Learning to Receive Help:
Intervention-Aware Concept Embedding Models

Mateo Espinosa Zarlenga Katherine M. Collins Krishnamurthy (Dj) Dvijotham

University of Cambridge University of Cambridge Google DeepMind
me466Qcam.ac.uk kmc61@cam.ac.uk dvij@google.com
Adrian Weller Zohreh Shams Mateja Jamnik
University of Cambridge University of Cambridge University of Cambridge
Alan Turing Institute zs315Qcam. ac.uk mateja.jamnik@cl.cam.ac.uk

aw665@cam.ac.uk

Abstract

Concept Bottleneck Models (CBMs) tackle the opacity of neural architectures by
constructing and explaining their predictions using a set of high-level concepts. A
special property of these models is that they permit concept interventions, wherein
users can correct mispredicted concepts and thus improve the model’s performance.
Recent work, however, has shown that intervention efficacy can be highly dependent
on the order in which concepts are intervened on and on the model’s architecture
and training hyperparameters. We argue that this is rooted in a CBM’s lack of
train-time incentives for the model to be appropriately receptive to concept interven-
tions. To address this, we propose Intervention-aware Concept Embedding models
(IntCEMs), a novel CBM-based architecture and training paradigm that improves
a model’s receptiveness to test-time interventions. Our model learns a concept
intervention policy in an end-to-end fashion from where it can sample meaningful
intervention trajectories at train-time. This conditions IntCEMs to effectively select
and receive concept interventions when deployed at test-time. Our experiments
show that IntCEMs significantly outperform state-of-the-art concept-interpretable
models when provided with test-time concept interventions, demonstrating the
effectiveness of our approach.

1 Introduction

It is important to know how to ask for help, but also important to know how to receive help. Knowing
how to react to feedback positively allows for bias correction [1] and efficient learning [2] while being
instrumental for mass collaborations [3]]. Nevertheless, although the uptake of feedback is ubiquitous
in real-world decision-making, the same cannot be said about modern artificial intelligence (AI)
systems, where deployment tends to be in isolation from experts whose feedback could be queried.

Progress in this aspect has recently come from Explainable AI, where interpretable Deep Neural
Networks (DNNs) that can benefit from expert feedback at test-time have been proposed [4H7].
In particular, Concept Bottleneck Models (CBMs) [4], a family of interpretable DNNs, enable
expert-model interactions by generating, as part of their inference process, explanations for their
predictions using high-level “concepts”. Such explanations allow human experts to better understand
a CBM’s prediction based on interpretable units of information (e.g., input is a “cat” because it
has “paws” and “whiskers”) rather than low-level features (e.g., input pixels). This design enables
humans to provide feedback to the CBM at test-time via concept interventions [4] (Figure E]), a
process specific to CBM-like architectures in which an expert analyses a CBM’s inferred concepts

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Hot dog

9(x) Not Hot Dog

Hot dog

Human Expert X ] Sesame Seeds

Figure 1: When intervening on a CBM, a human expert analyses the predicted concepts and corrects
mispredicted values (e.g., the mispredicted concept “legs”), allowing the CBM to update its prediction.

and corrects mispredictions. Concept interventions allow a CBM to update its final prediction
after incorporating new expert feedback, and have been shown to lead to significant performance
boosts [4} 15, 18, 19]. Nevertheless, and in contrast to these results, recent works have found that
concept interventions can potentially increase a CBM’s test-time error depending on its choice of
architecture [[10]] and its set of train-time annotations [S]]. This discrepancy suggests that a CBM’s
receptiveness to interventions is neither guaranteed nor fully understood.

In this paper, we posit that the sensitivity of a CBM’s receptiveness to interventions is an artefact
of its training objective function. Specifically, we argue that CBMs lack an explicit incentive to be
receptive to interventions as they are neither exposed to interventions at train-time nor optimised
to perform well under interventions. To address this, we propose a novel intervention-aware objective
function and architecture based on Concept Embedding Models (CEMs) [3]], a generalisation of
CBMs that represent concepts as high-dimensional embeddings. Our architecture, which we call
Intervention-aware Concept Embedding Model (IntCEM), has two key distinctive features. First, it
learns an intervention policy end-to-end which imposes a prior over which concepts an expert could
be queried to intervene on next to maximise intervention receptiveness. Second, its loss function
includes an explicit regulariser that penalises IntCEM for mispredicting the task label after a series
of train-time interventions sampled from its learned policy. We highlight the following contributions:

¢ We introduce IntCEM, the first concept-interpretable neural architecture that learns not only
to explain its predictions using concepts but also learns an intervention policy dictating
which concepts an expert should intervene on next to maximise test performance.

» We show that IntCEM significantly outperforms all baselines in the presence of interventions
while maintaining competitiveness when deployed without any interventions.

* We demonstrate that, by rewriting concept interventions as a differentiable operation,
IntCEM learns an efficient dynamic intervention policy that selects performance-boosting
concepts to intervene on at test-time.

2 Background and Previous Work

Concept Bottleneck Models Methods in Concept-based Explainable Al [11H17] advocate for
explaining DNNs by constructing explanations for their predictions using high-level concepts captured
within their latent space. Within these methods, Concept Bottleneck Models (CBMs) [4] provide a
framework for developing concept-based interpretable DNNs.

Given a training set D := {(x(i), c® y)IN  where each sample x € R" (e.g., an image) is
annotated with a task label y € {1, , L} (e.g., “cat” or “dog”) and k binary concepts c¢ € {0, 1}*
(e.g., “has whiskers”), a CBM is a pair of functions (g, f) whose composition f(g(x)) predicts
a probability over output classes given x. The first function g : R” — [0, 1]*, called the concept
encoder, learns a mapping between features x and concept activations ¢ = g(x) € [0, 1]¥, where
ideally ¢; is close to 1 when concept c; is active in x, and 0 otherwise. The second function
f:[0,1]% — [0, 1]*, called the label predictor, learns a mapping from the predicted concepts ¢ to a
distribution ¥ = f(¢&) over L task classes. When implemented as DNNs, g’s and f’s parameters can
be learnt (i) jointly, by minimising a combination of the concept predictive 108S Lconcep: and the task
cross-entropy loss Lk, (i) sequentially, by first training g to minimise Lconcept and then training



f to minimise Ly, from g’s outputs, or (iii) independently, where g and f are independently trained
to minimise their respective losses. Because at prediction-time f has access only to the “bottleneck™
of concepts activations ¢, the composition (f o g) yields a concept-interpretable model where ¢;
can be interpreted as the probability p; that concept ¢; is active in x.

Concept Embedding Models Because f operates only on the concept scores predicted by g, if the
set of training concepts is not predictive of the downstream task, then a CBM will be forced to choose
between being highly accurate at predicting concepts or at predicting task labels. Concept Embedding
Models (CEMs) [5] are a generalisation of CBMs that address this trade-off using high-dimensional
concept representations in their bottlenecks. This design allows information of concepts not provided
during training to flow into the label predictor via two m-dimensional vector representations (i.e.,
embeddings) for each training concept ¢;: cj‘ € R™, an embedding representing c; when it is active

(i.e, ¢;=1),and c; € R™, an embedding representing ¢; when it is inactive (i.e., ¢; = 0).

When processing sample x, for each training concept ¢; a CEM constructs c;r and c; by feeding
X into two learnable models ¢;r, ¢; : R™ — R™ implemented as DNNs with a shared preprocessing
module. These embeddings are then passed to a learnable scoring model s : R>™ — [0, 1], shared
across all concepts, that predicts the probability p; = s([¢;, ¢;]) of concept ¢; being active. With
these probabilities, one can define a CEM’s concept encoder g(x) = & := [¢1,- - - ,&;] € RF™ by
mixing the positive and negative embeddings of each concept to generate a final concept embedding
C; = ﬁiéj + (1 — p;)¢; . Finally, a CEM can predict a label y for sample x by passing ¢ (i.e., its
“bottleneck”) to a learnable label predictor f(¢) whose output can be explained with the concept
probabilities p := [p1,---,px]?. This generalisation of CBMs has been empirically shown to
outperform CBMs especially when the set of concept annotations is incomplete [3]].

Concept Interventions A key property of both CBMs and CEMs is that they allow concept
interventions, whereby experts can correct mispredicted concept probabilities p at test-time. By
updating the predicted probability of concept c; (i.e., p;) so that it matches the ground truth concept
label (i.e., setting p; := ¢;), these models can update their predicted bottleneck ¢ and propagate that
change into their label predictor g(X), leading to a potential update in the model’s output prediction.

Let 1 € {0,1}* be a mask with p; = 1 if we will intervene on concept ¢;, and p; = 0 otherwise.
Here, assume that we are given the ground truth values ¢ of all the concepts we will intervene on.
For notational simplicity, and without loss of generality, we can extend € to be in [0, 1]* by setting
¢; = ¢; if pu; = 1, and ¢; = 0.5 otherwise (where 0.5 expresses full uncertainty but, as it will become
clear next, the specific value is of no importance). Thus, this vector contains the expert-provided
ground truth concept labels for concepts we are intervening on, while it assigns an arbitrary value
(e.g., 0.5) to all other concepts. We define an intervention as a process where, for all concepts c;,
the activation(s) ¢; corresponding to concept ¢; in a bottleneck ¢ are updated as follows:

¢ = (i€ + (1 — pa)pi) & + (1 — (i + (1 — pa)pi)) €5 M

where ¢ and ¢; are ¢;’s positive and negative concept embeddings (for CBMs ¢&;” = [1] and ¢&; =
[0]). This update forces the mixing coefficient between the positive and negative concept embeddings
to be the ground truth concept value ¢; when we intervene on concept ¢; (i.e., u; = 1), while maintain-
ing it as p; if we are not intervening on concept ¢;. The latter fact holds as (u;¢; + (1 — wi)p:) = ps
when u; = 0, regardless of ¢;. Because the predicted positive and negative concept embeddings, as
well as the predicted concept probabilities, are all functions of x, for simplicity we use §(x, i, €) to
represent the updated bottleneck of CBM (g, f) when intervening with mask 1 and concept values ¢.

We note that although we call the operation defined in Equation[T]a “concept intervention” to follow
the term used in the concept learning literature, it should be distinguished from interventions in
causal models [18-20]. Instead, concept interventions in this context are connected, yet not identical,
to previous work in active feature acquisition in which one has access to an expert at test-time to
request the ground truth value of a small number of input features [21-23]].

Intervention Policies In practice, it may not be sensible to ask a human to intervene on every
concept [24]; instead, we may want a preferential ordering of which concepts to query first (e.g., some
concepts may be highly informative of the output task, yet hard for the model to predict). “Intervention
policies” have been developed to produce a sensible ordering for concept interventions [8, [25, 9]].



These orderings can be produced independently of a particular instance (i.e., a static policy), or
selected on a per-instance basis (a dynamic policy). The latter takes as an input a mask of previously
intervened concepts 1 and a set of predicted concept probabilities p, and determines which concept
should be requested next from an expert, where the retrieved concept label is assumed to be “ground
truth”. Two such policies are Cooperative Prediction (CooP) [9]] and Expected Change in Target
Prediction (ECTP) [8]], which prioritise concept ¢; if intervening on ¢; next leads to the largest change
in the probability of the currently predicted class in expectation (with the expectation taken over the
distribution given by p(¢; = 1) = p;). These policies, however, may become costly as the number of
concepts increases and share the limitation that, by maximising the expected change in probability in
the predicted class, they do not guarantee that the probability mass shifts towards the correct class.

3 Intervention-Aware Concept Embedding Models

Although there has been significant work on understanding how CBMs react to interventions [5| 6,
9, 123]], the fact that these models are trained without any expert intervention — yet are expected to be
highly receptive to expert feedback at test-time — is often overlooked. To the best of our knowledge,
the only exception comes from Espinosa Zarlenga et al. [5], wherein the authors introduced RandInt,
a procedure that randomly intervenes on the model during train-time. However, RandInt assumes
that a model should be equally penalised for mispredicting y regardless of how many interventions
have been performed. This leads to CEMs lacking the incentive to perform better when given more
feedback. Moreover, RandInt assumes that all concepts are equally likely to be intervened on. This
inadequately predisposes a model to assume that concepts will be randomly intervened on at test-time.

To address these limitations, we propose Intervention-Aware Concept Embedding Models (IntCEMs),
a new CEM-based architecture and training framework designed for inducing receptiveness to
interventions. IntCEMs are composed of two core components: 1) an end-to-end learnable concept
intervention policy 1 (¢, 1), and 2) a novel objective function that penalises IntCEM if it mispredicts
its output label after following an intervention trajectory sampled from ¢/ (with a heavier penalty
if the trajectory is longer). By learning the intervention policy v in conjunction with the concept
encoder and label predictor, IntCEM can simulate dynamic intervention steps at train-time while
it learns a policy which enables it to “ask” for help about specific concepts at test-time.

3.1 Architecture Description and Inference Procedure

An IntCEM is a tuple of parametric functions (g, f, 1) where: (i) g is a concept encoder, mapping
features x to a bottleneck ¢, (ii) f is a label predictor mapping ¢ to a distribution over L classes,
and (iii) ¢ : R*" x {0,1}¥ — [0, 1]* is a concept intervention policy mapping ¢ and a mask of
previously intervened concepts p to a probability distribution over which concepts to intervene
on next. IntCEM’s concept encoder g works by (1) passing an input x to a learnable “backbone”
¢(x) := ({(¢}. &)} |, p), which predicts a pair of embeddings (¢;", ¢; ) and a concept probability
p; for all concepts, and (2) constructs a bottleneck ¢ by concatenating all the mixed vectors {p1é]” +
(1 —p1)er, - ,pre + (1 — px)é;, }. While multiple instantiations are possible for ¢, in this
work we parameterise it using the same backbone as in a CEM. This implies that ¢ is formed by
concept embedding generating models {(¢;", ¢; )}%_, and scoring model s. This yields a model
which, at inference, is almost identical to a CEM, except that IntCEM also outputs a probability
distribution (&, (1) placing a high density on concepts that may yield significant intervention boosts.
At train-time, these models differ significantly, as we discuss next.

