
Published as a conference paper at ICLR 2021

FOOLING A COMPLETE NEURAL NETWORK VERIFIER

Dániel Zombori, Balázs Bánhelyi, Tibor Csendes, István Megyeri, Márk Jelasity
Institute of Informatics, University of Szeged, Hungary
{zomborid, banhelyi, csendes, imegyeri, jelasity}@inf.u-szeged.hu

ABSTRACT

The efficient and accurate characterization of the robustness of neural networks to
input perturbation is an important open problem. Many approaches exist includ-
ing heuristic and exact (or complete) methods. Complete methods are expensive
but their mathematical formulation guarantees that they provide exact robustness
metrics. However, this guarantee is valid only if we assume that the verified net-
work applies arbitrary-precision arithmetic and the verifier is reliable. In practice,
however, both the networks and the verifiers apply limited-precision floating point
arithmetic. In this paper, we show that numerical roundoff errors can be exploited
to craft adversarial networks, in which the actual robustness and the robustness
computed by a state-of-the-art complete verifier radically differ. We also show
that such adversarial networks can be used to insert a backdoor into any network
in such a way that the backdoor is completely missed by the verifier. The attack
is easy to detect in its naive form but, as we show, the adversarial network can be
transformed to make its detection less trivial. We offer a simple defense against
our particular attack based on adding a very small perturbation to the network
weights. However, our conjecture is that other numerical attacks are possible,
and exact verification has to take into account all the details of the computation
executed by the verified networks, which makes the problem significantly harder.

1 INTRODUCTION

In their seminal work, Szegedy et al. found that for a given neural network and input example
one can always find a very small adversarial input perturbation that results in an incorrect out-
put (Szegedy et al., 2014). This striking discovery motivated a substantial amount of research. In
this area, an important research direction is verification, that is, the characterization of the robustness
of a given network in a principled manner. A usual way of defining the verification problem involves
the specification of an input domain and a property that should hold over the entire domain. For ex-
ample, we might require that all the points within a certain distance from an input example share the
same output label as the example itself. The verification problem is then to prove or disprove the
property over the domain for a given network (Bunel et al., 2020).

There are a large number of verifiers offering different types of guarantees about their output. Com-
plete verifiers offer the strongest guarantee: they are able to decide whether a given property holds
in any given input domain. For example, the verifier of Tjeng et al. is a state-of-the-art complete
verifier that we will focus on in this paper (Tjeng et al., 2019). However, it is currently standard
practice to ignore the details of the computations that the network under investigation performs,
such as the floating point representation or the order in which input signals are summed.

In this paper, we claim that such implicit assumptions make verifiers vulnerable to a new kind of
attack where the attacker designs a network that fools the verifier, exploiting the differences between
how the verifier models the computation and how the computation is actually performed in the
network. We will argue that such attacks can achieve an arbitrary divergence between the modeled
and the actual behavior.

This new attack has practical implications as well. Concerns about the safety of AI systems are
expected to lead to the establishment of standard requirements certified by a designated author-
ity (Salis-Madinier, 2019). These certification procedures might involve verification methods as
well. Fooling such methods makes it possible to get unsafe systems certified that might even contain
a backdoor allowing for triggering arbitrary behavior.

1

Published as a conference paper at ICLR 2021

Numerical precision has not been a key practical concern in machine learning. Networks do some-
times produce numerical errors (e.g., Inf or NaN values), most often due to the non-linear operations
within the loss function (Odena et al., 2019) or divergence during training. However, the network
weights are normally robust to small perturbations due to stochastic learning algorithms (Bottou,
2010), and due to regularizers such as standard variants of weight decay and dropout (Srivastava
et al., 2014). Due to this robustness, low precision arithmetic can be applied as well (Courbariaux
et al., 2015; Gupta et al., 2015). Our results indicate that, when it comes to exact methods for ver-
ification, numerical issues become a central problem that can cause arbitrary errors and enable
backdoors.

Our contributions are the following. In Section 3, we introduce a simple adversarial network that
misleads the verifier of Tjeng et al. (2019). In Section 4, we show how to hide the large weights that
are present in the simple network. In Section 5, we describe a way to add a backdoor to an existing
network with the help of the adversarial networks we proposed. Finally, in Section 6 we offer a
defense against the attack we presented.

2 BACKGROUND

Let us first formulate the verification problem, namely the problem of checking whether a given
property holds in a given domain. We adopt the notation used in (Tjeng et al., 2019). For a possible
input x, let G(x) denote the set of inputs that are considered similar to x in the sense that we expect
all the points in G(x) to get the same label as x. The set G(x) is normally defined as a ball around x in
some metric space defined by a suitable vector norm. The input domain we need to consider is given
as G(x)∩Xvalid whereXvalid denotes the valid input points. For example, we haveXvalid = [0, 1]m

if the input is an image of m pixels with each pixel taking values from the interval [0, 1].

We now have to formulate the property that we wish to have in this domain. Informally, we want
all the points in the domain G(x) ∩ Xvalid to get the same classification label as x. Let λ(x) denote
the true label of x and let f(x; θ) : Rm → Rn denote the neural network, parameterized by θ. This
network has n outputs classifying each input x into n classes. The label of x as predicted by the
network is given by argmaxi f(x; θ)i. Using this notation, the property we wish to have for an
input x′ ∈ (G(x) ∩ Xvalid) is that λ(x) = argmaxi f(x

′; θ)i.

Putting it all together, the verification problem can be expressed as deciding the feasibility of the
constraint

x′ ∈ (G(x) ∩ Xvalid) ∧ (λ(x) 6= argmax
i
f(x′; θ)i), (1)

with x′ as our variable. If this constraint is feasible then there is an x′ that violates the property. If
it is infeasible then (provided G(x) ∩ Xvalid is not empty) there is no such x′.

2.1 APPROACHES TO VERIFICATION

There are many approaches to tackle this problem. We can, for example, search for a suitable x′
in the given domain using some heuristic optimization methods (Goodfellow et al., 2015; Moosavi-
Dezfooli et al., 2016; Kurakin et al., 2017; Carlini & Wagner, 2017; Brendel et al., 2019). If the
search succeeds, we can decide that equation 1 is feasible. Otherwise we cannot decide.

Other methods attempt to find a proof for the infeasibility of equation 1, however, they do not
guarantee such a proof. Examples include (Wong & Kolter, 2018; Weng et al., 2018; Gehr et al.,
2018; Raghunathan et al., 2018; Singh et al., 2019). If a proof is found, we can decide that equation 1
is infeasible. Otherwise we cannot decide. Such methods are sometimes called incomplete (Tjeng
et al., 2019; Bunel et al., 2020).

The strongest guarantee is given by methods that are able to decide the feasibility of equation 1.
These methods are sometimes called complete (Tjeng et al., 2019; Bunel et al., 2020).

