
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONTEXT-AWARE DYNAMIC PRUNING FOR
SPEECH FOUNDATION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Foundation models, such as large language models, have achieved remarkable
success in natural language processing and are evolving into models capable of
handling multiple modalities. Listening ability, in particular, is crucial for many
applications, leading to research on building speech foundation models. However,
the high computational cost of these large models presents a significant challenge
for real-world applications. Although substantial efforts have been made to reduce
computational costs, such as through pruning techniques, the majority of these ap-
proaches are applied primarily during the training phase for specific downstream
tasks. In this study, we hypothesize that optimal pruned networks may vary based
on contextual factors such as speaker characteristics, languages, and tasks. To ad-
dress this, we propose a dynamic pruning technique that adapts to these contexts
during inference without altering the underlying model. We demonstrated that we
could successfully reduce inference time by approximately 30% while maintain-
ing accuracy in multilingual/multi-task scenarios. We also found that the obtained
pruned structure offers meaningful interpretations based on the context, e.g., task-
related information emerging as the dominant factor for efficient pruning.

1 INTRODUCTION

In recent years, foundation models have achieved remarkable success across various tasks in natural
language processing (OpenAI, 2022; 2023; Google, 2023; Anthropic, 2024). These Large Language
Models (LLMs) have been particularly effective as multi-modal systems, incorporating modalities
such as images and videos (Google, 2024; Anthropic, 2024). The integration of voice as a modality
for communication between humans and LLMs has also gained traction, leading to applications
that facilitate interactive conversations with LLMs (OpenAI, 2024; Défossez et al., 2024). Many
studies have explored features to integrate the hearing ability into LLMs, employing methods such
as connecting massive audio encoders to LLMs (Changli et al., 2024; Yuan et al., 2024; Chu et al.,
2023; HU et al., 2024; Défossez et al., 2024) and utilizing large speech-to-text foundation models
with powerful multilingual and multi-task capabilities (Radford et al., 2023; Peng et al., 2023d;
Puvvada et al., 2024).

However, this broad support necessitates the training of large-scale models with billions of param-
eters, introducing new challenges such as increased inference costs. In speech processing, where
input sequences tend to be longer than those in language processing, computationally intensive mod-
els can significantly prolong inference times. To address these challenges, various methodologies
have been proposed, including pruning (Fu et al., 2022; Lai et al., 2021; Peng et al., 2023a; Wang
et al., 2023; Ding et al., 2024), quantization (Ding et al., 2024), distillation (Chang et al., 2022;
2024; Gandhi et al., 2023), and combinations of those methods (Peng et al., 2023c). However, these
approaches primarily focus on reducing the model size during training.

While these models handle various tasks, it raises a fundamental question: is a single model optimal
structure for all tasks and languages? Different languages and tasks may require unique pruning
strategies for effective processing. For example, Chen et al. (2022) highlights that different layers
contribute differently depending on the task, indicating that the optimal model structure might vary
across tasks. They also showed excellent performance in ASR using the WavLM encoder with only
a single linear layer as the decoder, which raises questions about the need for a large-scale decoder
in ASR systems. Conversely, Peng et al. (2024a) highlight the importance of the decoder network

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

in ST, suggesting that the decoder may play a more critical role in ST compared to ASR. Therefore,
we hypothesize that there might be an optimal model structure depending on each task and language
combination so that each subnetwork has the potential to perform with comparable accuracy with
less inference complexity.

Given this hypothesis, we propose a method for dynamically pruning a pre-trained foundation model
based on the context information, including speech features, language, and task characteristics, en-
abling the construction of an optimal model architecture tailored to the contextual requirements
during inference. Specifically, we train a model that computes module-level masks for each layer in
the encoder and decoder networks based on the provided context while simultaneously fine-tuning
the foundation model. The predicted mask is utilized to determine which modules to activate or
skip while maintaining accuracy. By analyzing the pruned network, we offer an interpretation of the
importance of the optimal subnetwork within the given contexts.

This paper makes the following key contributions:

1. We propose to apply a novel context-aware pruning technique to each module in a speech
foundation model dynamically within multilingual and multi-task scenarios.

2. We were able to reduce inference time by 34.3% without degradation in the BLEU score
for the ST task and 28.6% with only 2.8% WER degradation on the ASR task.

3. We conducted a detailed comparative analysis and found that the obtained pruned struc-
ture offers meaningful interpretations based on the context, e.g., task-related information
emerging as the dominant factor for efficient pruning.

2 RELATED WORK

Pruning techniques are mainly classified into unstructured and structured approaches. The former is
a technique for deleting individual weights in a network (LeCun et al., 1989; Hassibi et al., 1993;
Han et al., 2016b); however, it has a problem of low compatibility with hardware accelerators (Han
et al., 2016a; Liu et al., 2024). This method is further investigated in Appendix D. On the other hand,
structured pruning has a more direct benefit in reducing the complexity, which performs pruning on
a layer or module basis, including filters/layers in CNNs (Wen et al., 2016; Li et al., 2017; Alvarez
& Salzmann, 2016; Han et al., 2017) or layer-wise pruning in models (Fan et al., 2020; Lee et al.,
2021; Chen & Zhao, 2019). Thus, our paper employs structured pruning.

Methods for determining pruning targets include gradient-based techniques (Guo et al., 2016; He
et al., 2020; Fu et al., 2022; Wen et al., 2016) as well as magnitude-based approaches for mod-
ules (Li et al., 2017; 2022). However, these methods typically use a fixed architecture during infer-
ence. Addressing this limitation, recent research has focused on implementing efficient inference
by dynamically adjusting the computational load during the inference process (Bengio et al., 2016;
Jernite et al., 2017; Bolukbasi et al., 2017; Graves, 2016). Notably, in the speech domain, numerous
studies have explored streaming models to achieve dynamic model structures aimed at speedup (Ma-
coskey et al., 2021a;b; Strimel et al., 2023; Xie et al., 2022; Xu et al., 2023). In this context, Peng
et al. (2023b); Bittar et al. (2024) extended this concept to large-scale Transformer-based models,
exploring dynamic layer-wise structural changes to enhance efficiency. In our study, we extend the
work of Peng et al. (2023b) by utilizing the model structure of a speech foundation model to address
multilingual and multi-task scenarios. This extension explores how a large-scale speech foundation
model adapts its structure based on context, providing insights into more efficient and context-aware
speech processing systems.

3 METHODS

3.1 OPEN WHISPER-STYLE SPEECH MODELS

In this study, we utilized Open Whisper-Style Speech Models (OWSM) (Peng et al., 2023d) as
the foundation for our speech model experiments. OWSM is an open-source reproduction of Ope-
nAI’s Whisper model (Radford et al., 2023). Among the available versions, we selected OWSM-
v3.1 (Peng et al., 2024b) as the speech foundation model for our experiments. The key rationale

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(a) E-Branchformer (b) TransformerDecoder (c) Language/Task token

Figure 1: The sparse E-Branchformer and Transformer architectures in the experiment, and the
method for embedding the language/task information. The audio information and the language/task
information are concatenated, and the Gate Predictor calculates the gate probability for each module
in each layer.

for selecting OWSM models lies in its fully open training data, processes, and configuration com-
pared to Whisper. We ensure that the data used for validation in our experiments is not part of the
pre-training corpus. This transparency is critical. If validation data was included in the pre-training
data, it could inflate post-pruning accuracy, hindering a proper evaluation of the pruned network’s
performance.

Additionally, the E-Branchformer architecture integrated into OWSM-v3.1 offers a more flexible
and generalized structure compared to the conformer, due to its parallel design. The model employs a
dual-branch structure: one branch extracts global context using a self-attention-based module (glob-
ATT), while the other captures local context using a convolution-based module (cgMLP) Sakuma
et al. (2022). These branches are merged through a convolution-based merging layer, and are en-
closed between two feed-forward networks (FFN1 and FFN2). Through the elimination of particular
modules in the E-Branchformer layers, we can create a model resembling a conformer. This will
enable us to thoroughly evaluate the Transformer’s efficiency and effectiveness as an architectural
design.

3.2 MODULE-LEVEL PRUNING

We implement module-level pruning in our study, targeting essential components within foundation
models like self-attention (ATT) and feed-forward networks (FFN). For example, in the Transformer
architecture, we prune the self-ATT, source-attention (src-ATT), and FFN as modules. In the case
of the E-Branchformer, pruning modules include the FFN1, glob-ATT, cgMLP, and the FFN2.

The motivation for adopting module-wise pruning is our assumption that the model’s architecture
should remain flexible and adaptable during inference. Pruning techniques that operate at a finer
granularity, such as kernel pruning or layer pruning, which removes individual kernels or layers
from convolution components, would disrupt the model’s structural integrity and limit its ability to
dynamically adapt to different audio inputs. While layer-wise pruning aligns with our goal of simpli-
fying the model, it oversimplifies the pruned model and prevents us from observing the importance
of individual modules. For these reasons, we decided to employ module-wise pruning techniques
to balance between structural flexibility and model interpretability. Further considerations on layer-
skip approaches have been included in the Appendix C for reference.

3.3 PRUNING

Given the dynamic nature of the input speech, it is necessary to generate a mask for each module
based on audio input, language, and task information. To achieve this, we employ a neural network
model to estimate a binary mask that determines whether to use a module. We frame the pruning

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

problem as an L0 regularization task Louizos et al. (2018), optimizing the expected value of the
binary mask to achieve the desired sparsity. While Louizos et al. (2018) uses a Sigmoid-based
approach, we follow Peng et al. (2023b) for implementation efficiency and treat the mask estimation
as a two-class classification problem using Gumbel-Softmax Jang et al. (2017) for implementation
efficiency.

