
Learning Belief Representations for Partially Observable Deep RL

Andrew Wang * 1 2 Andrew C. Li * 1 2 Toryn Q. Klassen 1 2 3 Rodrigo Toro Icarte 4 5 Sheila A. McIlraith 1 2 3

Abstract
Many important real-world Reinforcement Learn-
ing (RL) problems involve partial observability
and require policies with memory. Unfortunately,
standard deep RL algorithms for partially observ-
able settings typically condition on the full his-
tory of interactions and are notoriously difficult
to train. We propose a novel deep, partially ob-
servable RL algorithm based on modelling belief
states — a technique typically used when solv-
ing tabular POMDPs, but that has traditionally
been difficult to apply to more complex environ-
ments. Our approach simplifies policy learning
by leveraging state information at training time,
that may not be available at deployment time. We
do so in two ways: first, we decouple belief state
modelling (via unsupervised learning) from policy
optimization (via RL); and second, we propose a
representation learning approach to capture a com-
pact set of reward-relevant features of the state.
Experiments demonstrate the efficacy of our ap-
proach on partially observable domains requiring
information seeking and long-term memory.

1. Introduction
The world is inherently partially observable. Agents (hu-
mans or otherwise) operating in real-world environments
rarely have full information about environment state. In
the context of Reinforcement Learning (RL), partial observ-
ability is identified as one of nine important challenges to
the deployment of RL in real-world settings (Dulac-Arnold
et al., 2021). Nevertheless, in many real-world settings we
are able to train our RL agents under full or near-full observ-
ability using a simulator or other generative model of the

*Equal contribution 1Department of Computer Science, Uni-
versity of Toronto 2Vector Institute 3Schwartz Reisman Institute
for Technology and Society 4Pontificia Universidad Católica de
Chile 5Centro Nacional de Inteligencia Artificial. Correspondence
to: Andrew Wang <andrewwang@cs.toronto.edu>, Andrew Li
<andrewli@cs.toronto.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

environment. If the RL agent will subsequently be operat-
ing in a partially observable environment, we would like to
ensure that the agent’s learned policy is robust to any lack
of observability it will encounter. Sometimes this partial
observability is dynamic and unpredictable – perhaps the
result of visual occlusion. In a subset of such cases, partial
observability can be mitigated or rectified by the agent tak-
ing some action such as changing its viewpoint or opening a
box to see what’s inside. In other cases, aspects of the state
that are unobservable at deployment time are known or can
be inferred because of known sensor placement, such as the
fixed sensors in a car engine or other electro-mechanical de-
vice. Our claim is that having full observability at learning
time, combined with knowing what won’t be observable at
deployment time, enables an RL agent to learn a policy that
is more robust to its partial observability. How we build RL
systems to exploit this knowledge is the topic of this paper.

Motivated by this setting, we propose a novel approach for
partially observable reinforcement learning (PO-RL) that ex-
ploits a fully observable state at training time. Our approach
is inspired by traditional belief state methods for solving
POMDPs (Monahan, 1982; Kaelbling et al., 1998; Silver &
Veness, 2010), which naturally incorporate inference and
memory. While these methods are limited to POMDPs
with small, tractable state spaces and known models, our
approach targets domains with complex, high-dimensional
states and observations and unknown models. Furthermore,
while many applied problems and their solutions involve
estimating pre-determined state variables (e.g. localization
(Lauri & Ritala, 2016), decentralized robotic coordination
(Spaan et al., 2010); see Lauri et al. (2022) for more), our
approach is general, assuming no such knowledge.

Our end-to-end approach achieves this via three key steps:

1. Representation Learning: we extract critical features
of the state that are task-relevant and unobservable to
the agent at deployment time to produce a compact
state encoding;

2. Belief Modelling: we model the complex belief distri-
bution over these state encodings given histories using
variational autoencoders (Kingma & Welling, 2014);

3. Policy Learning: we incorporate the learned belief to
serve as a memory for an RL policy.

1

Learning Belief Representations for Partially Observable Deep RL

This approach leads to a number of conceptual advantages
over existing PO-RL approaches, which we highlight with
examples throughout the paper. In particular, we claim that
leveraging state information throughout training can pro-
vide a stronger learning signal than rewards or prediction of
observations. We support this with experiments and abla-
tions that demonstrate the effectiveness of our approach in
partially observable image-based environments that require
active information seeking, long-term memory, and proba-
bilistic state inference, which pose a significant challenge to
deep PO-RL methods (Liu et al., 2021; Pleines et al., 2023).

We summarize our contributions below.

• We propose a new end-to-end approach for RL under
partial observability inspired by traditional belief state
methods for POMDPs. Our method is scalable to set-
tings with high-dimensional inputs, does not rely on a
model of the environment, and makes no assumptions
on the representation of states or observations.

• We outline the conceptual benefits of our approach
on tasks involving long-term memory, active informa-
tion seeking, and probabilistic inference, which pose a
significant challenge to existing PO-RL methods.

• We demonstrate the advantages of our method through
experiments and ablations on image-based MiniGrid
environments (Chevalier-Boisvert et al., 2018) as
well as a continuous-control environment with high-
dimensional image observations.

2. Preliminaries
2.1. POMDPs

We consider an environment modelled as a partially ob-
servable Markov Decision Process (POMDP). Formally, a
POMDP is a tuple ⟨S,O,A,P,R, ω, γ, µ⟩ where S,O,A
are the state, observation and action spaces, respectively,
P : S × A → ∆S is the state-action transition function,
ω : S → ∆O is the observation probability distribution,
R : S × A is the reward function, γ is the discount factor
and µ is the initial state distribution (Åström, 1965; Kael-
bling et al., 1998). Each episode, the environment is set to
an initial state s0 ∼ µ(·). At every step t, the agent observes
ot ∼ ω(s), executes an action at ∈ A, and receives reward
rt = R(st, at). The environment then transitions to the
next state st+1 ∼ P(st, at).

Belief MDPs. One technique often used for solving tabular
POMDPs with known transition and observation probabil-
ities is to learn a policy over belief states. The belief state
bt ∈ ∆S at time t is the probability distribution over states
st given history ht. Any POMDP can be equivalently formu-
lated as an MDP over belief states (Kaelbling et al., 1998);

Figure 1. Visualization of the Sphinx running example. The agent
must choose a single box to open from three boxes, one of which
randomly contains a +1 reward. However, the agent can talk to the
sphinx (represented by the information symbol), incurring a cost
of −0.2 but revealing the correct box for a single timestep. Left:
The agent’s observation. The agent cannot see which box contains
the +1 reward. Right: The corresponding state (unobservable to
the agent at deployment time). The box at the bottom right corner
contains the +1 reward.

thus the belief state bt can be seen as a sufficient statistic of
the history ht towards deciding optimal actions.

2.2. Problem Statement

We begin with the reinforcement learning (Sutton & Barto,
2018) framework, where transition probabilities, obser-
vation probabilities, and the reward function are not
known. The agent interacts with the environment by re-
ceiving observations ot and executing actions at, with
the goal of maximizing the expected discounted return
E[
∑∞

t=0 γ
trt+1]. In POMDPs, the optimal policy π∗ may

depend on the entire history of observations and actions
ht = (o0, a0, . . . , ot−1, at−1, ot).

In this paper, we assume that both states st and observations
ot can be observed by the agent during training, while only
observations ot are observable during deployment. Our goal
remains unchanged – we aim to learn a policy π(at|ht) that
depends only on the observation-action history to maximize
the expected discounted return when deployed. This setting
has also been referred to as asymmetric RL or offline learn-
ing/online execution (Pinto et al., 2018; Baisero & Amato,
2022).