Examples for such methods include Reluplex (Katz et al., 2017), a method based on an SMT solver.
A number of verifiers are based on MILP solvers, for example, (Cheng et al., 2017; Dutta et al.,
2018). MIPVerify (Tjeng et al., 2019) also uses an MILP formulation along with several addi-
tional techniques to improve efficiency (see Section 2.2). Symbolic interval propagation has also
been proposed for ReLU networks by Wang et al. in ReluVal (Wang et al., 2018b), and as part of
Neurify (Wang et al., 2018a). In Neurify, interval propagation is used as a technique to tighten the

2

Published as a conference paper at ICLR 2021

bounds used for linear relaxation. Nnenum is another geometric method that is based on propagating
linear star sets (Bak et al., 2020).

2.2 MIPVERIFY

Although the idea behind the attack is not specific to a particular verifier—as we discuss in Sec-
tion C of the Appendix—we develop and evaluate the attack in detail for a state-of-the-art complete
verifier: MIPVerify (Tjeng et al., 2019). It is based on a mixed integer linear programming (MILP)
formulation. As long as the domain G(x) ∩ Xvalid is the union of a set of polyhedra, and the neural
network f(x, θ) is a piecewise linear function of x with parameters θ, the problem of checking the
feasibility of the constraint in equation 1 can be formulated as a MILP instance.

G(x) is normally defined as a ball in a suitable norm with x as the center. In `∞ or `1 norms G(x)
is thus a cube. Also, Xvalid is normally a box or a set of boxes, so the domain is indeed the union
of a set of polyhedra. The neural network is piecewise linear as long as the nonlinearities used are
ReLUs (note that the last softmax normalization layer adds no extra information and can thus be
ignored). For the details of the MILP formalization, please see (Tjeng et al., 2019).

Importantly, MIPVerify applies a presolve step that greatly increases its efficiency. In this step, the
authors attempt to tighten the bounds on the variables of the problem, including on the inputs to each
ReLU computation. If in this step it turns out that the input of a ReLU gate is always non-positive,
the output can be fixed as a constant zero, and if the input is always non-negative then the ReLU
gate can be removed from the model as it will have no effect.

The presolve step applies three approaches in a progressive manner. First, a fast but inaccurate
interval arithmetic approach is used. The resulting bounds are further improved by solving a relaxed
LP problem on every variable. Finally, the full MILP problem is solved for the variables but with
early stopping.

2.3 FLOATING POINT REPRESENTATION

Floating point real number representations are successful and efficient tools for most real life ap-
plications (Muller et al., 2010). This arithmetic is available on most modern computers via sophis-
ticated hardware implementations. A floating point number is represented as s · be, where s is the
signed significand, b is the base and e is the exponent. There are numerous standards to implement
the exact details of this idea that differ mainly in the number of bits that the significand and the
exponent use. The formula to compute the represented real number has several possible variations
as well.

Here, we will use the double precision (binary64) arithmetic defined by the IEEE 754-1985 stan-
dard (IEEE, 1985). There, b = 2 and we have a sign bit, an 11 bit exponent, and a 53 bit significand
(with 52 bits stored explicitly). The so called machine epsilon (the maximum relative rounding er-
ror) is 2−53 ≈ 1.11e−16. This means that, for example, the computation 1020 + 2020 − 1020 will
result in zero in this representation, if executed in the specified order. In our attack, we will exploit
roundoff errors of this type. Note, that in the order of 1020 − 1020 + 2020 we obtain the correct
result of 2020.

2.4 WHAT IS THE OBJECT OF VERIFICATION?

In related work, it is almost always implicitly assumed that the object of verification is a neural
network computed using precise arithmetic. However, a more appropriate and also more ambitious
goal is to consider the network as it is computed in practice, that is, using floating point arithmetic,
with an arbitrary ordering of the parallelizable or associative operations.

If we consider the less ambitious goal of the verification of the precise model, most complete meth-
ods still fall short as they use floating point representation internally without any hard guarantees
for precision. Those verifiers that are based on different linear programming formulations all belong
to this category. Although Katz et al. explicitly consider this issue for Reluplex (Katz et al., 2017),
they also propose floating point representation citing efficiency reasons.

However, striving for precision is a wrong direction as actual networks use floating point representa-
tion themselves. This fact means that actual networks include non-linearities that need to be modeled

3

Published as a conference paper at ICLR 2021

-0.5

1

1
σ

1
-ω

ω 1
0

1

y1

y2

-2

1

1

A DCB

x

0

0

0.5

 0 0.2 0.4 0.6 0.8 1

A(x)

0

1

 0 0.2 0.4 0.6 0.8 1

B(x)

0

1

 0 0.2 0.4 0.6 0.8 1

C(x)

0

1

 0 0.2 0.4 0.6 0.8 1

D(x)

Figure 1: A naive adversarial network. The neurons (represented by circles) are ReLUs, the numbers
in the circles represent the additive bias, and the numbers over the connection represent the weight.
The valid input range is assumed to be x ∈ [0, 1]. Parameter σ defines the steepness of the transition
region in B(x), while ω is the “large weight” parameter. The output of four different neurons is
shown as a function of x, assuming σ = −3 and ω = 1017.

explicitly if our goal is verification with mathematical strength. For example, ReluVal (Wang et al.,
2018b) is a promising candidate to meet this challenge. It is a symbolic interval-based method that
attempts to compute reliable lower and upper bounds for the network activations in a ReLU network.
Unfortunately, when computing the parameters of the linear expressions for the symbolic intervals,
it still uses a floating point representation, which means the method is not completely reliable in its
published form. Similarly, Nnenum is also deliberately implemented in an unreliable manner due to
efficiency Bak et al. (2020).

Our main point here is that any “sloppiness” in the definition of the object of verification or cutting
any corners for the sake of efficiency are potential sources of security problems that compromise
the reliability of verification. Here, we shall give an example of a successful attack on MIPVerify.
We will exploit the fact that—even if both the network and MIPVerify use the same floating point
representation—the order of execution of the associative operations (like addition) is not necessarily
the same.

3 A SIMPLE ADVERSARIAL NETWORK

Now we present our attack in its simplest possible form. We describe an adversarial network that
results in incorrect output when given to MIPVerify. The main idea is to exploit the fact that the
addition of numbers of different magnitude can become imprecise in floating point arithmetic due
to roundoff errors, as described previously in Section 2.

Our attack crucially depends on the order in which the inputs and the bias are added within a unit.
We assume that the bias is always the last to be added, when computing the forward pass. Note that
the creator of the network who submits it for verification can control the execution of the network
in actual applications, since the verification is only about the structure but not the minute details
of execution such as the order of addition in each unit. Nevertheless, we also conjecture that any
fixed order of addition, or indeed any fixed algorithm for determining the order could similarly be
exploited in an attack.

In approaches such as MIPVerify, which rely on state-of-the-art commercial solvers like
Gurobi (Gurobi, 2020), the mapping of the actual computation—such as the order of addition—
to computations performed by the solver is non-trivial and hard to control, as it is defined by the
many (typically proprietary, hence black box) heuristics and techniques applied while solving the
MILP problem.