In these works, pruning masks were learned using the sigmoid function or Gumbel-Softmax. How-
ever, the masks used during training were continuous values between 0 and 1, rather than strict
binary values. As a result, modules that should have been completely skipped during inference were
still partially utilized during training. During fine-tuning the OWSM model, we observed that even
with a very low temperature for the softmax operation for probabilities, the gate probabilities often
remained in the range between 0.4 and 0.6. This led to a discrepancy where the output of a module
was scaled by a factor of 0.4 during training, while the same module was entirely skipped during in-
ference because the probability fell below the threshold value, such as 0.5. To address this issue, we
employed the Straight-through Gumbel-Softmax Estimator (SGST) Jang et al. (2017) to ensure that
the output of the gate predictor was strictly binary. With SGST, the forward pass computations are
performed using binary values, while the backward pass estimates gradients with continuous values,
allowing the model to be trained effectively. The detailed formulation is provided in Appendix A.

In our work, inspired by Peng et al. (2023b) and Wang et al. (2020), we define the sparsity loss
function, Lsparsity, as follows:

Lsparsity = α{|g − starget|+ (g − starget)
2}, (1)

where g is the average of the gate probabilities for all modules, α refers to the weight forLsparsity, and
starget is the desired sparsity ratio for the model. Since we use Gumbel-Softmax to binarize all gate
probabilities, g represents the proportion of modules that are activated in the entire model, i.e., the
model’s sparsity ratio. For a detailed derivation of the loss function, please refer to the Appendix E.

Additionally, when both the Encoder and Decoder are pruned, we calculate the Lsparsity based on
the gate probabilities from both components to bring the overall model sparsity closer to starget. Let
genc be the gate probability for any module in the encoder, and gdec be the gate probability for any
module in the decoder. Then, the Lsparsity is calculated for three scenarios, from top to bottom: first,
when only the encoder is pruned; second, when only the decoder is pruned; and third, when both the
encoder and decoder are pruned simultaneously.

Lsparsity =


α |E[genc]− starget|+ α (E[genc]− starget)

2 encoder only

α |E[gdec]− starget|+ α (E[gdec]− starget)
2 decoder only

α
2 |E[genc] + E[gdec]− 2starget|+ α

4 (E[genc] + E[gdec]− 2starget)
2 jointly

As noted by Wang et al. (2020), starget is gradually increased during training. Therefore, let the loss
for the downstream task be Lowsm, the overall loss function that we aim to minimize is:

L = Lowsm + Lsparsity. (2)

3.4 CONTEXT-AWARE GATE PREDICTOR

As shown in Fig. 1, the gate probability is calculated using Gate Predictors. In Peng et al. (2023b),
two types of Gate Predictors are proposed: GlobalGP and LocalGP. GlobalGP calculates the gate
probability based on the encoder’s input, which is also fed into the first layer of the encoder. In
contrast, LocalGP provides a Gate Predictor for each layer, computing the probability based on
the input to that specific layer. While both methods have shown promising results, we opted for
GlobalGP due to its implementation simplicity. The detailed process of calculating gate probability
is in Appendix F.

To handle multiple languages and tasks simultaneously, we created vectors representing the language
and task, combined them with the speech features, and used them as input to the Gate Predictors.
These vectors are combinations of one-hot vectors representing the language and task. For example,
if there are two languages, French and German, and tasks including speech recognition and transla-
tion between them, the language conditions are [0, 1] for French and [1, 0] for German, and the task
conditions are [0, 0, 1] for speech recognition, [0, 1, 0] for French to German translation, and [1, 0, 0]

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

for German to French translation. Combining these, tasks such as French speech recognition can be
expressed as [0, 1, 0, 0, 1], and similarly [0, 1, 0, 1, 0] means translating French to German.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset This study employs the Europarl-ST (Iranzo-Sánchez et al., 2020) dataset to evaluate
model performance across multiple languages. The corpus was compiled from debates held in the
European Parliament between 2008 and 2012. We utilized version 1.1 of the dataset, which com-
prises speech data in nine languages. For our experiments, we selected German, French, and Italian,
which consist of approximately 20 hours of speech data. As the europarl-ST dataset is not part of
the OWSM training data, we deemed it suitable for evaluating the model under multi-lingual and
multi-task settings.

Task We fine-tuned the OWSM model with a pruning objective across ASR and ST tasks. The
experiments were designed to compare two pruning strategies: one in which the model was trained
on ASR and ST tasks independently, and another where both tasks were integrated during training.
Additionally, we investigated the effects of sparsifying the model in three configurations: sparsifying
only the Encoder, only the Decoder, and both simultaneously.

Evaluation In this experiment, we evaluated the ASR task using Word Error Rate (WER) and the
ST task using BLEU scores. For each language, we prepared models with sparsity ratio of 10%,
30%, 50%, 70%, and 90%, and assessed their performance. Additionally, we used a baseline model
that was fine-tuned with all modules retained for comparison. Note that the sparsity level refers to
the ratio of activated modules to the total number of modules, not the number of parameters in the
model. In all experiments, we performed auto-regressive decoding with a beam size of 5.

The model sparsity observed in this experiment is visualized using heat maps, where each cell rep-
resents the gate probability for all modules across all layers. During model validation, the activation
frequency of each gate is accumlated, and the average is computed to derive the expected activation
probability per module.

4.2 RESULTS

4.2.1 MULTI-LINGUAL ASR

Figure 2 shows the WER for German. In Figures 3 and 4, we present the visualization of E[genc] and
E[gdec] for each module when the encoder and decoder were pruned separately. Figure 5 illustrates
the E[genc] and E[gdec] when encoder and decoder were jointly pruned. We analyzed the g across
varied starget and languages, and found no significant differences. Therefore, we focus on the German
ASR results here. For complete heatmaps and a WER table, refer to Appendix G. We considered the
possibility that the differences in the amount of data used for pre-training the OWSM model across
languages might affect to our results and conducted additional training accordingly. The results are
provided in Appendix B.

Inference Performance We found that pruning the decoder side did not harm WER, even with
high sparsity ratios, where pruning encoder modules greatly deteriorate the WER in high sparsity
ratio. By analyzing the results alongside the module heatmap, we observed a decline in encoder
accuracy at starget = 0.7, specifically when cgMLP started to be pruned, underscoring the critical
role of cgMLP in ASR tasks. In contrast, observing the decoder side with a starget = 0.9, where a
substantial number of FFNs have been pruned, we find that WER does not deteriorate as severely as
in the ST case discussed in section 4.2.2. This finding supports our initial question that ASR may
not require large-scale decoders to the same extent as ST.

Sparse Encoder Analysis Referring to Figure. 3, the encoder’s pruning strategy remained consis-
tent across languages. Additionally, the highly polarized colors in Figure. 3, indicate that the gate
probabilities are concentrated at extreme values, suggesting minimal variation in module selection

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: Comparison of sparsity ratio and
WER. The label enc indicates pruning of the
encoder only, dec indicates pruning of the de-
coder only, and enc-dec indicates simultane-
ous pruning of both. The WER is evaluated
for German as the starget varies from 0.1 to
0.9. The baseline WER is 13.5. Decoder
pruning retains WER even at high sparsity,
while encoder pruning significantly degrades
it.

Figure 3: Visualization of E[genc] when
pruned separately with German and French
ASR. The columns represents the starget,
with starget being 0.5 and 0.7 from left to
right. The first row represents the result for
German ASR, and the second row repre-
sents the French ASR. The y-axis within
the heatmap represents the depth, where
top is the first layer. The label A indi-
cates glob-ATT, C indicates cgMLP, F1 in-
dicates FFN1, and F2 indicates FFN2.

Figure 4: Visualization of E[gdec] in German
ASR, when decoder was pruned separately.
The columns represent the starget, with starget
being 0.7 and 0.9 from left to right. The la-
bel SELF indicates self-ATT, SRC indicates
src-ATT, and FFN indicates FFN. The other
settings are consistent with those in Figure 3.

Figure 5: Visualization of E[genc] and E[gdec]
when they were pruned jointly. The stargat
for this figure is 0.7. The left image corre-
sponds to the encoder, and the right image
corresponds to the decoder. The other set-
tings are consistent with those in Figure 3
and Figure 4.

based on speech characteristics. Interestingly, pruning approximately 50% of the encoder modules
led to a more biased module selection, favoring cgMLP activations. This highlights the crucial role
of local context captured by cgMLP, challenging the current architectural convention that equally
balances the both.

Sparse Decoder Analysis In conditions where 90% of the modules were pruned, src-ATT was
prioritized over self-ATT and FFN in Figure 4, indicating its essential role in inference. Given that
src-ATT is the module responsible for incorporating audio information, this behavior is understand-
able. At a 70% sparsity ratio, we observed a typical flow in the TransformerDecoder, where the
process moves from self-ATT to src-ATT, and then to FFN. The heatmap indicates that groups of
modules can be computed in chunks, with several self-ATT modules processed together, followed
by a block of src-ATT modules, and then a group of FFN modules. These findings suggest that
incorporating chunk-wise computation could improve the efficiency of conventional decoder archi-
tectures.