3.2 IntCEM’s Training Procedure

The crux of IntCEM’s training procedure, shown in Figure [2] lies in inducing receptiveness to
test-time interventions by exposing our model to dynamic train-time interventions. Specifically,
at the beginning of each training step, we sample an initial mask of intervened concepts 1.(*)
from a prior distribution p(p) as well as the number ' € {1,--- , k} of interventions to perform
on top of ;{9 from prior T ~ p(T). Next, we generate a trajectory of T new interventions
{n® € {0,1}* ~ p(n ; w®)}L_, by sampling the t" intervention n*) ~ p(n ; w®) (represented
as a one-hot encoding) from a categorical distribution with parameters w(®*). A key component of this
work is that parameters w(®) are predicted using IntCEM’s policy ) (é(tfl), ,u(t’l)) evaluated on the



Input CEM Backbone Intervention Trajectory with T ~ p(T) and x(©® ~ p(u) @
A

Legend
D Trainable Model
D Loss Computation

D Intervention

It Sampling Operation

P a0 ¢
3 CE(ci, 50/ RN e, CE(y,9)/(1+ ")
i=1 :é(T) 5, = = ® Lpred
bEdoo =D 7 CE(y,9)/(1+77)
Lconcept @

Figure 2: Given concept embeddings and probabilities ((x) = ({(¢&],¢; )}5;17 p). an IntCEM
training step (1) samples an intervention mask (%) ~ p(y) and horizon T ~ p(T'), (2) generates an
intervention trajectory {(1*=,7n(®)}L_, from the learnable intervention policy 1/, (3) and predicts
the task label at the start and end of the trajectory. Our loss incentivises (i) good initial concept
predictions (Lconcept)s (ii) performance-boosting intervention trajectories (Lon), (iii) and low task loss
before and after interventions (Lpreq), With a heavier penalty 7T > 1 for mispredicting at the end of
the trajectory. In this figure, dashed orange arrows indicate recursive steps in our sampling process.

previous bottleneck ¢~ := g(x, u(*=1), ¢) and intervention mask ;(*~1), where we recursively

define ™ as ) := pt=D 4+n® for t > 0. This allows IntCEM to calibrate its train-time trajectory
of interventions to reinforce supervision on the embeddings corresponding to currently mispredicted
concepts, leading to IntCEM learning more robust representations of inherently harder concepts.

We design our objective function such that it incentivises learning performance-boosting intervention
trajectories and achieving high task performance as more interventions are provided:

E(X7 CY, T) = )\rollcroll(xz C, Y, T) + ‘Cpred(Xa C,y, M(O)a M(T)) + )\concept[fconcept(ca f))

where 7 := {(u=1, n®)}T_| is the intervention trajectory while Ao and Aconcept are user-defined
hyperparameters. A,11 encodes a user’s tradeoff for number of interventions versus task performance
gains (e.g., high A\;,11 encourages rapid task performance gains from few interventions, whereas low
Aro11 is more suitable in settings where many expert queries can be made). Aconcept EXPresses a user’s
preference between accurate explanations and accurate task predictions before any interventions.

Rollout Loss (L) The purpose of L, is to learn an intervention policy that prioritises the
selection of concepts for which the associated concept embeddings fails to represent the ground
truth concept labels, i.e., select concepts which benefit from human intervention. We achieve this
through a train-time “behavioural cloning” [26} 27]] approach where 1 is trained to learn to predict the
action taken by an optimal greedy policy at each step. For this, we take advantage of the presence of
ground truth concepts and task labels during training and incentivise v to mimic “Skyline”, an oracle
optimal policy proposed by Chauhan et al. [9]. Given a bottleneck ¢ and ground-truth labels (y, ¢),
the Skyline policy selects ¢, (x, i, ¢,y) := argmax; ;< f(G(x, n V 1, c))u as its next concept,
where f(-), is the probability of class y predicted by f and .V 1; represents the action of adding an
intervention on concept ¢ to u. Intuitively, ¢, corresponds to the concept whose ground-truth label
and intervention would yield the highest probability over the ground-truth class y. We use such a
demonstration to provide feedback to v through the following loss:

T
1 _ - _ _
Loon(x, €,y T) 1= 75 Y CE(ea (6,1, ), (3, w1 ), p 1))
t=1

where CE(p, D) is the cross-entropy loss between ground truth distribution p and predicted distribu-
tion p, penalising 1 for not selecting the same concept as Skyline throughout its trajectory.

Task Prediction Loss (Lprea) We penalise IntCEM for mispredicting y, both before and after our
intervention trajectory, by imposing a higher penalty when it mispredicts y at the end of the trajectory:

1y . CE(y, f(a(x, 19, €))) +7"CE(y, f(§(x, 1", ))))
)= 1+4T

(0)

‘cpred(xacayap’ y K



Here v € [1,00) is a scaling factor that penalises IntCEM more heavily for mispredicting y at the
end of the trajectory, by a factor of 4" > 1, than for mispredicting y at the start of the trajectory. In
practice, we observe that a value in v € [1.1, 1.5] works well; we use v = 1.1 in our experiments
unless specified otherwise. For an ablation study showing that IntCEM’s intervention performance
surpasses that of existing methods for a wide array of scaling factors -, see Appendix [A.6]

A key realisation is that expressing interventions as in Equation (I)) yields an operator which is
differentiable with respect to the concept intervention mask . This trick allows us to backpropagate
gradients from Lpreq into 1) when the sampling operation n*) ~ p(n|p (et~ 1(t=1))) is differen-
tiable with respect to its parameters. In this work, this is achieved by relaxing our trajectory sampling
using a differentiable Gumbel-Softmax [28] categorical sampler (see Appendix [A.2]for details).

Concept Loss (Lconcept) The last term in our loss incentivises accurate concept explanations for
IntCEM’s predictions using the cross-entropy loss averaged across all training concepts:

k
ﬁconcept(&f’) = Z ( —cilogp; — (1 - Ci) log (1 _ﬁi))
=1

el

k
> CE(ci, ) =
=1

T =

Putting everything together (£) We learn IntCEM’s parameters 6 by minimising the following:

07 = arg min B y)~p [[E/wp(u), Tep(m) [L(X, €, T(x, ¢, (0, T))” 2)
The outer expectation can be optimised via stochastic gradient descent, while the inner expectation
can be estimated using Monte Carlo samples from the user-selected priors (p(u), p(T)). For the
sake of simplicity, we estimate the inner expectation using a single Monte Carlo sample per training
step for both the initial mask ;(*) and the trajectory horizon T'. In our experiments, we opt to
use a Bernoulli prior for p(u), where each concept is selected with probability pi,, = 0.25, and a
discrete uniform prior Unif({1, - - - , Tinax }) for p(T"), where Tpnax is annealed within [2, 6]. Although
domain-specific knowledge can be incorporated into these priors, we leave this for future work and
show in Appendix @]that IntCEMs are receptive to interventions as we vary pine and 7.

4 Experiments

In this section, we evaluate IntCEMs by exploring the following research questions:

¢ Unintervened Performance (Q1): In the absence of interventions, how does IntCEM’s
task and concept predictive performance compare to CEMs’s and CBM’s? Does IntCEM’s
updated loss function have detrimental effects on its uninterverned performance?

* Intervention Performance (Q2A): Are IntCEMs more receptive to test-time interventions
than state-of-the-art CBM variants?

* Effects of Policies during Deployment (Q2B): What is the impact on IntCEM’s perfor-
mance when employing different intervention policies at test-time?

* Benefits of End-to-End Learning of v (Q3): Is it beneficial to learn our intervention policy
1) at train-time?

Datasets and Tasks We consider five vision tasks: (1) MNIST-Add, a task inspired by the UMNIST
dataset [29] where one is provided with 12 MNIST [30] images containing digits in {0, - - - , 9}, as
well as their digit labels as concept annotations, and needs to predict if their sum is at least half
of the maximum attainable, (2) MNIST-Add-Incomp, a concept-incomplete [17]] extension of the
MNIST-Add task where only 8/12 operands are provided as concept annotations, (3) CUB [31], a bird
classification task whose set of concepts cover 112 bird features, e.g., “wing shape”, selected by Koh
et al. [4], (4) CUB-Incomp, a concept-incomplete extension of CUB where we provide only 25% of
all concept groups, and (5) CelebA, a task on the Celebrity Attributes Dataset [32] whose task and
concept labels follow those selected in [5]. For more details refer to Appendix [A.3]

Models We evaluate IntCEMs against CEMs with the exact same architecture, averaging all metrics
of interest over five different random initialisations. We also include CBMs that are trained jointly
(Joint CBM), sequentially (Seq. CBM) and independently (Ind. CBM) as part of our evaluation to



Table 1: Task predictive performance (accuracy or AUC in %) and mean concept AUC (%) across all
tasks and baselines. Values within one standard deviation from the highest baseline are emphasised.
CelebA’s task accuracies are relatively low across all baselines given its inherent difficulty (256 highly
imbalanced classes). Nevertheless, we highlight these results match previous observations [J3].

Dataset ‘ IntCEM(\op = 5)  INtCEM(A\on = 1) IntCEM(\ = 0.1) CEM Joint CBM-Sigmoid  Joint CBM-Logit Ind. CBM Seq. CBM
MNIST-Add 90.74 + 1.66 92.07 £ 0.20 92.05 +0.23 90.13 +0.41 79.25+2.93 86.09 + 0.60 87.66+0.62 83.20 +1.08
.~ MNIST-Add-Incomp 89.41 +0.16 89.43 +0.39 89.63 +0.13 86.61 +0.75 76.61 +1.13 84.03 +0.87 86.49 £0.67 85.23+0.78
5 76.20 +0.98 78.03 £0.58 77.79 £0.19 79.00 £ 0.61 74.95 £0.56 78.16 £ 0.24 60.25+£320 53.41+4.10
CUB-Incomp 7039+ 1.11 74.70 £ 0.22 74.66 + 0.50 75.52 £ 0.37 59.73 £4.06 68.42 +7.91 44.82+0.33  40.00 = 1.59
CelebA 38.09 + 0.26 32.89 +£0.86 30.66 £ 0.41 31.04 +0.96 24.15+£043 23.87 £ 1.26 24.25+0.26 24.53+0.3
MNIST-Add 80.81 £3.28 85.26+0.22 85.03£0.27 85.51+0.26 89.73 £ 0.15 89.21+0.71 8229+0.66 82.29 +0.66

E- MNIST-Add-Incomp 87.07 £ 1.08 87.13+1.98 8736+ 1.44 86.98 +0.01 91.15 £ 0.45 90.88 + 0.25 87.58 £0.37 87.58 £0.37
2 89.63 +0.42 92.51 £0.08 93.39 +0.22 94.46 + 0.04 93.76 £ 0.16 93.68 + 0.09 89.85+0.78 89.85+0.78
S CUB-Incomp 92.70 £0.19 94.42 £0.13 94.50 £ 0.15 94.65 +0.10 93.58 £0.09 92.87 £2.01 93.65+0.25 93.65+0.25
CelebA 88.25+0.24 86.46 +0.48 85.35+0.07 85.28 +0.18 81.14 £0.75 82.85 +0.44 82.85+0.21 82.85+0.21

be able to compare IntCEM’s policy against state-of-art intervention policies developed for CBMs.
Since previous work shows that interventions in joint CBMs are sensitive to its bottleneck activation
function [4,10], we include joint CBMs with a sigmoidal (Joint CBM-Sigmoid) and logit-based (Joint
CBM-Logit) bottleneck. We note that we do not include other noteworthy concept-based models such
as leakage-free CBMs [6], GlanceNets [33]], Self-explaining Neural Networks (SENNs) [34], Concept
Whitening (CW) [35]], or Concept Model Extraction (CME) [[16] as these either lack a well-defined
mechanism to be intervened on (e.g., as in SENNs and CW) or represent more constrained versions
of other baselines such as CEMs (e.g., leakage-free CBMs, GlanceNets, and CME).

Throughout our experiments, we strive for a fair comparison by using the same architectures for
the concept encoder g and label predictor f of all baselines. Unless specified otherwise, for each
task, we tune IntCEM’s Ao hyperparameter by varying it over {5, 1,0.1} and selecting the model
with the highest area under the curve defined by plotting the validation task accuracy vs number
of interventions. For the CUB-based tasks and CelebA, we use the same values of Acopcept Selected
in [5]. Otherwise, we select this value from {10, 5,1} using CEM’s validation error. Following [3]],
we use embeddings with m = 16 activations and a value of pi,, = 0.25 for CEM’s RandInt. For
further details on model and training hyperparameters, see Appendix[A.4]

4.1 Task and Concept Performance in the Absence of Interventions (Q1)

First, we examine how IntCEM’s loss function affects its unintervened test performance compared
to existing baselines as we vary Ay. We summarise our results in Table where, for all tasks and
baselines, we show the downstream task predictive test accuracy, or the AUC when the task is binary
(i.e., MNIST-based tasks), and the concept performance. We measure the latter via the mean AUC of
predicting ground-truth test concept ¢; from its corresponding predicted concept probability p;.

In the absence of concept interventions, IntCEM is as accurate as state-of-the-art baselines.
Evaluating test task accuracy reveals that IntCEMs are more accurate (e.g., by ~7% in CelebA)
or just as accurate as other baselines across most tasks. Only in CUB do we observe a small drop
in performance (less than ~1%) for the best-performing IntCEM variant. Notice that three of the
five tasks we use, namely MNIST-Add-Incomp, CUB-Incomp, and CelebA, lack a complete set of
training concept annotations. Therefore, our results suggest that IntCEM maintains a high task
performance even with concept incompleteness — a highly desired property for real-world deployment.
Finally, the performance improvements of IntCEMs over CEMs in MNIST, MNIST-Incomp, and
CelebA suggest that our loss function may lead to more informative concept representations that
enable more accurate label predictors to be trained.

