels Zhang et al.
(2018b), and spurious correlations Zhou et al. (2020), particularly when it comes to distinguishing between
objects and their backgrounds Kattakinda & Feizi (2021); Xiao et al. (2020). (See the figure 7 in appendix
for examples of these failures.)

Similar to how humans use image backgrounds as cues for object recognition, studies have shown that
machine learning models also rely on backgrounds when making decisions. In some cases, models may
prioritize backgrounds to the point of overlooking important object features for classification Zhang et al.
(2007); Ribeiro et al. (2016); Sagawa et al. (2019).

Various approaches have been attempted to address failure modes caused by spurious background associa-
tions, but many of them are inadequate in addressing all aspects of the problem. Some approaches involve
human-in-the-loop interventions Mitchell et al. (2021); Santurkar et al. (2021), which is labor-intensive and
challenging to apply to large-scale operations. Moreover, many of them only target a limited set of failure
modes, neglecting the comprehensive spectrum of potential failures Barbu et al. (2019); Hendrycks et al.
(2021a); Hendrycks & Dietterich (2019); Hendrycks et al. (2021b); Kattakinda & Feizi (2021). Additionally,
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Figure 1: A summary of our approach: For a model based on the wrongly predicted debug samples (failure
samples), we form two sets - debug seed and debug heldout. We use the debug seed set to address the
model’s failures by inputting them to CLIP Radford et al. (2021), along with a set of backgrounds obtained
from ChatGPT where objects are less likely to occur. We then obtain a set of backgrounds and remove
redundancies, and generate synthetic data by inputting the prompt "A photo of {class_name} {background}"
to Stable Di�usion Rombach et al. (2022). With this synthetic data that precisely captures the model’s failure
modes, we can now debug the model’s predictions on other test data by training a very low-cost network on
top of our model, which assigns di�erent weights to the original data and the generated data.

some of the existing work lacks clear descriptions of model failures in a human-understandable manner,
posing challenges in terms of interpretability and validation.

Alongside research on identifying failure modes, there are several debugging approaches that seek to utilize
these failure modes to enhance the accuracy of machine learning models. These include creating supplemen-
tary datasets with failure samples to help the model learn robust features Xiao et al. (2020); Singla et al.
(2022), or modifying the model’s parameters to incorporate information from identified failure modes Rame
et al. (2022). These studies lack failure mode descriptions that are easily understandable for humans, making
it challenging to interpret their validity.

2 Our contribution

This research leverages recent generative models, large language models, and CLIP to introduce an automated
framework addressing failure modes (spurious correlations) in diverse task-specific deep learning models. The
framework, outlined in Figure 1, answers key questions such as identifying and rectifying spurious associations
leading to model failure, utilizing these failure modes to enhance model performance, exploring patterns in
failure modes across a model group, and using a single set of auxiliary data to simultaneously improve a
subgroup of models.
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To summarize, our approach initially identifies all model failures on a specific subset, denoted as DebugSet,
within the validation set. We then pinpoint spurious correlations, such as background associations, for each
dataset class by querying ChatGPT with "What are the uncommon backgrounds that a class_name can
appear in?" and remove redundacies after obtaining all uncommon backgrounds. Subsequently, a zero-shot
classification using CLIP identifies the background for each failure among all the uncommon backgrounds.
To enhance model performance, we generate k artificial images with prompts like "[class_name] in [back-
ground_name]" and incorporate this supplementary data into the original training set. In the second phase,
we demonstrate that models with similar architectures exhibit analogous failures, allowing for e�cient trou-
bleshooting of a model group using a single set of generated auxiliary data. This approach proves both time
and memory e�cient. The results of our experiments, detailed in section 5, underscore the e�ectiveness of
this straightforward method in achieving interpretability and debugging goals.

Our paper presents several contributions to the field of machine learning model failure analysis and debugging.
These contributions include, but are not limited to, the following:

• Generalizability: Introducing a comprehensive end-to-end framework that interprets and rectifies
failures arising from specific spurious associations, such as incorrect background, color, and size
correlations, which can contribute to any model inaccuracies.

• Failure Inspection: Identification of spurious background association failure modes of ≥ 40 multi-
ple models on ImageNet in an interpretable manner (section 5.2.1), and exploring common patterns
in failure modes among individual models with same architectures (section 5.2.2) automatically and
without any human intervention.

