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Abstract

Traditional concept decomposition methods have made significant progress in improving the
interpretability of deep learning models, but they still face many challenges. A key issue is
that they often lack traceable explanations for concepts, making it difficult to understand
and verify how models make decisions and provide explanations based on specific concepts.
To overcome this limitation, this paper proposes a new method—Conceptual Archetype
Decomposition (CAD)—which aims to provide more interpretable concept learning and
decision-making process. Unlike existing methods, our approach ensures that each concept
can be represented as a linear combination of training samples, with its total activation
value equal to 1. This constraint limits the learning space of the concepts and enhances
their interpretability. Therefore, the advantage of our method lies in its fine-grained concept
activation decomposition, which directly constructs the explanatory space between training
samples and concepts. Through a dual-index decision mechanism, we deeply analyze the
relationship between test samples and training samples. Extensive experiments on the CUB
and ImageNet datasets demonstrate that our model not only improves decision transparency
but also exhibits stronger generalization ability in multi-class classification tasks. Our code
is available at: https://anonymous.4open.science/r/CAD-4510/.

1 Introduction

In recent years, the increasing reliance on deep learning models in high-risk domains such as healthcare
and autonomous driving has highlighted the urgent need for model interpretability (Wang & Chung, 2022;
Corfmat et al., 2025). While these models have achieved impressive performance, their opacity poses a
significant challenge to understanding the decision-making process (Ribeiro et al., 2016; Selvaraju et al.,
2017), which is crucial for ensuring their reliability and safety. Specifically, the lack of clear explanations
for the features or concepts driving model predictions often undermines the interpretability of the decision-
making process. This issue has sparked a wave of research on explainable deep learning models, particularly
those based on concepts (Kim et al., 2018; Lee et al., 2024), aiming to extract human-understandable features
from complex models.
A promising approach in this area is Concept Recursive Activation Factorization (CRAFT) (Fel et al.,
2023), which decomposes the activations of neural network intermediate layers into a set of concept vectors
and their corresponding coefficients via Non-Negative Matrix Factorization (NMF) (Lee & Seung, 1999).
Although CRAFT provides a framework for identifying latent concepts in the decision process, it suffers
from two key limitations: (i) the extracted concepts lack clear interpretability; (ii) it is difficult to establish
an effective link between test samples and training samples in the decision process. Specifically, the concept
vectors extracted by CRAFT lack clear semantic meaning, making it challenging to directly map them to
interpretable features, and as a result, understanding the specific meaning of each concept becomes difficult.
Additionally, the relationship between the concepts in CRAFT and the input data is not well-defined,
affecting the model’s robustness and generalization capabilities.
To overcome these limitations, we propose a novel framework—Concept Archetype Decomposition
(CAD)—designed to enhance the interpretability and robustness of concept-based deep learning models.
Unlike previous methods such as CRAFT, CAD modifies the standard matrix factorization approach by
representing the concept extraction process as a linear combination of the activation matrix A and two addi-
tional matrices: the concept index matrix C and the concept reconstruction matrix B. This method ensures
that each concept is associated with specific training samples during the training process and is formed

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

through their linear combination, thus avoiding the issue in CRAFT where there is no direct connection
between the activation matrix and concept vectors, leading to clearer semantic meanings for each concept.
CAD satisfies a nested bilayer convex combination, meaning that each reconstruction can be fully indexed
without encountering the issue in CRAFT where some samples cannot be explained. Additionally, CAD
inherently adopts a Low-Entropy Structure, which avoids the influence of hyperparameters when setting
regularization loss functions (Zhu et al., 2024). This allows for direct sparse results, thereby mitigating the
impact of hyperparameter randomness on the concept decomposition.
During the testing phase, CAD uses the same weight matrix C learned during training to optimize and obtain
the concept reconstruction matrix for the test samples, thus enabling the decomposition of new samples into
concepts. Extensive experiments on benchmark datasets such as CUB (Wah et al., 2011) and ImageNet
demonstrate (Deng et al., 2009) that our method not only enhances decision transparency but also exhibits
stronger generalization capabilities. The main contributions of this paper are summarized as follows:

• We propose Concept Archetype Decomposition (CAD), a novel concept extraction method that
avoids the distributional mismatch issue present in CRAFT decomposition (Fel et al., 2023), while
also ensuring full interpretability, meaning that the concept vectors themselves are interpretable and
indexable.