IntCEM’s concept performance is competitive with respect to traditional CEMs. The bottom
half of Table E] shows that IntCEM’s mean concept AUC, particularly for low values of Ay, is
competitive against that of CEMs. The only exception is in the MNIST-based task, where Joint
CBMs outperform CEMs and IntCEMs. Nevertheless, this drop is overshadowed by the poor task
accuracy obtained by joint CBMs in these two tasks, highlighting that although CBMs may have
better concept predictive accuracy than CEMs, their task performance is generally bounded by that
of a CEM. These results demonstrate that IntCEM’s explanations are as accurate as those in CEMs
without sacrificing task accuracy, suggesting our proposed objective loss does not significantly affect
IntCEM’s performance in the absence of interventions. Finally, we observe a trade-off between
incentivising the IntCEM to be highly accurate after a small number of interventions (i.e., high Arp)



3 100 MNIST-Add MNIST-Add-Incomp CUB CUB-Incomp CelebA
S 100
>
3 90 80 60
; 90 80
é:‘j 60 40
80 60
80
e 40 20
[E 0 4 8 12 0 2 4 6 8 0 4 8 1216202428 0 2 4 6 0 2 4 6
Groups Intervened Groups Intervened Groups Intervened Groups Intervened Groups Intervened
IntCEM CEM Joint CBM-Logit Joint CBM-Sigmoid Sequential CBM Independent CBM

Figure 3: Task accuracy of all baseline models after receiving a varying number of randomly selected
interventions. For our binary MNIST-based tasks, we show task AUC rather than accuracy. Here and
elsewhere, we show the means and standard deviations (can be insignificant) over five random seeds.

and incentivising the IntCEM to generate more accurate concept explanations (i.e., low A1), which
can be calibrated by setting A after considering how the IntCEM will be deployed.

4.2 Intervention Performance (Q2)

Given that a core appeal of CBM-like models is their receptiveness to interventions, we now explore
how test-time interventions affect IntCEM’s task performance compared to other models. We first
study whether IntCEM’s training procedure preconditions it to be more receptive to test-time inter-
ventions by evaluating the task accuracy of all baselines after receiving random concept interventions.
Then, we investigate whether IntCEM’s competitive advantage holds when exposing our baselines to
state-of-the-art intervention policies. Below, we report our findings by showing each model’s task
accuracy as we intervene, following [4], on an increasing number of groups of mutually exclusive
concepts (e.g., “white wing” and “black wing”).

IntCEM is significantly more receptive to test-time interventions. Figure[3] shows that IntCEM’s
task accuracy after receiving concept interventions is significantly better than that of competing
methods across all tasks, illuminating the benefits of IntCEM preconditioning for receptiveness.
We observe this for both concept-complete tasks (i.e., CUB and MNIST-Add) as well as concept-
incomplete tasks (i.e., rest). In particular, we see significant gains in CUB and CelebA; IntCEMs
attain large performance improvements with only a handful of random interventions (~10% with
~25% of concepts intervened) and surpass all baselines.

IntCEM’s performance when intervened on with a randomly selected set of concepts can be
better than the theoretically-proven optimal intervention performance achievable by CEMs
alone. We explore IntCEM’s receptiveness to different test-time intervention policies by computing
its test performance while intervening following: (1) a Random intervention policy, where the next
concept is selected, uniformly at random, from the set of unknown concepts, (2) the Uncertainty of
Concept Prediction (UCP) [8] policy, where the next concept is selected by choosing the concept
¢; whose predicted probability p; has the highest uncertainty (measured by 1/|p; — 0.5|), (3) the
Cooperative Policy (CooP) [9]], where we select the concept that maximises a linear combination of its
predicted uncertainty (akin to UCP) and the expected change in the predicted label’s probability when
intervening on that concept, (4) Concept Validation Accuracy (CVA) static policy, where concepts are
selected using a fixed order starting with those whose validation errors are the highest as done by Koh
et al. [4]], (5) the Concept Validation Improvement (CVI) [9] static policy, where concepts are selected
using a fixed order starting with those concepts that, on average, lead to the biggest improvements in
validation accuracy when intervened on, and finally (6) an oracle Skyline policy, which selects c,
on every step, indicating an upper bound for all greedy policies. For details on each policy baseline,
including how their hyperparameters are selected, see Appendix

We demonstrate in Figure [ that IntCEM consistently outperforms CEMs regardless of the test-time
intervention policy used, with CooP and UCP consistently yielding superior results. Further, we
uncover that intervening on IntCEM with a Random policy at test-time outperforms the theoretical
best performance attainable by a CEM (Skyline) under many interventions, while its best-performing
policy outperforms CEM’s Skyline after very few interventions. These results suggest that IntCEM’s
train-time conditioning not only results in IntCEMs being more receptive to test-time interventions



CUB CelebA

IntCEM CEM IntCEM CEM
S P = =
< 99 & 99 69 / 69
Do ¥
Q9 | 94 59 59
5 i
2 89 :. 89 19
éﬁ 84 ! 84 f
& 79 79 39
©
70 4 81216202428 10 4 8 1216202428 29, 2 4 6
Groups Intervened Groups Intervened Groups Intervened Groups Intervened
X  Skyline (Oracle) Random —|— UucCPp ® CooP ¢ CvA B CVI

Figure 4: Task accuracy of IntCEMs and CEMs on CUB and CelebA when intervening with different
test-time policies. We show similar improvements of IntCEMs over CBMs in Appendix@

9 MNIST-Add MNIST-Add-Incomp CUB CUB-Incomp CelebA

S ¥ % 100 e

2y 7

G975 ’ 60

g 90 90 "

§95.0

< 80 B 80 40

92,5 ¥ /

st 0 4 8 12 0 2 4 6 8 0 4 81216202428 0 2 4 6 0 2 4 6

Groups Intervened Groups Intervened Groups Intervened Groups Intervened Groups Intervened

Y IntCEM (Random Policy) ®m IntCEM (BC-Skyline Policy) IntCEM no ¢ (Random Policy)
+ IntCEM (CooP Policy) % IntCEM (Learnt Policy y)

Figure 5: Task performance when intervening on IntCEMs following test-time policies ¢, CooP, Ran-
dom, and BC-Skyline. Our baseline “IntCEM no " is an IntCEM whose test and train interventions
are sampled from a Random policy rather than from ¢ (i.e., a policy is not learnt in this baseline).

but may lead to significant changes in an IntCEM’s theoretical-optimal intervention performance. We
include analyses on our remaining datasets, revealing similar trends, in Appendix[AZ7]

4.3 Studying IntCEM’s Intervention Policy (Q3)

Finally, we explore IntCEM’s intervention policy by evaluating test-time interventions predicted by
1. To understand whether there is a benefit of learning ¢ end-to-end (i.e., in conjunction with the rest
of model training), rather than learning it post-hoc after training an IntCEM, we compare it against a
Behavioural Cloning (BC) [26] policy “BC-Skyline” trained on demonstrations of Skyline applied to a
trained IntCEM. Furthermore, to explore how ’s trajectories at train-time help improve IntCEM’s re-
ceptiveness to test-time interventions, we study an IntCEM trained by sampling trajectories uniformly
at random (“IntCEM no v”). Our results in Figure [5|suggest that: (1) IntCEM’s learnt policy v leads
to test-time interventions that are as good or better than CooP’s, yet avoid CooP’s computational
cost (up to ~2x faster as seen in Appendix [A.5), (2) learning v end-to-end during training yields
a better policy than one learnt through BC after the IntCEM is trained, as seen in the BC policy’s
lower performance; and (3) using a learnable intervention policy at train-time results in a significant
boost of test-time performance. This suggests that part of IntCEM’s receptiveness to interventions,
even when using a random test-time policy, can be partially attributed to learning and using v during
training. We show some qualitative examples of rollouts of ¢ in the CUB dataset in Figure [6]

5 Discussion and Conclusion

Concept Leakage Within IntCEMs Previous work [36] (6, [10] has shown that CBMs are prone to
encoding unnecessary information in their learnt concept representations. This phenomenon, called
concept leakage, may lead to less interpretable concept representations [36] and detrimental concept
interventions in CBMs [10]. Given that interventions in IntCEMs involve swapping a concept’s
predicted embeddings rather than overwriting an activation in the bottleneck, such interventions are
distinct from those in CBMs as they enable leaked information to be exploited after an intervention



After Intervention #1 After Intervention #2 After Intervention #3: After Intervention #4: After Intervention #5:
Before Interventions breast_pattern leg color wing shape forehead color upperparts color

After Intervention #1 After Intervention #2: After Intervention #3: After Intervention #4 After Intervention #5:
Before Interventions bill shape wing shape breast_pattern size log color

Figure 6: Examples of interventions on an IntCEM following its policy ) in CUB. We show the task
label distribution p(g|¢) for the most likely classes after each intervention. We highlight the correct
label’s probability using orange bars and show the selected concept by i) above each panel.

is performed. This means our loss function may incentivise IntCEM to exploit this mechanism to
improve a model’s receptiveness to interventions. In Appendix [A.T0] we explore this hypothesis and
find that we can detect more leakage in IntCEM’s concept representations than in those learnt by
CBMs and CEMs. This suggests that, contrary to common assumptions, leakage may be a healthy
byproduct of more expressive concept representations in models that accommodate such expressivity.
Nevertheless, we believe further work is needed to understand the consequences of this leakage.

Limitations and Future Work To the best of our knowledge, we are the first to frame learning to
receive concept interventions as a joint optimisation problem where we simultaneously learn concepts,
downstream labels, and policies. IntCEMs offer a principled way to prepare concept-based models
for interventions at test-time, without sacrificing performance in the absence of interventions. Here,
we focused on CEMs as our base model. However, our method can be extended to traditional CBMs
(see Appendix[A.8), and future work may consider extending it to more recent concept-based models
such as post-hoc CBMs [37]], label-free CBMs [38]], and probabilistic CBMs [39].

Furthermore, we note some limitations. First, IntCEM requires hyperparameter tuning for Ao and
Aconcept- While our ablations in Appendix @ suggest that an IntCEM’s performance gains extend
across multiple values of Ay, users still need to tune such parameters for maximising IntCEM’s
utility. These challenges are exacerbated by the computational costs of training IntCEMs due to
their train-time trajectory sampling (see Appendix [A.3). However, such overhead gets amortised
over time given 1’s efficiency over competing policies. Further, we recognise our training procedure
renders IntCEMs more receptive to any form of intervention, including adversarial interactions (see
Appendix [A.9). This raises a potential societal concern when deciding how our proposed model
is deployed. Future work may explore such issues by incorporating error-correcting mechanisms
or by considering intervention-time human uncertainty [29]].

Finally, our evaluation was limited to two real-world datasets and one synthetic dataset, all of which
have medium-to-small training set sizes. Therefore, future work may explore how to apply our
proposed architecture to larger real-world datasets and may explore how to best deploy IntCEM’s
policy in practice via large user studies.

Conclusion A core feature of concept-based models is that they permit experts to interpret predic-
tions in terms of high-level concepts and infervene on mispredicted concepts hoping to improve task
performance. Counter-intuitively, such models are rarely trained with interventions in mind. In this
work, we introduce a novel concept-interpretable architecture and training paradigm — Intervention-
Aware Concept Embedding Models (IntCEMs) — designed explicitly for intervention receptiveness.
IntCEMs simulate interventions during train-time, continually preparing the model for interventions
they may receive when deployed, while learning an efficient intervention policy. Given the cost
of querying experts for help, our work addresses the lack of a mechanism to leverage help when
received, and demonstrates the value of studying models which, by design, know how to utilise help.

10



Acknowledgments and Disclosure of Funding

The authors would like to thank Naveen Raman, Andrei Margeloiu, and the NeurIPS 2023 reviewers
for their insightful and thorough comments on earlier versions of this manuscript. MEZ acknowledges
support from the Gates Cambridge Trust via a Gates Cambridge Scholarship. KMC acknowledges
support from the Marshall Commission and the Cambridge Trust. AW acknowledges support from a
Turing Al Fellowship under grant EP/V025279/1, The Alan Turing Institute, and the Leverhulme
Trust via CFL. GM is funded by the Research Foundation-Flanders (FWO-Vlaanderen, GA No
1239422N). M1J is supported by the EPSRC grant EP/T019603/1.

References

[1] Luke Gusukuma, Austin Cory Bart, Dennis Kafura, and Jeremy Ernst. Misconception-driven
feedback: Results from an experimental study. In Proceedings of the 2018 ACM Conference on
International Computing Education Research, pages 160-168, 2018.

[2] Noreen M Webb. Group collaboration in assessment: Multiple objectives, processes, and
outcomes. Educational Evaluation and Policy Analysis, 17(2):239-261, 1995.

[3] AnHai Doan, Raghu Ramakrishnan, and Alon Y Halevy. Mass collaboration systems on the
world-wide web. Communications of the ACM, 54(4):86-96, 2010.

[4] Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been
Kim, and Percy Liang. Concept bottleneck models. In International Conference on Machine
Learning, pages 5338-5348. PMLR, 2020.

[5] Mateo Espinosa Zarlenga, Barbiero Pietro, Ciravegna Gabriele, Marra Giuseppe, Francesco
Giannini, Michelangelo Diligenti, Shams Zohreh, Precioso Frederic, Stefano Melacci, Weller
Adrian, et al. Concept embedding models: Beyond the accuracy-explainability trade-off. In
Advances in Neural Information Processing Systems, volume 35, pages 21400-21413. Curran
Associates, Inc., 2022.

[6] Marton Havasi, Sonali Parbhoo, and Finale Doshi-Velez. Addressing leakage in concept
bottleneck models. In Advances in Neural Information Processing Systems, 2022.

[7] Lucie Charlotte Magister, Pietro Barbiero, Dmitry Kazhdan, Federico Siciliano, Gabriele
Ciravegna, Fabrizio Silvestri, Mateja Jamnik, and Pietro Lio. Encoding concepts in graph neural
networks. arXiv preprint arXiv:2207.13586, 2022.

[8] Sungbin Shin, Yohan Jo, Sungsoo Ahn, and Namhoon Lee. A closer look at the intervention
procedure of concept bottleneck models. arXiv preprint arXiv:2302.14260, 2023.

[9] Kushal Chauhan, Rishabh Tiwari, Jan Freyberg, Pradeep Shenoy, and Krishnamurthy Dvijotham.
Interactive concept bottleneck models. arXiv preprint arXiv:2212.07430, 2022.