• Failure Mitigation: Improving the performance of individual models on challenging sub-
populations (5.3.1), and boosting the performance of model subsets by employing a unified set
of auxiliary data, leveraging shared failures to enhance e�ciency in both time and memory usage
(section 5.3.2).

• Collective Failure Mitigation: Enhancing subsets of models’ performance through a unified set
of auxiliary data owing to their shared failures which saves time and memory. To the best of our
knowledge, this work represents the first e�ort to collectively address failures within a subgroup of
models simultaneously. (section 5.3.2).

• Dataset creation for debugging ImageNet, Cifar10, and Cifar100: We created a dataset
that will improve models’ performance on background and color associated failure modes on these
three datasets.

3 Related work

3.1 Failure mode detection

Numerous studies have been conducted to detect machine learning model failure modes. As previously men-
tioned, some involve human-in-the-loop methods, where failure examples are reviewed to identify common
patterns Mitchell et al. (2021); Santurkar et al. (2021). Others adopt automated approaches by introducing
frameworks that e�ectively capture model failures Chung et al. (2019); Singla et al. (2021); Nushi et al.
(2018); Singla & Feizi (2021); Wong et al. (2021); Wu et al. (2019); Zhang et al. (2018a); Jain et al. (2022).
For instance, Chung et al. (2019) employs a technique that slices the validation data to isolate sections
where the model performs poorly. Singla et al. (2021) identifies visual attributes that lead to inadequate
performance when present or absent. Jain et al. (2022) identifies and represents model failures as directions
in the latent space, and Eyuboglu et al. (2022) that proposes an evaluation framework to systematically
compare (slice discovery method) SDMs across diverse slice settings by generating captions for hard sub-
populations. Distinguishing itself from existing methodologies, our approach provides enhanced generality
by permitting the explicit selection of the spurious correlation targeted for mitigation. For
instance, although the approach presented by Kattakinda et al. Kattakinda et al. (2022) e�ectively tackles
spurious correlations tied to foreground and background features by learning disentangled representations,
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it encounters di�culties when confronted with a wider spectrum of spurious correlations, e.g. color. This
is due to the inherent challenge of learning disentangled representations for many spurious correlations in
isolation from the foreground object.

3.2 mitigation of hard subpopulations and interpretability of models

Several methodologies leverage extracted failure modes to debug and enhance the performance of deep
learning models. Singla et al. Singla et al. (2022) introduce a framework that identifies visually similar
images to model failures and incorporates them as new data for debugging various models. Kattakinda et al.
Kattakinda et al. (2022) focus on learning invariant features for foreground and background by penalizing
the mutual information between the features and background/foreground labels. This approach contributes
to robust model training, particularly by addressing issues related to spurious correlations.

In the context of data generation, Bansal and Grover Bansal & Grover (2023) and Wiles et al. Wiles et al.
(2022) use generated data to diversify training datasets. However, it’s essential to note that their methods
do not specifically target failure modes like spurious correlations. They rely on class names and general
captions for generating auxiliary data, which may not be tailored to address specific failure modes.

Moreover, Wiles et al. Wiles et al. (2022) propose a bug discovery approach using o�-the-shelf image
generation and captioning, contributing to the interpretability of model predictions. On the other hand,
Jain et al. Jain et al. (2022) leverage Support Vector Machines (SVMs) to distill model failures as directions
in latent space, focusing on latent representations of model failures.

In comparison to existing methodologies that address failure modes on specific datasets, our framework
introduces two noteworthy contributions. Firstly, it achieves enhanced model performance with sig-
nificantly fewer generated examples, (5 for each failure). Secondly, our experiments extend to
collective debugging, demonstrating the ability to improve a subset of model failures by gen-
erating a single auxiliary artificial dataset based on only one model’s failures. This is particularly
valuable given our observation that models within the same categories exhibit similar failures, a phenomenon
also noted in Wiles et al. (2022).

Moreover, our approach stands out for its e�ciency, eliminating the necessity for complete model retraining
or fine-tuning. We exclusively focus on retraining the linear head for classification, streamlining the failure
mode mitigation process.

4 Main method

4.1 Failure-mode detection

A common reason for accuracy drops during inference is the model’s learned spurious correlations from
training. For example, Associating objects with backgrounds, a spurious correlation, can hinder the model’s
ability to learn objects themselves. This challenge arises when the model encounters objects in unfamiliar
backgrounds during testing, notably in computer vision tasks where backgrounds define object context.
To tackle this, introducing the model to a range of scenarios that address the particular failure mode
(such as color or background associations) we aim to mitigate, can improve its ability to identify objects
in di�erent contexts, and avoid correlating the objects and their changable features (e.g. color) or contexts
(e.g. background).