Combined Encoder-Decoder Sparsity Analysis We found that several portion of the encoder
exhibit a similar architecture to that of the Conformer. That is, the processing sequence progresses

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 6: Comparison of sparsity ratio and
BLEU scores for French-to-German transla-
tion. BLEU is evaluated for encoder-only,
decoder-only, and encoder-decoder pruning,
with a baseline score of 12.2. Similar to
ASR, the decoder retains performance better
than the encoder at high sparsity.

Figure 7: Visualization of E[genc] and
E[gdec] when they were pruned jointly. The
columns represents the starget, with starget
being 0.5 and 0.7 from left to right. The
first row represents the encoder, and the
second row represents the decoder. The
other settings are consistent with those in
Figure 3.

from the FFN to the glob-ATT, then to the cgMLP, and back to the FFN. This finding suggests that
the Conformer architecture is effective in speech foundation models, particularly when the model
size is constrained.

Compared to Figure 4 and Figure 5, we observed that when pruning is applied only to the decoder,
src-attention layers in the early part of the decoder are often skipped. However, when both the en-
coder and decoder are pruned together, the earlier src-attention layers in the decoder become more
active. This difference appears to stem from whether the encoder’s full capacity is available. When
the encoder is fully utilized, the decoder computes more self-attention and FFN layers before src-
attention to incorporate additional contextual information from the output tokens. In contrast, when
encoder capacity is limited, the decoder compensates by performing self-attention and FFN compu-
tations directly on the audio features to capture details that may have been missed by the encoder.
Additionally, by analyzing the number of active modules in the decoder, we found differences in
the number of FFN layers processed before src-attention, which further supports this interpretation.
These findings are also supported by visualizations provided in the Appendix G.

4.2.2 MULTI-LINGUAL ST

Figure 6 presents the BLEU scores for the French-to-German translation tasks. Figure 7 visual-
ize the E[genc] and E[gdec] for each module when the encoder and decoder were pruned separately.
We also analyzed the g across varied starget and tasks, and found no significant differences. There-
fore, we focus on the French-to-German ST results here. Refer to the Appendix G for a complete
heatmaps and table of BLEU score. The analysis on combined encoder-decoder settings are also in
the Appendix G.

Inference Performance Focusing on the encoder side in Figure 6, the BLEU scores remained
relatively stable even with a starget = 0.5. On the other hand, from Figure 6 and Figure 7, BLEU
scores began to degrade when usage of cgMLP modules dropped when starget becomes 0.7. This
highlights the importance of convolution-based models in ST, consistent with ASR tasks. A notable
difference from ASR is that pruning the decoder also deteriorates model performance. We found
that in the ST decoder, the FFN tends to be retained in computation. As the model removes the FFN,
the BLEU score also degrades. This observation supports our initial hypothesis that the decoder
plays a more critical role in ST compared to ASR.

Sparse Encoder Analysis In Figure 7, we observed an increased importance of cgMLP, similar
to the findings in ASR. However, unlike ASR, the utilization of FFN2 decreased in the earlier layers

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 8: Comparison of starget and WER on
German ASR. This figure compares results
when using only ASR data versus using both
ASR and ST data. single refers to the results
obtained using only ASR data, and joint in-
cludes results from pruning that also incor-
porates ST data. The other settings are con-
sistent with those in Figure 3.

Figure 9: Comparison of starget and BLEU on
French-to-German ST. This figure compares
results when using only ST data versus us-
ing both ASR and ST data. The labels are
the same as Figure 8. Combined with Fig-
ure 8, this suggests that decoder pruning in
multitask settings maintains competitive per-
formance compared to task-specific pruning.

of the ST task. Nevertheless, there were no significant differences in module selection within the
encoder structure. This indicates that it may not be necessary to modify the encoder when designing
models intended to handle both ASR and ST tasks simultaneously.

Sparse Decoder Analysis From starget = 0.5 to starget = 0.7, the number of activated src-ATT
decreased significantly in Figure 7, with this reduction being larger than ASR. Additionally, it be-
came apparent that self-ATT were computed over a broader range of depths compared to ASR. This
suggests that while ASR places greater importance on audio information, ST requires self-ATT and
FFN more than audio information for translation. This increased reliance can be attributed to the
non-monotonic relationship between input audio and output text in ST, necessitating a greater use
of self-ATT and FFN to capture complex dependencies.

In Figure 7, we observed that self-ATT layers are more frequently activated before src-ATT in ST
compared to ASR. We hypothesize that this difference arises from the distinct priorities of each task.
In ASR, the primary focus is on integrating audio features directly, as each computation of src-ATT
increases the prominence of audio information as a weighted sum. In contrast, ST seems to place
a higher importance on alignment text information through self-ATT before src-ATT to effectively
map different languages. As a result, self-ATT layers are activated earlier to better contextualize
before src-ATT, reflecting the task-specific demands of aligning cross-modal information. These
findings underscore how the allocation of self-ATT and src-ATT computations is influenced by the
differing requirements of ASR and ST.

4.2.3 PRUNING BY JOINT ASR AND ST

Figure 8 represents the WER for German ASR, and Figure 9 represents the BLEU score for French-
to-German translation task. Figure 9 represents the BLEU score for French-to-German translation
task. Same as the single-task settings, we also analyzed the g across varied starget and tasks, but could
not found differences in module selection across languages and tasks. Therefore, we focus on the
French-to-German ST results here. Refer to the Appendix G for a complete heatmaps and tables for
other tasks and languages. The analysis on the case when encoder decoder were separately pruned
are included in Paragraph 4.2.3.

Inference Performance When ASR and ST tasks were trained simultaneously, a slight degrada-
tion in WER and BLEU was observed in Figures 8 and 9, particularly when pruning was applied to
both the encoder and decoder. However, we found that when only the decoder was pruned, perfor-
mance was better maintained compared to other settings. These findings suggest that, for large-scale

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 10: Visualization of E[genc] and E[gdec] when they were pruned jointly.
The columns represent the starget, with starget being 0.3, 0.5, and 0.7 from left to
right. The first row represents the encoder, and the second row represents the
decoder. The other settings are consistent with those in Figure 3.

speech foundation models trained on multiple tasks, focusing on decoder pruning is a more effective
strategy for preserving accuracy across various tasks.

Combined Encoder-Decoder Sparsity Analysis In Figure 10, the processing order observed was
FFN, followed by src-ATT, and then self-att, particularly when starget is 0.7. This order contradicts
the typical processing sequence of a Transformer decoder and the observations made in 4.2.1. These
results suggest that the conventional processing order of Transformer decoders may not be optimal
for speech foundation models trained on multi-task data.

Table 1: Metrics and Elapsed time on inference for ASR (German) and ST (French-to-German)
across varying starget. The models were trained on task-specific training dataset. The table compares
elapsed time, GFLOPs, and metrics (WER for ASR and BLEU for ST) at different starget for the enc,
dec, and enc-dec. Baseline results are: ASR - 9.28 seconds and 13.5 WER, and 3781 GFLOPs; ST
- 10.54 seconds, 12.2 BLEU, and 3409 GFLOPs. Each row represents a different sparsity target,
showing the impact on inference time and output quality as the sparsity increases. ET refers to the
elapsed time. We use fvcore library to estimate the GFLOPs.

ASR (German)

Encoder Decoder EncDec

sparsity ET GFLOPs WER ET GFLOPs WER ET GFLOPs WER

10% 9.07 3697 14.4 9.33 3268 15.3 10.39 2843 14.3
30% 9.21 3690 14.8 7.24 2293 15.9 7.09 2249 15.4
50% 8.92 3669 16.3 6.62 1713 20.4 5.99 1698 17.8
70% 9.15 3633 21.0 4.79 1272 17.2 5.49 1139 28.8
90% 8.52 3613 80.8 4.80 625 24.5 5.22 682 80.8

ST (French-to-German)

Encoder Decoder EncDec

sparsity ET GFLOPs BLEU ET GFLOPs BLEU ET GFLOPs BLEU

10% 10.42 3369 12.3 10.72 2718 12.9 10.58 2861 12.2
30% 10.08 3357 11.9 8.27 2015 13.0 9.27 2093 11.6
50% 10.27 3335 12.3 6.92 1521 12.2 7.09 2023 9.4
70% 10.38 3311 9.2 5.38 1063 10.3 6.58 936 5.2
90% 10.44 3298 2.5 4.27 504 5.3 4.81 549 0.4

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.3 INFERENCE EFFICIENCY

We measured the actual inference time of the pruned model to analyze the effect of pruning on
inference speed. We used one A40 GPU and 16 CPUs per each inference. We employed vectorized
beam search (Seki et al., 2019) for decoding, where the beam size is 5. Since previous experiments
showed no variation in module selection across languages or tasks, we focused on one language
and task, specifically German ASR for measuring inference time in each case. Table 1 presents the
trends in metrics, inference time, and FLOPs as a function of module sparsity. It is important to note
that we ignored the first run of inference, as it contains initialization processes that make it slower.

The results show that reducing the decoder modules by 50% improves latency while maintaining
accuracy for both ASR and ST tasks. Specifically, we achieved a 34.3% reduction in inference
time with no degradation in BLEU for ST, and a 28.6% reduction with only a 2.8% WER increase
for ASR. Since OWSM uses auto-regressive inference with vectorized beam search, the decoder
handles the majority of the computational load. This is reflected in the significant reduction in
FLOPs observed during pruning, as the decoder processes each output token individually, treating
the beam size as the batch size. In this analysis, we set the beam size to 5, meaning the encoder’s
batch size is 1, while the decoder’s is 5. As a result, pruning the decoder not only reduces FLOPs
but also has a more pronounced impact on inference speed compared to pruning the encoder.