The simplest form of our adversarial network is shown in Figure 1. This network performs a binary

4

Published as a conference paper at ICLR 2021

-0.5

1

1
σ

1

ω21

ω11 1
0

1

y1

y2

-2

1x

-2
1

1
0

0

0

0

ω22

ω12

-ω/Πiω2i

ω/Πiω1i

ω2n

ω1n...

...

Figure 2: An adversarial network without extremely large weights. The network is equivalent to that
shown in Figure 1, only parameter ω is distributed over n layers, and the neuron with constant zero
input is made less obvious with the help of an additional neuron with constant zero output over the
valid input domain.

classification over its input x ∈ [0, 1]. By construction, we know that y1 ∈ [0, 1]. Since MIPVerify
expects multi-class models and thus two outputs, we add another technical output y2, such that the
two classes are defined by y1 < y2 and y1 ≥ y2, respectively. Also, we include a neuron with a
constant input of zero.

The key element of the network is neuron C (Figure 1). The idea is that the maximal value of C(x)
is given by ω− ω+ 1. The computation of this value might lead to a roundoff error if ω is too large
and if 1 is not the last addend. For example, when using the 64 bit floating point representation, if
ω > 253 (recall that 2−53 is the machine epsilon) then a roundoff error is possible. In the case of
a roundoff error ω + 1 − ω is computed to be zero, that is, C(x) = 0, x ∈ [0, 1]. This means that
we get the incorrect output y1(x) = 0, x ∈ [0, 1]. In other words, the entire input domain appears to
belong to the y2 > y1 class. The roundoff error thus masks the fact that there are input points that in
reality belong to the other class. This property will be used later on to add a backdoor to an existing
network.

The role of σ is more subtle. It defines the steepness of the transition region of B(x). We should set
σ so that the range of B(x) is the interval [0, 1]. This means that we need to have σ < −2.

It should be emphasized that the roundoff error drastically changes the behavior of the network. Our
goal is not to generate a small perturbation to push the network over a decision boundary; instead,
we create a switch with two very distinct positions, which is turned on or off depending on whether
the roundoff error occurs or not.

Empirical evaluation shows that the attack is successful. We evaluated MIPVerify experimentally
using two commercial solvers: Gurobi (Gurobi, 2020), and CPLEX (CPLEX, 2020), and the open
source GLPK (GLPK, 2020). During these evaluations, we experimented with different values of
σ and ω to see whether our adversarial networks could fool the MIPVerify approach. We randomly
generated 500 values for σ from the interval [−15,−2] and for all the sampled σ values we tested
ω values 254, 255, . . . , 270. For each parameter setting we tested whether the input point x = 0.75
has an adversarial example within a radius of 1. Recall that the valid input range is x ∈ [0, 1],
so in fact we evaluated the problem over the entire valid input range. Clearly, the correct answer
is yes, that is, the constraint in equation 1 is feasible. Yet, we found that all three solvers found
the problem infeasible for all the parameter combinations we tried. That is, our simple adversarial
network reliably fools the MIPVerify model.

4 OBFUSCATING THE NETWORK

The naive network in Figure 1 works as an attack, but it is painfully obvious to spot as it has very
large weights (which is highly unusual) and it also has a neuron with constant zero input (which is
also suspicious). Here, we argue that the network can be made to look more “normal” relatively
easily. Obviously, this problem might also lead to an arms race between obfuscators and detectors,
and it is not our goal to offer an undetectable obfuscation. We simply wish to argue that detection
can be made harder if an attacker puts in some effort to hide the attack. Here, we focus on making
the weight distribution more realistic.

Figure 2 illustrates the construction. We wire the neuron that requires a constant zero input to a
neuron that has a constant zero output over the input domain, due to the application of the rectifier
nonlinearity. We then add n extra layers and spread the weights ω and −ω over these layers effec-

5

Published as a conference paper at ICLR 2021

Table 1: Percentage of successful attacks when ω = 254.

σ ∈ [−15,−10] [−10,−6] [−6,−4] [−4,−3] [−3,−2]
n = 20 97.4 97.5 98.6 92.3 96.0
n = 50 97.4 97.3 95.9 97.3 98.7

tively creating two large products
∏

i ω1i and
∏

i ω2i. The last weight on both the top and bottom
paths is set such that the entire product is ω and−ω, respectively. Each weight ωji is drawn from the
normal distribution ωji ∼ N (ω

1
n , (ω

1
n /4)2) independently, but negative values are redrawn until a

positive value is found.

The obfuscated attack is also successful. We evaluated these networks using Gurobi, GLPK and
CPLEX. The values for parameter n (the number of layers) we tested were n = 20 and n = 50. In
both cases, we experimented with the same values of σ and ω as in the case of the simple network,
and followed the same evaluation methodology. We generated the network weights ωij based on the
algorithm above, independently for all the pairs of σ and ω parameters. The algorithm was successful
in generating a good network—where the product of the weights along the top and bottom paths is
the same in absolute value—for the first try in at least 70% of the cases, so it is not that difficult
to generate a suitable network: we can simply try a different random seed until the algorithm is
successful.

We found that MIPVerify was fooled independently of what solver was used, that is, the problem
was found infeasible for all the parameter combinations we tried, when ω > 254. For the value of
ω = 254, MIPVerify still found the problem infeasible for the vast majority of the networks with all
three underlying solvers. In the remaining few cases, MIPVerify found an adversarial sample with at
least one of the three solvers. Table 1 contains the percentage of the successful adversarial networks
(that is, the networks that fooled MIPVerify with all three solvers) in different ranges of σ.

Further ideas for obfuscation. The values of all the weights ωij are positive. One could also add
negative weights if the desired mean weight is zero. Such links could point to “garbage” neurons
that have no effect on the output by design. Besides, when using this network as a backdoor to some
relatively larger legitimate network (see Section 5), one could imitate the weight distribution of the
legitimate network and integrate the backdoor structurally as well into the legitimate network.

5 CREATING BACKDOORS

We shall now demonstrate that the adversarial network we described can be used to extend a non-
trivial network with a backdoor, so that the extended network passes verification exactly as the
original network, but in practice it will have a backdoor that can be used to trigger arbitrary behavior.
The idea is that, when the backdoor pattern is present in the input, the integrated adversarial network
will operate in the “interesting” domain in which the roundoff error is on, so the verified behavior
will be different from the actual behavior. When the backdoor pattern is not present, the adversarial
network will operate in the “boring” domain where its output is zero and the roundoff error does not
have any effect.

We will work with the MNIST dataset and we fix the backdoor pattern to be the top left pixel being
larger than 0.05 (assuming the pixels are in [0, 1]). Note that in the MNIST dataset the top left pixel
is 0 in every example.

The legitimate network to insert the backdoor into. For our evaluation, we selected an MNIST
classifier described in Wong & Kolter (2018) and used in (Tjeng et al., 2019) to evaluate MIPVerify.
We will refer to this network as WK17a. It has two convolutional layers (stride length: 2) with 16
and 32 filters (size: 4×4) respectively, followed by a fully-connected layer with 100 units. All these
layers use ReLU activations. (note that in (Tjeng et al., 2019) it was referred to as CNNA). The
network was trained to be robust to attacks of radius 0.1 in the `∞ norm by the method of Wong and
Kolter.