[10] Mateo Espinosa Zarlenga, Pietro Barbiero, Zohreh Shams, Dmitry Kazhdan, Umang Bhatt,
Adrian Weller, and Mateja Jamnik. Towards robust metrics for concept representation evaluation.
arXiv e-prints, pages arXiv—2301, 2023.

[11] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissec-
tion: Quantifying interpretability of deep visual representations. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 6541-6549, 2017.

[12] Ruth Fong and Andrea Vedaldi. Net2vec: Quantifying and explaining how concepts are encoded
by filters in deep neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 8730-8738, 2018.

[13] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas,
et al. Interpretability Beyond Feature Attribution: Quantitative Testing With Concept Activation
Vectors (TCAV). In International conference on machine learning, pages 2668-2677. PMLR,
2018.

11



[14] Yash Goyal, Amir Feder, Uri Shalit, and Been Kim. Explaining classifiers with causal concept
effect (CaCE). arXiv preprint arXiv:1907.07165, 2019.

[15] Amirata Ghorbani, James Wexler, James Zou, and Been Kim. Towards automatic concept-based
explanations. arXiv preprint arXiv:1902.03129, 2019.

[16] Dmitry Kazhdan, Botty Dimanov, Mateja Jamnik, Pietro Lid, and Adrian Weller. Now you see
me (cme): concept-based model extraction. arXiv preprint arXiv:2010.13233, 2020.

[17] Chih-Kuan Yeh, Been Kim, Sercan Arik, Chun-Liang Li, Tomas Pfister, and Pradeep Ravikumar.
On completeness-aware concept-based explanations in deep neural networks. Advances in
Neural Information Processing Systems, 33:20554-20565, 2020.

[18] Judea Pearl et al. Models, reasoning and inference. Cambridge, UK: CambridgeUniversityPress,
19(2):3, 2000.

[19] Yash Goyal, Amir Feder, Uri Shalit, and Been Kim. Explaining classifiers with causal concept
effect (cace). arXiv preprint arXiv:1907.07165, 2019.

[20] Matthew O’Shaughnessy, Gregory Canal, Marissa Connor, Christopher Rozell, and Mark
Davenport. Generative causal explanations of black-box classifiers. Advances in neural
information processing systems, 33:5453-5467, 2020.

[21] Hajin Shim, Sung Ju Hwang, and Eunho Yang. Joint active feature acquisition and classification
with variable-size set encoding. Advances in neural information processing systems, 31, 2018.

[22] Yang Li and Junier Oliva. Active feature acquisition with generative surrogate models. In
International Conference on Machine Learning, pages 6450-6459. PMLR, 2021.

[23] Ryan Strauss and Junier B Oliva. Posterior matching for arbitrary conditioning. Advances in
Neural Information Processing Systems, 35:18088-18099, 2022.

[24] Matthew Barker, Katherine M Collins, Krishnamurthy Dvijotham, Adrian Weller, and Umang
Bhatt. Selective concept models: Permitting stakeholder customisation at test-time. AAA[
HCOMP, 2023.

[25] Ivaxi Sheth, Aamer Abdul Rahman, Laya Rafiee Sevyeri, Mohammad Havaei, and
Samira Ebrahimi Kahou. Learning from uncertain concepts via test time interventions. In
Workshop on Trustworthy and Socially Responsible Machine Learning, NeurIPS 2022, 2022.

[26] Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine Intelli-
gence 15, pages 103-129, 1995.

[27] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics, pages 627-635. JMLR Workshop and
Conference Proceedings, 2011.

[28] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

[29] Katherine M. Collins, Matthew Barker, Mateo Espinosa Zarlenga, Naveen Raman, Umang
Bhatt, Mateja Jamnik, Ilia Sucholutsky, Adrian Weller, and Krishnamurthy Dvijotham. Human
uncertainty in concept-based ai systems. AIES, 2023.

[30] Li Deng. The MNIST database of handwritten digit images for machine learning research.
IEEE Signal Processing Magazine, 29(6):141-142, 2012.

[31] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011
dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

[32] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale celebfaces attributes
(celeba) dataset. Retrieved August, 15(2018):11, 2018.

12



[33] Emanuele Marconato, Andrea Passerini, and Stefano Teso. Glancenets: Interpretable, leak-proof
concept-based models. Advances in Neural Information Processing Systems, 35:21212-21227,
2022.

[34] David Alvarez-Melis and Tommi S Jaakkola. Towards robust interpretability with self-explaining
neural networks. arXiv preprint arXiv:1806.07538, 2018.

[35] Zhi Chen, Yijie Bei, and Cynthia Rudin. Concept whitening for interpretable image recognition.
Nature Machine Intelligence, 2(12):772-782, 2020.

[36] Anita Mahinpei, Justin Clark, Isaac Lage, Finale Doshi-Velez, and Weiwei Pan. Promises and
pitfalls of black-box concept learning models. arXiv preprint arXiv:2106.13314, 2021.

[37] Mert Yuksekgonul, Maggie Wang, and James Zou. Post-hoc concept bottleneck models. In
ICLR 2022 Workshop on PAIR2Struct: Privacy, Accountability, Interpretability, Robustness,
Reasoning on Structured Data, 2023.

[38] Tuomas Oikarinen, Subhro Das, Lam M Nguyen, and Tsui-Wei Weng. Label-free concept
bottleneck models. In The Eleventh International Conference on Learning Representations,
2023.

[39] Eunji Kim, Dahuin Jung, Sangha Park, Siwon Kim, and Sungroh Yoon. Probabilistic concept
bottleneck models. arXiv preprint arXiv:2306.01574, 2023.

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. arXiv preprint arXiv:1912.01703, 2019.

[41] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: a system for
large-scale machine learning. In Osdi, volume 16, pages 265-283. Savannah, GA, USA, 2016.

[42] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114,2013.

[43] Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448-456. pmlr, 2015.

[44] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural
network acoustic models. In Proc. icml, volume 30, page 3. Atlanta, Georgia, USA, 2013.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

[46] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding the exploding gradient
problem. CoRR, abs/1211.5063,2(417):1, 2012.

13



A Appendix

A.1 Software and Hardware Used

Software For this work, we evaluate all baselines using the MIT-licensed implementations of both
CBMs and CEMs made public in [3]]. Our implementation of IntCEM is built on top of that repository
using PyTorch 1.12 [40], an open-source deep learning library with a BSD license. We incorporated
CooP into this library by basing ourselves on the code released under an MIT license by Chauhan
et al. [9] as part of their original publication; their code was written in TensorFlow, and as such, we
converted it to PyTorch. All numerical plots and graphics have been generated using Matplotlib 3.5,
a Python-based plotting library with a BSD license, while all conceptual figures were generated using
draw.io, a free drawing software distributed under an Apache 2.0 license. Furthermore, when building
our experiment tasks, we use TensorFlow’s distribution [41] of MNIST [30] and CelebA [32]] and use
the processing scripts made public by Koh et al. [4] to generate our concept annotated CUB-tasks.
All of our code, including configs and scripts to recreate results shown in this paper, has been released
as part of CEM’s official public repository found at https://github.com/mateoespinosa/cem.

Resources All our non-ablation experiments were run in a shared GPU cluster with four Nvidia
Titan Xp GPUs and 40 Intel(R) Xeon(R) E5-2630 v4 CPUs (at 2.20GHz) with 125GB of RAM.
In contrast, all of our ablation experiments were run on a separate GPU cluster with 4x Nvidia
A100-SXM-80GB GPUs, where each GPU is allocated 32 CPUs. We estimate that to complete all of
our experiments, including prototyping and initial explorations, we required approximately 350 to
370 GPU hours.

A.2 Additional Details on the Gumbel-Softmax Sampler

As introduced in Section [3] expressing interventions using Equation (T]) allows us to differentiate the
output embedding for concept ¢; with respect to the intervention mask p after an intervention has
been performed. Therefore, if the output of the sampler p(n | ¢ (¢~ u(t=1))) used to generate
intervention 7 is differentiable with respect to its parameters (¢(*=1), p(t_l)), then we can use the
gradients from VCE (y7 F(g(x, u™), c))), one of the terms in Lpq, to update the parameters of 1
through standard back-propagation. This is because the intervention mask used at the end of the
training trajectory is given by pu(™) = (0 + ZtT:l n®, allowing the gradient of §(x, u(T), c) to
be back-propagated into the generating functions of each of the interventions {n(¥}]_,. Therefore,
when parameterising our learnable policy 1) as a DNN with weights 0y, this policy can better update
6, during training so that its interventions decrease both the prediction loss Lyq at the end of any
intervention trajectory as well as its mean rollout loss L.

In practice, we construct a differentiable categorical sampler p(7 | 1(¢~1, u(t=1))) using a Gumbel-
Softmax distribution [28]]: a differentiable and continuous relaxation of the categorical distribution.
To use this distribution, we begin by interpreting 1 (¢, 1) = w € (—o0, 0)" as the log-probability that
each concept will be selected for the next intervention. Then, we proceed by sampling a noise vector
h € R* from a Gumbel distribution such that each dimension h; of this vector is independently
sampled from h; ~ Gumbel(0, 1). This noise allows us to introduce non-determinism in our system,
akin to the use of Gaussian noise in a Variational Autoencoder’s reparameterisation trick [42]]. Finally,
the crux of the Gumbel-Softmax trick is to use this noise to shift the log-probabilities predicted by 1
and generating a sharp continuous representation of the sample through a softmax activation function:

GumbelSoftmax(w;7) = Softmax((w + h)/7)

Here, 7 € [0,00) is a temperature hyperparameter indicating the sharpness of the output contin-
uous representation of the sample (smaller values leading to samples that are closer to a one-hot
representation of a vector) and Softmax(w) is the softmax function whose i-th output is given by

evi
Z?:l e

In this process, one can easily sample the Gumbel noise variables h; from Gumbel(0, 1) by first
sampling u; ~ Uniform(0, 1) and then computing h; = —log(—log(u;)). In this work, we always
use a temperature of 7 = 1 and make the output of the Gumbel Softmax discrete (i.e., into a one-hot

Softmax(w); =

14


https://github.com/jgraph/drawio
https://github.com/mateoespinosa/cem

representation) using the Straight-Through estimator proposed by Jang et al. [28]] which still enables
continuous gradients to be back-propagated. Note, this procedure permits one to accidentally sample

a previously intervened concept from p(n|i(¢*=1), u(t=1))) (as there may be a non-zero probability
assigned to a concept ¢; where ,ugt_l) = 1); to guard against this possibility, after sampling an
intervention n(t) from the Gumbel Softmax distribution, we clamp all values of the new intervention
mask p = p(=D 4+ n® to be between 0 and 1 for all ¢.

A.3 Dataset Details

In this Appendix, we describe the datasets and tasks used in Section[d] A summary of each task’s
properties can be found in Table[A.T|and a detailed discussion of each task can be found below.

Table A.1: Details of all tasks used in this paper. For each task, we show the number of testing
samples and training samples. Furthermore, we include the shape of each input, the number of
concepts provided (as well as how many groups of mutually exclusive concepts there are), and the
number of output task labels. In all experiments, we subsample 20% of the training set to make our
validation set.

Task | Training Samples  Testing Samples  Input Size  Concepts (k) Groups Output Labels
MNIST-Add 12,000 10,000 [12, 28, 28] 72 12 1
MNIST-Add-Incomp 12,000 10,000 [12, 28, 28] 54 8 1
CUB 5,994 5,794 [3, 299, 299] 112 28 200
CUB-Incomp 5,994 5,794 [3, 299, 299] 22 7 200
CelebA 13,507 3,376 [3, 64, 64] 6 6 256

MNIST-Add MNIST-Add is a visual arithmetic task based on the MNIST [30] dataset. Each sample
x € [0,1]12%28%28 in this task is formed by 12 digit “operands”, where the i-th channel x; . . of
X contains a grayscale zero-to-nine digit representing the ¢-th operand. We construct this dataset
such that some operands are inherently harder to predict. To do so, we (i) constrain each of the first
four operands to be at most 2, (ii) constrain each of the four middle operands to at most 4, and (iii)
constrain each of the last four operands to be at most 9.

Each sample x in this task is annotated with a binary label y corresponding to whether the sum of
the digits in all 12 operands is at least half the maximum attainable (i.e., at least 30). We construct
concept annotations ¢ € {0, 1}72 for x by providing the one-hot encoding representations of each
operand in x as an annotation. Because the first four operands can be at most 2, and the next 4 and 8
operands can be at most 4 and 9, respectively, this results inatotal of 4 x 3 +4 x 5+ 4 x 10 =72
concepts organised into groups of 12 mutually exclusive concepts. To construct MNIST-Add’s training
set, we generate 12,000 training samples by randomly selecting all 12 operands of each sample from
MNIST’s training set. Similarly, to construct MNIST-Add’s test set, we generate 10,000 test samples
by randomly selecting all 12 operands of each sample from MNIST’s test set.

MNIST-Add-Incomp MNIST-Add-Incomp is a visual arithmetic task that modifies MNIST-Add
so that its set of concept annotations is incomplete with respect to the task label. This is done by
randomly selecting 8 out of the 12 groups of concepts in MNIST-Add and providing the concepts
corresponding to those 8 groups to all models at train-time (making sure the same group of 8 groups
is selected across all baselines).

CUB CUB is a visual bird-recognition task where each sample x € [0, 1]3%299%299 represents an

RGB image of a bird obtained from the CUB dataset [31]]. Each of these images comes with a
set of attribute annotations — e.g., “beak_type” and “bird_size” — as well as a downstream label y
representing the classification of one of 200 different bird types. In this work, we construct concept
annotations c for this dataset using the same k = 112 bird attributes selected by Koh et al. [4] in
their CBM work. These 112 concepts can be grouped into 28 groups of mutually exclusive concepts
(e.g., “white wing”, “black wing”, etc). Following [4]], we preprocess all of the images in this dataset
by normalising, randomly flipping, and randomly cropping each image during training. We treat
this dataset as a representative real-world task where one has access to a complete set of concept
annotations at train-time.