• The CAD design satisfies a nested bilayer convex combination and inherently adopts a Low-Entropy
Structure, which helps avoid the influence of hyperparameter randomness in concept decomposition.

• We demonstrate the effectiveness of CAD on benchmark datasets, showing that it outperforms
existing methods in both interpretability and robustness. We also provide a fully open-source code
package for community research.

2 Related Work

2.1 Traditional interpretability methods

There are two main directions in the field of interpretability research: one is Post-hoc interpretability,
represented by works such as Grad-CAM (Selvaraju et al., 2017), IG (Sundararajan et al., 2017), Shap-
ley (Lundberg & Lee, 2017), and LIME (Ribeiro et al., 2016). The other is the construction of inherently
interpretable models, such as Concept Bottleneck Models (CBMs) (Koh et al., 2020). In most cases, Post-
hoc methods are more valuable because there has already been a significant body of work that performs
exceptionally well, and we only need to provide reasonable explanations for their behavior. On the other
hand, inherently interpretable models are subject to the limitation of being "inherently interpretable," which
may result in slightly inferior performance compared to models without such constraints.
In this paper, we focus on Post-hoc methods. Existing research, such as Grad-CAM (Selvaraju et al., 2017),
IG, and other more advanced attribution methods (Zhu et al., 2024), aims to construct a heatmap to help
humans understand which regions are important and what features the model relies on for decision-making.
However, the issue with these methods is that they only highlight important regions but fail to explain what
is within those regions, specifically what factors contribute to the prediction outcome.

2.2 Research and Application of Concept Decomposition Explainability

In recent years, several concept-based decomposition methods have been introduced to address the issue of
explaining decision-making criteria. A substantial body of research has demonstrated the applications of
concept decomposition in interpretability. For instance, methods like Representational Similarity Via Inter-
pretable Visual Concepts (RSVC) (Kondapaneni et al., 2025) and Representational Difference Explanations
(RDX) (Kondapaneni et al., 2025) use concept decomposition results to study differences between models.
Modeldiff (Shah et al., 2023) leverages this technique to investigate the impact of different training strategies,
making the study of concept decomposition interpretability highly valuable. A representative method, Test-
ing With Concept Activation Vectors(TCAV) (Kim et al., 2018), allows users to provide datasets with and
without a specific concept, from which it learns a concept vector to decompose the corresponding concept.
This approach also enables observation of factors present in an unseen dataset through concept matching.
However, this method relies on manually provided concept sets, making it unsuitable in cases where the
data is complex or the number of concepts is large. Additionally, since concept selection depends on human
expertise, it faces the challenge of missing important concepts due to incomplete concept sets.
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CRAFT (Fel et al., 2023), another concept extraction method, utilizes non-negative matrix factorization
to decompose intermediate feature vectors (Lee & Seung, 1999). However, its training distribution and
decomposition distribution are inconsistent, leading to the introduction of many out-of-distribution concepts
during decomposition. Furthermore, CRAFT requires feature vectors to be strictly positive, making it
unsuitable for models that do not meet this condition.
The core issue with the above decomposition methods lies in the fact that the concept vectors are learned,
and obtaining interpretability for these concept vectors is inherently difficult. In other words, while we can
decompose concepts, we cannot be certain of what those concepts represent. The proposed CAD method
leverages convex properties to ensure that each concept can be indexed to its corresponding samples, thereby
providing full interpretability. We ensure that every sample’s decomposition can necessarily lead to its
concept composition, and each concept is directly associated with the corresponding sample explanation.

3 Method

In this paper, we propose a novel framework, Conceptual Archetype Decomposition (CAD), aimed at en-
hancing the interpretability and robustness of concepts in concept-based interpretable deep learning models.
Compared to previous methods such as CRAFT (Fel et al., 2023), our approach addresses two key issues: (i)
the lack of intrinsic explanations for the extracted individual concepts, and (ii) the challenge of establishing
associations between test and training samples during the model’s decision-making process. The following
sections will present our method in detail, organized into three subsections: Problem Definition, Preliminary,
and Conceptual Archetype Decomposition.