Inserting the backdoor. The backdoor construction is shown in Figure 3. The basic idea is that
we insert the adversarial network as a switch that is triggered by a pattern in the input. Here, the
backdoor is activated (that is, the roundoff error becomes effective) whenever the top left pixel is

6

Published as a conference paper at ICLR 2021

WK17a (MNIST network)

-20

1

1

fully connected

1

1

-2 1017

-1017

logits

convolutional 2

weight of
top left pixel

logits_copy+shifted_logitsAdversary

Original

0
1

-2

copy

-2000

shifted copy

-2000

shifted_logits
logits_copy

convolutional 1

1

bias +=1000x
y

Figure 3: Diagram of the MNIST network extended with a backdoor that is activated by the top left
pixel of the input image x. If this pixel is larger than 0.05 then the backdoor is activated and shifts the
predicted labels. The output y is the predicted distribution of the MNIST labels. The thick empty
arrows signify multiple connections. Note that the backdoor is integrated into the convolutional
architecture of WK17a (see text for further explanation).

larger than 0.05. To achieve this, the parameters of neuron A in the simple network in Figure 1 had
to be modified.

The backdoor is integrated into the convolutional architecture. Figure 3 is a conceptual diagram.
In reality, the adversarial network is fully integrated into the convolutional architecture of WK17a.
This requires the creation of an additional filter for each neuron in the corresponding layer. The
output of every such neuron can then be recovered from the computed new feature map and it can be
used in the next layers. The neuron with the two large input weights is already in the fully connected
layer, so it can simply be added to that layer. This neuron is wired to just two pixels in the two feature
maps in the previous convolutional layer that correspond to the outputs of its two input neurons. The
neurons in the last layer of the adversarial network are added to the logits layer of WK17a.

Implementing the backdoor behavior. When the backdoor is active, we will make the network
shift its predictions by one position. This needs the addition of two extra layers after the logits layer
of WK17a, as well as the modification of the WK17a logits layer. We empirically determined that
the absolute value of the signal in each unit is always less than 1000 in the logits layer of WK17a, so
we increase the bias of each unit by 1000. This constant is large enough to ensure that all the values
are positive. This further means that the ReLU activation (that we add because now this is no longer
the last layer) will not alter these values.

The next layer is a new one, into which we copy the WK17a logits layer and we copy a shifted
version of the same logits layer as well. Copying can be implemented by zero bias and input weights
of 1. Shifting can be implemented by wiring the units in a shifted pattern. The adversarial network
is then used to suppress either the original copy or the shifted copy. If the backdoor is activated
then the original copy will be suppressed, otherwise the shifted one. Suppression is implemented by
subtracting the value 2000 from all the inputs so that they become negative (the output signal of the
corresponding switch neuron, adversarial or original, is 1). This way, the output will be zero due to
the ReLU activation.

In the final layer, the original and shifted halves of the previous layer are added. Since exactly one
of these halves has been suppressed, the last layer will be equal to either the original layer or the
shifted layer. We then apply softmax normalization to obtain the predicted label distribution y. This
distribution will be identical to the one predicted by the original MNIST network if the backdoor
is not active; otherwise it will be shifted, so that if the original prediction was i then the shifted
prediction is i + 1 mod 10. Note that the backdoor could trigger an arbitrary behavior, shifting is
used here as an ad hoc example.

Verification fails, as it misses the backdoor. We verified the backdoored network—that is, WK17a
extended with the adversarial network that implements the backdoor mechanism—using MIPVerify

7

Published as a conference paper at ICLR 2021

with Gurobi as our solver over the test set of the MNIST dataset, using a radius of 0.1 in the `∞
norm. The verification result was identical to that reported in (Tjeng et al., 2019), namely 4.38%
adversarial error, as if no backdoor had been present. The correct verification result should have
been 100% adversarial error because, by design, the backdoor mechanism is fully functional in the
verified network, and the backdoor pattern is at a distance of at most 0.05, that is, well within the
radius of 0.1 from any example. Also, when the backdoor pattern is active, the label is guaranteed
to be different from the prediction of WK17a. This means that if the original prediction was correct,
the backdoor will certainly introduce an adversarial example.

6 A DEFENSE

A naive idea for a defense could be to use a precision that is higher than that of the network while
solving the optimization problem. This might indeed work but it would open another similar attack,
namely the network’s design could deliberately activate a certain roundoff error that is missed by the
verifier. Using combinations of different precisions is also an option but here—instead of attempting
to predict the outcome of such an arms race—we assume that both the network and the optimizer
use the same double precision internal representation.

Weight perturbation as a defense. We propose to add a very small perturbation to the parameters
of the network. That is, we replace every parameter w with ŵ ∼ w+U(−|w|ε, |w|ε), where ε is the
relative scale parameter of the uniform noise term. The key insight is that natural networks are very
robust to small perturbations, so their normal behavior will not be affected. However, even a small
perturbation will change the numerical behavior of neuron C in the simple adversarial network
(Figure 1). In particular, its positivity will no longer depend on the roundoff error and so the verifier
will correctly detect its behavior. Note that the roundoff error might still occur, only the positivity
of C will not depend on whether it occurs or not.

Accuracy is robust to small weight perturbation. We tested the sensitivity of the WK17a network
we studied in Section 5. We perturbed the parameters of both the original version and the backdoor
version (see Figure 3), using various values of ε and we measured the test accuracy of the networks.
The results are shown in Table 2 (the results are averages of 10 independent perturbed networks).
Although the network with a backdoor is somewhat less robust, for a small noise such as ε = 10−9

the prediction performance of both networks remains unaltered. Note that the test examples do not
activate the backdoor.

Table 2: Test accuracy of the WK17a MNIST network with perturbed parameters (average of 10
independent perturbed networks).

ε 10−1 10−2 10−3 10−4 10−5 10−6 10−9 0
original 0.9788 0.9811 0.9810 0.9811 0.9811 0.9811 0.9811 0.9811

with backdoor 0.1118 0.3744 0.9725 0.98105 0.98105 0.9811 0.9811 0.9811

Adversarial error is robust to small weight perturbation. We also verified a perturbed WK17a
network without the backdoor with MIPVerify, with ε = 10−3, 10−6 and 10−9, and the results are
identical to that of the unperturbed network for every single test example for ε = 10−6 and 10−9,
yielding 4.38% adversarial error. For ε = 10−3 the adversarial error was 4.37%. Thus, in this
network, even adversarial robustness is remarkably robust to small weight perturbation not only test
accuracy.

The backdoor is revealed to verification with a 50% probability. As mentioned above, the pos-
itivity of neuron C in the adversarial network will no longer depend on whether the roundoff error
occurs or not. This is because, due to the small noise, the two large incoming weights will no longer
sum to zero but instead their sum will be positive or negative with an absolute value that is several
orders of magnitude larger than the bias of neuron C, that is, 1. These two cases both have a prob-
ability of 50%. The same reasoning applies to the obfuscated network as well. A detailed analysis
of this is included in Section B in the Appendix. If the input weights of neuron C sum to a negative
value then its output will be a constant zero. If such a network is used as the switch for the backdoor
then the backdoor will stay off permanently, independently of the input pattern. If the sum of the
incoming weights is positive then C has a large positive output for the range x < 0.5 and so the
behavior of the network remains intact, however, the verifier will now detect this behavior.