In this work we explain how we use this framework for wrong background associations, however it can easily
be applied to all other spurious correlations that models may mistakenly learn.

To address and rectify failures attributed to backgrounds, we utilize the feature extractor for each model on
the datasets, generating a feature vector for each data point. The subsequent linear head atop this feature
extractor is responsible for executing the classification task. Instances where the model makes incorrect
predictions form a set termed the "debug set". This debug set serves as a tool for identifying and resolving
failure modes, as it comprises all examples where the model fails. While these failures may stem from various
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<font style="font-size: 14px;">Tench on a plate</font>
Tench on a plate Tench in a hand Tench on a sofa Tench in a garden

Lemon on snow Lemon on a leaf Lemon in water Lemon on soil

Perfume on a table

Perfume in a
restaurant

Perfume in jungle

Perfume in bed

Figure 2: Examples of generated data by Stable Di�usion

factors, our experiments underscore the significance of mitigating incorrect background associations, as it
significantly improves the performance of all models.

Class name Uncommon backgrounds
Sea lion Desert, Rain forests, Urban Areas, Polar Ice Caps,

Caves, Grasslands, Volcanic Areas
Siberian husky Jungle Canopies, In sky, Caves, Underwater,

Indoor Spaces, Marshlands, Tropical Rainforests
croquet ball Mountain Peaks, Busy Streets, Frozen Lakes,

Underneath Building Foundations, Subway Tunnels, in a restaurant
lipstick, lip rouge Gyms and Fitness Centers, Swimming Pools,

Medical Facilities, Construction Sites, Sports Events, Military Training

Table 1: Examples of suggested uncommon backgrounds for a class of data by ChatGPT

4.2 Failure-mode textualization

Vision-language models are popular as they can provide more comprehensive understanding of complex
phenomena by combining information from di�erent modalities like text, images, and audio, enabling them
to interpret data in a more human-readable form Lu et al. (2019); Chen et al. (2018); Mithun et al. (2020).

Understanding failure modes is critical for validating proposed debugging methods. By identifying the causes
of failure, we can improve our models and refine our data collection methods. For each class_name in our
dataset, we first prompt ChatGPT "What are the uncommon backgrounds that a class_name can appear
in?" and filter out the redundant suggested backgrounds. Some examples can be seen in Table 1. Then, we
use CLIP Radford et al. (2021) to interpret failure modes by splitting the failures from the debug set into
two sets called debug seed and debug heldout. We then perform zero-shot classification by passing debug
seed along the set of class_wise uncommon backgrounds proposed by ChatGPT to a CLIP model, so for
each data point, CLIP will opt for the background that is more likely to be the actual background of the
object shown in the image. For each data class, we then pinpoint the k most frequently selected backgrounds
by CLIP, which the model failed to classify. This will provide valuable insights into the ways how a model
may fail when confronted with a particular selected spurious association.
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f) ResNet152
Correct_class: holster