15



CUB-Incomp CUB-Incomp is a concept-incomplete variant of the CUB task constructed by ran-
domly selecting 25% of all concept groups in CUB and providing train-time annotations only for
those concepts. For fairness, we ensure that the same groups are selected when training all baselines,
resulting in a dataset with 7 groups of mutually exclusive concepts and 22 concepts.

CelebA The CelebaA task is generated from samples in the Celebrity Attributes Dataset [32] using
the task and concept annotations defined in [5]. For each image x in CelebA, we first select the 8
most balanced attributes [a1, - - - ag] from the 40 binary attributes available; we then build a vector of
binary concept annotations c using only the 6 most balanced attributes [a1, - - - , ag], meaning that
attributes a7 and ag are not provided as concept annotations. To simulate a concept-incomplete task,
we construct a task label y via the base-10 representation of the number formed by [ay, - - - , ag]. This
results in a total of [ = 2% = 256 classes. As in [3], we downsample every image to (3,64, 64) and
randomly subsample images in CelebA’s training set by selecting every 12" sample.

A.4 Model Architecture and Baselines Details

In this section, we describe the architectures and training hyperparameters used in our experiments.

A.4.1 Model Architectures and Hyperparameters

To ensure a fair comparison across methods, we strive to use the exact same architectures for the
concept encoder g and label predictor f across all baselines. Moreover, when possible, we follow the
architectural choices selected in [5] to ensure that we are comparing our own IntCEM architecture
against highly fine-tuned CEMs. The only tasks where this is not possible, as they were not a part
of the original CEM evaluation, are the MNIST-based tasks. Below, we describe our architectural
choices for f and g for each of our tasks. Moreover, for all tasks and models we include the choices of
loss weights Ao and Aconcepe Where, for notational simplicity, we use Aconcept to indicate the strength
of the concept loss in both CEM-based models as well as in jointly trained CBMs. Finally, as in [3]],
for both CEMs and IntCEMs we use an embedding size of m = 16, a RandInt probability pj, = 0.25,
and a single linear layer for all concept embedding generators {(¢; , qu) k_| and the shared scoring
model s.

MNIST-Based Tasks For all MNIST-based tasks, the concept encoder g begins by processing its
input using a convolutional neural network backbone with 5 convolutional layers, each with sixteen
3 x 3 filters and a batch normalisation layer [43]] before their nonlinear activation (a leaky-ReLU [44]),
followed by a linear layer with g, outputs. When working with CEM-based models, the output of
this backbone will be a goy = 128, from which the concept embedding generators {(¢; , ¢ ) }¥_; can
produce embeddings {(¢;, é:r) i~ and from which we can construct g. Otherwise, when working
with CBM-based models, the output of this backbone will be the number of training concepts goy = k,
meaning that g will be given by the backbone’s output. For all models, we use as a label predictor
f a Multi-Layer Perceptron (MLP) with hidden layers {128,128} and leaky ReLU activations in
between them. We use an MLP for f rather than a simple linear layer, as it is commonly done,
because we found that CBM-based models were unable to achieve high accuracy on these tasks
unless a nonlinear model was used for f (the same was not observed in CEM-based model as they
have higher bottleneck capacity).

For CEMs, IntCEMs, and Joint CBM-Logit models, we use Aconcept = 10 across both MNIST-based
tasks. This is only different for Joint CBM-Sigmoid were we noticed instabilities when setting this
value to 10 (leading to large variances) and reduced it t0 Aconcept = 5 (reducing it lower than this value
seem to decrease validation performance). All models are trained using a batch size of B = 2048 for
a maximum of £ = 500 epochs. To avoid models learning a majority class classifier, we weight each
concept’s cross entropy loss by its frequency and we use a weighted binary cross entropy loss for
the task loss. Finally, for both MNIST tasks, the best performing IntCEM, determined by the model
with the highest area under the intervention vs validation accuracy curve when Ao varies through
{5,1,0.1}, was obtained when Aroy = 1.

CUB-Based Tasks As with our MNIST-based tasks, for all CUB-based tasks we construct a concept
encoder g by passing our input through a backbone model formed by a ResNet-34 [45] whose output
linear layer has been modified to have g,y activations. The output of this backbone is set to goy = k

16



for all models and it is used to construct g in the same way as described for the MNIST-based tasks.
For all models, we use as a label predictor f a linear layer.

For CEMs, IntCEMs, and Joint CBM-Logit models, we use Aconcept = 5 across both CUB-based tasks.
The only exception is in CUB-Incomp, where we noticed a high variance in Joint CBM-Sigmoid
when setting this value to 5 and reduced it to Aconcept = 1 as a response. All models are trained using
a batch size of B = 256 for a maximum of £ = 300 epochs and using a weight decay of 4 x 10~°
as in [4]]. As in the MNIST-based models, we scale each concept’s binary cross entropy loss by a
factor inversely proportional to its frequency to help the model learn the more imbalanced concepts.
Finally, for both CUB tasks, the best performing IntCEM was obtained when Ao = 1.

CelebA We use the same architecture and training configuration as in the CUB-based tasks for all
CelebA models. The only differences between models trained in the CUB-tasks and those trained
in CelebA, is that we set the batch size to B = 512 and train for a maximum of £ = 200 epochs
while setting the concept loss weight Aconcept = 1 for all joint CBMs and CEM-based models. When
iterating over different values of Ao for IntCEM, we found that A,y = 5 works best for this task.

A.4.2 Training Hyperparameters

In our experiments, we endeavour to provide all models with a fair computational budget at train-time.
To that end, we set a large maximum number of training epochs and stop training early based on
each model’s own validation loss. Here, we stop early if a model’s validation loss does not decrease
for 15 epochs. We monitor the validation loss by sampling 20% of the training set to make our
validation set for each task. This validation set is also used to select the best-performing models
whose results we report in Section[d] We always train with stochastic gradient descent with batch size
B (selected to well-utilise our hardware), initial learning rate rjyia;, and momentum 0.9. Following
the hyperparameter selection in reported in [S], we use 7iniian = 0.01 for all tasks with the exception
of the CelebA task where this is set to iy = 0.005. Finally, to help find better local minima in our
loss function during training, we decrease the learning rate by a factor of 0.1 whenever the training
loss plateaus for 10 epochs.

A4.3 IntCEM-Specific Parameters

As discussed in Section 3] IntCEM requires one to select a prior for its initial trajectory length and
intervention mask, as well as an architecture to be used for the intervention policy model 7). Below
we describe who we set these values for all of our experiments. Later, we discuss the effect of some
of these hyperparameters on our results in our ablation studies in Appendix

Prior Selection In our experiments, to allow our prior to imitate how we intervene on IntCEMs at
test-tine, we construct p(u) by partitioning c into sets of mutually exclusive concepts and selecting
concepts belonging to the same group with probability pi, = 0.25. Complementing this prior, we
construct the intervention trajectory horizon’s prior p(7") using a discrete uniform prior Unif(1, Trnax)
where T,y is annealed within [2, 6] growing by a factor of 1.005 every training step. This was done
to help the model stabilise its training by first learning meaningful concept representations before
employing significant resources in improving its learnable policy 1.

Intervention Policy Architecture For all tasks, we parameterise IntCEM’s learnable policy 1 using
a leaky-ReL U MLP with hidden layers {128, 128, 64, 64} and Batch Normalisation layers in between
them. When groups of mutually exclusive concepts are known at train-time (as in CUB-based tasks
and MNIST-based tasks), we let ¢/’s output distribution operate over groups of mutually exclusive
concepts rather than individual concepts. This allows for a more efficient training process that better
aligns with how these concepts will be intervened on at test-time. Finally, when training IntCEMs
we use global gradient clipping to bound the global norm of gradients to 100. This helps us avoid
exploding gradients [46] as we backpropagate gradients through our intervention trajectory.

A.5 Computational Resource Usage
As mentioned in Sections 4] and [5] IntCEMs bear an additional overhead in their training times

compared to traditional CEMs due to their need to sample intervention trajectories during training. In
this section, we first study how training times vary across all of our baselines. Then we show that

17



IntCEM’s training time overhead is amortised in practice if one considers the efficiency of IntCEM’s
learnt policy 1 over existing state-of-the-art intervention policies.

Table A.2: Average wall-clock training times per epoch, epochs until convergence, and the number of

parameters for baselines in the CUB task. All of these results were obtained by training 5 differently-

initialised models for each baseline using the same hardware as specified in Appendixl@
Parameters

Model | Epoch Training Time (s) Epochs To Convergence ~Number o
Joint CBM-Sigmoid 37.75 +1.99 225.67 £27.18 2.14 x 107
Joint CBM-Logit 36.76 £ 0.70 210.67 +22.48 2.14 x 107
Sequential CBM 31.08 £ 1.17 284.67 £ 28.67 2.14 x 107
Independent CBM 31.07 £ 1.16 284.67 +28.67 2.14 x 107
CEM 40.77 £ 0.48 174.00 + 34.88 2.57 x 107
IntCEM 64.89 + 0.44 224.00 +26.77 2.60 x 107

In Table [A.2] we show the wall-clock times of a single training epoch for each of our baselines as well
as the number of epochs it took the model to converge (as determined by our early stopping procedure
defined in Appendix[A.4). Our results indicate that, compared to traditional CEMs, IntCEMs take
approximately 60% longer than CEMs per training epoch while also taking approximately ~20%
longer to converge (in terms of epochs). Nevertheless, we underscore three main observations from
these results. First, the results in Table are very highly implementation-and-hardware-dependent,
meaning that they should be taken with a grain of salt as they could vary widely across different
implementations, batch sizes, and machines. Second, although on average we observe that IntCEMs
take more epochs to converge than traditional CEMs, the variances we observe across different
random initialisations are large. This means that these differences are not likely to be statistically
significant; in fact, we observe some runs where IntCEMs converged faster than CEMs. Finally, as
seen in Table[A.3] these extra training costs may be amortised in practice when one considers that
IntCEM’s learnt policy is much faster than an equivalent competitive intervention policy like CooP.
This implies that if these models are expected to be intervened frequently in practice, the overhead
spanning from IntCEM’s training procedure may result in better amortised computational resource
usage over CEMs intervened on with the CooP policy.

Table A.3: Average wall-clock times taken to query the dynamic policies for trained IntCEMs across
different tasks. Notice that all values are shown in microseconds (ms) and that these results can be
highly hardware dependent, as they can be heavily affected if one runs a policy in a machine with
GPU access. Nevertheless, all of these results were obtained by running all intervention policies
using the same hardware as specified in Appendix % and averaging over the entire test set.

Dataset \ Random (ms) Learnt Policy ¢ (ms) CooP (ms)  UCP (ms)  Skyline (ms)
MNIST-Add 0.38 £0.02 0.37 £ 0.02 0.56+0.03 0.40+0.04 0.44+0.03
MNIST-Add-Incomp | 0.33+£0.02 0.32 £0.01 043+0.04 031+£0.00 0.35+0.01
CUB 291+0.13 2.90+0.20 4.77+£0.10 292+0.09 4.54+0.09
CUB-Incomp 3.19+£0.39 3.10+0.35 538+0.85 3.08+0.51 4.73+0.27
CelebA 0.70 £ 0.01 0.76 £ 0.04 0.73+0.02 0.68+0.06 0.76 +0.06

A.6 Exploring IntCEM’s Hyperparameter Sensitivity

In this section, we explore how our results reported in Section [] change as we vary several of
IntCEM’s hyperparameters, specifically, Aroit, Aconcepts 7¥> and Pine and Tipay.

We begin by exploring its sensitivity to its two loss weights, Ar; and Aconcept, and show that, although
such parameters have an impact mostly on the unintervened accuracy of IntCEMs, our model is
able to outperform CEMs once interventions are introduced throughout multiple different values for
such weights. Then, we investigate how sensitive IntCEM is to its intervened prediction loss scaling
factor v and show that its performance varies very little as ~ is modified. Finally, we explore how the
hyperparameters we selected for IntCEM’s prior (piy and Th,.x) affect its performance and describe
similar results to those observed when varying IntCEM’s loss weight hyperparameters.

For all the results we describe below, we train IntCEMs on the CUB task while fixing v = 1.1,
Aconcept = 95 Aroll = 1, Ping = 0.25, and Tiyex = 6 unless any of these hyperparameters is the target

18



L 100
Qo0 ~ 90
X 90 O g
g 2
L:>), 80 < 70 !
@ 70 260
& Q,
3 60 g s0 /!
2 50 o 40
5 40 S 30
2 30 = 20
E 90 g 10
0 5 10 15 20 25 = 09011 510 CEM
Groups Intervened Aroll
IntCEM (Aconcept = 10) IntCEM (Aconcept = 1) IntCEM (Aconcept = 0)
IntCEM (/\concept =5) IntCEM (/\cancept =0.1) CEM (/\canceptz 5)
(@) Aconcept ablation study in CUB.
100 K100
& 90 ) .
2 80 5:) 90 J
£ 70 2
=1 o 80
S 60 Q |
< g
%0 O 70
2 40 =]
[ o]
30 S 60
0 5 10 15 20 25 = 0011 510 CEM
Groups Intervened Aroll
INtCEM (Ao = 10) INtCEM (Ao = 1) IntCEM (Ao = 0)
IntCEM (Ao = 5) IntCEM (Ao = 0.1) CEM

(b) Aron ablation study in CUB.

Figure A.1: Ablation studies in CUB for IntCEM’s Ao and Aconcept 10ss weights. Notice that although
initial unintervened performance may vary across different hyperparameters, in all instances we
observe that IntCEMs outperform traditional CEMs (pink diamonds) after being intervened on.

of our ablation. Furthermore, we include as a reference the accuracy of a CEM trained in this
same task. Finally, when showing intervention performance, all interventions in IntCEMs are made
following their learnt policy 1 while interventions in CEMs are made following the CooP policy (the
best-performing policy for CEMs based on our experiments in Section [)).