8

Published as a conference paper at ICLR 2021

Our empirical measurements support the theoretical predictions. We verified the simple as
well as the obfuscated networks (Figures 1 and 2), with ε = 10−3, 10−6 and 10−9, using the same
methodology as in the previous sections, with the same hyperparameters σ, ω and n, as before. We
tested only those networks where the original behavior remained intact (which happens in approxi-
mately 50% of the perturbed networks, as we argued above). With Gurobi, the verification revealed
the true behavior in 100% of the cases for all our settings, so the defense indeed worked.

Finally, we verified a perturbed WK17a network with the backdoor added, perturbed with ε =
10−3, 10−6 and 10−9, using Gurobi. In all three cases, we selected a perturbation where the back-
door switch remained functional. This time, the result of the verification successfully revealed the
backdoor for 75.85%, 91.03% and 98.3% of the test examples, respectively. Since such a pertur-
bation has a probability of only about 50%, it might be necessary to repeat the verification with
independently sampled perturbations. This allows one to increase this probability to a desired level.
Alternatively, the approval might be assigned to the perturbed network, as opposed to the original
network. This way, if the perturbation turns the backdoor off permanently (and thus the verification
does not find problems) the approval is still valid.

Selecting ε. Based on the observations above, we can summarize the requirements for selecting a
suitable value for ε. First, we need the smallest possible ε so that the behavior of the network is not
changed. Second, we need a large enough ε so that εω � 1. Fortunately, these two requirements can
easily be satisfied simultaneously since neural networks are in general very robust to small weight
perturbations, while ω is very large. In our case, ε = 10−9 was a suitable value.

7 CONCLUSIONS

We proposed an attack against a complete verifier, MIPVerify (Tjeng et al., 2019). The idea was that
we exploited a floating point roundoff error that was made by all the MILP solvers we tested to solve
the MIPVerify model. The attack allowed us to modify any given network by adding a backdoor
that enables triggering arbitrary behavior using a specified pattern in the input. This backdoor was
completely missed by the verification. Our preliminary results with other verifiers indicate that a
similar attack might be effective on a number of other methods as well (see Appendix, Section C).

Although we did offer a defense for the particular attack we presented, we believe that our work still
implies that for a reliable verification, a verifier must take into account all the details of the imple-
mentation of the network. This includes the details of the representation of the numeric parameters
as well as the order of the operations. Otherwise, potentially exploitable differences in the actual
computation and the model are guaranteed to exist. This way, though, the verification would be valid
only for a specific implementation. The implementation of a network can also be non-deterministic.
For example, a parallel hierarchical implementation of addition can result in an exponential number
of different actual executions of the same addition, depending on the specifics of the hardware the
network is running on. In this case, the verifier must make sure that its output is valid for every
possible grouping and ordering of each operation performed during a forward pass of the network.

The attack we proposed is rather straightforward, just like the defense. However, without the de-
fense, the attack can completely alter the behavior of any network undetected. This means that it is
important to keep the numerical vulnerability of verification methods in mind, and further research
is needed to find solutions that explicitly prevent numeric attacks in a scalable and efficient manner.

ACKNOWLEDGMENTS

This research was supported by the Ministry of Innovation and Technology NRDI Office within the
framework of the Artificial Intelligence National Laboratory Program and the Artificial Intelligence
National Excellence Program (grant 2018-1.2.1-NKP-2018-00008), as well as grant NKFIH-1279-
2/2020, project “Extending the activities of the HU-MATHS-IN Hungarian Industrial and Innova-
tion Mathematical Service Network” (grant EFOP-3.6.2-16-2017-00015), the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences, and the Unkp-19-4-Bolyai+ New National Ex-
cellence Program of the Ministry of Human Capacities. We are also grateful to our reviewers and
commenters for their very helpful feedback that helped us make the paper more complete and better
organized.

9

Published as a conference paper at ICLR 2021

REFERENCES

Stanley Bak, Hoang-Dung Tran, Kerianne Hobbs, and Taylor T. Johnson. Improved geometric path
enumeration for verifying relu neural networks. In Shuvendu K. Lahiri and Chao Wang (eds.),
Computer Aided Verification, pp. 66–96, Cham, 2020. Springer International Publishing.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Yves Lechevallier
and Gilbert Saporta (eds.), Proceedings of COMPSTAT’2010, pp. 177–186, Heidelberg, 2010.
Physica-Verlag HD. doi: 10.1007/978-3-7908-2604-3 16.

Wieland Brendel, Jonas Rauber, Matthias Kümmerer, Ivan Ustyuzhaninov, and Matthias
Bethge. Accurate, reliable and fast robustness evaluation. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neu-
ral Information Processing Systems, volume 32, pp. 12861–12871. Curran Associates,
Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
885fe656777008c335ac96072a45be15-Paper.pdf.

Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip H.S. Torr, Pushmeet Kohli, and M. Pawan Kumar.
Branch and bound for piecewise linear neural network verification. Journal of Machine Learning
Research, 21(42):1–39, 2020. URL http://jmlr.org/papers/v21/19-468.html.

Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural networks.
In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26,
2017, pp. 39–57, 2017. doi: 10.1109/SP.2017.49. URL https://arxiv.org/abs/1608.
04644.

Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum resilience of artificial neu-
ral networks. In Deepak D’Souza and K. Narayan Kumar (eds.), Automated Technology for
Verification and Analysis, pp. 251–268, Cham, 2017. Springer International Publishing. doi:
10.1007/978-3-319-68167-2 18. URL https://arxiv.org/pdf/1705.01040.pdf.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep neural networks with
low precision multiplications. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Con-
ference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop
Track Proceedings, 2015. URL http://arxiv.org/abs/1412.7024.

CPLEX. Cplex optimizer, 2020. URL https://www.ibm.com/analytics/
cplex-optimizer.

Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Output range analysis
for deep feedforward neural networks. In Aaron Dutle, César A. Muñoz, and Anthony Narkawicz
(eds.), NASA Formal Methods – 10th International Symposium, NFM 2018, Newport News, VA,
USA, April 17-19, 2018, Proceedings, volume 10811 of Lecture Notes in Computer Science, pp.
121–138. Springer, 2018. doi: 10.1007/978-3-319-77935-5 9. URL https://arxiv.org/
pdf/1709.09130.pdf.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and
Martin T. Vechev. AI2: safety and robustness certification of neural networks with abstract
interpretation. In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-
23 May 2018, San Francisco, California, USA, pp. 3–18. IEEE Computer Society, 2018. doi:
10.1109/SP.2018.00058.