3.1 Problem definition

Given a training sample x(i) ∈ Rw×h×3 (where 3 corresponds to the image’s RGB channels, and h and w
are the image’s height and width, respectively) and its corresponding class label y(i), we aim to design a
method that decomposes the feature representations of deep neural networks into human-understandable
concepts. Traditional methods for concept decomposition typically rely on subregion cropping (?), where
the original training sample x(i) is cropped into a patch x′(i) ∈ Rc×s×s of length and width s × s. However,
this approach often results in a shift in the input distribution between model training and testing, increasing
the risk of reduced interpretability and robustness of the extracted concepts. This is because the model was
not trained on these samples during training, which means that their distribution differs significantly from
that of the training set. We train the model by feeding the entire image into the input, ensuring consistent
inputs between training and inference. Next, we use a mapping function g that maps the full-image input
x(i) ∈ Rw×h×3 to an intermediate state A(x(i)) ∈ Rw×h×c for decomposition (Goodfellow et al., 2016).
Finally, the classifier h maps the intermediate state to the output, ensuring f(x(i)) = h(g(x(i))). At this
point, f : x(i) → y(i).

3.2 Preliminaries

To enhance the interpretability of deep neural network models, the CRAFT method (Fel et al., 2023)
employs Non-negative Matrix Factorization (NMF) techniques (Lee & Seung, 1999). NMF is an algorithm
that decomposes a non-negative data matrix into two non-negative matrices, with each matrix representing
different feature dimensions of the data. In CRAFT, NMF is used to factorize the activation matrix from
the intermediate layers of the neural network into two matrices, which represent the concept dictionary and
the concept coefficients, respectively. In this way, CRAFT is able to identify and extract the latent concepts
involved in the decision-making process of the neural network, thereby aiding in the understanding of how
the network reasons from input to output. The objective of NMF, in this context, is to minimize the following
optimization problem:

Û , Ŵ = min
U,W

∥A − UW ⊤∥2
F , if and only if U, W ≥ 0 (1)

First, we need to reshape the matrix so that A ∈ Rnwh×c represents the activation matrix extracted from
the intermediate layer of the neural network, used to represent the sample. n is the number of samples,
and wh × c is the feature dimension of each sample. W ∈ Rk×c represents the concept dictionary matrix,
which provides the concept activation vector. U ∈ Rnwh×k is the concept coefficient matrix, which contains
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the representation of each sample based on these concepts. k represents the number of extracted concepts.
Furthermore, CRAFT’s (Fel et al., 2023) reconstruction process is A ≈ UW . Therefore, U and W do not
establish a direct connection with the activation A, making it difficult to extract the inherent meaning of
the concepts. In other words, even if we obtain the final optimized concept matrix Ŵ , we cannot accurately
deconstruct it and cannot fully understand the meaning of each concept.

Figure 1: The overall architecture of our proposed Conceptual Archetype Decomposition (CAD) method.
The process includes feature extraction from an input image, followed by decomposition and reconstruction,
ultimately leading to a classification prediction. The upper panel illustrates how concepts are formed from
features selected from a diverse training set and then used to analyze other images.

3.3 Conceptual Archetype Decomposition

3.3.1 Concept extraction and interpretation

Although the CRAFT method proposes extracting concepts through NMF (Lee & Seung, 1999) to enhance
model transparency, its biggest challenge lies in concept interpretability. Because the concept dictionary
matrix W generated during NMF decomposition is an optimization artifact, it lacks inherent meaning or
intuitive interpretation. To understand the meaning of a specific concept, it is often necessary to sample
activation values and extract corresponding images for visualization. However, activation values alone do not
directly reflect the specific content of the concept. For example, there may be images with high activation
values that do not exclusively represent a specific concept. For example, suppose we sample three images
with activation values of 1.6, 1.1, and 0.5, representing varying degrees of activation for the same concept.
However, this simple sorting of activation values is insufficient to provide a clear conceptual interpretation, as
high activation values do not always imply that the image’s content fully aligns with the extracted concept.
For example, an image with an activation value of 1.6 may contain a mixture of multiple concepts, rather
than simply the salient features of that concept. Therefore, this approach fails to clearly define the specific
boundaries and meaning of a concept, and the activation threshold for sampling lacks standardization and
controllability. This makes concept interpretability ambiguous and unreliable.
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Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