5 CONCLUSION

In this work, we proposed a novel context-aware dynamic pruning method for speech foundation
models that adapts pruning dynamically during inference. With the pruned model, we successfully
accelerated the inference of speech foundation models, particularly without any degradation in the
ST task. Through a detailed analysis of the model structures that emerge after pruning, we identi-
fied the efficiency of the Transformer decoder and Conformer, while also uncovering an interesting
computational flow when the model was pruned in multi-task settings. Although this study focused
on the speech domain, our approach can be readily extended to foundation models in other fields,
such as NLP and computer vision.

6 REPRODUCIBILITY

You can download the OWSM-v3.1 we employed in this experiment from the huggingface hub 1

All of our experiments are conducted with ESPnet (Watanabe et al., 2018). Based on the training
configuration of OWSM-v3.1, we added or modified the following configuration:

encoder: e_branchformer_token_condition
decoder: transformer_decoder_token_condition

tau_ini: 1
tau_end: 0.1
tau_cooldown_steps: 15000
sparsity_init: 0.0
sparsity_end: 0.3

optim: adamw
optim_conf:

lr: 0.00001
weight_decay: 0.000001

scheduler: warmuplr
scheduler_conf:

warmup_steps: 6000

Several configurations were added to the original ESPnet. Each configuration is as follows:

• tau ini / tau end: The initial and final temperatures for Gumbel-Softmax.
1https://huggingface.co/espnet/owsm_v3.1_ebf

10

https://huggingface.co/espnet/owsm_v3.1_ebf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

• tau cooldown steps: The iteration number for the temperature of Gumbel-Softmax. Target
sparsity gradually increases to sparsity end.

• sparsity init / sparsity end : The initial target sparsity and after the warmup.

• sparsity warmup steps: Warmup steps for the sparsity. The target sparsity will be gradually
increased to reach sparsity end.

The class we set for the encoder and decoder is the extended class of E-Branchformer and Trans-
formerDecoder to incorporate pruning in this study. Other configurations are same as the OWSM-
v3.1, and you can refer to all settings in huggingface hub 2

REFERENCES

Jose M. Alvarez and Mathieu Salzmann. Learning the number of neurons in deep networks.
In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Gar-
nett (eds.), Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp.
2262–2270, 2016. URL https://proceedings.neurips.cc/paper/2016/hash/
6e7d2da6d3953058db75714ac400b584-Abstract.html.

Anthropic. Claude 3 haiku: our fastest model yet, 2024. URL https://www.anthropic.
com/news/claude-3-haiku.

Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation
in neural networks for faster models. arXiv preprint, 1511.06297, 2016.

Alexandre Bittar, Paul Dixon, Mohammad Samragh, Kumari Nishu, and Devang Naik. Improving
vision-inspired keyword spotting using dynamic module skipping in streaming conformer en-
coder. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 10386–10390. IEEE, 2024.

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural networks
for efficient inference. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th In-
ternational Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, volume 70 of Proceedings of Machine Learning Research, pp. 527–536. PMLR, 2017. URL
http://proceedings.mlr.press/v70/bolukbasi17a.html.

Heng-Jui Chang, Shu-Wen Yang, and Hung-yi Lee. Distilhubert: Speech representation learning
by layer-wise distillation of hidden-unit bert. In IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2022, Virtual and Singapore, 23-27 May 2022, pp. 7087–
7091. IEEE, 2022. doi: 10.1109/ICASSP43922.2022.9747490. URL https://doi.org/
10.1109/ICASSP43922.2022.9747490.

Heng-Jui Chang, Ning Dong, Ruslan Mavlyutov, Sravya Popuri, and Yu-An Chung. Colld: Con-
trastive layer-to-layer distillation for compressing multilingual pre-trained speech encoders. In
ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 10801–10805, 2024.

Tang Changli, Yu Wenyi, Sun Guangzhi, Chen Xianzhao, Tan Tian, Li Wei, Lu Lu, MA Zejun, and
Zhang Chao. SALMONN: Towards generic hearing abilities for large language models. In The
International Conference on Learning Representations (ICLR), 2024.

Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian,
Jian Wu, Michael Zeng, Xiangzhan Yu, and Furu Wei. Wavlm: Large-scale self-supervised pre-
training for full stack speech processing. IEEE Journal of Selected Topics in Signal Processing,
16(6):1505–1518, 2022. doi: 10.1109/JSTSP.2022.3188113.

2https://huggingface.co/espnet/owsm_v3.1_ebf/blob/main/exp/s2t_train_
s2t_ebf_conv2d_size1024_e18_d18_piecewise_lr2e-4_warmup60k_flashattn_raw_
bpe50000/config.yaml

11

https://proceedings.neurips.cc/paper/2016/hash/6e7d2da6d3953058db75714ac400b584-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/6e7d2da6d3953058db75714ac400b584-Abstract.html
https://www.anthropic.com/news/claude-3-haiku
https://www.anthropic.com/news/claude-3-haiku
http://proceedings.mlr.press/v70/bolukbasi17a.html
https://doi.org/10.1109/ICASSP43922.2022.9747490
https://doi.org/10.1109/ICASSP43922.2022.9747490
https://huggingface.co/espnet/owsm_v3.1_ebf/blob/main/exp/s2t_train_s2t_ebf_conv2d_size1024_e18_d18_piecewise_lr2e-4_warmup60k_flashattn_raw_bpe50000/config.yaml
https://huggingface.co/espnet/owsm_v3.1_ebf/blob/main/exp/s2t_train_s2t_ebf_conv2d_size1024_e18_d18_piecewise_lr2e-4_warmup60k_flashattn_raw_bpe50000/config.yaml
https://huggingface.co/espnet/owsm_v3.1_ebf/blob/main/exp/s2t_train_s2t_ebf_conv2d_size1024_e18_d18_piecewise_lr2e-4_warmup60k_flashattn_raw_bpe50000/config.yaml

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shi Chen and Qi Zhao. Shallowing deep networks: Layer-wise pruning based on feature represen-
tations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(12):3048–3056,
2019. doi: 10.1109/TPAMI.2018.2874634.

Yunfei Chu, Jin Xu, Xiaohuan Zhou, Qian Yang, Shiliang Zhang, Zhijie Yan, Chang Zhou, and
Jingren Zhou. Qwen-audio: Advancing universal audio understanding via unified large-scale
audio-language models. arXiv preprint arXiv:2311.07919, 2023.

Alexandre Défossez, Laurent Mazaré, Manu Orsini, Amélie Royer, Patrick Pérez, Hervé Jégou,
Edouard Grave, and Neil Zeghidour. Moshi: a speech-text foundation model for real-time dia-
logue. Technical report, Kyutai, September 2024. URL http://kyutai.org/Moshi.pdf.

Shaojin Ding, David Qiu, David Rim, Yanzhang He, Oleg Rybakov, Bo Li, Rohit Prabhavalkar,
Weiran Wang, Tara N. Sainath, Zhonglin Han, Jian Li, Amir Yazdanbakhsh, and Shivani Agrawal.
Usm-lite: Quantization and sparsity aware fine-tuning for speech recognition with universal
speech models. In ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 10756–10760, 2024.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. In The International Conference on Learning Representations (ICLR), 2020.

Yonggan Fu, Yang Zhang, Kaizhi Qian, Zhifan Ye, Zhongzhi Yu, Cheng-I Jeff Lai, and Celine Lin.
Losses can be blessings: Routing self-supervised speech representations towards efficient multi-
lingual and multitask speech processing. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp.
20902–20920. Curran Associates, Inc., 2022.

Sanchit Gandhi, Patrick von Platen, and Alexander M Rush. Distil-whisper: Robust knowledge
distillation via large-scale pseudo labelling. arXiv preprint arXiv:2311.00430, 2023.

Gemini Team Google. et al. gemini: a family of highly capable multimodal models, 2023.
URL https://storage.googleapis.com/deepmind-media/gemini/gemini_
1_report.pdf.

Gemini Team Google. Gemini 1.5: Unlocking multimodal understanding across millions of tokens
of context, 2024.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint, 1603.08983,
2016.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2016.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J.
Dally. Eie: Efficient inference engine on compressed deep neural network. In 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA), pp. 243–254, 2016a.
doi: 10.1109/ISCA.2016.30.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. In The International Conference
on Learning Representations (ICLR), 2016b.

Song Han, Huizi Mao, and William J. Dally. Pruning convolutional neural networks for resource
efficient inference. In The International Conference on Learning Representations (ICLR), 2017.

Babak Hassibi, David Stork, and Gregory Wolff. Optimal brain surgeon: Extensions and perfor-
mance comparisons. In J. Cowan, G. Tesauro, and J. Alspector (eds.), Advances in Neural Infor-
mation Processing Systems, volume 6. Morgan-Kaufmann, 1993.

Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang Zhang, and Yi Yang. Learning fil-
ter pruning criteria for deep convolutional neural networks acceleration. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2006–2015, 2020. doi:
10.1109/CVPR42600.2020.00208.