A.6.1 Rollout and Concept Loss Weights Ablations

In Figure we show the results of varying Ao and Aconcept in {0,0.1,1,5,10} in the CUB task.
Our ablation studies show that IntCEM’s initial unintervened performance can vary as these two
parameters are changed, particularly when Aconcept is sSmall or Ay is large. Similarly, we observe
that the average concept AUC of IntCEM decreases as Aconcept 18 very small, as one would expect
by Aconcept’s definition, and is affected as we increase the value of A1, as described in Section
Nevertheless, and perhaps more importantly, we notice that for all hyperparameter configurations,
IntCEM outperforms a traditional CEM’s intervened task accuracy within five interventions. This
is observed even when Ay = 0 or Aconeepr = 0 and suggests that our model’s preconditioning to
intervention receptiveness is robust to changes in its hyperparameters. Moreover, we highlight that
IntCEM’s sensitivity to Aconcept is DOt inherent to our architecture but rather inherent to any jointly
trained CBMs and CEMs, as shown by Koh et al. [4] in their original CBM evaluation.

Looking at our )\, ablation study, we observe that IntCEM’s concept accuracy and unintervened
task accuracy seem to decrease as Ao increases. We hypothesise that happens as our model has a
greater incentive to depend on interventions, and therefore can afford to make more concept and task
mispredictions in the absence of interventions. Furthermore, we observe that the variance in IntCEM’s
unintervened task performance and concept performance as Ay changes are less significant than that
observed when Aconcepe changes, in fact achieving competitive accuracies for all values except when
Aroll = 10. This suggests that when fine-tuning IntCEM’s loss hyperparameters using a validation
set, as done in our experiments, it is recommended to leave A, within a small value (we found

19



100 < 100
§ 8 90 | b b ke
& <
g 9 2 80
5 []
g 2 70
< S)
3 80 S

q

= g

70, 5 10 15 20 25 2 50 0509111152 CEM

Groups Intervened 1%
IntCEM (y = 2) IntCEM (y = 1) IntCEM (y = 0.5)
IntCEM (y = 1.5) IntCEM (y = 0.9) CEM

IntCEM (y = 1.1)

Figure A.2: Ablation study for the loss scaling factor ~y. Our results show that IntCEM’s task and
concept accuracies are robust to changes of - within a reasonable range [0.5, 2].

success with A € [0.1, 5]) while spending more efforts fine-tuning Aconcept> @ hyperparameter that
unfortunately needs fine tuning for all jointly trained CBM-based architectures.

A.6.2 Task Loss Scaling Factor

In Section we defined v € [1, 00) as a hyperparameter that determines the penalty for mispredicting
the task label y with interventions 1(°) versus mispredicting y with interventions ;{7 at the end of
the trajectory. In all experiments reported in Section[d] we fixed v = 1.1. In our ablation study for ~y
(see Figure[A.2)), we show that IntCEM’s receptiveness to interventions, and it mean concept AUC, is
robust and not significantly affected as + varies within a reasonable range [0.5, 2]. In particular, and as
expected, we observe that for a higher value of v, the model has slightly lower unintervened accuracy
while attaining slightly higher intervened accuracy after a few interventions. Nevertheless, these
differences are small and suggest that our method is robust to minor variations in this hyperparameter.

A.6.3 Prior Hyperparameters Ablation

IntCEM uses two prior distributions to sample trajectories at train-time: (i) p(p;) = Bernoulli(pin)
on the initially sampled masks p(%) € {0, 1}* and (ii) p(T") = Unif(1, Tiax) on the horizon, or length,
of the intervention trajectory to be sampled. Our ablation studies on both T}« and pi,c show that
IntCEMs outperform CEMs when the number of interventions increases, regardless of the parameters
used for pie and Th,.x. Nevertheless, we observe that when Tj,,x is small, e.g. Tix = 1, Or pine 18
high, e.g. pine = 0.75, IntCEM has a slower increase in performance as it is intervened. We believe
this is a consequence of our model not having long-enough trajectories at train-time, therefore failing
to condition the model to be receptive to long chains of interventions. This is because as pjy, is larger,
the number of concepts initially intervened will be higher on expectation, leading to potentially less
impactful concepts to select from at train-time. Similarly, as Ti,.x is lower, IntCEM’s trajectories
will be shorter and therefore it will not be able to explore the intervention space enough to learn
better long-term trajectories. Therefore, based on these results our recommendation for these values,
leveraging performance and train efficiency, is to set Tiax to a small value in [5, 10] (we use Tiax = 6
in our experiments) and piy to a value within [0, 0.5] (we use pi, = 0.25 in our experiments).

A.7 Additional Results and Details on Intervention Policy Evaluation

In this section, we provide further details on the set-up of our intervention policy experiments and
include additional results on the impact of intervening on IntCEMSs and our baselines.

20



100 g 100
8 © 90 | .
~ D [ i
§ 90 =
£ 80
5 o)
3 80 g 70
< S}
- 2 6o
) g
= 70 8
0 5 10 15 20 25 2 50 (02505075 1  CEM
Groups Intervened Pint
INtCEM (Djnt = 1) IntCEM (pjnt = 0.5) INtCEM (pint = 0)
IntCEM (pjn: = 0.75) IntCEM (pjnt = 0.25) CEM
(a) pint ablation study in CUB.
100 § 100
o .
s S 90 e
B>
g 90 <
g 3, 80
=] 0]
3 2 70
< 80 @]
7 © 60
wn
:
70 5 10 15 20 25 = 50 5 0 15 CEM
Groups Intervened Tmax
IntCEM (Thmax = 15) IntCEM (Tpmax = 5) CEM
IntCEM (Thax = 10) IntCEM (Thax = 1)

(b) Tnax ablation study in CUB.

Figure A.3: Ablation studies in CUB for IntCEM’s priors’ hyperparameters. Notice that, as in previous
ablations, although initial unintervened performance may vary across different hyperparameters,
regardless of hyperparameter selection IntCEM outperforms traditional CEMs (shown in pink dia-
monds above) within ~12 concept groups being intervened.

A.7.1 Intervention Policy Details

Intervening on Logit CBMs Because Joint CBM-Logits use log-probabilities in their bottleneck
rather than sigmoidal zero-one probabilities, intervening on their bottlenecks is slightly different than
intervening on Joint CBM-Sigmoidal models. As in [4], we avoid setting intermediate concepts to
out-of-distribution values by setting ¢; to its empirical 95-th percentile value (computed over the
training distribution) when we intervene on concept ¢; and want to indicate that its ground truth value
is ¢; = 1. Similarly, when we intervene on concept ¢; and want to indicate that its ground truth value
is ¢; = 0, we set it to its empirical 5-th percentile value (computed over its training distribution). This
allows us to extend the intervention formulation in Equation (I)) to CBMs with logit bottlenecks by
letting éj be the 95-th percentile value of the empirical training distribution of ¢; and letting ¢, be
the 5-th percentile value of the same distribution.

CooP CooP selects the best next concept to intervene on by considering a weighted sum of (i) an
uncertainty measurement of each concept’s predicted probability (weighted by hyperparameter o), (ii)
the expected change in the probability of the currently predicted class (weighted by hyperparameter
B), and (iii) the cost of acquiring each concept (weighted by hyperparameter v.q0p). For simplicity,
in this work, we treat all concepts as having the same acquisition cost; i.e., we set Yeoop = 0 and
only fine-tune « and 5. We leave the exploration of variants of our method which consider different
acquisition costs for future work.

21



IntCEM CEM Joint CBM-Logit Joint CBM-Sigmoid Sequential CBM  Independent CBM

©

99 ARESRERE g9 99 /”,,_»u«-»**x\ 99 ")t‘xu-b»x*x-ux\

"
T o4 e 94 X % o4 ¥ \ o4/ &
A 89 | o | X e | Y eo M
[ \| %/ g %0 e
84 84" 84 | ] 84 ‘M 84
i L
[

79 79 70 EAHERRERIE 79

74 74 74 74 74

MNIST-Add
Task Accuracy (%)
I 8 EE

kN
)
IS
@
-
N
)
-~
@
I~
1S
~
@
I~
)
S
@
I~
)
IS
@
©
)
IS
)
©

@

MNIST-Add-Incomp
Task Accuracy (%)
I 88E 8

~
)

©
©® ®© ©

e
¥
x
i g
/A
!
%
j
fy

58 ¥

3

8 < ey’
. ] 2
¥
58 58 58 58 &¢

48 48 48 48

CUB
Task Accuracy (%)
LAl g ~ el

3

0 4 81216202428 0 4 81216202428 0 4 81216202428 0 4 81216202428 0 4 81216202428

N

¢ 97 97 97 97 97

87 W*'S o N 87 87 87
* ok x %

A E o—

77 42— 77 4 N 77 Jet :—ri-..- 77 77
. \ x A

67 67 \\;&1\ L o7 ,//,/ 67 67

57 57 | 57 57 ,x—*:/-!;'r»" 57

47 47 47 47 M 47

37 37 37 e s Y a1 s

N

N

N

CUB-Incomp
Task Accuracy (%)
5

Wk U o N ®©
N

3
o
N
-
o
o
N
IS
o
o
)
IS
o
=)
N
IS
o

N

174 7a 74 7a 7a
64 64 AT 64 64 64
54 54 54 54 54
xops < f 3
VIS aa \ | a4 14 14
/
34, Z 34/ N o3 34 7!
A R R —— s
{

. P == e :
24 Py a— "f/’( 24 wEAET 24 Py

0 2 4 6140 2 4 6140 2 4 6140 2 4 6140 2 4 6140 2 4 6

Groups Intervened Groups Intervened Groups Intervened Groups Intervened Groups Intervened Groups Intervened

RS

-~

CelebA
Task Accuracy (%)
b

=N W os O
~

S

X  Skyline (Oracle) Y Random + UCP ® CooP ¢ CVA CVI

Figure A.4: Task accuracy when intervening with different policies (colours) on different methods
(columns) and datasets (rows). We observe that, across all tasks and datasets, IntCEMs outperform
all other baselines when intervened on. This difference is particularly sharp on the more complicated
datasets such as CUB-Incomp and CelebA.

When using CooP for any of our baselines, we select a and 3 by performing a grid search over
a € {0.1,1,10,100} and 8 € {0.1,1,10,100} and selecting the pair of hyperparameters that give
us the best area under the validation intervention curve. Given that this process can be costly (in our
runs it may take up to ~45 minutes to run), we estimate the area under the validation intervention
curve by checking CooP performance after intervening with 1%, 5%, 25%, and 50% of the available
concept groups for a given task.

Behavioural Cloning Policy To learn a behavioural cloning policy which imitates Skyline through
demonstrations of the latter policy, we train a leaky-ReLU MLP with hidden layers {256, 128} that
maps a previous bottleneck ¢ and a mask of previously intervened concepts p to k outputs indicating
the log-probabilities of selecting each concept as the next intervention. This model is trained by
generating 5, 000 demonstrations ((€, t), sky) of “Skyline”.

Each demonstration is formed by (1) selecting a training sample x from the task’s training set
uniformly at random, (2) generating an initial intervention mask p by selecting, uniformly at random,
I ~ Unif(0, k) concepts to intervene on, (3) producing an initial bottleneck ¢ = §(x, p, ¢) using
concept encoder g of the model we will intervene on and x’s corresponding concept labels c, and (4)
generating a target concept intervention 7, by calling the Skyline policy with inputs (¢, 11). This BC
model is then trained to minimise the cross entropy loss between its predicted probability distribution

22



CUB-Incomp

-
o
]

Task Accuracy (%)

0 2 4 6
Groups Intervened

Y IntCEM -+ Joint IntCBM-Sigmoid Joint IntCBM-Logit
CEM ~+  Joint CBM-Sigmoid Joint CBM-Logit

Figure A.5: Test accuracy for traditional CBMs trained with IntCEM’s loss functions (IntCBMs)
on the CUB-Incomp dataset. Our results suggest that although there may be merit to incorporating
IntCEM’s loss into traditional CBMs, their use of scalar concept representation severely limits their
stability and unintervened performance.

and 74, for 100 epochs using stochastic gradient descent with learning rate 0.01, batch size 256,
weight decay 4 x 1075, and momentum 0.9.

We highlight that when selecting concepts from both the BC policy and the learnt policy % at test-time,
we deterministically select the concept with the maximum log-probability that has not yet been
selected by L.

A.7.2 Additional Results

As discussed in Section[d] in Figure[A.4] we observe that IntCEMs achieve significantly higher task
accuracies across all tasks under interventions, regardless of the intervention policy used. We notice,
however, that the gap between the optimal intervention policy and IntCEM’s best-performing policy
tends to be larger in the simpler datasets. Further work can investigate the origins of this gap as well
as mechanisms to bridge it.

A.8 Extending IntCEM'’s Loss to Traditional CBMs

Because IntCEM’s loss function only assumes that one can intervene on a given model at train-time,
this loss function is general enough to be applicable to traditional Joint CBMs. In Figure[A.5|we show
the results of intervening on joint CBMs whose training objectives have been modified to include
IntCEM’S Ly and Lpreq terms (IntCBMs). These results show that IntCBMs, in particular when
using a logit bottleneck, can achieve a higher test accuracy than their traditional CBM counterparts
when presented with a large number of test-time interventions. Nevertheless, we note the following
limitations: (i) we observe that for IntCBMs with sigmoidal bottlenecks, there is no improvement
regardless of the use of interventions, and in fact, adding Lpreq and L.y to traditional CBMs can
in fact lead to worse performance; (ii) even in IntCBMs with logit bottlenecks whose intervened
performance outperforms their CBM counterparts, we observe a high variance, especially when the
number of intervened concepts is small; and (iii) in comparison to IntCEMs, the improvements of our
training loss in IntCBMs with logit activations are still significantly underperforming when receiving
little-to-none interventions. We believe that these observations arise for two core reasons: first, using
concept embeddings allows for a better flow of information between the concept encoder and the
label predictor, leading to embedding-based models being more robust to concept incompleteness
than their scalar-based counterparts (especially with respect to sigmoidal bottleneck). Second,
using embeddings rather than scalar concept representations enable gradients to flow from the label
predictor into the concept encoder even after interventions are made, something that is not possible
with traditional CBMs as setting a bottleneck activation to a fixed value (e.g., 0 or the 5-th percentile
of the activation) is a gradient-blocking operation. This also leads to significantly more stable gradient
propagation throughout an intervention trajectory, explaining the high variance in IntCBMs. These
results suggest that using high-dimensional embedding representations for concepts may be a crucial

23



CUB CUB-Incomp CelebA

10

.80

£ 70 70
= 60 60
= 40
3 - 30
230

% 20 20
g1

[_‘

[« ]

i 0 e =S

0 4 8 1216 20 24 28 0 2 4 6 8 0 2 4 6 8

Groups Adversarially Groups Adversarially Groups Adversarially
Intervened Intervened Intervened

* IntCEM (Leant Policy y) IntCEM (Random Policy) Y CEM (Random Policy)

Figure A.6: Task accuracy for IntCEMs and CEMs as we adversarially intervene on an increasingly
large number of concept groups (by intentionally selecting the wrong concept label). For IntCEMs
we show interventions following its learnt intervention policy ¥ as well as a Random policy. For
CEMs, all interventions are done following a Random intervention policy.

component for these models to be receptive to interventions, and further, simply including a higher
train-time penalty when mispredicting a label after an intervention trajectory is not enough for a
model to become competitive with and without interventions.