GLPK. Gnu linear programming kit, 2020. URL https://www.gnu.org/software/
glpk/.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In 3rd International Conference on Learning Representations (ICLR), 2015. URL
https://arxiv.org/abs/1412.6572.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learn-
ing with limited numerical precision. In Francis Bach and David Blei (eds.), Proceedings of
the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Ma-
chine Learning Research, pp. 1737–1746, Lille, France, 07–09 Jul 2015. PMLR. URL http:
//proceedings.mlr.press/v37/gupta15.html.

10

https://proceedings.neurips.cc/paper/2019/file/885fe656777008c335ac96072a45be15-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/885fe656777008c335ac96072a45be15-Paper.pdf
http://jmlr.org/papers/v21/19-468.html
https://arxiv.org/abs/1608.04644
https://arxiv.org/abs/1608.04644
https://arxiv.org/pdf/1705.01040.pdf
http://arxiv.org/abs/1412.7024
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://arxiv.org/pdf/1709.09130.pdf
https://arxiv.org/pdf/1709.09130.pdf
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
https://arxiv.org/abs/1412.6572
http://proceedings.mlr.press/v37/gupta15.html
http://proceedings.mlr.press/v37/gupta15.html

Published as a conference paper at ICLR 2021

Gurobi. Gurobi optimizer, 2020. URL http://www.gurobi.com/.

IEEE. 754-1985 - IEEE standard for binary floating-point arithmetic, 1985.

Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In Rupak Majumdar and Viktor Kunčak
(eds.), Computer Aided Verification, pp. 97–117, Cham, 2017. Springer International Publishing.
doi: 10.1007/978-3-319-63387-9 5. URL https://arxiv.org/abs/1702.01135.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine learning at scale. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings, 2017. URL https://openreview.net/forum?
id=BJm4T4Kgx.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A
simple and accurate method to fool deep neural networks. In The IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pp. 2574–2582, June 2016. URL
https://www.cv-foundation.org/openaccess/content_cvpr_2016/
papers/Moosavi-Dezfooli_DeepFool_A_Simple_CVPR_2016_paper.pdf.

Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre Jeannerod, Vincent
Lefèvre, Guillaume Melquiond, Nathalie Revol, Damien Stehlé, and Serge Torres. Handbook of
Floating-Point Arithmetic. Birkhäuser Boston, 2010. doi: 10.1007/978-0-8176-4705-6.

Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. TensorFuzz: Debugging
neural networks with coverage-guided fuzzing. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 4901–4911, Long Beach, California, USA, 09–
15 Jun 2019. PMLR. URL http://proceedings.mlr.press/v97/odena19a.html.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial
examples. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=Bys4ob-Rb.

Franca Salis-Madinier. Building trust in human-centric artificial intelligence. Communication
INT/887-EESC-2019, European Economic and Social Committee, Oct. 30. 2019. URL https:
//www.eesc.europa.eu/sites/default/files/files/int-887.pdf.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for certify-
ing neural networks. Proc. ACM Program. Lang., 3(POPL), January 2019. doi: 10.1145/3290354.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):
1929–1958, January 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. In 2nd International Conference
on Learning Representations (ICLR), 2014. URL http://arxiv.org/abs/1312.6199.

Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed
integer programming. In International Conference on Learning Representations (ICLR), 2019.
URL https://openreview.net/forum?id=HyGIdiRqtm.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient formal safety
analysis of neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31,
pp. 6367–6377. Curran Associates, Inc., 2018a. URL https://proceedings.neurips.
cc/paper/2018/file/2ecd2bd94734e5dd392d8678bc64cdab-Paper.pdf.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Formal security analysis
of neural networks using symbolic intervals. In Proceedings of the 27th USENIX Conference on
Security Symposium, SEC’18, pp. 1599––1614, USA, 2018b. USENIX Association.

11

http://www.gurobi.com/
https://arxiv.org/abs/1702.01135
https://openreview.net/forum?id=BJm4T4Kgx
https://openreview.net/forum?id=BJm4T4Kgx
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Moosavi-Dezfooli_DeepFool_A_Simple_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Moosavi-Dezfooli_DeepFool_A_Simple_CVPR_2016_paper.pdf
http://proceedings.mlr.press/v97/odena19a.html
https://openreview.net/forum?id=Bys4ob-Rb
https://openreview.net/forum?id=Bys4ob-Rb
https://www.eesc.europa.eu/sites/default/files/files/int-887.pdf
https://www.eesc.europa.eu/sites/default/files/files/int-887.pdf
http://arxiv.org/abs/1312.6199
https://openreview.net/forum?id=HyGIdiRqtm
https://proceedings.neurips.cc/paper/2018/file/2ecd2bd94734e5dd392d8678bc64cdab-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/2ecd2bd94734e5dd392d8678bc64cdab-Paper.pdf

Published as a conference paper at ICLR 2021

Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Bon-
ing, and Inderjit Dhillon. Towards fast computation of certified robustness for ReLU net-
works. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
5276–5285, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL http:
//proceedings.mlr.press/v80/weng18a.html.

Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th Inter-
national Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Re-
search, pp. 5286–5295, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL
http://proceedings.mlr.press/v80/wong18a.html.

A SPECIFICATION OF OUR EXPERIMENTAL ENVIRONMENT

Since our work depends on the internals of commercial solvers, for reproducibility, we give the full
specification of the environment that we used:

• CPU: Intel(R) Xeon(R) CPU E5-2660 v4 @ 2.00GHz

• Operating System: Ubuntu 18.04.4 LTS

• GLIBC 2.27

• Julia version 1.5.0

• Gurobi: Gurobi Optimizer version 9.0.2 build v9.0.2rc0 (linux64)

• Gurobi julia package: Gurobi v0.8.1

• CPLEX: IBM(R) ILOG(R) CPLEX(R) Interactive Optimizer 12.10.0.0

• CPLEX julia package: CPLEX v0.6.6

• GLPK v4.64

• GLPK julia package: GLPK v0.13.0, GLPKMathProgInterface v0.5.0

• MIPVerify julia package: MIPVerify v0.2.3

• JuMP julia package: JuMP v0.18.6, ConditionalJuMP v0.1.0

• MathProgBase julia package: MathProgBase v0.7.8

The code is shared at https://github.com/szegedai/nn_backdoor.

B ANALYSIS OF THE DEFENSE PERTURBATION

Let us consider the simple network in Figure 1. The defense consists of adding a small perturba-
tion to the parameters of the network with uniform distribution. More precisely, we replace every
parameter w with ŵ ∼ w + U(−|w|ε, |w|ε), where ε is the relative scale parameter of the uniform
noise term.

We will assume that ε < 1, which means that adding noise to a weight will never change the sign of
the weight. In practice, ε should be very small, for example, for double precision we used ε = 10−9.
From the construction, we also know that x ∈ [0, 1] and σ < −2. For simplification, we will assume
here that ω > 0 although that is not strictly necessary. Note that, in practice, we set ω > 254

for attacking double precision floating point arithmetic, because smaller values do not guarantee
adversariality.