2.3. Running Example (Sphinx)

As a running example, we consider a partially observable
environment called Sphinx (inspired by a meta-RL task by
Liu et al. (2021)) that emphasizes information-seeking and
long-term memory. Illustrated in Figure 1, the gridworld
environment contains three boxes and a sphinx. One box
contains a +1 reward (while the others contain nothing) and
opening any box immediately ends the episode. The agent
cannot observe which box contains the reward, but the agent
can reveal it for a single timestep by speaking to the sphinx,
for a cost of −0.2. The optimal strategy is to speak to the

2

Learning Belief Representations for Partially Observable Deep RL

sphinx (once), remember the correct box, and then visit that
box, always yielding 0.8 return. If the agent does not speak
to the sphinx, the agent must guess between the three boxes,
yielding only 0.33 return on average.

As remarked by Liu et al. (2021), deep RL often struggles
to find optimal solutions to such problems that require the
agent to seek information due to an exploration-exploitation
dilemma. Behaving optimally requires the agent to speak to
the sphinx (exploration) – however, as the agent does not im-
mediately know how to exploit the sphinx’s advice, this will
result in a net negative expected return for a large duration
of training. Often, the agent will learn to stop speaking to
the sphinx altogether, precluding it from learning an optimal
policy.

We also observe that for this task, the only state information
missing from the agent’s observation is the identity of the
box containing the reward. Thus, a belief over states can
be compactly represented as the agent’s current observation
together with a categorical belief over the identity of the
correct box. This categorical belief is a function of the
history ht and should assign 1

3 probability for each box if
the agent has never spoken to the sphinx, and otherwise, it
should assign full probability mass to the box revealed by
the sphinx.

3. Related Work
Model-free Deep RL. Most model-free deep RL algorithms
can be adapted for partially observable environments by
adding a recurrent network to the policy. Deep Recurrent Q-
Networks (DRQN) (Hausknecht & Stone, 2015; Zhu et al.,
2017) adds an LSTM (Hochreiter & Schmidhuber, 1997)
to the DQN architecture (Mnih et al., 2013) to condition
on past observations and/or actions. Heess et al. (2015)
and Meng et al. (2021) introduced recurrent variants of the
Deterministic Policy Gradient (Silver et al., 2014) algorithm.
Zhang et al. (2016) trained memory-based policies using
a combination of trajectory optimization and supervised
learning. Toro Icarte et al. (2020) trained an agent to utilize
an external memory for partially observable tasks.

Common partially observable RL tasks include flickering
Atari, in which the screen is obscured with some probabil-
ity, memorizing object locations (Heess et al., 2015), and
continuous control from noisy sensors. Such tasks do not
involve information seeking, since the agent does not have
significant control over the information it can acquire.

Predicting the Future. Many approaches learn latent state
representations in POMDPs that are predictive of future
rewards and observations. Lee et al. (2020), Hafner et al.
(2019), Wang & Tan (2021), and Chen et al. (2022) trained
latent variable models to predict future observations or
rewards, but were evaluated in environments with little

need for long-term memory. Guo et al. (2018) learn be-
lief representations in partially observable environments,
but do not use the representations downstream for de-
cision making. Variational Recurrent Neural Networks
(VRNNs) (Chung et al., 2015) extend Variational Autoen-
coders (VAEs) (Kingma & Welling, 2014) to model se-
quential dependencies of latent variables. Han et al. (2020)
adapted VRNNs into a control algorithm for POMDPs
called Variational Recurrent Model (VRM) that takes ac-
tions into account. However, learning latent states that cap-
ture long-term dependencies is known to be challenging
(Hafner et al., 2019).

Exploiting State Information. Traditional POMDP ap-
proaches often model belief states using a model of the
environment. Monahan (1982), Littman (1994), and Cas-
sandra et al. (1997) proposed exact methods for discrete
POMDPs by representing value functions over beliefs as a
set of hyperplanes. Monte-Carlo approaches (particle filter-
ing) can be used to approximate belief state updates (Katt
et al., 2017; Thrun, 1999; Silver & Veness, 2010). Unfor-
tunately, these techniques are typically limited to POMDPs
with small state spaces and known dynamics.

In the absence of an environment model, the asymmetric RL
framework assumes observable states only during training.
Pinto et al. (2018) proposed a heuristic actor-critic method
where the critic conditions on ground-truth states (as the
critic is not necessary for deploying the final policy) instead
of histories. Baisero & Amato (2022) showed that such
methods can exhibit bias for an agent under partial observ-
ability and proposed an unbiased actor-critic method that
incorporates state information.

A number of deep RL problems that can be cast as POMDPs
are often solved using privileged state information during
training. Humplik et al. (2019) viewed the problem of meta-
RL as inferring the task from a distribution. Liu et al. (2021)
similarly leveraged encodings of the task as state informa-
tion to improve meta-RL, but explicitly treated information
gathering and reward exploitation as separate objectives.
Reward functions specified in a formal language are of-
ten non-Markovian (Vaezipoor et al., 2021), and typically
exploit privileged information about the task state during
training and/or deployment (Tuli et al., 2022; Li et al.; Toro
Icarte et al., 2019). The centralized training, decentralized
execution paradigm for multi-agent RL (Sharma et al., 2021)
assumes that the local observations of agents are common
knowledge during training. For autonomous driving, Chen
et al. (2020) trained a limited-observability agent (with im-
age inputs) to imitate an agent with a full layout of the
environment. Kumar et al. (2021) leveraged the state of a
simulator to improve sim-to-real transfer of a robot.

3

Learning Belief Representations for Partially Observable Deep RL

Figure 2. Illustrative diagram of the three training phases of Believer. Left: Representation learning. We train a stochastic mapping from
states to latent representations that captures task-relevant, unobservable aspects of the state. Center: Belief modelling. Given histories, we
predict a belief over latent states using VAEs. Right: Policy learning. We train a policy conditioned on the current observation and belief.
The belief aids in long-term memory and probabilistic inference.

4. Method
Inspired by traditional POMDP algorithms that model a
belief over states, we present a novel end-to-end approach,
which we call Believer, for learning policies in partially
observable, deep RL environments. To scale our approach
to complex settings with high-dimensional state represen-
tations (e.g. images), our approach learns to model a be-
lief over only task-relevant features of state. More pre-
cisely, our ultimate objective is to learn a policy of the
form π(at|ot, b(ht)), where ot is the current observation
and b(ht) is a compact representation of a belief over rele-
vant state variables, given the history ht.

Our approach consists of three training phases (shown in
Figure 2): (1) representation learning, (2) belief modelling,
and (3) policy learning. Phases (1) and (2) assume access
to an offline dataset of environment interactions (e.g. data
generated by a random policy) labelled with ground-truth
states. Unlike prior works (Lauri & Ritala, 2016; Spaan
et al., 2010; Toro Icarte et al., 2019; Li et al.; Tuli et al.,
2022), our method does not make assumptions about the
structure or representation of states. In phase (3), we train a
policy conditioned on the current observation and a learned
belief over latent states. At deployment time, this policy can
be deployed in a partially observable environment without
access to ground-truth states.

4.1. Learning Compact Representations of States

In practice, belief state approaches for solving POMDPs are
difficult to apply to deep RL domains, even when training
with state information; states may take on high-dimensional
representations, and the environment dynamics are usually
unknown and challenging to model. To scale our approach
to these settings, we propose to learn compact neural repre-
sentations ϕ(st) that encode relevant aspects of the state that
an agent should infer based on the observation-action his-
tory. We highlight two desirable properties of these learned
representations. (P1): They should compactly capture task-

relevant state features, while discarding all information ir-
relevant to future rewards. For example, with respect to the
Sphinx example, ϕ(st) should capture the agent’s position,
direction, and the correct box in a lower-dimensional encod-
ing than the original image, while ignoring any irrelevant
noise (say, the colour of the boxes). (P2): Features of state
(that may be task-relevant) should not be captured by ϕ(st)
if they are also observable via ot. In Sphinx, the agent only
needs to infer which box contains the goal, based on the
history; other aspects of the state (e.g. the agent’s position)
are always observable to the agent and do not need to be
inferred.