Prediction before debugging:
cowboy hat

Prediction after debugging:
holster

e) ResNet101
Correct_class: shopping basket

Prediction before debugging:
candy store

Prediction after debugging:
shopping basket

d) ResNet50
Correct_class: poncho

Prediction before debugging:
T-shirt

Prediction after debugging:
poncho

c) ResNet34
Correct_class: wallet

Prediction before debugging:
mushroom

Prediction after debugging:
wallet

b) ResNet26
Correct_class: T-shirt

Prediction before debugging:
sleeping bag

Prediction after debugging:
T-shirt

a) ResNet18
Correct_class: refrigerator

Prediction before debugging:
filling cabinet

Prediction after debugging:
refrigerator

g) DINO_vits8
Correct_class: accordion

Prediction before debugging:
space heater

Prediction after debugging:
accordion

k) DINO_vits16
Correct_class: scarf

Prediction before debugging:
poncho

Prediction after debugging:
scarf

j) DINO_vitb8
Correct_class: farm plow

Prediction before debugging:
cannon

Prediction after debugging:
farm plow

i) DINO_vitb16
Correct_class: wine bottle

Prediction before debugging:
soda bottle

Prediction after debugging:
wine bottle

h) DINO_ResNet50
Correct_class: bell or wind chime

Prediction before debugging:
traffic light

Prediction after debugging:
bell or wind chime

Figure 3: Some examples of failure modes of ResNets and DINOs

4.3 Generating synthetic data

By leveraging the detected backgrounds of failures by Clip, we can both interpret those failures, and use
them to debug models. For instance, in the case of the Imagenet class "tench," errors predominantly occur
when the fish is held by a person’s hand, a scenario rarely encountered during training. To address this,
a generative model like Stable Di�usion Ho et al. (2021) can be used to create images that familiarize the
model with diverse object contexts. For the "tench" class, we generate data by inputting the prompt "tench
in a hand" to the Stable Di�usion. Examples of such generated data are presented in figure 2

4.4 Retraining the linear head

After collecting the additional synthetic data for the failed scenarios, which we call debug_train, we can
use it along with our original trainset to debug our models. To achieve this, we only need to train a linear
head on top of the model’s feature extractor for the classification purpose and not the whole model. It
is important to note that we assign di�erent weights to the datapoints from the original_train set and the
Debug_train set in our linear head training loss 1. This parameter is called lambda, and in our experiments,
we report its e�ect on the overall performance of the model. By incorporating the additional debug_train
data and carefully tuning the lambda parameter, we can potentially improve the performance of our models.

Lcl = Lcl(Original_train) + ⁄ ú Lcl(Debug_train) (1)

5 Experiments

5.1 Setting

We load our datasets and use their training data to train the linear head on top of the models’ extracted
features. For ImageNet, we use 30 data points per class and the overall 30000 training images. We choose
30000 images out of 50000 of Imagenet’s validation set as our debug_set, and the remaining 20000 samples
will be considered for the testing process. Each image’s resolution is 224 ú 224, and the task performed here
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Figure 4: Comparing failures of all models (Intersection/Union).We observe that models belonging to the
same categories tend to exhibit more comparable failures.

is the classification task on Imagenet classes. Other settings include hyper-parameters that we used can be
seen in table 4 in the appendix.

We tested our method on 40 di�erent models including ResNets He et al. (2016), E�cientNets Tan & Le
(2019), DenseNets Huang et al. (2017), Vision Transformer (ViT) Dosovitskiy et al. (2021), SwAVs Caron
et al. (2020), MoCos He et al. (2019), DINOs Caron et al. (2021), and Clips Radford et al. (2021). The exact
list of used models can be seen in table 5 in the appendix. For the sake of space, we only show experiments
on DINO and ResNet models, and experiments for other models can be found in appendix 6.

We split the detected failures of debug set in half. The first half, debug seed will be used for debugging. For
obtaining uncommon backgrounds, we use ChatGPT 3.5. The CLIP model we use for choosing backgrounds
for data points is ViT-B32 CLIP. For generating synthetic data, we use Stable Di�usion V 1 ≠ 5 imported
from the di�users package.

5.2 Failure inspection

The initial stage of our framework involves analyzing how various models fail to classify objects on di�erent
datasets. To accomplish this, we use the CLIP model to identify backgrounds on which models struggle to
classify objects. This results in captions that describe failures related to rare backgrounds. In the following
stage, we examine these identified failures and explore how the generated captions help us to recover from
them. We investigate results for both individual and Collective failure inspection.

5.2.1 Individual Failure Inspection

In figure 3, we show some instances where ResNet and DINO models have failed and see that these failures
are due to wrong background association. In this figure, the six images on the left (a-f) are examples of
Resnets’ failures, and the five images on the right (g-k) are failure modes’ of DINO models. For example,
image c shows "a wallet in jungle", which can be regarded as an uncommon background for this object. As
a result, the ResNet34 model is unable to classify it accurately and instead predicts a "mushroom" which is
more likely to be found "in garden", especially under a plant, despite having no resemblance to the actual
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object in the image. Similarly, image h illustrates "a bell or wind chime in sky", which is uncommon since
"bell" is more likely to be seen with other backgrounds such as "a door, a building or a wall". Therefore, the
DINO_reset50 model mispredicts as "tra�c light" because "tra�c light" is more common to be seen "in a

sky background".

In general, our approach is capable of addressing failure scenarios originating from uncommon backgrounds
of objects. Analyzing the relevant backgrounds allows us to readily understand the cause of such failure
instances.