For a given input x, the output of every neuron is now a random variable depending on the random
perturbation. From the definition of neuron A, however, we know that for every x ≤ (1 − ε)/2
we have A(x) = 0. Formally, we have Pr(A(x) = 0|x ≤ (1 − ε)/2) = 1. For this reason, the
distribution of the output of every neuron is independent of x, if x ≤ (1− ε)/2, because the output
of each neuron depends on x only through neuron A. This means that it suffices to study x = 0 to
describe the distribution of the output in this interval.

12

http://proceedings.mlr.press/v80/weng18a.html
http://proceedings.mlr.press/v80/weng18a.html
http://proceedings.mlr.press/v80/wong18a.html
https://github.com/szegedai/nn_backdoor

Published as a conference paper at ICLR 2021

From now on, any variable ui will denote a random variable with the distribution ui ∼ U(−ε,+ε).
We also assume that each variable ui is drawn independently. We have seen that A(0) = 0. From
this, it follows that B(0) ∈ [1 − ε, 1 + ε] because B(0) = 1 + u0. Let us now examine the input
function of C, fC , that we can derive from Figure 1. We have fC(0) = ω(1 + u1)B(0) − ω(1 +
u2)(1 + u3) + (1 + u4) = ω(1 + u1)(1 + u0)− ω(1 + u2)(1 + u3) + (1 + u4). From this, we can
compute lower and upper bounds to get the range of fC(0):

fC(0) ∈ [−4ωε+ 1− ε, 4ωε+ 1 + ε]. (2)
Within this interval, the distribution of fC(0) is symmetrical about the center of the interval, that is,
1. This further means that we have Pr(fC(0) < 1) = 1/2. However, the probability mass of fC(0)
is very small in the interval [0, 1] for typical parameter settings, because ωε is several orders larger
than 1. For example, when ε = 10−9 and ω = 254, we have ωε = 254 · 10−9 ≈ 1.8e7. So, we have
Pr(fC(0) < 0) ≈ 1/2.

If fC(0) < 0 then it is easy to see that fC(x) < 0, x ∈ [0, 1]. This is because fC(0) is an upper
bound of fC(x), which follows from the fact that our only input x has an effect only through a linear
chain of neurons all of which will thus have a monotonous output. However, if fC(x) < 0 then
C(x) = 0 due to the ReLU activation, which means that y1(x) = 0, thus y1(x) < y2(x) for all
x ∈ [0, 1].

Now, let us consider the case where fC(0) > 0 and thus C(0) = fC(0). In this case, we have
y1(0) < y2(0) if and only if C(0)(1 + u5) < −2C(0)(1 + u6) + 1 + u7. Here, we know that
C(0)(1− ε) < C(0)(1 + u5) and −2C(0)(1 + u6) + 1+ u7 < −2C(0)(1− ε) + 1+ ε. From this,
it follows that if C(0) > 1 then we must have ε > 1/2 to have y1(0) < y2(0) with a probability
larger than zero. Since typical values of epsilon will be much smaller than 1/2, we conclude that if
C(0) > 1 then y1(0) > y2(0). Previously, we showed that Pr(C(0) > 1) = 1/2. In the interval
C(0) ∈ [0, 1] the output depends on the value of epsilon as well as on the actual values of u5, u6
and u7. However, as mentioned earlier, the probability of a perturbation that results in C(0) ending
up in this interval is negligible.

Let us now consider the case where x > (1−ε)/2. Looking at Figure 1, we notice that the transition
interval where C(x) decreases from 1 to 0 is very short. We will show that, in fact, it is shorter
than the machine epsilon, so C(0) is practically a step function. When adding noise, this transition
interval becomes somewhat longer (that is, when C(0) > 0, because otherwise there would be no
transition at all) and it will be in the order of ε at most. To see this, we will need an upper bound on
fC and we need to derive the point where it reaches zero. We know that

fC(x) ≤ ω(1 + ε)B(x)− ω(1− ε)(1− ε) + (1 + ε), (3)
B(x) ≤ σ(1− ε)A(x) + (1 + ε), and (4)

A(x) ≥ x− 1

2
(1 + ε). (5)

Note that we need a lower bound on A(x) because σ < 0. Now, we need to substitute the bounds
on A(x) and B(x) into the bound on fC(x) and find x, for which this bound is zero. This gives

x =
1

2
(1 + ε) +

1

σ

(
1− ε
1 + ε

− 1 + ε

1− ε
− 1

ω(1− ε)

)
≤ 1

2
+

2ε

1− ε2
+

1

2ω(1− ε)
, (6)

where we used the fact that σ ≤ −2. This bound on x is very close to 1/2. In fact, without
perturbation (that is, with ε = 0), the offset is just 1/2ω which is less than the machine epsilon,
for our settings of ω. Since ε2 and 1/2ω are negligibly small, we can approximate the bound as
1/2 + 2ε. Since fC(x) is monotone decreasing, this means that fC(x) < 0 for x ∈ [1/2 + 2ε, 1].
This further implies that C(x) = 0 for x ∈ [1/2 + 2ε, 1], and thus y1(x) < y2(x) over this interval.

To sum up, we proved that if x ∈ [0, 1/2− ε/2] then with at least 50% probability we have y1(x) ≥
y2(x) and with almost 50% probability we have y1(x) < y2(x), and if x ∈ [1/2 + 2ε, 1] then
we always have y1(x) < y2(x). When y1(x) ≥ y2(x), the value of C(x) is large enough with
overwhelming probability for reasonable parameter settings (e.g., ε = 10−9, ω = 254) to prevent
roundoff errors from occuring. The interval x ∈ [1/2− ε/2, 1/2 + 2ε] was not discussed; here, the
outcome depends on the actual noise values and the other parameters, however, this is an extremely
short interval of length 2.5ε.

As a final note, the network in Figure 2 can be treated in a very similar fashion, the only difference
being that the noise that is effectively added to ω and −ω will follow a different distribution. Focus-
ing on ω (−ω is very similar), the noisy product has the form

∏
i(ω1i +u1i). The effective absolute

13

Published as a conference paper at ICLR 2021

noise added to ω will be more similar to a normal distribution as it is mainly defined by the sum of
the first order noise terms:

∑n
i=1 uji

∏
k 6=i ωjk. Thus, the expectation is zero and the variance grows

with εω
n−1
n
√
n. The effective relative noise is thus increased by a factor of

√
n, approximately. So,

Pr(0 < C(x) < 1) is still very small, and the range of fC(x) is larger, so our arguments about the
simple case transfer to the obfuscated case as well. The upper bound on the length of the transition
interval will be somewhat larger due to the larger variance but it will still be very small.

C ATTACKING ADDITIONAL VERIFIERS

Although we focused on MIPVerify, the idea of the attack, and the attack itself is potentially viable
for other state-of-the-art verifiers as well. Here, we briefly present a number of preliminary mea-
surements. We emphasize that these measurements are not intended to be thorough or systematic,
but are the result of simply making an honest effort to run the public implementation of these ver-
ifiers with no parameter tuning and only minimal modifications that were necessary to process our
networks. Nevertheless, these preliminary results are still informative as they support the conjecture
that the type of attack we discussed is not specific to MIPVerify, and it could be viable for other
verifiers as well. Further analysis of these verifiers is an interesting direction for future work.