To achieve (P1), we draw inspiration from prior representa-
tion learning works based on bisimulation in MDPs (Zhang
et al., 2021; Kemertas & Aumentado-Armstrong, 2021;
Gelada et al., 2019). Such methods typically train encoders
ϕ(st) that, given actions at, are predictive of immediate re-
wards rt and the distribution of next state encodings ϕ(st+1).
Unfortunately, these representations usually will not achieve
(P2), i.e., they may contain redundant information that is
always observable to the agent.

To also achieve this second property, we adapt these repre-
sentation learning approaches to consider observations ot
in a partially observable setting. We train a joint encod-
ing of state (ϕ(st), ψ(ot)) that considers both states and
observations while minimizing the overlapping information
between ϕ(st) and ψ(ot). Notice that observations ot pro-
vide no additional information towards predicting future
states, observations, and rewards than the current state st,
by the Markov property. Nonetheless, st and ot may du-
plicate information. Intuitively, our goal is to encode this
redundant information into ψ(ot) but not ϕ(st), in order to
produce a parsimonious representation ϕ(st).

We train the joint encoding (ϕ(st), ψ(ot)) to be predic-
tive of immediate rewards rt and the next joint encoding
(ϕ(st+1), ψ(ot+1)), given actions at. This is accomplished
by training a reward/latent dynamics model g alongside ϕ, ψ

4

Learning Belief Representations for Partially Observable Deep RL

Algorithm 1 Learning compact state representations.
Input: Dataset D = {(si, oi, ai, ri, s′i, o′i) : 1 ≤ i ≤ N}
repeat

Sample data (s, o, a, r, s′, o′) ∼ D.
Sample stochastic encodings us ∼ ϕ(s), uo ∼ ψ(o).
Predict rewards/dynamics r̂, ûs′ , ûo′ = g(us, uo, a).
Compute stochastic targets us′ ∼ ϕ(s′), uo′ ∼ ψ(o′).
Lr = (r − r̂)2

Ls = ||stop grad(us′)− ûs′ ||2
Lo = ||stop grad(uo′)− ûo′ ||2
LKL = KL

[
ϕ(s)||N (0, 1)

]
Update ϕ, ψ, g on loss λrLr+λsLs+λoLo+λKLLKL.

until convergence
Output: State encoder ϕ.

using an offline dataset of state-labelled experiences. To en-
sure that duplicated information is encoded in ψ(ot) but not
ϕ(st), we apply a variational information bottleneck (Tishby
et al., 2000; Alemi et al., 2017) to ϕ while treating ϕ, ψ as
stochastic encoders. In this work, ϕ, ψ are Gaussian with
learned mean and standard deviation, and gradients through
ϕ, ψ are computed using the reparameterization trick. At
the end of Algorithm 1, the result is: (1) state features that
are unobservable but task-relevant are encoded by ϕ(st);
(2) state features that are observable and task-relevant are
encoded by ψ(ot). Finally, we discard all models except for
ϕ(st), which encodes only task-relevant and unobservable
information — the minimum information necessary for an
optimal policy, given observations.

4.2. Belief Modelling with VAEs

With the state encoder ϕ in hand, our next goal is to
model the belief distribution over relevant state features
p(ϕ(st)|ht) for any observation-action history ht. We turn
to variational autoencoders (Kingma & Welling, 2014),
which have shown to be capable of modelling complex
distributions. Given an offline dataset D of state-labelled tra-
jectories from the POMDP, our objective is to maximize the
joint log-likelihood p(ϕ(s), h) averaged over (s, h) ∼ D.

Generative Model. We assume the data is generated as fol-
lows. A history h (i.e. a partial trajectory) is sampled from
an arbitrary data-generating distribution. Sampling a par-
ticular state representation ϕ(s) from the belief distribution
given h is controlled by the latent variable z, independently
sampled from a prior distribution (e.g. multivariate standard
Gaussian). Since a history h may correspond to multiple
possible states s, the state representation ϕ(s) is a stochastic
function of h, z, hence

p(ϕ(s), h, z) = p(h)p(z)p(ϕ(s)|h, z)

Variational Objective. We define an encoder network

qξ(z|ϕ(s), h) parameterized by ξ and a decoder network
pθ(ϕ(s)|h, z) parameterized by θ.

Using the evidence lower bound (Kingma & Welling, 2014),

log pθ(ϕ(s), h)

≥ Eqξ(z|ϕ(s),h)
[
log pθ(ϕ(s), h, z)− log qξ(z|ϕ(s), h)

]
= Eqξ(z|ϕ(s),h)

[
log p(h) + log p(z)+

log pθ(ϕ(s)|h, z)− log qξ(z|ϕ(s), h)
]

We can safely drop the constant log p(h) term from the
objective, which does not contribute to the gradients with
respect to our model parameters θ, ξ. Thus, our optimization
objective is

LVAE
θ,ξ (ϕ(s), h)

= Eqξ(z|ϕ(s),h)
[
log p(z) + log pθ(ϕ(s)|h, z)−
log qξ(z|ϕ(s), h)

]
Training Details. Following Kingma & Welling 2014, we
draw samples (s, h) ∼ D and z ∼ qξ(z|ϕ(s), h) (using the
reparameterization trick) to estimate the objective LVAE

θ,ξ .
We use a shared recurrent network to encode the history
h between the encoder and decoder. We represent qξ, pθ
as Gaussian distributions with learned means and standard
deviations.

Belief State Inference. At deployment time, we are in-
terested in using a trained VAE to approximate the belief
distribution over state encodings ϕ(s) given the history h.
Unfortunately, this belief distribution pθ(ϕ(s)|h) can be
rather complex and we opt to represent it approximately via
a collection of n i.i.d. samples û1, . . . , ûn ∼ pθ(ϕ(s)|h).
These samples are obtained by ancestral sampling from the
generative model of the VAE: we first sample zi ∼ p(z) and
then ûi ∼ pθ(ϕ(s)|h, zi) using the VAE decoder network.
We then represent the belief over state encodings given the
history as b(h) = (û1, . . . , ûn).

4.3. Policy Learning with Deep Belief Representations

Here, we describe the policy architecture for our approach.
We train a policy of the form π(at|ot, b(ht)), which does
not rely on ground-truth states for choosing actions. For
the purposes of training π, we treat b(ht) as a fixed part
of the environment state, rather than a learnable function.
Particularly, note that any dependence of the policy on the
history is captured through b(ht). Updates to the policy
π can then be made using any standard, Markovian deep
RL algorithm. We can optionally continue training the
belief state VAE with on-policy data as the distribution of
states and histories shifts during training1. While this may

1In our experiments, we fine-tune the belief state VAE using
on-policy data.

5

Learning Belief Representations for Partially Observable Deep RL

introduce non-stationarity when training the policy, we did
not observe this to be an issue in our experiments.

We use the following architecture when encoding b(ht)
within the policy. Exploiting the fact that the belief b(ht) =
(ût,1, . . . , ût,n) is represented by an order-invariant collec-
tion of samples, we encode b(ht) using a function

W (b(ht)) =Wagg

(1

n

n∑
i=1

Wenc(ût,i)
)

where Wenc,Wagg are neural networks. This is similar to
prior works on encoding sets (Zaheer et al., 2017).