Concept 1: Top 10 Representative Crops

Figure 2: Visualization of conceptual archetype decomposition on CUB dataset: example 1

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

Concept 3: Top 10 Representative Crops

Figure 3: Visualization of conceptual archetype decomposition on CUB dataset: example 2

In this section, to provide a traceable intrinsic explanation for the concepts extracted during matrix decom-
position and to establish connections between test and training samples, as shown in Figure 1, we represent
the concept reconstruction process as A ≈ A⊤C⊤B and call this method CAD, where A is the activation ma-
trix containing the intermediate layer features of the sample and used to represent the sample, C ∈ Rk×nwh

is the concept index matrix, and B ∈ Rnwh×k is the concept reconstruction matrix. Specifically, assuming
that the activation matrix we extract from the intermediate layer of the neural network is A ∈ Rnwh×c, we
hope to decompose the concept represented by z into a linear combination of the activation matrix A and
the concept index matrix C, in the form z = A⊤C⊤. To ensure that the concepts extracted during training
can be traced back to the training samples, we need to add a restriction ∀i,

∑nwh
j=1 Cij = 1 to the concept

index matrix C. To ensure that this restriction is strictly true, we perform softmax normalization on the
second dimension of the C matrix in each calculation so that the sum of each column in the matrix is 1:

Cij = ecij∑nwh
j=1 ecij

(2)
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This means that for the elements Cij in the concept index matrix C, they play a one-to-one corresponding
role with the feature activation A of the intermediate layer of the sample in the construction of the concept
z. Therefore, our concepts are completely obtained by linear combinations of samples, and any concept can
find its constituent feature activations and their weights. At the same time, because the feature activations
are spatially associated with the original features (Selvaraju et al., 2017), we can find the image location
information of the explanation and use it as the explanation. This also means that since z is strictly
composed of the activation matrix A and the concept index matrix C, when we need to get the explanation
of the concept, we can directly find the corresponding activation matrix composition through C and find the
samples behind it as the explanation. CRAFT needs to use samples for sampling to obtain samples with
higher activation values as the explanation of the concept, but this also means that this explanation of the
concept is not absolutely accurate. In Figure 2 and 3, we visualize the index sources of Concept 1, which
are extracted from different training set image crops, ordered by their index values Cij from high to low.

3.3.2 Building associations between concepts and original samples

In addition to the concept index matrix C, we also introduce a concept reconstruction matrix B, which is
used to reconstruct concepts, with ∀i,

∑k
j=1 Bij = 1. B reconstructs samples by controlling the activation

level of each concept. Specifically, B indicates which concepts comprise the sample. We use the same
operations as for the concept index matrix C. Figure 4 shows the training process of our CAD method.
Here we want to compare the matrix B with the activation matrix U in CRAFT. The
B matrix has two obvious advantages: 1. Unified dimensionality. In the demonstra-
tion U , the activation values of different concepts cannot be compared. For example, the
value of a certain feature dimension U is between 0-5, while another may be between 0-1.

Input image

reintegration with loss

Reintegration Layer 

ACB

Intermediate feature 

layer Aᵀ

Concept AC

Concept index weight 

Cᵀ

Concept reconstruction 

weight B

Input image

reintegration with loss

Reintegration Layer 

ACB

Intermediate feature 

layer Aᵀ

Concept AC

Concept index weight 

Cᵀ

Concept reconstruction 

weight B

Figure 4: The architecture of our proposed Conceptual Archetype Decom-
position (CAD) method.