12

http://kyutai.org/Moshi.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_1_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_1_report.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shujie HU, Long Zhou, Shujie LIU, Sanyuan Chen, Lingwei Meng, Hongkun Hao, Jing Pan, Xun-
ying Liu, Jinyu Li, Sunit Sivasankaran, Linquan Liu, and Furu Wei. Wavllm: Towards robust and
adaptive speech large language model. arXiv preprint arXiv:2404.00656, 2024.

J. Iranzo-Sánchez, J. A. Silvestre-Cerdà, J. Jorge, N. Roselló, A. Giménez, A. Sanchis, J. Civera, and
A. Juan. Europarl-st: A multilingual corpus for speech translation of parliamentary debates. In
ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 8229–8233, 2020.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
The International Conference on Learning Representations (ICLR), 2017.

Yacine Jernite, Edouard Grave, Armand Joulin, and Tomas Mikolov. Variable computation in re-
current neural networks. In The International Conference on Learning Representations (ICLR),
2017.

Cheng-I Jeff Lai, Yang Zhang, Alexander H. Liu, Shiyu Chang, Yi-Lun Liao, Yung-Sung
Chuang, Kaizhi Qian, Sameer Khurana, David D. Cox, and James R. Glass. PARP:
prune, adjust and re-prune for self-supervised speech recognition. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 21256–21272, 2021. URL https://proceedings.neurips.cc/paper/2021/
hash/b17c0907e67d868b4e0feb43dbbe6f11-Abstract.html.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In D. Touretzky (ed.), Advances
in Neural Information Processing Systems, volume 2. Morgan-Kaufmann, 1989.

Jaesong Lee, Jingu Kang, and Shinji Watanabe. Layer pruning on demand with intermediate ctc. In
Interspeech 2021, pp. 3745–3749, 2021. doi: 10.21437/Interspeech.2021-1171.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In The International Conference on Learning Representations (ICLR), 2017.

Qi Li, Hengyi Li, and Lin Meng. Feature map analysis-based dynamic cnn pruning and the acceler-
ation on fpgas. Electronics, 11(18), 2022. ISSN 2079-9292. doi: 10.3390/electronics11182887.
URL https://www.mdpi.com/2079-9292/11/18/2887.

Hou-I Liu, Marco Galindo, Hongxia Xie, Lai-Kuan Wong, Hong-Han Shuai, Yung-Hui Li, and
Wen-Huang Cheng. Lightweight deep learning for resource-constrained environments: A survey.
ACM Comput. Surv., 56(10), jun 2024. ISSN 0360-0300.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks through
l0 regularization. In The International Conference on Learning Representations (ICLR), 2018.

Jon Macoskey, Grant P. Strimel, and Ariya Rastrow. Bifocal neural asr: Exploiting keyword spotting
for inference optimization. In ICASSP 2021 - 2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5999–6003, 2021a. doi: 10.1109/ICASSP39728.
2021.9414652.

Jonathan Macoskey, Grant P. Strimel, Jinru Su, and Ariya Rastrow. Amortized neural networks for
low-latency speech recognition. In Interspeech 2021, pp. 4558–4562, 2021b. doi: 10.21437/
Interspeech.2021-712.

OpenAI. Introducing chatgpt, 2022. URL https://openai.com/blog/chatgpt.

OpenAI. Gpt-4 technical report, 2023.

OpenAI. Gpt-4o system car, 2024. URL https://cdn.openai.com/
gpt-4o-system-card.pdf.

13

https://proceedings.neurips.cc/paper/2021/hash/b17c0907e67d868b4e0feb43dbbe6f11-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/b17c0907e67d868b4e0feb43dbbe6f11-Abstract.html
https://www.mdpi.com/2079-9292/11/18/2887
https://openai.com/blog/chatgpt
https://cdn.openai.com/gpt-4o-system-card.pdf
https://cdn.openai.com/gpt-4o-system-card.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yifan Peng, Kwangyoun Kim, Felix Wu, Prashant Sridhar, and Shinji Watanabe. Structured pruning
of self-supervised pre-trained models for speech recognition and understanding. In IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing ICASSP 2023, Rhodes Island,
Greece, June 4-10, 2023, pp. 1–5. IEEE, 2023a. doi: 10.1109/ICASSP49357.2023.10095780.
URL https://doi.org/10.1109/ICASSP49357.2023.10095780.

Yifan Peng, Jaesong Lee, and Shinji Watanabe. I3d: Transformer architectures with input-dependent
dynamic depth for speech recognition. In ICASSP 2023 - 2023 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5, 2023b.

Yifan Peng, Yui Sudo, Muhammad Shakeel, and Shinji Watanabe. Dphubert: Joint distilla-
tion and pruning of self-supervised speech models. In Naomi Harte, Julie Carson-Berndsen,
and Gareth Jones (eds.), 24th Annual Conference of the International Speech Communica-
tion Association, Interspeech 2023, Dublin, Ireland, August 20-24, 2023, pp. 62–66. ISCA,
2023c. doi: 10.21437/INTERSPEECH.2023-1213. URL https://doi.org/10.21437/
Interspeech.2023-1213.

Yifan Peng, Jinchuan Tian, Brian Yan, Dan Berrebbi, Xuankai Chang, Xinjian Li, Jiatong Shi,
Siddhant Arora, William Chen, Roshan Sharma, Wangyou Zhang, Yui Sudo, Muhammad Shakeel,
Jee-Weon Jung, Soumi Maiti, and Shinji Watanabe. Reproducing whisper-style training using an
open-source toolkit and publicly available data. In 2023 IEEE Automatic Speech Recognition and
Understanding Workshop (ASRU), pp. 1–8, 2023d.

Yifan Peng, Yui Sudo, Muhammad Shakeel, and Shinji Watanabe. OWSM-CTC: An open encoder-
only speech foundation model for speech recognition, translation, and language identification. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 10192–10209,
Bangkok, Thailand, August 2024a. Association for Computational Linguistics. doi: 10.18653/
v1/2024.acl-long.549. URL https://aclanthology.org/2024.acl-long.549.

Yifan Peng, Jinchuan Tian, William Chen, Siddhant Arora, Brian Yan, Yui Sudo, Muhammad Sha-
keel, Kwanghee Choi, Jiatong Shi, Xuankai Chang, Jee weon Jung, and Shinji Watanabe. Owsm
v3.1: Better and faster open whisper-style speech models based on e-branchformer. In Interspeech
2024, pp. 352–356, 2024b. doi: 10.21437/Interspeech.2024-1194.

Krishna C. Puvvada, Piotr Żelasko, He Huang, Oleksii Hrinchuk, Nithin Rao Koluguri, Kunal
Dhawan, Somshubra Majumdar, Elena Rastorgueva, Zhehuai Chen, Vitaly Lavrukhin, Jagadeesh
Balam, and Boris Ginsburg. Less is more: Accurate speech recognition & translation with-
out web-scale data. In Interspeech 2024, pp. 3964–3968, 2024. doi: 10.21437/Interspeech.
2024-2294.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever
(eds.). Robust Speech Recognition via Large-Scale Weak Supervision, volume 2023 of Proceed-
ings of Machine Learning Research, 2023.

Jin Sakuma, Tatsuya Komatsu, and Robin Scheibler. MLP-based architecture with variable length
input for automatic speech recognition, 2022. URL https://openreview.net/forum?
id=RA-zVvZLYIy.

Hiroshi Seki, Takaaki Hori, Shinji Watanabe, Niko Moritz, and Jonathan Le Roux. Vectorized
beam search for CTC-attention-based speech recognition. pp. 3825–3829, 2019. doi: 10.21437/
Interspeech.2019-2860.

Grant P. Strimel, Yi Xie, Brian King, Martin Radfar, Ariya Rastrow, and Athanasios Mouchtaris
(eds.). Lookahead When It Matters: Adaptive Non-causal Transformers for Streaming Neural
Transducers, Proceedings of Machine Learning Research, 2023. PMLR.

Haoyu Wang, Siyuan Wang, Wei-Qiang Zhang, Hongbin Suo, and Yulong Wan. Task-agnostic
structured pruning of speech representation models. In Naomi Harte, Julie Carson-Berndsen,
and Gareth Jones (eds.), 24th Annual Conference of the International Speech Communica-
tion Association, Interspeech 2023, Dublin, Ireland, August 20-24, 2023, pp. 231–235. ISCA,
2023. doi: 10.21437/INTERSPEECH.2023-1442. URL https://doi.org/10.21437/
Interspeech.2023-1442.

14

https://doi.org/10.1109/ICASSP49357.2023.10095780
https://doi.org/10.21437/Interspeech.2023-1213
https://doi.org/10.21437/Interspeech.2023-1213
https://aclanthology.org/2024.acl-long.549
https://openreview.net/forum?id=RA-zVvZLYIy
https://openreview.net/forum?id=RA-zVvZLYIy
https://doi.org/10.21437/Interspeech.2023-1442
https://doi.org/10.21437/Interspeech.2023-1442

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models. In
Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 6151–6162. Association
for Computational Linguistics, November 2020.

Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki Hayashi, Jiro Nishitoba, Yuya Unno, Nelson
Enrique Yalta Soplin, Jahn Heymann, Matthew Wiesner, Nanxin Chen, Adithya Renduchintala,
and Tsubasa Ochiai. Espnet: End-to-end speech processing toolkit. In Proc. Interspeech, pp.
2207–2211, 2018. doi: 10.21437/Interspeech.2018-1456.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

Yi Xie, Jonathan J. Macoskey, Martin Radfar, Feng-Ju Chang, Brian King, Ariya Rastrow, Athana-
sios Mouchtaris, and Grant Strimel. Compute cost amortized transformer for streaming asr. In
Interspeech 2022, pp. 3043–3047, 2022. doi: 10.21437/Interspeech.2022-10465.