4.4. Comparison with Traditional Recurrent Policies

While they may appear similar in architecture, an important
difference between our approach and traditional methods
like DRQN (Hausknecht & Stone, 2015) is in the manner
in which the recurrent model is trained. Our approach de-
composes the RL problem by training a recurrent network
to predict a belief over states, using ground-truth states st
as a learning signal. This objective is separate from the pol-
icy objective. On the other hand, DRQN trains a recurrent
policy end-to-end with a single RL objective, using reward
as the only learning signal. Prior work has also proposed
predicting future observations and rewards as a learning sig-
nal for the recurrent network (Lee et al., 2020; Chen et al.,
2022; Gregor et al., 2019a; Han et al., 2020; Gregor et al.,
2019b; Hafner et al., 2019).

Unfortunately, these other objectives might provide a weak
learning signal on tasks requiring long-term memory. In
the Sphinx example, the sphinx’s advice improves the pre-
dictability of rewards from opening a box (occurring several
steps into the future), but not of immediate rewards or ob-
servations. In contrast, the sphinx’s advice provides an
immediate boost in the predictability of the current state
(and hence, the box containing the reward), thus, we posit
that state prediction may provide a stronger learning signal.

5. Experiments
We conduct a series of experiments to demonstrate the effi-
cacy of Believer in partially observable domains. In particu-
lar, we focus on tasks involving long-term memory, informa-
tion seeking, and/or state inference. Our hypothesis is that
Believer has an advantage over existing approaches when
faced with one or more of the following problems: (1) The
exploration-exploitation dilemma arising when acquiring
information is costly. (2) The need to remember information
over long periods of time. (3) High-dimensional states and
observations containing redundant and/or task-irrelevant in-
formation. (4) The need for probabilistic inference of an
uncertain state due to noisy information.

Figure 3. Visualization of the Cookie task. Left: The agent’s ob-
servation, represented as a 9× 9× 3 image. The agent’s view is
limited to its current room, and the cookie is currently unobserv-
able to the agent. Right: The corresponding state (unobservable to
the agent at deployment time), represented as a 9× 9× 3 image.
The cookie is in the south corridor.

Figure 4. Visualization of the Escape Room task. Left: The
agent’s observation, represented as a 100 × 100 greyscale im-
age. The statue at the top left indicates that the portal is towards
the agent’s bottom left. Right: Visualization of the full map, show-
ing the agent (green), statues (blue), and the portal (the yellow
square). States are represented as vectors containing the positions
and orientations of all objects.

5.1. Experimental Setup

For each evaluation environment, we collect a small amount
of offline data from a random-action policy. We use this
dataset in Believer to learn state representations (Section 4.1)
and to pretrain the belief state VAE (Section 4.2). Several
other baselines also make use of the offline dataset and we
adjust all learning curves to account for this additional data.

To ensure a fair comparison, we train all policies using
PPO and choose network architectures to be as similar as
possible between methods. We generally observed that
larger minibatch sizes led to improved policy stability and
final performance, thus, we equalize the minibatch size
across methods to a large value (representing a limit on GPU
memory). For additional implementation details and a full
description of network architectures and hyperparameters,
please see Appendix B and C.

Code available at https://github.com/awwang10/
sphinx.

6

https://github.com/awwang10/sphinx
https://github.com/awwang10/sphinx

Learning Belief Representations for Partially Observable Deep RL

Figure 5. We evaluate Believer (ours) against common approaches for partially observable RL in five environments. The figure shows
return per episode plotted over the course of training (measured in total training frames), averaged over five seeds, with shaded bars
showing standard error and the shaded grey area representing the pretraining dataset size for applicable methods. Believer outperforms
other methods on all domains.

5.2. Environments

Sphinx. We consider the Sphinx task described in Sec-
tion 2.3 in a MiniGrid (Chevalier-Boisvert et al., 2018)
environment with observations and states represented as
8× 8× 3 images. The state always reveals the box contain-
ing the reward to the agent.

Cookie. We adapt the Cookie task from Toro Icarte et al.
(2019) into a MiniGrid environment. The agent begins in a
3×3 atrium with a hidden corridor leading out of each of the
four walls. The north corridor leads to a button that, when
pressed, spawns a cookie (if one does not already exist)
at the end of one of the other three corridors at random.
Eating the cookie gives a reward of +1 and resets the button.
States are 9× 9× 3 images revealing the entire map while
observations only show the agent’s current room (see Figure
3). The agent’s goal is to eat as many cookies as possible.
This requires exploration to find cookies and the hidden
entrances to the corridors, and long-term memory of the state
of the button, the corridor entrance locations, and which
corridors were recently checked for the cookie.

Lying Sphinx. In this variant of Sphinx, speaking to the
sphinx yields a random answer 50% of the time and costs
−0.05 reward. This allows the agent to improve its inference
of the correct box by speaking to the sphinx multiple times.

NoisyTV Sphinx. We modify Sphinx so that the outer
border of the map flashes random colours at each timestep,
both in the state and the observation. While these colours are
unrelated to environment rewards, learning an environment
model over raw states or observations becomes significantly
harder.

Escape Room Escape Room is a continuous-state,
continuous-action environment where the agent’s goal is
to locate and enter a portal in a large, hazy room (Figure 4).
Unfortunately, the agent only observes a limited view of its
nearby surroundings, represented as an 100× 100 grayscale
image, but several statues placed around the map point to-

wards the portal to help guide the agent. The agent should
explore to find the statues and portal and remember the
directions of statues, once found. States are represented
as vectors containing the positions and orientations of all
objects.

For additional environment details, please see Appendix A.

5.3. Baselines

We compare Believer against the following baselines. Asym-
metric Actor-Critic (Pinto et al., 2018) and Unbiased Asym-
metric Actor-Critic (Baisero & Amato, 2022) are model-
free approaches that also exploit state information during
training (but not deployment). We also compare against a re-
current version of PPO, representing model-free approaches
that do not exploit state information (Hausknecht & Stone,
2015; Zhu et al., 2017; Heess et al., 2015). Lastly, we
consider a sequential VAE that learns a latent state repre-
sentation by predicting the sequence of future observations
and rewards given actions, with similar motivations to, e.g.,
Lee et al. (2020), Hafner et al. (2019), Chen et al. (2022),
Chung et al. (2015), and Han et al. (2020).

5.4. Main Results

We report the performance of each method, averaged over
5 seeds, in Figure 5. Believer learns a strong solution in
each domain, often outperforming the other baselines by a
significant margin. In Sphinx and Cookie, the only other
method to make progress beyond a trivial solution (e.g.
opening a box at random in Sphinx, or checking corridors
randomly in Cookie) is Unbiased Asymmetric Actor-Critic,
which also incorporates state information. In Escape Room,
a more difficult environment with high-dimensional image
observations, none of the other methods consistently reach
the portal. Believer also effectively infers states under noisy

We drop this baseline for Escape Room due to the computa-
tional challenge of reconstructing high-dimensional images.

7

Learning Belief Representations for Partially Observable Deep RL

Figure 6. We investigate the impact of varying the cost of speaking to the sphinx cinfo ∈ {0, 0.1, 0.2, 0.3} in the Sphinx task on various
methods. The figure shows return per episode plotted over the course of training (measured in total training frames), averaged over five
seeds, with shaded bars showing standard error and the shaded grey area representing the pretraining dataset size for applicable methods.
Most approaches learn to seek information when cinfo is low, but for higher cinfo, only Believer is able to succeed.

information in Lying Sphinx and is robust to the irrelevant
distractors in states and observations in NoisyTV Sphinx.