The different dimensions also
mean that we cannot deter-
mine the activation of a con-
cept by the value of U. 2. U
represents the activation value
of the concept, while B rep-
resents "composition". Be-
cause the sum of the second
dimension in the matrix B is
constrained to be fixed at 1,
we can ensure that the re-
constructed activation value is
completely composed of the
concepts in Z, while activation
values can only be compared
with concepts. In summary,
the goal of our CAD optimiza-
tion is:

B̂, Ĉ = min
B̂,Ĉ

∥A − A⊤C⊤B∥ s.t. ∀i,

nwh∑
j=1

Cij = 1, ∀i,

k∑
j=1

Bij = 1 (3)

Next, we need to analyze the properties of CAD. CAD satisfies nested double-convex combination, which is
easy to prove:

Ai ≈
k∑

j=1
BijZj =

k∑
j=1

Bij

(
nwh∑
ℓ=1

CjℓAℓ

)
=

nwh∑
ℓ=1

 k∑
j=1

CjℓBij

Aℓ. (4)

That is,

A⊤C⊤B ⊆ conv(Z) ⊆ conv(A) (5)
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Where cone(X) represents the convex hull of the original data. For ease of understanding, we give the
definition of the convex hull here:

conv(X) :=
{

n∑
i=1

αixi

∣∣∣∣∣ αi ≥ 0,

n∑
i=1

αi = 1
}

(6)

Here, X = {x1, x2, . . . , xn} ⊂ Rd. This property also means that any reconstruction can be fully indexed.
However, PCA and CRAFT often project points outside the data convex hull, resulting in unrealistic and
difficult-to-interpret combinations. This can easily lead to interpretation crises in scenarios requiring strict
interpretability. Our CAD, however, provides a rigorous theoretical guarantee against this.
Another important property of CAD is its inherent low-entropy structure. This means that it naturally
produces sparse matrices without the need for a regularized loss function. This avoids the influence of hy-
perparameters when setting regularized loss functions and prevents randomness from affecting the confidence
of the interpretation of the results. This can be explained from the perspective of the degrees of freedom of
the matrices. Due to the constraint that the sum is unity, the degrees of freedom of the B matrix are ∆k−1,
and the degrees of freedom of the a matrix are ∆nwh−1. This is then simply proved using Carathéodory’s
theorem (Carathéodory, 1907). In practice, data distributions often approximate the ground-dimensional
manifold, so the sparsity can be even greater than the upper bound proven by Carathéodory’s theorem.
CAD also has a very advantageous property: archetypes converge to the extreme points of the
convex hull of the data. Intuitively, a pole cannot be written as a convex combination of two other points
in the convex hull. That is, in convex analysis, a point x ∈ C = conv(X) is a pole if and only if:

x ̸= λx′ + (1 − λ)x′′, ∀x′, x′′ ∈ C \ {x}, λ ∈ (0, 1) (7)

This also means that the decomposition of concepts will select representative samples, and when recon-
structing samples, representative concepts will be selected. Concepts and reconstructed samples have nat-
ural atomicity, which can be easily proved using the Cutler & Breiman theorem Cutler & Breiman (1994)
combined with the convex hull property.
Finally, in the interaction phase, if we want to obtain a unified conceptual explanation, we only need to fix Z,
which is A⊤C⊤ during training, and use Eq. 3 to optimize the new B matrix to obtain a unified explanation.

4 Experiment

4.1 Experimental setup

In this paper, we design and implement multiple experiments to validate the effectiveness and superiority of
the proposed Conceptual Archetype Decomposition (CAD) method. We use two widely adopted benchmark
datasets in visual tasks: CUB (Wah et al., 2011) and ImageNet (Deng et al., 2009), and select two common
deep learning models as backbones: NF_ResNet50 (Brock et al., 2021) and VIT-B/32(Dosovitskiy et al.,
2021). Specifically, the CUB dataset contains images of 200 bird species, providing rich fine-grained label
information, making it suitable for testing the model’s performance in fine-grained object classification. The
ImageNet dataset, with 1,000 object categories, has a large-scale data set, making it ideal for evaluating
the model’s robustness and generalization ability in large-scale visual classification tasks. To comprehen-
sively assess our CAD method, we choose two competitive baseline methods: CRAFT (Fel et al., 2023)
and PCA (Jolliffe, 1986). The CRAFT method, which extracts concepts based on Non-negative Matrix
Factorization, serves as a direct comparison to our method, while PCA, as a classic dimensionality reduction
method, is used as another baseline to demonstrate the differences in model interpretability and performance
between various concept extraction methods.