Hainan Xu, Fei Jia, Somshubra Majumdar, He Huang, Shinji Watanabe, and Boris Ginsburg. Ef-
ficient sequence transduction by jointly predicting tokens and durations. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 38462–38484. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/xu23g.html.

Gong Yuan, Luo Hongyin, H. Liu Alexander, Karlinsky Leonid, and R. Glass James. Listen, think,
and understand. In The International Conference on Learning Representations (ICLR), 2024.

15

https://proceedings.mlr.press/v202/xu23g.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A PROBLEM FORMULATION WITH STRAIGHT-THROUGH GUMBEL-SOFTMAX
ESTIMATOR

The input audio information is denoted as x, the foundation model as θ, and the model as f(θ).
Before pruning, the output token y can be simply represented as:

y = f(x|θ)

Let the model parameters be θ, and starget denote a sparsity ratio, where 0 ≤ starget ≤ 1. The
parameter set after pruning with this sparsity is denoted as θ̃, which can be expressed using a pruning
mask z as follows:

θ̃ = θ ⊙ z, z ∈ {0, 1}|θ|,
where |θ| is the dimensionality of the parameters and ⊙ denotes the element-wise product.

Here, we follow Louizos et al. (2018), which they replace the loss function regularized with L0-
regularization with a surrogate loss function that is continuously optimizable. The objective in
Louizos et al. (2018) is expressed asR, where L is the model’s loss function and λ is the weight for
the regularization term:

R(θ) = E[L(f(x|θ), y)] + λ∥θ∥0
In Louizos et al. (2018), z is represented as a Bernoulli distribution parameterized by πj , i.e.,
q(zj |πj) = Bern(zj |πj). Using this representation of z, the above equation can be rewritten as:

R(θ̃, π) = Eq(z|π)[L(f(x|θ ⊙ z), y)] + λ

|θ|∑
j=1

πj

where |θ| is the dimensionality of the parameters and ⊙ denotes the element-wise product.

However, since z is binary (0 or 1), its gradient cannot be directly computed. To address this,
Louizos et al. (2018) defines a continuous random variable s ∼ q(s|ϕ), parameterized by ϕ, to
approximate z. Applying a hard sigmoid function h(·) to s, z can be expressed as:

z = h(p(ϵ, ϕ))

Here, Qj =
∫∞
0

sj , ϵ ∼ n(ϵ) is noise sampled from a noise distribution n, and s is determined as
a deterministic function of ϕ using a differentiable function p(ϵ, ϕ), i.e., s = p(ϵ, ϕ). Using this
representation, the objective becomes:

R(θ̃, ϕ) = En(ϵ)[L(f(x|θ ⊙ h(p(ϵ, ϕ))), y)] + λ

|θ|∑
j=1

Qj

The expectation term can then be efficiently estimated using Monte Carlo sampling.

In Louizos et al. (2018), the binary concrete distribution was adopted for s. In our implementation,
we utilized PyTorch, which provides a built-in function for Gumbel-Softmax. Considering the sim-
plicity of implementation and reproducibility, we applied Gumbel-softmax to the above formulation
in this study. Specifically, s, initially formulated using a sigmoid function, was redefined as a 2-class
classification task that determines whether to activate the model parameters. This means the result
of p(·) becomes two values. During the forward computation, the hard sigmoid function h(·) was
replaced by the straight-through Gumbel-softmax estimator t(·). This allowed zj to be represented
as a binary value, strictly 0 or 1. Consequently, the loss during the forward pass can be expressed
as:

R(θ̃, ϕ) = En(ϵ)[L(f(x|θ ⊙ t(p(ϵ, ϕ))), y)] + λ

|θ|M∑
j=1

t(p(ϵ, ϕj))

where |θ|M represents the total number of modules in the model. The summation of probabilities Q
becomes unnecessary due to the binary output of Gumbel-softmax, allowing for a simple summation
instead. In the straight-through Gumbel-softmax approach, they approximate the gradient of the
continuous variable in the backward pass.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.1 GATE PREDICTOR

To make pruning more dynamic, researchers have replaced the function p(ϵ, ϕ) with a trainable
neural network g(·). In Peng et al. (2023b), they designed this gate predictor to incorporate acoustic
context information Cacoustic, allowing the equation to be reformulated as:

R(θ̃, ϕ) = E[L(f(x|θ ⊙ t(g(Cacoustic))), y)] + λ

|θ|M∑
j=1

t(g(Cacoustic, j))

In this work, we incorporated language context, Clanguage, and task information, Ctask, reformulating
the above equation as:

R(θ̃, ϕ) = E[L(f(x|θ⊙ t(g(Cacoustic, Clanguage, Ctask))), y)] + λ

|θ|M∑
j=1

t(g(Cacoustic, Clanguage, Ctask, j))

B DATA SIZE

The language-specific data volumes used for training OWSM-v3.1 are shown in Table 2. For the
three languages used in this experiment, we selected data from the Voxforge dataset, which includes
the same languages as Europarl-ST. We created a joint dataset with Europarl-ST, and the training and
evaluation process is aligned with the section 4. To account for the potential impact on languages
underrepresented in the pre-training data, We selected Hungarian and Bulgarian from Fleurs dataset
to account for the potential impact on languages underrepresented in the pre-training data. All hyper
parameters were kept identical to those used in section 4.

Table 3 shows the results of additional training conducted on these languages. It seems increasing
the dataset size contributes to learning more effective pruning masks. However, as VoxForge is
included in the OWSM training dataset, potential data overlap remains a concern, as discussed in
Section 3.1. The figure 12 shows the loss curves during training with three different datasets: the
Europarl-ST dataset (left), the joint dataset with Fleurs (middle), and the joint dataset with VoxForge
(right). It is evident that the training loss decreases significantly in the latter two cases, supporting
the data overlap concerns.

For low-resource languages, Table 4 presents the WER results when the encoder was pruned. While
pruning the decoder resulted in accuracy declines similar to higher-resource languages like French
and German, pruning the encoder caused more significant degradation at lower sparsity ratios.

Additionally, the sparsity patterns for Hungarian ASR, with the encoder and decoder pruned to 70%
sparsity, showed no significant deviations from trends observed in experiments with German or
French. These results highlight the effectiveness of module-level pruning for the decoder, even in
low-resource language settings.

Table 2: Data size used in OWSM-v3.1 pre-training for each language.

Language amaount (h)
French 2489
German 3704
Italian 707
Hungarian 97
Bulgarian 18

C LAYER-LEVEL PRUNING

To address the concern on comparing the performance on other pruning methods, we conducted
experiments with layer-level pruning. The example pruning pattern on layer-level skipping is shown
in figure 13. The table 5 shows the WER of German ASR, where only decoder was pruned. The

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 3: Additional dataset with Voxforge and Fleurs. We show WER for German, Hungarian, and
Bulgarian. Decoder was pruned from OWSM-v3.1 model.

target sparsity Europarl-ST + voxforge + Fleurs (Hungarian) + Fleurs (Bulgarian)

0.0 13.5 10.1 33.3 23.9
0.1 15.3 11.9 35.1 29.5
0.3 15.9 12.3 34.1 24.2
0.5 20.4 15.7 40.1 29.1
0.7 17.2 14.1 36.3 26.5
0.9 24.5 28.8 42.1 36.2

Table 4: Additional results for Hungarian and Bulgarian. We show WER for these two languages
when encoders were pruned separately.

Target Sparsity Hungarian Bulgarian
0.1 38.7 38.2
0.3 42.5 37.7
0.5 42.1 38.3
0.7 54.4 44.2
0.9 89.2 78.8

results indicate that up to 70% sparsity, there is no significant difference between skipping at the
layer level and skipping at the module level. However, at lower sparsity levels, the layer-level
approach appears to perform better, whereas at higher sparsity levels, the module-level approach
demonstrates superior performance. Based on these findings, for the decoder side, we believe that
at higher sparsity levels, the roles and processing order of individual modules are more effectively
optimized compared to the more coarse-grained approach of skipping entire layers, leading to the
observed results.

The table 5 shows the WER of German ASR, where encoder was pruned. The degradation in
accuracy on the encoder side is significant, leading us to believe that layer-level pruning is not well-
suited for speech foundation models. With layer-level pruning, even cgMLP, which is preserved in
module-level pruning, is forcibly removed. This results in the loss of parameters that play a critical
role on the encoder side, highlighting a key disadvantage of this approach.

We also calculated the FLOPs for these models and presented in table 6. Since different modules
are utilized depending on whether module-level or layer-level pruning is applied, we examined the
resulting differences. The table below shows the FLOPs when the encoder is pruned. As a result,
we found that module-level pruning results in slightly lower FLOPs compared to layer-level prun-
ing. These findings further emphasize the importance of module-level pruning from a performance
perspective.