2 1 0 1 2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Revealed Hint: Box 1
Revealed Hint: Box 2

Revealed Hint: Box 3
Never Talked to Sphinx

Figure 7. A visualization of various belief states learned in the
Sphinx task. Each colour represents a belief state arising from a
trajectory that reveals a particular type of information about the
correct box. Blue, green, and red: agent talked to the sphinx,
revealing the correct box to be 1, 2, and 3, respectively. Orange:
agent never talked to the sphinx. Observe that the VAE predicts a
unique cluster when the correct box is known, and assigns proba-
bility to all clusters when lacking information.

To visualize the learned beliefs, we retrain Believer on
Sphinx with two-dimensional state encodings ϕ(s). We
then sample trajectories with the same final agent position
but that reveal different information about the correct box
(Figure 7). We find that distinct clusters emerge for each
possible box containing the reward and that the learned be-
liefs can capture both knowledge and uncertainty of this
information.

Figure 8. We conduct ablations to verify the design choices in Be-
liever. The figure shows return per episode plotted over the course
of training (measured in total training frames), averaged over five
seeds, with shaded bars showing standard error and the shaded
grey area representing the pretraining dataset size. Representation
learning and applying an information bottleneck are critical for
performance and/or sample efficiency. Discarding observable fea-
tures from the state encoding is critical in Sphinx.

5.5. Why is Seeking Information Hard?

Next, we aim to better understand why tasks requiring in-
formation gathering can be particularly challenging for RL
agents. Liu et al. (2021) attribute this to an exploration-
exploitation dilemma: an agent that spends time or resources
to acquire information (e.g. by speaking to the sphinx) but
that does not yet know how to use that information to garner
reward will be disincentivized from continuing to acquire
such information. We evaluate two hypotheses. First, we
predict that the cost of acquiring information significantly
impacts exploration, increasing the likelihood of suboptimal
behaviours that do not actively seek out information. Sec-
ond, we predict that methods that leverage state information
during training are less susceptible to this effect than meth-
ods that only maximize a reward signal. Our key insight

8

Learning Belief Representations for Partially Observable Deep RL

supporting the second hypothesis is that the auxiliary task of
predicting states provides a useful training signal; acquiring
task-relevant information (e.g. speaking to the sphinx) leads
to an immediate improvement in state prediction. On the
other hand, it can be challenging to discern the utility of in-
formation from rewards that are sparse, delayed, or require
specific action (e.g. opening the correct box).

To test this, we evaluate several approaches on the Sphinx
environment while varying the cost cinfo of speaking to the
sphinx. We report the results in Figure 6. For cinfo = 0, all
methods learn a near-optimal solution. However, as the cost
of speaking to the sphinx increases, learning the optimal be-
haviour becomes more challenging. At cinfo = 0.2, Believer
learns a near-optimal solution while Unbiased Asymmetric
Actor-Critic (which trains using state information) is able to
make some progress. At cinfo = 0.3, only Believer learns to
speak to the sphinx to select the correct box. This suggests
that for tasks requiring active information acquisition, ex-
isting partially observable RL methods are prone to falling
into local optima, particularly when obtaining information
is costly. We believe that training with state information is a
key reason for the success of our approach.

5.6. Ablation Studies

To verify our design choices, we conduct ablation experi-
ments for Believer on the Sphinx and Cookie domains. We
investigate the following: (Q1) Is representation learning
important? (Q2) Is it important for state encodings ϕ(st)
to discard duplicate information from the observation ot?
(Q3) Is the information bottleneck on ϕ(st) important?

To answer (Q1), we evaluate a baseline that forgoes represen-
tation learning and instead models a belief over the current
state as an 8× 8× 3 image (no-RepL). To answer (Q2), we
train state encodings ϕ(st) that predict future rewards and
state encodings, but without considering observations (state-
only-RepL). To answer (Q3), we train our approach with
the KL-loss coefficient λKL set to 0 (no-KL). The results
are reported in Figure 8.

(Q1) Representation learning is critical to the success of
Believer in Sphinx and significantly improves sample effi-
ciency in Cookie vs modelling states as raw images. We
note that in both environments, most pixels of the state can
be perfectly reconstructed without considering the most crit-
ical state information (e.g. the correct box, or the location
of a cookie).

(Q2) Training state encodings ϕ(st) that discard duplicate
information from the observation ot is critical in Sphinx but
not in Cookie. An important remark is that while Sphinx
states contain many pieces of information (e.g. agent posi-
tion, direction, the correct box), a sufficient encoding ϕ(st)
only needs to encode the correct box. Thus, it is possible to

learn a very compact representation ϕ(st). This is not the
case in Cookie, where ϕ(st) should encode the state of the
button, the locations of cookies, the locations of corridor
entrances, and which corridors have been checked for the
cookie.

(Q3) The information bottleneck on ϕ(st) is critical in both
environments. Intuitively, the information bottleneck drives
the state encoding ϕ(st) to be as compact as possible, rel-
egating duplicate information between states and observa-
tions to the observation encoding ψ(ot).

6. Conclusion
This paper introduces a novel deep RL approach for partially
observable problems, motivated by the plethora of applica-
tions where full states are observable during training but
the RL agent’s observation may be limited when deployed.
Our approach, Believer, is based on traditional belief state
approaches in POMDPs and is scalable to systems with
high-dimensional states and observations. We highlight a
number of advantages of training with state information,
and demonstrate the effectiveness of our approach on chal-
lenging, partially observable domains involving long-term
memory, active information seeking, and probabilistic infer-
ence. Social implications of this work are reflected upon in
Appendix D.

Acknowledgements
We gratefully acknowledge funding from the Natural
Sciences and Engineering Research Council of Canada
(NSERC), the Canada CIFAR AI Chairs Program, and Mi-
crosoft Research. Resources used in preparing this research
were provided, in part, by the Province of Ontario, the Gov-
ernment of Canada through CIFAR, and companies spon-
soring the Vector Institute for Artificial Intelligence. We
thank the Schwartz Reisman Institute for Technology and
Society for providing a rich multi-disciplinary research en-
vironment. The fourth author would like to acknowledge
funding from (1) the National Center for Artificial Intelli-
gence CENIA FB210017 (Basal ANID) and (2) a Fondecyt
grant 11230762.

References
Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy, K. Deep

variational information bottleneck. In 5th International
Conference on Learning Representations, 2017.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P. F.,
Schulman, J., and Mané, D. Concrete problems in AI
safety. arXiv preprint arXiv:1606.06565, 2016. doi:
10.48550/arXiv.1606.06565.

9

Learning Belief Representations for Partially Observable Deep RL

Åström, K. J. Optimal control of Markov processes with
incomplete state information. Journal of Mathematical
Analysis and Applications, 10(1):174–205, 1965.

Baisero, A. and Amato, C. Unbiased asymmetric reinforce-
ment learning under partial observability. In Proceed-
ings of the 21st International Conference on Autonomous
Agents and Multiagent Systems, pp. 44–52, 2022.

Cassandra, A., Littman, M. L., and Zhang, N. L. Incre-
mental pruning: a simple, fast, exact method for partially
observable markov decision processes. In Proceedings
of the Thirteenth conference on Uncertainty in artificial
intelligence, pp. 54–61, 1997.

Chen, D., Zhou, B., Koltun, V., and Krähenbühl, P. Learning
by cheating. In Conference on Robot Learning, pp. 66–75.
PMLR, 2020.

Chen, X., Mu, Y. M., Luo, P., Li, S., and Chen, J. Flow-
based recurrent belief state learning for POMDPs. In
International Conference on Machine Learning, pp. 3444–
3468. PMLR, 2022.

Chevalier-Boisvert, M., Willems, L., and Pal, S. Minimalis-
tic gridworld environment for gymnasium, 2018. URL
https://github.com/Farama-Foundation/
Minigrid.

Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A. C.,
and Bengio, Y. A recurrent latent variable model for
sequential data. In Advances in Neural Information Pro-
cessing Systems 28, 2015.

Dulac-Arnold, G., Levine, N., Mankowitz, D. J., Li, J.,
Paduraru, C., Gowal, S., and Hester, T. Challenges of
real-world reinforcement learning: definitions, bench-
marks and analysis. Machine Learning, 110(9):2419–
2468, 2021. doi: 10.1007/s10994-021-05961-4.

Gelada, C., Kumar, S., Buckman, J., Nachum, O., and Belle-
mare, M. G. Deepmdp: Learning continuous latent space
models for representation learning. In International Con-
ference on Machine Learning, pp. 2170–2179. PMLR,
2019.

Gregor, K., Jimenez Rezende, D., Besse, F., Wu, Y., Merzic,
H., and van den Oord, A. Shaping belief states with
generative environment models for RL. In Advances in
Neural Information Processing Systems 32, 2019a.

Gregor, K., Papamakarios, G., Besse, F., Buesing, L., and
Weber, T. Temporal difference variational auto-encoder.
In International Conference on Learning Representations,
2019b. URL https://openreview.net/forum?
id=S1x4ghC9tQ.

Guo, Z. D., Azar, M. G., Piot, B., Pires, B. A., and Munos, R.
Neural predictive belief representations. arXiv preprint
arXiv:1811.06407, 2018.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics for
planning from pixels. In International Conference on
Machine Learning, pp. 2555–2565. PMLR, 2019.

Han, D., Doya, K., and Tani, J. Variational recurrent models
for solving partially observable control tasks. In 8th
International Conference on Learning Representations,
2020.

Hausknecht, M. and Stone, P. Deep recurrent q-learning for
partially observable MDPs. In 2015 AAAI fall symposium
series, 2015.

Heess, N., Hunt, J. J., Lillicrap, T. P., and Silver, D. Memory-
based control with recurrent neural networks. arXiv
preprint arXiv:1512.04455, 2015.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Humplik, J., Galashov, A., Hasenclever, L., Ortega, P. A.,
Teh, Y. W., and Heess, N. Meta reinforcement learning as
task inference. arXiv preprint arXiv:1905.06424, 2019.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. Plan-
ning and acting in partially observable stochastic domains.
Artificial intelligence, 101(1-2):99–134, 1998.

Katt, S., Oliehoek, F. A., and Amato, C. Learning in
POMDPs with Monte Carlo tree search. In Interna-
tional Conference on Machine Learning, pp. 1819–1827.
PMLR, 2017.

Kemertas, M. and Aumentado-Armstrong, T. Towards ro-
bust bisimulation metric learning. In Advances in Neu-
ral Information Processing Systems 34, pp. 4764–4777,
2021.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In Bengio, Y. and LeCun, Y. (eds.), 2nd Interna-
tional Conference on Learning Representations, 2014.

Kumar, A., Fu, Z., Pathak, D., and Malik, J. RMA:
Rapid motor adaptation for legged robots. arXiv preprint
arXiv:2107.04034, 2021.

Lauri, M. and Ritala, R. Planning for robotic exploration
based on forward simulation. Robotics and Autonomous
Systems, 83:15–31, 2016.

Lauri, M., Hsu, D., and Pajarinen, J. Partially observable
markov decision processes in robotics: A survey. IEEE
Transactions on Robotics, 2022.

10

https://github.com/Farama-Foundation/Minigrid
https://github.com/Farama-Foundation/Minigrid
https://openreview.net/forum?id=S1x4ghC9tQ
https://openreview.net/forum?id=S1x4ghC9tQ

Learning Belief Representations for Partially Observable Deep RL

Lee, A. X., Nagabandi, A., Abbeel, P., and Levine, S.
Stochastic latent actor-critic: Deep reinforcement learn-
ing with a latent variable model. In Advances in Neural
Information Processing Systems 33, pp. 741–752, 2020.

Li, A. C., Chen, Z., Vaezipoor, P., Klassen, T. Q., Icarte,
R. T., and McIlraith, S. A. Noisy symbolic abstractions
for deep rl: A case study with reward machines. In Deep
Reinforcement Learning Workshop NeurIPS 2022.

Littman, M. L. The witness algorithm: Solving partially
observable Markov decision processes. Brown University,
Providence, RI, 1994.

Liu, E. Z., Raghunathan, A., Liang, P., and Finn, C. Decou-
pling exploration and exploitation for meta-reinforcement
learning without sacrifices. In International Conference
on Machine Learning, pp. 6925–6935. PMLR, 2021.

Meng, L., Gorbet, R., and Kulić, D. Memory-based deep
reinforcement learning for POMDPs. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS), pp. 5619–5626. IEEE, 2021.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. A.
Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013. URL http://arxiv.org/
abs/1312.5602.

Monahan, G. E. State of the art—a survey of partially
observable Markov decision processes: theory, models,
and algorithms. Management science, 28(1):1–16, 1982.

Pinto, L., Andrychowicz, M., Welinder, P., Zaremba, W.,
and Abbeel, P. Asymmetric actor critic for image-based
robot learning. In 14th Robotics: Science and Systems,
RSS 2018. MIT Press Journals, 2018.

Pleines, M., Pallasch, M., Zimmer, F., and Preuss, M. Mem-
ory gym: Partially observable challenges to memory-
based agents. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=jHc8dCx6DDr.

Sharma, P. K., Fernandez, R., Zaroukian, E., Dorothy, M.,
Basak, A., and Asher, D. E. Survey of recent multi-agent
reinforcement learning algorithms utilizing centralized
training. In Artificial Intelligence and Machine Learning
for Multi-Domain Operations Applications III, volume
11746, pp. 665–676. SPIE, 2021.

Silver, D. and Veness, J. Monte-Carlo planning in large
POMDPs. In Advances in Neural Information Processing
Systems 23, 2010.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and
Riedmiller, M. Deterministic policy gradient algorithms.

In International Conference on Machine Learning, pp.
387–395. PMLR, 2014.

Spaan, M. T., Veiga, T. S., and Lima, P. U. Active coopera-
tive perception in network robot systems using POMDPs.
In 2010 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pp. 4800–4805. IEEE, 2010.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Thrun, S. Monte Carlo POMDPSs. In Advances in Neural
Information Processing Systems 12, 1999.

Tishby, N., Pereira, F. C., and Bialek, W. The informa-
tion bottleneck method. arXiv preprint physics/0004057,
2000.

Toro Icarte, R., Waldie, E., Klassen, T. Q., Valenzano, R.,
Castro, M. P., and McIlraith, S. A. Learning reward
machines for partially observable reinforcement learning.
In Advances in Neural Information Processing Systems
32, pp. 15497–15508, 2019.

Toro Icarte, R., Valenzano, R., Klassen, T. Q., Christof-
fersen, P., Farahmand, A.-m., and McIlraith, S. A. The
act of remembering: A study in partially observable re-
inforcement learning. arXiv preprint arXiv:2010.01753,
2020.

Tuli, M., Li, A., Vaezipoor, P., Klassen, T., Sanner, S.,
and McIlraith, S. Learning to follow instructions in text-
based games. Advances in Neural Information Processing
Systems, 35:19441–19455, 2022.

Vaezipoor, P., Li, A. C., Toro Icarte, R. A., and McIlraith,
S. A. LTL2Action: Generalizing LTL instructions for
multi-task RL. In International Conference on Machine
Learning, pp. 10497–10508. PMLR, 2021.