Table 3: Success of our attack on various verifiers
simple adversarial network WK17a with backdoor

ReluVal (Wang et al., 2018b) not fooled n.a.
Neurify (Wang et al., 2018a) fooled fooled
Nnenum (Bak et al., 2020) fooled (with small adjustment) fooled
RefinePoly (Singh et al., 2019) n.a. fooled

C.1 RELUVAL

ReluVal (Wang et al., 2018b) is a complete method based on symbolic interval arithmetic. We
used the implementation available on GitHub1. Since this implementation is not able to process
convolutional networks, we could test only our simple adversarial network. ReluVal was able to
detect the adversarial example in any setting we tried. In other words, ReluVal was not fooled by
our adversarial network.

We would like to add though that, inspecting the implementation, we found a number of signs that
suggest that the implementation itself is not completely reliable. For example, the outward rounding
of intervals is done using a fixed constant, instead of an adaptive method. Also, the parameters of
the linear expressions in the symbolic intervals are not treated reliably. This makes it likely that one
could design an attack specifically for this implementation.

C.2 NEURIFY

Neurify (Wang et al., 2018a) is a successor of ReluVal. It is much more efficient and it also uses
linear relaxations that define an LP, which needs to be solved. This fact made it likely that our attack
might work. We used the GitHub implementation2. Neurify can process convolutional networks, so
we could run the verification on both the simple adversarial network and the WK17a networks with
or without the backdoor, although that required a slight modification of the code: we had to fix a
trivial indexing bug that was unrelated to the verification itself.

For the simple adversarial network, Neurify was not able to correctly find adversarial examples,
when the radius of the input ball was larger than about 0.85. Thus, this setup fools the method (or at
least this implementation of it). With smaller radii, the adversarial examples were found.

We tested the original and backdoored variants of WK17a within the `∞ radii of 10% and 100%
of the input space diameter. For the original WK17a network, the implementation was not able to
process all the input examples, some of the examples caused error messages: “Not implemented: At

1https://github.com/tcwangshiqi-columbia/ReluVal
2https://github.com/tcwangshiqi-columbia/Neurify

14

https://github.com/tcwangshiqi-columbia/ReluVal
https://github.com/tcwangshiqi-columbia/Neurify

Published as a conference paper at ICLR 2021

least one node needs to be able to be split to test the LP.” Some other examples resulted in very long
runs that never terminated. We were able to run the verification for a number of examples. For these
examples, the verification was correct.

For the WK17a network with the backdoor added, the verification terminated for all the 1000 exam-
ples in the implementation, and in all the cases the answer was “safe”, which is an incorrect answer.
This means that this implementation of Neurify is fooled by our backdoored network. This result
might be due to an implementation issue, because for example, we saw Inf and NaN values among
the bounds.

C.3 NNENUM

Nnenum (Bak et al., 2020) is a geometric method that is based on propagating linear star sets. We
used the GitHub implementation3.

We tested the simple adversarial network first, with an `∞ radius of 0.1. Nnenum is not fooled on
this network. However, a small modification of the simple network allows us to fool the method.
The original adversarial network in Figure 1 creates a step function (C(x) = 1, x ≤ 0.5), while
setting up a roundoff error trap. We added a new neuron, similar to neuron A, to the first layer
with parameters so as to have neuron C represent a roughly rectangular function with C(x) = 1,
x ∈ [0.475, 0.5]. When testing this network with x = 0.55 and radius 0.1, Nnenum output “safe”,
which is incorrect.

On WK17a with the backdoor, out of the 980 correctly classified examples we tested, 180 were
incorrectly verified as “safe” and the remaining 800 were “unknown”. No example was verified as
“unsafe” (using a timeout of 1 minute).

C.4 ERAN REFINEPOLY

DeepPoly is a verification method that is claimed to be sound to floating point operations (Singh
et al., 2019). We tested the GitHub implementation4.

We were unable to process our simple adversarial network as it would have required substantial
modifications of the code base. We verified WK17a and WK17a with the backdoor. We should add
that we were not able to reproduce exactly the measurements in (Singh et al., 2019), although the
results are close and we got no error messages or warnings. For this reason, our tests might not be
entirely accurate.

We ran DeepPoly with the “complete” option, using the usual `∞ radius of 0.1. This instance is
referred to as RefinePoly, where DeepPoly is combined with MILP. RefinePoly was able to process
WK17a and it correctly verified 928 safe examples out of the 980 correctly classified examples in the
test set. For the rest of the examples it returned with a “failed” status, meaning it was not able decide
about safety. However, for the backdoored version of WK17a, RefinePoly incorrectly output “safe”
for 33 out of the 980 examples, all of which are in fact unsafe with respect to this network. For the
remaining examples the output was “failed”, which means that RefinePoly was unable to determine
whether the input is safe or not. The 33 examples, over which RefinePoly is fooled, represent a
small percentage, yet they are proof that RefinePoly is not immune to our attack either.

D HEURISTIC ATTACKS

Our work focuses on complete verification, but it is still interesting to ask how our backdoor con-
struction performs against heuristic attacks such as PGD (Kurakin et al., 2017) or BrendelBethge
(BB for short) (Brendel et al., 2019). We ran these attacks against the backdoored WK17a network
in the `∞ norm. Both attacks successfully found adversarial examples created by the backdoor (PGD
(40 iterations) and BB have success rates of more than 30%, and 90%, respectively). The reason is
that—although the backdoor switch network itself does not provide any useful gradient—this is not
needed because the PGD attack is led by the gradient of the original WK17a network’s loss function
to the right direction (increasing the top left pixel value), while the BB attack starts from a random
point that will be in the backdoor input space (top left pixel larger than 0.05) with high probability.

3https://github.com/stanleybak/nnenum
4https://github.com/eth-sri/eran

15

https://github.com/stanleybak/nnenum
https://github.com/eth-sri/eran

Published as a conference paper at ICLR 2021

It is interesting to note, though, that with a small modification the backdoor can be hidden from these
heuristic attacks as well. Namely, instead of using just one pixel as a backdoor pattern, we can use
more (say, a 3x3 area at the top left corner) requiring, for example, half of these pixels to be less than
0.05 and the other half to be larger than 0.05. The switch can easily be modified to be sensitive to
this more complex pattern. When attacking this modified backdoor, both algorithms failed to find it,
and instead their success rates became identical to that over the original unmodified WK17a network
(less than 3% for both algorithms). This is because this more complex backdoor pattern represents
a subspace of a relatively very small volume (hence BB will very rarely be initialized inside of it)
and the natural gradient of W17a is very unlikely to point towards this specific pattern.

16

	Introduction
	Background
	Approaches to verification
	MIPVerify
	Floating Point Representation
	What is the object of verification?

	A Simple Adversarial Network
	Obfuscating the Network
	Creating Backdoors
	A Defense
	Conclusions
	Specification of our experimental environment
	Analysis of the defense perturbation
	Attacking Additional Verifiers
	ReluVal
	Neurify
	Nnenum
	ERAN RefinePoly

	Heuristic attacks