(a) Encoder (b) Decoder

Figure 11: The sparsity plot for Hungarian ASR shows the results when the encoder and decoder
were pruned separately, with the target sparsity ratio set to 70%. The pruning patterns exhibit no
notable differences compared to those observed in high-resource languages.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Europarl-ST (b) Fleurs (c) Voxforge

Figure 12: Loss curve for pruning the decoder with sparsity ratio of 30%. We show curves from
three different datasets; Europarl-ST (left), joint dataset with Flrues (middle), and the joint dataset
with VoxForge (right). It is evident that the training loss decreases in the latter two cases, supporting
the data overlap concerns.

Table 5: WER on module-level pruning and layer-level pruning. Results from German ASR, with
only decoder pruned (left) and only encoder pruned (right).

Target Sparsity Module Skip Layer Skip

0.1 15.8 15.4
0.3 16.4 15.2
0.5 16.2 16.5
0.7 18.3 18.7
0.9 26.4 99.9

Decoder pruned.

Target Sparsity Module Skip Layer Skip

0.1 14.5 31.3
0.3 15.0 32.0
0.5 16.8 34.2
0.7 25.1 40.2
0.9 47.3 108.6

Encoder pruned.

Table 6: Comparison of GFLOPs between module skip and layer skip at different target sparsity
levels. We used the fvcore library to calculate the FLOPs. FLOPs were computed over multiple
utterances, and the average value was taken. For reference, the FLOPs for the model without pruning
were 3781.

Target Sparsity Module Skip (GFLOPs) Layer Skip (GFLOPs)
0.1 3697 3697
0.3 3690 3692
0.5 3669 3666
0.7 3633 3640
0.9 3613 3620

D UNSTRUCTURED PRUNING

We further experimented the difference based on pruning strategy: unstractured pruning or struc-
tured pruning. Table 7 shows the comparison between magnitude-based unstructured pruning and
PARP. Fine-tuning was performed on a training dataset that included both ASR and ST, and WER
was compared on the German ASR task.

Even with unstructured pruning, we could see that pruning the decoder keeps the performance. How-
ever, compared to module-level results at the same sparsity ratio, module-level pruning, especially
on the encoder side, maintained accuracy more effectively.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 13: The sparsity plot when layers were skipped from encoder with the target sparsity ratio
set to 70%. This model was trained on German-to-Italian ST.

Table 7: WER results for German ASR with different unstructured pruning techniques.

Model WER (%)
Original model (without fine-tuning) 24.6
+ Unstructured pruning (sparsity = 0.1) 24.5
+ Unstructured pruning (sparsity = 0.3) 24.5
+ PARP (sparsity = 0.1, applied to encoder) 31.2
+ PARP (sparsity = 0.3, applied to encoder) 31.8
+ PARP (sparsity = 0.1, applied to decoder) 19.8
+ PARP (sparsity = 0.3, applied to decoder) 16.4

E SPARSITY LOSS

In Peng et al. (2023b), pruning is applied to the Transformer encoder by targeting the self-attention
and feed-forward network modules. The sparsity loss function, Lsparsity, is defined as:

Lsparsity = λ

(
1

2N

N∑
l=1

(g
(l)
self-ATT + g

(l)
FFN)

)
,

where g(l)self-ATT, g
(l)
FFN are the gate probabilities of each module in the l-th layer, and the N is the num-

ber of layers. λ is a constant loss weight for the sparsity and the value is determined heuristically.
Peng et al. (2023b) aims to achieve model sparsity by controlling the magnitude of the loss through
λ. In Peng et al. (2023b), different values of λ will lead to different inference costs, as the final
sparsity ratio of the model is controlled by sparsity loss. The problem here is that we cannot train
the model to achieve a specific sparsity ratio.

Unlike Peng et al. (2023b), where a constant regularization factor λ is used, we followed Wang
et al. (2020), that introduces a Lagrange multiplier λ1 and λ2 to calculate the sparsity loss. Our
experiments showed that only using the fixed λ did not allow the model to achieve the desired
sparsity, particularly when attempting to prune over 70% of the modules. To address this, Wang
et al. (2020) introduces a penalty term, defined as:

Lpenalty = λ1(g − starget) + λ2(g − starget)
2

where λ1 and λ2 are Lagrange multipliers updated based on the model’s sparsity. In Wang et al.
(2020), the initial values of λ1 and λ2 are set to 0, and they updated the parameter if g = starget is
not true.

Lpenalty can take a negative value when −λ2

λ1
≤ g − starget ≤ 0 (Details are in E.1). If Lpenalty

becomes negative, it complicates solving the minimization problem when combined with the ASR
and ST losses. To address this issue, we employed a function to calculate the absolute value of

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

g − starget, so that the Lpenalty remains non-negative. For the sake of simplicity, we set the λ1 =
λ2 = 1 and employed a constant α on top of it. Starting from 1, we gradually increase the α unless
it reaches the desired sparsity. The visualization of each cost function is in the Appendix. Thus, the
sparsity loss we used in this experiment becomes Eq. 1. When calculating the Lsparsity, starget was
gradually increased following Wang et al. (2020).

E.1 VISUALIZATION ON SPARSITY LOSS

The purpose of Lagrange multipliers in section 3.3 is to make the Lpenalty more aggressive penalty
term. So we hypothesized that simply introducing a regularization term, which has similar role, we
can make the model prune the desired number of modules. Let’s visualize the graphs of different
formulation we discussed. Figure 14 illustrates the graphs of various penalty terms. We define
α = gl0 − starget, where the x-axis represents α and the y-axis represents Lsparsity.

The Lagrange multiplier approach, can be rewritten as a quadratic function: Lsparsity = (x+ λ1

2λ2
)2−

λ2
2

4λ2
1

This is represented by the green curve in Figure 14. They move the vertex of this green curve
to get the maximum.

In our implementation, we set λ1 = λ2 = 1 and introduced an overall coefficient α. Thus, Lsparsity

becomes: Lsparsity = α(x + 1
2)

2 − α
4 Increasing this coefficient α lowers the vertex of the blue

quadratic function. For example, setting α = 5 results in the red curve, which has a steeper slope
for x > 0.

In our approach, we increase the value of this coefficient when the difference between the actual
sparsity and the target sparsity exceeds a certain threshold (0.05). This results in a more aggressive
penalty, helping to adjust the model towards the desired sparsity level. This quadratic penalty func-
tion allows for a more nuanced and effective approach to maintaining target sparsity compared to
the constant penalty method.

Figure 14: Visualization on different Lsparsity Wang et al. (2020) moves the green line to maximize
the loss. Our method simply shifts the vertex downward. For example, by lowering the vertex of the
green line, we transform it into a penalty function resembling the red line.

F CONTEXT-AWARE GATE PROBABILITY

The gate probability g is calculated using a separate predictor for each module. Let the gate predictor
be denoted as G(), the speech features input to the Gate Predictor be yGP ∈ RT×D, the condition
representing the language and task be ccond ∈ RDcond , and the total number of layers be L. Here,
T represents the number of frames in each speech features, D is the number of dimensions of the
speech features, and Dcond is the number of dimensions of the condition representing the language
and task. Then, the gate probability g of a certain module is calculated as follows:

Note that gl0 can be calculated as gl0 = E[g].

To prevent early learning instability, we avoid initializing the weights of the Gate Predictor ran-
domly. If initialized randomly, approximately 50% of the modules may be removed in the initial

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Algorithm 1 Gate Predictor

xpooled ← Average(yGP) ▷ Average over time dimension, xpooled ∈ RD

x← Concat(ccond, xpooled) ▷ Concatenate conditional info, x ∈ RD+Dconf

logit← Reshape(G(x)) ▷ Reshape G(x) to logit ∈ RL×2

g ← GumbelSoftmax(logit, axis = 1) ▷ Compute Gumbel-Softmax for layers
g ← g[:, 1] ▷ Select second column from Gumbel-Softmax output

learning stages, preventing the model’s ability to gradually decrease the number of active modules.
To address this, we adjust the bias of the final layer during the initialization. By configuring the g to
output values close to 1 for all modules initially, we ensure that the model begins with full activation.
This setup encourages a gradual reduction in the number of utilized modules as training progresses.

In our experiment, we followed Peng et al. (2023b) and used a two-layer MLP with an intermediate
size of 32. We also examined whether increasing the intermediate layer size of the Gate Predictor to
512 would affect pruning. However, no changes in pruning trend were observed. This experiment
confirmed a 50% sparsity ratio when fine-tuning with ASR and ST training data. Based on these
results, we opted to use a Gate Predictor model of the same size as Peng et al. (2023b).

G HEATMAPS AND TABLES

Table 8: Comparison of WER (%) for French, German, and Italian using encoder-sparsified model,
decoder-sparsified model, and jointly sparsified model.

Sparse Encoder Sparse Decoder Jointly Sparsified Encoder-Decoder

Baseline 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

French 10.3 11.4 11.7 12.8 18.3 84.8 11.3 13.4 16.4 13.3 26.5 10.9 11.7 14.1 27.1 84.8
German 13.5 14.4 14.8 16.3 21.0 80.8 15.3 15.9 20.4 17.2 24.5 14.3 15.4 17.8 28.8 80.8
Italian 12.8 14.5 14.4 16.5 22.5 86.0 13.8 13.9 20.1 15.4 26.5 13.5 14.7 17.5 32.5 86.0

Figure 15: Visualization of E[genc] when encoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
French, the second row represents German, and the third row represents Italian. The other settings
are consistent with those in Figure 3.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 16: Visualization of E[gdec] when decoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
French, the second row represents German, and the third row represents Italian. The other settings
are consistent with those in Figure 3.