Wang, Y. and Tan, X. Deep recurrent belief propagation
network for POMDPs. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pp. 10236–
10244, 2021.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. In
Advances in Neural Information Processing Systems 30,
2017.

Zhang, A., McAllister, R. T., Calandra, R., Gal, Y., and
Levine, S. Learning invariant representations for rein-
forcement learning without reconstruction. In 9th Inter-
national Conference on Learning Representations, 2021.

Zhang, M., McCarthy, Z., Finn, C., Levine, S., and Abbeel,
P. Learning deep neural network policies with continuous
memory states. In 2016 IEEE international conference

11

http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://openreview.net/forum?id=jHc8dCx6DDr
https://openreview.net/forum?id=jHc8dCx6DDr

Learning Belief Representations for Partially Observable Deep RL

on robotics and automation (ICRA), pp. 520–527. IEEE,
2016.

Zhu, P., Li, X., and Poupart, P. On improving deep reinforce-
ment learning for pomdps. CoRR, abs/1704.07978, 2017.
URL http://arxiv.org/abs/1704.07978.

12

http://arxiv.org/abs/1704.07978

Learning Belief Representations for Partially Observable Deep RL

A. Environment Descriptions
A.1. Sphinx Environment

The Sphinx environment is a discrete-state, discrete-action finite horizon task in which an agent, randomly placed in a 8× 8
grid, has an objective to go to one particular box out of three possible boxes, located in the top-right, bottom-right and
bottom-left corners, unknown to the agent at the start of each episode, creating partial observability conditions. Each episode
terminates after 100 steps. Stepping onto the tile with the correct box yields a reward of +1 and terminates the episode.
Stepping onto a tile with an incorrect box yields no reward and also terminates the episode. In the top-left corner of the
grid, there is a sphinx. If the agent enters a tile adjacent to the sphinx, the sphinx emits the correct box number for one
step. In Sphinx (0.1), Sphinx (0.2), Sphinx (0.3), moving adjacent to the sphinx incurs a negative reward of -0.1, -0.2, and
-0.3 respectively. Larger negative rewards for consulting the sphinx increase the difficulty of the task. The optimal fully
observable policy is to directly head to the correct box. The optimal partially observable policy is to head to the sphinx,
observe the hint, and proceed to the correct box.

The agent receives a 8× 8× 3 dimensional image of the environment as an input observation. The first channel of the image
is an 8× 8 image containing information about the obstacles and items on the grid such as walls, sphinx location, the three
boxes, each encoded by an integer. The second channel of the image is a 8× 8 array of zeros, except at the coordinates of
the sphinx, whose value is the current hint being emitted by the sphinx. When the agent is not adjacent to the sphinx, the
value emitted is 3. Otherwise, the sphinx is emitting 0, 1, 2, corresponding to the top-right, bottom-right, and bottom-left
tiles. The final channel of the image is a 8× 8 array of zeros, except at the agent’s current coordinates, where the possible
values are 1, 2, 3 or 4 corresponding to the direction in which the agent is facing (east, south, west, north, respectively). The
ground-truth state is encoded exactly the same as the agent’s observations, except that in the first channel, the correct box is
encoded with a separate value. The action space of the environment is { 0, 1, 2 } corresponding to actions left, right and
forward in the environment.

A visualization of the environment is provided in Figure 1.

Figure 9. Examples of corridor configurations for the Cookie domain. The agent is denoted by a red triangle. The button that generates
cookies is denoted by solid blue circle. The cookie is denoted by a solid brown circle.

A.2. Cookie Environment

The Cookie environment is a discrete-state, discrete-action finite horizon task in which an agent, placed in the center of a
9× 9 grid containing a central room and four corridors, must repeatedly press a button in the north corridor and eat a cookie
in one of the other three corridors at random. The button in the north corridor only appears if no cookie is present on the
grid, and disappears once pressed, spawning a cookie in one of the other three corridors. Eating a cookie provides +1 reward.
The precise attachment position of each of the north, east, south, and west corridors to the room is generated randomly at
the start of the episode (see Figure 9). When in a corridor, the agent cannot observe the contents of the central room nor
the contents in the other corridors. When in the central room, the agent cannot observe the contents of the corridors. This
creates partially observable conditions. The optimal fully observable policy is to repeat the following actions: 1) press the
button in the north corridor and 2) immediately proceed to the corridor with the cookie and eat it. The optimal partially
observable policy is to repeat the following actions: 1) press the button in the north corridor and 2) check each corridor one
by one, and if a cookie is observed, eat it.

The agent receives a 9 × 9 × 3 dimensional image of the environment as an input observation. The first channel of the
image is a 9× 9 image containing information about the obstacles and items on the grid such as walls, cookies and buttons,

13

Learning Belief Representations for Partially Observable Deep RL

each encoded by an integer. When in the main room, the other areas of the grid are encoded by zeros, creating partial
observability. Since the attachment points of the corridors are random and the agent cannot see the corridors when in the
central room, at the start of each episode, the agent must also learn where the corridors are located and remember this
information throughout the episode. The second channel of the image is always an array of zeros. The final channel of
the image is a 9 × 9 image of zeros, except at the agent’s current coordinates, where the possible values are 1, 2, 3 or 4
corresponding to the direction in which the agent is facing (east, south, west, north, respectively). The action space of the
environment is { 0, 1, 2 } corresponding to actions left, right and forward in the environment.

A.3. Escape Room Environment

Escape Room is a continuous-state, continuous-action episodic environment, in which an agent must move to a portal
located in a closed 400× 400 square room. The room contains four statues, which point in the direction of the portal. The
agent receives a +1 sparse reward for reaching the portal, as well as a small dense reward based on the change in distance
to the portal from the previous timestep. Note that the reward is unobservable at deployment time (and thus cannot be
exploited by the agent to infer the portal location). The agent only observes a small square area of size 100× 100 centered
around the agent, which creates partial observability conditions. This environment requires information-seeking behaviour
(such as finding a statue) and long-term memory (such as remembering the direction in which the statue is pointing). The
optimal partially observable policy is to explore and find either the portal (in which case the agent should head directly to the
portal), or a statue and move in the direction the statue is pointing in to find the portal. The state space is a 17-dimensional
real-valued vector containing the position and direction of the agent and statues, as well as the position of the portal. The
observation space is a 1× 100× 100 grayscale image centered around the agent, always oriented such that the agent faces
up in the image. The episode ends after 200 steps or when the agent reaches the portal. The agent only needs to reach a 20
unit distance to the centroid of the portal to receive the +1 reward.

B. Model Architectures
B.1. Representation Learning

For all Sphinx environments, the embedding size is 8× 8× 3 = 192.
For the Cookie environment, the embedding size is 9× 9× 3 = 243.
For the Escape Room, we take image observations and states, and pass them through a convolutional neural network with
the following architecture: [Conv2d(1, 8, 9, 4), ReLu, Conv2d(8, 16, 5, 2), Relu, Conv2d(16, 32, 3, 2), Relu, Linear(512,
192)]. The parameters of Conv2d are input channels, output channels, kernel size, and stride respectively. The embedding
size is 192.

State Encoder Given the flattened state s, the State Encoder outputs a stochastic encoding of the state ϕ(s), modelled
by a Normal distribution.
Architecture: [embedding size, 128, 128, 2× 16 = 32] fully connected layers with ReLU activations.

Observation Encoder Given the flattened observations o, the Observation Encoder outputs a stochastic encoding of
the observation ψ(o), modelled by a Normal distribution.
Architecture: [embedding size, 128, 128, 2× 16 = 32] fully connected layers with ReLU activations.