4.2 Experiment 1: Validation of Concept Reconstruction Error

To evaluate the reconstruction error of concepts on both the training and test sets, we propose a val-
idation method based on Mean Squared Error (MSE). A smaller MSE indicates that the reconstructed
features closely match the original features. The results of this experiment are presented in Table 1. This
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experiment probes whether CAD’s convex-combination design—Â = A⊤C⊤B with per-column simplex con-
straints on C and B—translates into in-distribution reconstructions at test time. The key signal is the
generalization gap ∆ = MSEtest − MSEtrain (the “Variation” column), not the raw training MSE whose
magnitude is confounded by backbone feature scales. Across all datasets/backbones, CAD yields gaps that
are approximately 5.9 ×−12.9× smaller than CRAFT and 3.3 ×−12.8× smaller than PCA (e.g., CUB/NF-
ResNet50: 24.73 vs. 156.35/170.78; CUB/ViT-B/32: 0.26 vs. 1.54/0.87; ImageNet/NF-ResNet50: 0.08 vs.
1.03/1.02; ImageNet/ViT-B/32: 0.12 vs. 1.35/0.79). This pattern matches the method’s inductive bias: since
Â ∈ conv(A), CAD reconstructs test activations as convex mixtures of training activations and avoids off-
hull extrapolation. In contrast, dictionary–coefficient factorizations (e.g., NMF-style UW in CRAFT) can
aggressively minimize train error yet reconstruct test features outside the training hull, inflating ∆ despite
tiny training MSE (e.g., CUB/NF-ResNet50: 1.87→158.21). Put differently, CAD trades a bit of training fit
for distribution-matched test reconstructions—a bias–variance choice enforced by the simplex/low-entropy
structure of B and C, which acts as an implicit regularizer. The smallest gaps appear on the larger ImageNet
and the stronger ViT-B/32 backbone, suggesting that the convex-hull constraint scales favorably as the fea-
ture geometry becomes richer (consistent with archetypes concentrating near extreme points of conv(A)).
Finally, these results empirically corroborate the critique of cropping-based decompositions: when train-
ing/decomposition inputs are mismatched (sub-regions vs. full images), test reconstructions drift; CAD’s
full-image mapping maintains train/test alignment.

Table 1: Validation table of Concept Reconstruction Error (Train vs. Test). We report mean ± std and
Variation = Test−Train. The smallest Variation per dataset is bolded.

Model CUB / NF-ResNet50 CUB / ViT-B/32

Variant Dataset Train Test Variation Train Test Variation

Ours CUB 86.74 ± 22.37 111.48 ± 24.03 24.73 1.14 ± 0.17 1.40 ± 0.16 0.26
CRAFT CUB 1.87 ± 0.46 158.21 ± 36.66 156.35 1.01 ± 0.06 2.55 ± 0.09 1.54
PCA CUB 5.56 ± 1.10 176.33 ± 40.48 170.78 0.93 ± 0.30 1.80 ± 0.21 0.87

Model ImageNet / NF-ResNet50 ImageNet / ViT-B/32

Variant Dataset Train Test Variation Train Test Variation

Ours ImageNet 0.89 ± 0.18 0.97 ± 0.19 0.08 1.46 ± 0.16 1.58 ± 0.16 0.12
CRAFT ImageNet 0.10 ± 0.02 1.14 ± 0.19 1.03 1.14 ± 0.07 2.49 ± 0.10 1.35
PCA ImageNet 0.19 ± 0.03 1.20 ± 0.20 1.02 1.06 ± 0.29 1.85 ± 0.20 0.79