5.2.2 Collective Failure Inspection

Within this section, we will conduct a comparison of the failure modes for all models to assess their alignment.
Our aim is to determine the extent to which failures are consistent across models. While numerous studies
have focused on analyzing similarities in the learning process and representations of di�erent models, such
as Raghu et al. (2021) that demonstrated the similarity between convolutional neural networks (convnets)
and other convnets, as well as the similarity between vision transformers (ViTs) and other ViTs, our focus is
on investigating whether models also fail in similar ways. This will enable us to gain a deeper understanding
of how to address the issue of failures in a more generalized manner without taking the specific model into
consideration.

The failures of di�erent models in various categories are compared in figure 4 by computing the intersection

over union of the failures. It can be observed that models within the same category fail in more similar
samples. Typically, the failures between models from the same category are over 80% similar (e.g. CLIPs
and E�cientNets). Among all 40 models, the intersection of failure modes is above 40%, indicating that
models tend to fail in very similar ways, even with di�erent architectures. This will raise the question of
"how to utilize this similarity in failures to enhance a group of models’ performance?" which we will explore
more in section 5.3.2.

It is pertinent to mention that Wiles et al. (2022) has also recognized patterns of consistencies in failures
among models within the same category. however, we take a step further and delve into leveraging these
consistencies to systematically mitigate shared failure modes.

5.3 Failure Mitigation

5.3.1 Individual Failure Mitigation

The outcomes from employing our framework are presented in Table 2. we only included the results for
ResNets and DINOs, but we have results for other models (E�cientNets, DenseNets, ViTs, SWaVs, MoCo,
and CLIPs) in the appendix. In Table 2, we constructed debug_seed and debug_heldout sets to yield zero
accuracy for the model, as they are composed of model failures. Post debugging and utilizing debug_seed,
we observe substantial improvements in debug_heldout data that we didn’t use for debugging, ensuring an
unbiased evaluation. This improvement underscores that many failure modes stem from incorrect associations
models make between objects and backgrounds. Some might argue that this gain results from the additional
data. Thus, we present results for a baseline we term Random_debugging. This baseline similarly uses
debug_seed and debug_heldout, then generates synthetic data using only class names (prompts are structured
as "A photo of [class_name]"). This comparison illustrates that the improvement of our method arises
from considering background information. In the outcomes of Random_debugging, the improvement over
debug_seed and debug_heldout is roughly equivalent since no information from the background association
of either set was utilized. Random_debugging solely employs class names to generate data. However, this
improvement is not on par with the gain achieved by incorporating background information when generating
new data.

It’s worth noting that despite incorporating Stable Di�usion-generated data, which could be seen as out-of-
distribution samples, a positive impact on model performance remains. This is primarily attributed to the
parameter ⁄ that controls the contribution of the generated images in our training process. The influence of
this parameter is depicted in figure 5.
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Models Accuracies

Model
Accuracy Accuracy of Accuracy of

model before Individual Debugging Random debugging
category name debugging (ours)

Test Test seed heldout Test seed heldout

ResNet

resnet18 0.6236 0.6413 0.2636 0.2128 0.6242 0.1134 0.1129
resnet26 0.6593 0.6671 0.2856 0.228 0.6604 0.09539 0.0904
resnet34 0.7017 0.7165 0.3061 0.2531 0.7099 0.09856 0.08615
resnet50 0.7631 0.7671 0.3444 0.2717 0.7657 0.1102 0.1072
resnet101 0.796 0.8024 0.3574 0.2656 0.7974 0.1132 0.1181
resnet152 0.816 0.8238 0.3609 0.2817 0.8183 0.08207 0.08804

DINO

ViTs8 0.6977 0.7008 0.3117 0.2494 0.6979 0.1134 0.1129
ViTs16 0.649 0.6558 0.2922 0.2379 0.6502 0.09539 0.0904
ViTb8 0.7101 0.7136 0.3325 0.2518 0.7104 0.09856 0.08615
ViTb16 0.6832 0.6851 0.3067 0.2477 0.681 0.1102 0.1072

Table 2: Accuracy of our method compared to the Random_debugging. Note that the accuracy of models
on debug_seed and debug_heldout was zero before debugging. After applying our debugging method, we
gain above ≥ 21% improvements in accuracies for all models, showcasing that more than ≥ 21% of model
errors in the heldout set come from wrong background associations.