Figure 17: Visualization of E[genc] when encoder and decoder was pruned jointly. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the French, the second row represents German, and the third row represents Italian. The
other settings are consistent with those in Figure 3.

Table 9: BLEU score on each speech translation direction for Sparse Encoder, Sparse Decoder, and
Jointly Sparsified Encoder-Decoder

Sparse Encoder Sparse Decoder Jointly Sparsified Encoder-Decoder

src trg baseline 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

fra de 12.2 12.3 11.9 12.3 9.2 2.5 12.9 13.0 12.2 10.3 5.3 12.2 11.6 9.4 5.2 0.4
it 13.5 12.8 12.7 12.3 10.2 1.8 12.5 11.8 12.0 9.3 3.1 12.8 12.0 8.8 4.2 0.0

deu fr 9.4 9.1 8.7 8.5 6.6 2.2 9.3 9.2 9.0 6.4 3.1 8.9 8.5 6.3 3.2 3.1
it 7.5 7.0 7.0 6.6 5.1 1.3 8.4 8.4 7.9 6.4 2.8 7.1 6.5 4.7 2.3 0.0

ita de 11.8 11.1 10.8 10.1 8.2 2.8 12.1 12.0 11.8 9.4 5.5 11.2 10.3 8.5 4.6 0.7
fr 14.0 12.8 12.6 11.8 9.9 3.1 13.0 12.3 11.8 8.3 3.3 12.8 12.0 8.8 4.2 0.9

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 18: Visualization of E[gdec] when encoder and decoder was pruned jointly. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the French, the second row represents German, and the third row represents Italian. The
other settings are consistent with those in Figure 3.

Figure 19: Visualization of E[genc] when encoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
French-to-German, the second row represents French-to-Italian translation. The other settings are
consistent with those in Figure 3.

Figure 20: Visualization of E[gdec] when decoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
French-to-German, the second row represents French-to-Italian translation. The other settings are
consistent with those in Figure 3.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 21: Visualization of E[genc] when encoder was jointly pruned with decoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the French-to-German, the second row represents French-to-Italian translation. The other
settings are consistent with those in Figure 3.

Figure 22: Visualization of E[gdec] when decoder was jointly pruned with encoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the French-to-German, the second row represents French-to-Italian translation. The other
settings are consistent with those in Figure 3.

Figure 23: Visualization of E[genc] when encoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
German-to-French, the second row represents German-to-Italian translation. The other settings are
consistent with those in Figure 3.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 24: Visualization of E[gdec] when decoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
German-to-French, the second row represents German-to-Italian translation. The other settings are
consistent with those in Figure 3.

Figure 25: Visualization of E[genc] when encoder was jointly pruned with decoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the German-to-French, the second row represents German-to-Italian translation. The
other settings are consistent with those in Figure 3.

Figure 26: Visualization of E[gdec] when decoder was jointly pruned with encoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the German-to-French, the second row represents German-to-Italian translation. The
other settings are consistent with those in Figure 3.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 27: Visualization of E[genc] when encoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
Italian-to-French, the second row represents Italian-to-German translation. The other settings are
consistent with those in Figure 3.

Figure 28: Visualization of E[gdec] when decoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
Italian-to-French, the second row represents Italian-to-German translation. The other settings are
consistent with those in Figure 3.

Figure 29: Visualization of E[genc] when encoder was jointly pruned with decoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the Italian-to-French, the second row represents Italian-to-German translation. The other
settings are consistent with those in Figure 3.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 30: Visualization of E[gdec] when decoder was jointly pruned with encoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the Italian-to-French, the second row represents Italian-to-German translation. The other
settings are consistent with those in Figure 3.

Table 10: BLEU score on each speech translation direction and WER for ASR tasks for Sparse
Encoder, Sparse Decoder, and Jointly Sparsified Encoder-Decoder.

Sparse Encoder Sparse Decoder Jointly Sparsified Encoder-Decoder

src trg metric 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

fr
fr WER 11.6 11.9 13.1 22.3 46.8 12.6 13.4 13.2 15.0 25.9 11.2 12.4 14.5 24.2 107.0
de BLEU 8.4 8.6 7.9 3.9 2.0 11.3 11.6 10.2 9.0 5.8 10.7 9.9 8.3 5.5 0.6
it BLEU 12.2 12.3 11.6 7.6 2.5 12.3 11.9 11.2 9.6 4.7 10.2 9.5 7.8 2.9 0.0

de
de WER 14.5 15.0 16.8 25.1 47.3 15.8 16.4 16.2 18.3 26.4 14.6 15.0 18.2 26.5 105.0
fr BLEU 6.1 5.8 5.0 3.1 1.5 8.2 8.3 7.7 6.3 4.0 8.0 7.3 6.0 3.8 0.4
it BLEU 6.1 6.0 5.7 3.4 1.2 6.9 7.0 6.2 4.9 2.6 4.9 4.7 3.7 1.7 0.0

it
it WER 14.4 15.2 17.3 27.6 86.0 14.5 15.2 15.0 16.7 28.9 13.9 15.1 17.8 28.7 162.6
de BLEU 6.5 6.5 6.2 3.9 2.2 10.6 10.4 9.8 8.4 5.8 7.1 8.7 7.4 3.2 0.1
fr BLEU 13.0 12.6 11.9 8.1 2.9 12.6 12.6 11.9 9.5 5.6 12.6 11.5 9.9 5.6 0.6

Figure 31: Visualization of E[genc] and E[gdec] when encoder and decoder was pruned separately for
French ASR. The columns represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from
left to right. The first row represents the encoder, the second row represents the decoder. The other
settings are consistent with those in Figure 3.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 32: Visualization of E[genc] and E[gdec] when encoder and decoder was pruned jointly for
French ASR. The columns represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from
left to right. The first row represents the encoder, the second row represents the decoder. The other
settings are consistent with those in Figure 3.

Figure 33: Visualization of E[genc] when encoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
French-to-German, the second row represents French-to-Italian translation. The other settings are
consistent with those in Figure 3.

Figure 34: Visualization of E[gdec] when decoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
French-to-German, the second row represents French-to-Italian translation. The other settings are
consistent with those in Figure 3.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 35: Visualization of E[genc] when encoder was jointly pruned with decoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the French-to-German, the second row represents French-to-Italian translation. The other
settings are consistent with those in Figure 3.

Figure 36: Visualization of E[gdec] when decoder was jointly pruned with encoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the French-to-German, the second row represents French-to-Italian translation. The other
settings are consistent with those in Figure 3.

Figure 37: Visualization of E[genc] and E[gdec] when encoder and decoder was pruned separately for
German ASR. The columns represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from
left to right. The first row represents the encoder, the second row represents the decoder. The other
settings are consistent with those in Figure 3.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Figure 38: Visualization of E[genc] and E[gdec] when encoder and decoder was pruned jointly for
German ASR. The columns represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from
left to right. The first row represents the encoder, the second row represents the decoder. The other
settings are consistent with those in Figure 3.

Figure 39: Visualization of E[genc] when encoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
German-to-French, the second row represents German-to-Italian translation. The other settings are
consistent with those in Figure 3.

Figure 40: Visualization of E[gdec] when decoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
German-to-French, the second row represents German-to-Italian translation. The other settings are
consistent with those in Figure 3.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure 41: Visualization of E[genc] when encoder was jointly pruned with decoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the German-to-French, the second row represents German-to-Italian translation. The
other settings are consistent with those in Figure 3.

Figure 42: Visualization of E[gdec] when decoder was jointly pruned with encoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the German-to-French, the second row represents German-to-Italian translation. The
other settings are consistent with those in Figure 3.

Figure 43: Visualization of E[genc] and E[gdec] when encoder and decoder was pruned separately
for Italian ASR. The columns represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from
left to right. The first row represents the encoder, the second row represents the decoder. The other
settings are consistent with those in Figure 3.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Figure 44: Visualization of E[genc] and E[gdec] when encoder and decoder was pruned jointly for
Italian ASR. The columns represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from
left to right. The first row represents the encoder, the second row represents the decoder. The other
settings are consistent with those in Figure 3.

Figure 45: Visualization of E[genc] when encoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
Italian-to-French, the second row represents Italian-to-German translation. The other settings are
consistent with those in Figure 3.

Figure 46: Visualization of E[gdec] when decoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
Italian-to-French, the second row represents Italian-to-German translation. The other settings are
consistent with those in Figure 3.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Figure 47: Visualization of E[genc] when encoder was jointly pruned with decoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the Italian-to-French, the second row represents Italian-to-German translation. The other
settings are consistent with those in Figure 3.

Figure 48: Visualization of E[gdec] when decoder was jointly pruned with encoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the Italian-to-French, the second row represents Italian-to-German translation. The other
settings are consistent with those in Figure 3.

34

	Introduction
	Related Work
	Methods
	Open Whisper-Style Speech Models
	Module-level pruning
	pruning
	Context-Aware Gate Predictor

	Experiments
	Experimental Setup
	Results
	Multi-lingual ASR
	Multi-lingual ST
	Pruning by Joint ASR and ST

	Inference efficiency

	Conclusion
	Reproducibility
	Problem formulation with Straight-through Gumbel-Softmax Estimator
	Gate Predictor

	Data size
	Layer-level pruning
	Unstructured Pruning
	Sparsity Loss
	Visualization on sparsity loss

	Context-Aware Gate Probability
	Heatmaps and Tables