4.3 Experiment 2: Validation of Concept Reconstruction Classification Accuracy

This evaluation asks a stronger question than Exp. 1: not only must the reconstruction be close to the
original features, it must also be decision preserving. We therefore classify only from reconstructed features
and sweep the number of concepts k (Table 2, Fig. 5). Two signals matter: (i) the level of accuracy after
reconstruction and (ii) its stability as k varies.
Level. CAD attains near-ceiling accuracy across datasets/backbones (typically 99%–100%), while
CRAFT/PCA trail substantially—by +30–65 points on CUB and +5–13 points on ImageNet. This aligns
with CAD’s convex-hull bias: the mapping Â ∈ conv(A) keeps test features inside the training support, so
a Lipschitz classifier (e.g., a linear head) experiences at most a bounded logit perturbation proportional to
∥A − Â∥; hence decision regions and margins are largely preserved. In contrast, CRAFT’s free dictionary
and PCA’s global subspace can push reconstructions off-hull, which degrades separability even when training
error is small (See §4.2).
Stability. CAD’s mean ± std bands are narrow and essentially flat in k; CRAFT/PCA exhibit large dispersion
(std up to ≈ 40 on CUB) and non-monotone slopes, indicating a “k-lottery” effect where adding concepts
changes the factorization in ways that disrupt the classifier. By constraining B, C to simplices, CAD enforces
sparse, low-entropy mixtures that vary smoothly with k, acting as an implicit regularizer that keeps decision
geometry consistent.
Backbone/dataset trends. Gaps shrink on ImageNet and ViT-B/32 because the base representations are
already highly linearly separable; nevertheless CAD retains a consistent edge and the tightest variability,
suggesting that the convex-combination mechanism scales favorably as the feature geometry becomes richer.
On CUB, where features are more brittle and class margins are thinner, CAD’s no-extrapolation property
is most beneficial, yielding the largest accuracy gains and the smallest variance.
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Table 2: Validation of concept reconstruction classification accuracy (%). We report mean ± std across
seeds; higher is better. Best per column is in bold.

CUB / NF-ResNet50 CUB / ViT-B/32 ImageNet / NF-ResNet50 ImageNet / ViT-B/32

#Concepts k Ours CRAFT PCA Ours CRAFT PCA Ours CRAFT PCA Ours CRAFT PCA

10 99.5
± 5.4

71.8
± 38.0

34.5
± 40.3

99.6
± 2.5

43.1
± 40.1

65.6
± 34.5

99.9
± 0.8

94.4
± 19.4

95.0
± 19.0

97.6
± 8.8

88.6
± 20.5

90.7
± 19.5

20 99.5
± 4.3

74.9
± 35.4

44.6
± 38.8

99.8
± 1.8

44.7
± 38.5

64.7
± 31.8

99.9
± 0.9

95.1
± 17.4

93.5
± 20.0

98.5
± 5.1

86.3
± 21.8

89.8
± 16.8

30 99.4
± 4.9

75.8
± 33.2

52.3
± 36.4

100.0
± 0.3

47.7
± 36.7

65.2
± 29.2

99.8
± 1.0

95.2
± 17.1

95.1
± 15.8

99.0
± 3.9

86.5
± 20.0

90.5
± 12.8

40 99.4
± 5.4

76.2
± 33.0

54.1
± 36.3

99.9
± 0.5

49.1
± 36.6

65.1
± 29.1

99.8
± 1.3

95.0
± 17.2

95.3
± 12.7

99.3
± 1.9

86.0
± 19.6

88.1
± 16.2

50 99.3
± 5.3

76.6
± 32.8

56.1
± 34.6

100.0
± 0.0

50.9
± 36.0

66.5
± 27.8

99.6
± 1.2

95.1
± 17.1

95.4
± 13.8

99.3
± 2.9

86.2
± 18.9

88.1
± 16.7
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Figure 5: Validation chart of concept reconstruction classification accuracy.

5 Conclusion

This paper presents a novel concept extraction method—Conceptual Archetype Decomposition
(CAD)—designed to enhance the interpretability and robustness of concept-based deep learning models.
By introducing a concept index matrix and a concept reconstruction matrix, CAD ensures a direct associa-
tion between the extracted concepts and the training samples, overcoming the limitations of existing methods
(such as CRAFT and PCA) in terms of concept interpretability and generalization ability. Our experimental
results demonstrate the effectiveness and superiority of CAD on several benchmark datasets, including CUB
and ImageNet. Overall, CAD not only provides more intuitive and reliable concept representations for model
interpretability, but also shows stronger performance and robustness in multi-class classification tasks. Our
method offers new insights for research on explainable deep learning models, with significant theoretical
value and application potential, particularly in high-risk fields such as healthcare and autonomous driving,
where enhancing the transparency and safety of model decision-making processes is of critical importance.
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