Another crucial hyper-parameter is the number (#) of generated synthetic data per class. The e�ect of this
hyper-parameter, denoted as k, is illustrated in figure 5.

The improvement observed in debug_heldout data surpasses ≥ 21% for all models, highlighting the ten-
dency of models to fail in associating backgrounds with objects and utilizing this association to predict
objects, neglecting object-specific features. This can be contrasted with the accuracy gain achieved by the
Random_debugging baseline, which is significantly smaller compared to our method.

(a) Effect of hyper parameter lambda on
both test and heldout accuracies.

(b) Effect of hyper-parameter k (# cho-
-sen backgrounds per class) on heldout
accuracy

Figure 5: a) As the value of lambda increases, the accuracy on the heldout set improves while the accuracy
on the test set decreases. However, there is a specific point (0.5) on the plot where the accuracy of the
models on both the test and heldout sets stabilizes. b) Increasing the number of chosen backgrounds per
class enhances the accuracy on the heldout set. Considering the high cost of generating additional data, we
opt for k = 3, where the plot exhibits a significant slope.

5.3.2 Collective Failure Mitigation

As discussed in section 5.2.2, since models from the same categories have very similar failures, we have
considered the possibility of using a single set of generated data, called collective_debug_train, to debug
all models within the same categories. To achieve this, we have devised two di�erent settings: 1) we get
the failure modes of all models in the same category (e.g. ResNets), and we select k samples from all their
failures. Therefore, background failures that occurred more have a higher probability of being chosen for the
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Models Accuracies
Accuracy Accuracy of Accuracy of

Model model before Collective Debugging-type 1 Collective Debugging-type 2
category name debugging (ours) (ours)

Test Test seed heldout Test seed heldout

ResNet

resnet18 0.6236 0.6364 0.2291 0.2078 0.6413 0.2636 0.2128
resnet26 0.6593 0.6655 0.2396 0.2192 0.6669 0.2185 0.1853
resnet34 0.7017 0.7149 0.2312 0.2188 0.7135 0.2391 0.2178
resnet50 0.7631 0.7644 0.2419 0.2217 0.7641 0.2325 0.2105
resnet101 0.796 0.8001 0.2474 0.2226 0.7999 0.2244 0.2045
resnet152 0.816 0.8182 0.2509 0.2317 0.8188 0.2253 0.2081

DINO

ViTs8 0.6977 0.70001 0.2729 0.2488 0.70008 0.3117 0.2494
ViTs16 0.649 0.6522 0.2673 0.2394 0.6504 0.2563 0.2267
ViTb8 0.7101 0.7125 0.2913 0.2509 0.7117 0.2903 0.2540
ViTb16 0.6832 0.6840 0.2985 0.2467 0.6833 0.2855 0.2488

Table 3: Collective_debug_train method’s results.
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Figure 6: Comparison of resolved failures between collective_debugging and individual_debugging as a
percentage. Relative accuracy is the ratio of the combined debugging’s accuracy over individual debugging’s
accuracy on each specific model.

collective_debug_train. We then use this data to debug individual models in this category. 2) We get the
failure modes of only one of the models in a category and then use this to debug all models. This approach
is more e�cient in terms of time and memory, as it requires running only one model per category. The
results for this experiment are shown in table 3. Based on our observations in section 5.2.2, having the same
debug_train data for debugging (collective_debug_train), improves the accuracies among all models in the
same category. This approach o�ers greater e�ciency as it eliminates the need to generate debug_train
data for each individual model. Consequently, it saves us both time and memory that would otherwise be
required for storing such data.

In an overview, the collective debugging approach showcases the capability to resolve above 75% of failures
corrected by individual debugging (Debugging each model based on its failures) 6.

6 Conclusion

In our project, we’ve developed a technique to identify failure modes by focusing on a specific category of
spurious correlations. We then leverage these detected failures to generate additional samples, allowing the
model to learn from and address its shortcomings. We’ve illustrated the resemblance of failures within a
particular model category, highlighting that models with the same architecture share more similar failures.
Exploiting this insight, we’ve devised a method to alleviate failures across all models in a category using a
single set of generated data based on the failures of just one model in that category. Our results indicate that
this collective debugging approach can resolve over 75% of failures addressed through individual debugging
e�orts. Our framework empowers users to select the spurious correlation to identify and mitigate, facilitating
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the simultaneous debugging of a subset of models with a single (small) auxiliary set of additional data, thereby
saving both time and resources.
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