A.9 Effect of Adversarial Interventions

In their evaluation, Espinosa Zarlenga et al. [5] observed that CEMs were somewhat more robust
to adversarial interventions (i.e., interventions that are intentionally incorrect) compared to existing
CBM architectures — where robustness was defined as being able to withstand a certain number of
wrong interventions before significantly dropping in performance. This suggests that CEMs may have
a form of error correction in their embeddings that allow the label predictor to correct intervention
mistakes. In contrast, as posited in our discussion in Section [5} by encouraging IntCEMs to be
receptive to test-time interventions, we are also incentivising them to be receptive to all forms of
interventions, even if those interventions are adversarial in nature. This is because our model’s
explicit train-time intervention loss, which encourages IntCEMs to positively respond to test-time
interventions, has the underlying assumption that interventions, when provided at train-time or test-
time, are correct. Hence, we hypothesise that the same error correction observed in CEMs will not
be seen in IntCEMs, leading our models’ performance to significantly drop when interventions are
wrong. We find evidence supporting this hypothesis when performing adversarial interventions across
all our baselines on the CUB, CUB-Incomp, and CelebA tasks. Specifically, as seen in Figure [A.6] we
observe that an IntCEM’s performance drastically drops when receiving only a handful of adversarial
interventions, with this result being even more damaging if we follow its learnt intervention policy 1.
These results suggest that a very interesting and impactful direction for future work can be to explore
mechanisms to introduce error correction in IntCEM-like models.

A.10 Leakage in IntCEM’s Learnt Representations

Concept leakage [36, [10] is a known issue in CBMs where a CBM’s concept encoder learns to
encode unnecessary information in its learnt concept representations in order to bypass information
from the input to its label predictor. It has been empirically shown that leakage may lead to less
interpretable concept representations [36] and to detrimental interventions on CBMs [[10]. The latter
is a consequence of a CBM’s label predictor learning to rely on information that accidentally leaked
into the concept representations, information that is necessarily destroyed at intervention-time when
an expert overwrites a bottleneck activation with its ground truth value. Nevertheless, the same is
not true in embedding-based architectures, such as CEMs and IntCEMs, where interventions simply
involve “swapping” an embedding with one that can still carry leaked information into the label
predictor (see Equation [I). Hence, in this section we hypothesize that higher leakage may, in fact, be
a contributor to IntCEMs’ better performance when being intervened on as the model may learn to
take better advantage of this leakage to learn to be more receptive to interventions at test-time.

24



Table A.4: Oracle Impurity Score (OIS) for all jointly-trained baselines across all tasks. Higher OIS
values indicate higher leakage in a model’s learnt concept representations.

Dataset | IntCEM CEM Joint CBM-Sigmoid Joint CBM-Logit
MNIST-Add 3097 £0.29 28.25+0.44 13.14 £ 0.27 20.96 £ 0.02
& MNIST-Add-Incomp | 36.73+0.23 34.09 +0.47 13.28 £ 0.27 26.12 +£0.08
e CUB 45.86 £0.29 42.54 +2.30 21.01 £0.58 41.66 = 0.49
) CUB-Incomp 3879+ 141 42.13+£3.48 27.81 £2.02 30.32 £3.09
CelebA 50.87 £4.07 40.63 £4.83 29.65 £ 16.51 24.11 £ 09.30

We evaluate our hypothesis by measuring the Oracle Impurity Score (OIS) [10] of concept represen-
tations learnt by CBMs, CEMs, and IntCEMs across all tasks. This score, between 0 and 1, measures
how much extra information, on average, each learnt concept representation captures from other
possibly unrelated concepts (with higher scores representing higher impurities and, therefore, more
leakage between concepts). Our results, shown in Table[A.4] show that not only is there significantly
more leakage in CEMs compared to CBMs, as one would expect given their higher capacity, but
IntCEM’s embeddings are capturing more impurities than CEM’s embeddings across all tasks but
one, providing evidence towards our hypothesis. This preliminary study suggests that contrary to
common assumptions, leakage may not always be undesired and could be a healthy byproduct of more
expressive concept representations in models that accommodate such expressivity. Nevertheless, this
phenomenon may also potentially lead to IntCEM’s concept representations being less interpretable
than those in CEMs when such leakage is unaccounted for. Therefore, we encourage future work to
explore leakage’s positive and negative consequences in embedding-based concept models to design
better inductive biases for effective interventions.

A.11 Frequency of Selected Concepts by IntCEM’s policy

In Figure we show the frequencies of concept groups selected by IntCEM’s v policy when
intervening on the validation set of CUB. To study how much this policy changes across different
initialisations and random seeds for the same hyperparameters and models, we show these histograms
across multiple instances of identically trained IntCEMs with different random seeds. We notice that
although, in most cases, concepts such as “upperparts colour” and “size” seem to be highly preferred
in the early steps of intervention, there seems to be a relatively large variance across multiple seeds.
This may suggest that there are several equally informative or good concepts one may request at a
given time to obtain similar improvements, something that we leave for future work to explore.

A.12 Tabulation of Results

This section presents Tables[A.5] [A.6] and[A.7] a set of tabular summaries of our results introduced in
Section[d} These summaries show the precise means and standard deviations (computed over five
different random seeds) of test-time accuracies after interventions for all baselines and tasks when
deploying various intervention policies. They represent tabular versions of the results presented in
Figures [3| @} and [5] respectively.

25



woyed Sum

wrayred A[[aq
wrajed ey
wisiied soeq
adeys

oz1s

adeys Huim
10[00 A[[oq
10[00 adeu
10[00 [18) Jepun

uomuo_umwr_ﬁe
y3bus g
10700 945
10]00 JROIYY

10]00 s1redIoddn
10100 Huim
adeys [q

o

Learnt Policy Selection After 12 Steps

000
500

3 &
SJUNOY PojIs[es

weed Sum

wreyred Afjaq
wrajjed ey
wraljed yoeq
adeys

oz1s

odeys burm
10100 AT[oq
10[00 adeu
10[00 [1e) Jopun
10]00 peayaIo)
y3bus g
10700 945
10]00 JROIYY

10[05 s1rediaddn
1000 Humm
adeys [q

Learnt Policy Selection After 6 Steps

=)
S
S
5

wrejyed Hum
10[00 UMOIO

1000 JeO0IY)

— 10100 [1q
10100 ba

o To105 Arewud

= uropred Affaq

0 urajed [rey

2 wrayjed yoeq

© adeys

=] az1s

5] odeys fuim

=] To100 ATjoq

33 10700 adeu

<2 10[00 [1eY Jopun

[ 10]00 PeSYI0)

0 yibua [1q

> 10]00 948

2

S

[

=

=

g

5}

51

s

20[00 sjredraddn
10100 Burm
Sdeys mq

E)

000
000

S 2
SJUN0Y Pajoaes

Concept Group

Concept Group

Concept Group

uzeyred Buim
10100 uMOIO
10[00 11q

10[00 bay

10[00 Arewrtad
wreped A[feq
wreyjed ey
wietied oeq
adeys

oz1s

adeys fuim
10[00 AT[oq
10[00 adeu
10]00 [1e} Jepun

10[00 peayaio)
y3busf g

1005 sirediaddn
10100 Huim
adeys [1q

o

Learnt Policy Selection After 12 Steps

000
500

3 &
SJUNOY PajIS[es

weyed um
10105 uMOID
10100 q

10[00 Arewid
weyred Afaq
wreyyed ey
wieljed yoeq
adeys

oz1s

odeys buim
10100 AT[oq
10[00 adeu
10[00 [re} Jopun
10]00 peaYyaI0]
ybusf g
10700 945

10[05 siredioddn
10]00 Humm
adeys [1q

=)

Learnt Policy Selection After 6 Steps

000
500

2 &
SJUN0Y) Pajoa[es

uwrejyed Hum
10[00 umoo

10[00 JROIYY

— 10[00 [11q
10100 ba

& Tor05 Arswud

E~ uroped Affoq

0 urajjed [rey

= wreyjed yoeq

© adeys

= oz1s

5 odeys fuim

F= o105 ATj0q

O 10]00 adeu

2 | 10[00 [1e} Jopun

[} 10[00 PeaYaIO]

(%] bus [iq

> 10]00 943

2

S

A~

=

3]

-

5]

@

s

1000 sjrediaddn
10100 Burm
adeys [11q

4000
000
0

sjunoy ﬁm«puﬁwm

Concept Group

Concept Group

Concept Group

wreped Suim

uzepied Soeq
odeys

oz1s

odeys Buim
10700 ATjoq
1000 adeu
10[0D [1B] Topun
1000 peoyalo)
y3Bus [t

10[00 949
10[00 1ROIY}

Concept Group

wragyed jsealq
10705 spredIopun
10]00 sjredieddn
1000 Hurm
odeys [11q

Learnt Policy Selection After 12 Steps

o =)
S
S

000

<+ N
SJUNOY) PaoOd[as

uzeyyed Buim
10[00 UMOID
10[00 [1Iq

1000 ba[

10100 Arewrrid
uzopied Ajeq
utepied 1o}
wrajjed yoeq
adeys

oz1s

adeys Hum
10100 A[[aq
1000 adeu
10[0D [1] Iopun
10[00 peayaIo]
bus| w:n
10[00 949

1000 JROIY}

Concept Group

10100 [1e] ¢
odeys ey

1000 joRq
wojjed jsearq
10709 sjredIiepun
10[00 sredioddn
10100 Huim
adeys [11q

Learnt Policy Selection After 6 Steps

=)

000

5
Sjuno) pejos[es

wreyjed Huim

uzeyied orq
adeys

oz1s

adeys fum
10700 ATjoq
10[00 adeu
10[0D [1B] I9pun

1000 peoialo)
yybusy

Learnt Policy Selection at Step 1
Concept Group

10[00 sjredieddn
10100 Huim
odeys [11q

o =)
S

3
SJUNO0Y Pa3os[as

uzeyied Huim
10[0D UMOID
10[00 [Iq.

10[00 ba[

10[00 Arewrid
ureyyed Afaq
ureyjed ey
uzetied orq
adeys

az1s

adeys Humm
10100 A[aq

10[00 adeu

10[0D [1e] Topun
10[00 peayaIo]
ybuay [t

10[00 949

1000 JROIYY
10[0D 15RAIq
urejed _ummm
10100 [1e) Jaddn
adeys [re)

10100 ¥ouq
wIa)ye

10[05 spredIopun
10[00 sirediaddn
10[00 Butm
adeys [q

Learnt Policy Selection After 12 Steps

o

000
500

3 &
SjUN0Y pejos[es

uzeyied Huim
10[0D UMOID
10[00 [1Iq.

10[00 D[

10]00 Arewrtid
wayjed Afaq
wreyjed ey
wreljed yoeq
adeys

az1s

adeys fum
10700 A[[oq
10[00 adeu
10[0D [1] Topun
10[00 peaya.I0)
yybus[ [nq
10[00 949

1000 JROIYY

1005 siredioddn
10[00 Sum
adeys [nq

=)

Learnt Policy Selection After 6 Steps

o
S
S
5

2
a
3
S 4000

JEIREIEN

urejyed Huim
10[0D UMOID
1000 [11q.
1000 ba[
1000 Areurtid
ureyed Affoq
wayjed e}
wiayjed yoeq
adeys

oz1s

adeys fumm
10705 ATjoq
10[00 adeu
10[0D [1B] I9pun
10[00 peaya.I0]
ybual nq
10[00 949
10[00 1201y}

Learnt Policy Selection at Step 1

1000 sjrediaddn
I0[00 Hutm
adeys [11q

=)

000
000

S 2
SJUNOY) Paod[as

Concept Group

Concept Group

Concept Group

uzeyied Buim

10[0D UMOID

1000 [1Iq.

10[00 ba[

10[00 Arewrtid

ureyred Aaq

ureyjed ey

utsyied oeq

adets

71

adeys fumm

10100 A[aq

10[00 odeu

10[0D [1] Topun
00 peayaIo]

10}
w !

1000 JROIYY
10[0D 15RAIq
wiojjed _uamm
10100 [1e) Jaddn
adeys [rey

1000 joRq
wegyed jsealq
1005 spredIopun
10[00 sirediaddn
10[00 Butm
adeys [nq

Concept Group

Learnt Policy Selection After 12 Steps

4000
2000

IS}
&}
Q

potoales

uzeyied Huim
10[0D UMOID
1000 [Iq.

10[00 Doy

10700 Arewrtid
uzeped A[joq
uteyed [ie}
wzeyjed yoeq
adeys

az1s

adeys fumm
10700 A[[oq
10[00 adeu
10[0D [1] Topun

10[00 peaYaI0]
yybus|

10[00 949
1000 JROIYY

Concept Group

1005 siredioddn
10100 Sum
adeys [1iq

Learnt Policy Selection After 6 Steps é
=1

2000

Stiitele)

=

910908

uejyed Huim
10[0D UMOID
1000 [11q.
1000 ba[

1000 Areurtid
uroyed Affoq
wiajjed ey
uzajjed yoeq
adeys

a71s

adeys fumm
10705 ATjoq
1000 adeu
10[0D [1B] I9pun
10[00 peaYI0]
yybus [1iq
10[00 949
1000 1R0IY)

Learnt Policy Selection at Step 1
Concept Group

1000 syrediaddn
I0[00 Butm
adeys [11q

=)

000
500

ﬂ:solo pajoares

ber

iven num
of interventions in CUB’s validation set. Each column represents the distribution of intervened groups

) after a gi

Frequency of selected concept groups by IntCEM’s learnt policy

Figure A.7

d seed

1sation an

ial

1nitia

fferent i

i

larly, each row represents a d

imi

.S

nterventions

after a fixed number of

ining.

for IntCEM before tra

26



Table A.5: Tabular summary of Figure Task predictive performance (accuracy or AUC in %) across
all tasks and baselines when intervening on a fixed fraction of the set of available concepts at test
time (indicated on the left-hand side of the dataset names). Except for “IntCEM (Learnt Policy )",
all interventions use a random intervention policy. We write in bold the best performance results
across baselines following a random intervention policy.

Dataset | IntCEM (Random) CEM Joint CBM-Sigmoid  Joint CBM-Logit  Ind. CBM Seq. CBM | IntCEM (Learnt Policy 1))
MNIST-Add 93.78 £ 0.09 91.66 +0.41 86.47 £ 1.11 79.86 £3.12 84.11+1.09 88.88+0.67 94.75 +£0.28
< MNIST-Add-Incomp 90.88 +0.25 88.22+0.92 84.68 +0.83 77.59 £1.57 86.06+0.77 87.53+0.74 91.69 £ 0.39
e CUB 88.53 +£0.23 84.08 £ 0.36 83.18 £0.22 81.76 £ 0.90 79.96 +1.57 65.40+5.38 94.10 £ 0.49
CUB-Incomp 78.34 £ 0.34 77.83 £0.33 60.94 £ 3.66 6297 £7.19 48.16+£0.62 4278 +1.63 81.71£0.23
CelebA 42.25 + 0.36 33.27+0.94 25.16 +0.58 20.02 + 1.27 25.63+0.55 2621 +0.32 47.63 +1.49
MNIST-Add 95.70 £ 0.11 9336 £0.51 88.66 + 1.20 80.69 £3.30 8571+£0.94 90.87+0.83 96.71 £0.20
« MNIST-Add-Incomp 92.07 +0.21 89.13 £0.96 8573 £ 1.12 77.96 + 1.73 86.87 £0.74 88.58£0.95 92.98 +0.31
2 CUB 96.14 £ 0.35 89.66 + 1.53 9228 +0.74 86.37 £ 1.18 92.19£0.77 7424 +5.68 99.17 £0.14
CUB-Incomp 85.86 + 0.29 82.32+0.58 66.12 + 3.81 56.30+6.71 5435+£0.35 47.62+1.85 90.69 + 0.30
CelebA 52.01 £0.45 38.82+1.32 2719+ 1.17 21.20 £2.74 2779 +1.07 29.11 +£0.40 62.01 +1.21
MNIST-Add 97.51 £ 0.08 95.01 £0.57 91.24 £ 1.05 81.31+3.44 86.97+0.96 92.58 +0.82 98.22 £0.09
& MNIST-Add-Incomp 93.48 £ 0.25 90.35 +0.96 88.09 +1.03 78.62 +1.90 88.15+0.68 90.09 +0.91 94.18 +£0.24
0 CUB 98.98 +0.14 93.95+1.95 95.73 £ 1.00 91.18 £ 1.61 96.97 £0.53  79.81 £4.96 99.82 +0.08
CUB-Incomp 91.74 £ 0.19 86.93 +0.61 71.54 £3.93 57.39 £ 6.36 61.92+0.52 53.00+1.76 94.96 +0.26
CelebA 56.99 +0.37 41.59 +1.39 28.04 +1.42 23.70 £3.82 28.63 +1.48  30.04 +0.48 66.48 +1.10
MNIST-Add 99.51 £ 0.04 96.68 + 0.68 94.84 £0.75 81.92£3.65 88.43+1.03 94.58+0.81 99.51 +0.04
w MNIST-Add-Incomp 94.99 +0.11 91.53 £ 1.01 91.28 £0.81 79.21 £1.98 89.36+£0.69 91.54+1.03 94.99 +0.11
2 CUB 99.90 + 0.04 96.75 + 1.72 96.42 +1.24 95.03 £ 1.95 98.97+0.35 82.81+3.72 99.90 +0.04
- CUB-Incomp 96.52 +0.19 91.47 £ 0.67 76.72 £ 4.14 65.25 + 6.88 69.54+1.05 58.19+1.85 96.52 +0.19
CelebA 70.02 + 0.62 48.10+ 1.72 29.38 £ 1.80 30.75+9.89 2943 +£2.02 31.04+0.22 70.02 £ 0.62

Table A.6: Tabular summary of Figure E| including performance in other tasks as shown in Ap-
pendix but excluding performance when using the “Random” policy (see Table [A.5]for those
results). Here, we show the task accuracy of IntCEMs and CEMs when intervening with different
test-time policies as we vary the fraction of concept groups we intervene on (indicated on the left-hand
side of the dataset names).

Dataset | IntCEM (UCP) CEM (UCP) | IntCEM (CooP) CEM (CooP) | IntCEM (CVA) CEM (CVA) | IntCEM (CVI) CEM (CVI) | IntCEM (Skyline) CEM (Skyline)
MNIST-Add 94.07+£022  92.17+046 | 93.16+0.14 91.06 £ 0.41 93.14£0.12  91.39£0.65 | 95.14+0.37  92.13£0.70 99.93 £0.01 99.05 £0.26
N MNIST-Add-Incomp 91.03 £0.38 88.53+0.92 90.09 +0.34 90.11 £0.30 88.21 £1.28 91.52 +0.68 88.37+1.12 98.48 +0.08 95.06 +0.77
] CUB 93.37 £0.20 88.56 +0.69 94.68 £ 0.25 86.91 + 1.05 84.81 £0.55 89.44 + 1.03 99.76 + 0.05 95.25 £ 1.81
CUB-Incomp 82.20+0.11 80.40 £ 0.26 82.34 +0.24 79.49 +£0.57 78.68 £0.51 79.08 +0.37 53 90.16 £ 0.31 85.83 £0.72
CelebA 50.82 £ 0.41 38.67£1.26 50.72 £ 0.56 38.83 £ 1.36 48.28 +£0.34 36.04+1.14 | 4828+0.34 36.04+1.14 62.48 + 0.54 44.34 +£1.27
MNIST-Add 96.60 £0.13 94.22 £0.55 94.74 £0.27 92.54 £0.44 95.70 £0.42 93.05 £0.83 96.97 +£0.83 94.17£0.78 100.00 + 0.00 99.61 £0.15
& MNIST-Add-Incomp 92.82 £ 0.45 89.97 £0.98 91.31£0.59 88.89 £ 0.98 91.70 £ 0.46 89.19 £ 1.31 93.53 +£0.64 89.59 +0.92 99.11 £0.18 96.17 £ 0.69
2 CUB 98.52£0.19 93.70 +£1.43 99.27 £0.16 93.60 £ 1.39 96.35 +0.70 91.71 £ 1.47 97.45+0.40 91.49+1.38 99.92 +0.01 96.87 £ 1.71
CUB-Incomp 91.21£022  86.82+0.73 91.25£0.13 87.17+0.74 | 8831030 84.42£059 | 87.90+0.73 83.76 +1.07 96.38 +0.28 91.23£0.73
CelebA 6547059  4629+149 | 6547 £0.57 4648 +1.59 | 59.60+0.38  42.61+1.38 | 59.54+0.39 42.61+1.38 70.84 £ 0.47 48.56 + 1.63
MNIST-Add 98.78 £ 0.04 97.99 £ 0.46 95.41 £0.66 97.80 £0.67 95.24 £ 0.88 98.43+0.44 9593 +0.69 100.00 + 0.00 99.54 £0.19
& MNIST-Add-Incomp | 94.42+022  91.06+1.02 | 9362082 90.8 3 93.64+0.15 9043+ 1.01 | 9453+023  90.74 £ 0.94 5 95.81 £0.74
o CUB 99.75£0.07  9593£1.56 | 99.88 £0.04 95.9( 99.18+0.23  95.17+1.72 | 99.74+0.04 9522+ 1.55 99.9: 02 96.96 £ 1.70
CUB-Incomp 95.04£0.31  90.03 +0.87 95.37 £0.31 9 9292+0.38  8835+0.85 | 93.81+£095 8837+1.36 96.68 £ 0.25 91.63 £0.69
CelebA 68.54£0.67 47.43+1.63 68.54 + 0.66 47.51 +1.65 6446 £0.47  4565+1.46 | 64.46+047  45.65+1.46 70.95 £0.52 48.61 + 1.66
MNIST-Add 99.51£0.04  96.68 +0.68 99.51 £ 0.04 96.68 £0.68 [ 99.51+0.04 96.68%0.68 | 99.51+0.04 96.68 £ 0.68 99.51 £ 0.04 96.68 £ 0.68
i MNIST-Add-Incomp | 94.99+0.11  91.53+1.01 94.99 £0.11 91.53 £ 1.01 9499+0.11  91.53£1.01 | 9499+0.11 91.53%1.01 94.99 £0.11 91.53 £ 1.01
2 CUB 99.90 £0.04 9675+ 1.72 | 99.90 £0.04 96.75+1.72 | 99.90+0.04 96.75+1.72 | 99.90+0.04 96.75+1.72 99.90 £ 0.04 96.75 £ 1.72
- CUB-Incomp 96.52£0.19  91.47 £0.67 96.52 £0.19 91.47£0.67 | 96.52+0.19  91.47£0.67 | 96.52£0.19  91.47 £0.67 96.52 0.19 91.47 £0.67
CelebA 70.02+£0.62  48.10+1.72 | 70.02+0.62 48.10+1.72 | 70.02+0.62  48.10+1.72 | 70.02+0.62 48.10+1.72 70.02 £ 0.62 48.10+1.72

Table A.7: Tabular summary of Figure |5} Here, we show task performance when intervening on
IntCEMs following test-time policies 1, CooP, Random, and BC-Skyline. The fraction of concept
intervened on for each dataset is shown on the left-hand-side of the table.

Dataset | Random CooP Learnt Policy  BC-Skyline | IntCEM no ) (Random)
MNIST-Add 93.78 £0.09 93.16+0.14 94.75+0.28 93.20+0.19 93.81+0.18
< MNIST-Add-Incomp | 90.88 £0.25 90.09+0.34 91.69+0.39 90.18 +£0.35 90.98 £0.18
e CUB 88.53+0.23 94.68+0.25 94.10£0.49 88.43+0.29 88.46 £ 0.46
CUB-Incomp 7834 +0.34 8234+024 81.71+0.23 79.06+0.41 78.15£0.30
CelebA 4225+£036 50.72+0.56 47.63+1.49 48.47+047 33.45+0.58
MNIST-Add 95.70£0.11 94.74+0.27 96.71+£0.20 94.56 £ 0.47 95.69 +0.11
< MNIST-Add-Incomp | 92.07 £0.21 91.31+£0.59 9298+0.31 91.56+043 92.13£0.16
= CUB 96.14+£0.35 99.27+0.16 99.17+0.14 96.28 +0.19 95.89 £ 0.40
CUB-Incomp 8586+0.29 91.25+£0.13 90.69+0.30 86.74 +0.41 8531 +£041
CelebA 5201045 6547+0.57 62.01+1.21 59.95+0.84 40.71 £ 0.56
MNIST-Add 97.51+£0.08 97.99+0.46 98.22+0.09 96.39+0.72 97.50 £ 0.06
< MNIST-Add-Incomp | 93.48 £0.25 93.62+0.82 94.18+0.24 93.38+0.39 93.54 £0.14
e CUB 9898 +0.14 99.88+0.04 99.82+0.08 99.67+0.10 98.87 £0.26
CUB-Incomp 91.74+£0.19 9537+031 9496+0.26 93.22+0.20 91.53£0.29
CelebA 56.99+0.37 68.54+0.66 6648+1.10 64.63+0.93 44.37 £0.61
MNIST-Add 99.51+0.04 99.51+0.04 99.51+0.04 99.51 +£0.04 99.47 +0.06
x MNIST-Add-Incomp | 94.99+0.11 94.99+0.11 94.99+0.11 94.99+0.12 95.03 £0.09
= CUB 99.90+£0.04 99.90+0.04 99.90+0.04 99.90 +0.01 99.85 +£0.08
- CUB-Incomp 96.52+0.19 96.52+0.19 96.52+0.19 96.56+0.19 96.00 £0.21
CelebA 70.02+0.62 70.02+0.62 70.02+0.62 69.93+0.72 53.39 £0.80

27



	Introduction
	Background and Previous Work
	Intervention-Aware Concept Embedding Models
	Architecture Description and Inference Procedure
	IntCEM's Training Procedure

	Experiments
	Task and Concept Performance in the Absence of Interventions (Q1)
	Intervention Performance (Q2)
	Studying IntCEM's Intervention Policy (Q3)

	Discussion and Conclusion
	Appendix
	Software and Hardware Used
	Additional Details on the Gumbel-Softmax Sampler
	Dataset Details
	Model Architecture and Baselines Details
	Model Architectures and Hyperparameters
	Training Hyperparameters
	IntCEM-Specific Parameters

	Computational Resource Usage
	Exploring IntCEM's Hyperparameter Sensitivity
	Rollout and Concept Loss Weights Ablations
	Task Loss Scaling Factor
	Prior Hyperparameters Ablation

	Additional Results and Details on Intervention Policy Evaluation
	Intervention Policy Details
	Additional Results

	Extending IntCEM's Loss to Traditional CBMs
	Effect of Adversarial Interventions
	Leakage in IntCEM's Learnt Representations
	Frequency of Selected Concepts by IntCEM's policy
	Tabulation of Results