Dynamics Model Given an action a and stochastic encoding of the state us ∼ ϕ(s) and observation uo ∼ ψ(o), the
dynamics model predicts the reward, next state encoding, and next observation encoding r̂, ûs′ , ûo′ = g(us, uo, a).
Dynamics Model Architecture: [2× 16 + 1 = 33, 128, 128] fully connected layers with ReLU activations, followed by one
of the following output layers:
Reward: [128, 1] linear layer
Next Observation Encoding: [128, 16] linear layer
Next State Encoding: [128, 16] linear layer

B.2. Belief VAE

VAE latent dimensions is 32 for all Sphinx environments, 64 for the Cookie environment, and 32 for the Escape Room
environment.

VAE Encoder Given a representation of the state ϕ(s), and a history context h, the VAE encoder qξ(z|ϕ(s), h) outputs

14

Learning Belief Representations for Partially Observable Deep RL

a stochastic encoding of latent variable z, modelled by a Normal distribution.
VAE Encoder Architecture: [16 + 256 = 272 , 256, 256, 2×VAE latent dimensions] fully connected layers with ReLU
activations.

VAE Decoder Given a history context h, and a latent variable z, the VAE decoder pθ(ϕ(s)|h, z) outputs a stochastic
encoding of the representation of the state ϕ(s), modelled by a Normal distribution.
VAE Decoder Architecture: [VAE latent dimensions +256 , 256, 256, 2 × 16 = 32] fully connected layers with ReLU
activations.

History Model
The history model encodes a sequence of observations. An observation is first fed through an [embedding size, 512] linear
layer. The 512 dimensional output is fed into a three-layer stacked GRU each with hidden state size of 256. We add the
next hidden state outputs of the first two GRUs, and concatenate with the 512 dimensional output, and feed the result into a
[256+512, 256, 256] fully connected network with ReLU activations.

B.3. Policy Training Model Architecture

Each observation is first passed through the image encoder.

For the Escape Room, we take image observations and states, and pass them through a convolutional neural network with
the following architecture: [Conv2d(1, 8, 9, 4), ReLu, Conv2d(8, 16, 5, 2), Relu, Conv2d(16, 32, 3, 2), Relu, Linear(512,
64)]. The parameters of Conv2d are input channels, output channels, kernel size, and stride respectively.

Image encoder: [64, 64, 64] fully connected layers with ReLU activations.

Belief Encoder Given a set of belief samples, the belief encoder Wenc encodes each 16 dimensional belief in the set.
Architecture: [16, 64, 64] fully connected layers with ReLU activations

Belief Aggregator The belief aggregator Wagg encodes an average of encoded beliefs 1
n

∑n
i=1Wenc(ût,i)

Architecture: [64, 64, 64] fully connected layers with ReLU activations

The output of the image encoder, and the output of the belief aggregator are concatenated, and passed to the actor and critic.
Actor [128, 64, 64, 3] fully connected layers with ReLU activations.
Critic [128, 64, 64, 1] fully connected layers with ReLU activations.

15

Learning Belief Representations for Partially Observable Deep RL

C. Hyperparameters

Table 1. Sphinx Environment Training Hyperparameters

Our Method Recurrent PPO Unbiased Asymmetric Actor Critic

Discount factor (γ) 0.99 0.99 0.99
Pretrain episodes 3000 – –

Pretrain Representation Model

Number of Epochs 1000 – –
Batch Size 500 – –
KL Coefficient 0.3 – –
State Prediction Loss Coefficient 0.3 – –
Observation Prediction Loss Coefficient 0.03 – –
Reward Prediction Loss Coefficient 10 – –
Latent Dimensions 16 – –

Pretrain VAE

Learning Rate 0.0003 – –
Number of Epochs 5000 – –
Latent Dimensions 32 – –

Policy Learning Hyperparameters

Learning Rate (Policy) 0.0005 0.0005 0.0005
Learning Rate (VAE) 0.0003 – –
Minibatch Size 2048 2048 2048
Number of Epochs (PPO) 24 8 8
Entropy coefficient 0.03 0.03 0.03
Recurrence 1 16 16
Number of Frames Per Update 8192 8192 8192

Table 2. Cookie Environment Training Hyperparameters

Our Method Recurrent PPO Unbiased Asymmetric Actor Critic

Discount factor (γ) 0.97 0.97 0.97
Pretrain episodes 1000 – –

Pretrain Representation Model

Number of Epochs 100 – –
Batch Size 500 – –
KL Coefficient 0.03 – –
State Prediction Loss Coefficient 0.1 – –
Observation Prediction Loss Coefficient 0.1 – –
Reward Prediction Loss Coefficient 300 – –
Latent Dimensions 16 – –

Pretrain VAE

Learning Rate 0.0003 – –
Number of Epochs 3000 – –
Latent Dimensions 64 – –

Policy Learning Hyperparameters

Learning Rate (Policy) 0.001 0.001 0.001
Learning Rate (VAE) 0.001 – –
Minibatch Size 4096 4096 4096
Number of Epochs (PPO) 8 8 8
Entropy coefficient 0.003 0.003 0.003
Recurrence 1 16 16
Number of Frames Per Update 16384 16384 16384

16

Learning Belief Representations for Partially Observable Deep RL

Table 3. Lying-Sphinx Training Hyperparameters

Our Method Recurrent PPO Unbiased Asymmetric Actor Critic

Discount factor (γ) 0.99 0.99 0.99
Pretrain episodes 3000 – –

Pretrain Representation Model

Number of Epochs 1000 – –
Batch Size 500 – –
KL Coefficient 0.3 – –
State Prediction Loss Coefficient 0.3 – –
Observation Prediction Loss Coefficient 0.03 – –
Reward Prediction Loss Coefficient 10 – –
Latent Dimensions 16 – –

Pretrain VAE

Learning Rate 0.0003 – –
Number of Epochs 5000 – –
Latent Dimensions 32 – –

Policy Learning Hyperparameters

Learning Rate (Policy) 0.0005 0.0005 0.0005
Learning Rate (VAE) 0.0003 – –
Minibatch Size 2048 2048 2048
Number of Epochs (PPO) 24 8 8
Entropy coefficient 0.03 0.03 0.03
Recurrence 1 16 16
Number of Frames Per Update 8192 8192 8192

Table 4. Noisy-TV Sphinx Training Hyperparameters

Our Method Recurrent PPO Unbiased Asymmetric Actor Critic

Discount factor (γ) 0.99 0.99 0.99
Pretrain episodes 3000 – –

Pretrain Representation Model

Number of Epochs 1000 – –
Batch Size 500 – –
KL Coefficient 0.3 – –
State Prediction Loss Coefficient 0.3 – –
Observation Prediction Loss Coefficient 0.03 – –
Reward Prediction Loss Coefficient 10 – –
Latent Dimensions 16 – –

Pretrain VAE

Learning Rate 0.0003 – –
Number of Epochs 5000 – –
Latent Dimensions 32 – –

Policy Learning Hyperparameters

Learning Rate (Policy) 0.0005 0.0005 0.0005
Learning Rate (VAE) 0.0003 – –
Minibatch Size 2048 2048 2048
Number of Epochs (PPO) 24 8 8
Entropy coefficient 0.03 0.03 0.03
Recurrence 1 16 16
Number of Frames Per Update 8192 8192 8192

17

Learning Belief Representations for Partially Observable Deep RL

Table 5. Escape Room Training Hyperparameters

Our Method Recurrent PPO Unbiased Asymmetric Actor Critic

Discount factor (γ) 0.99 0.99 0.99
Pretrain episodes 500 – –

Pretrain Representation Model

Number of Epochs 300 – –
Batch Size 500 – –
KL Coefficient 0.03 – –
State Prediction Loss Coefficient 0.1 – –
Observation Prediction Loss Coefficient 0.003 – –
Reward Prediction Loss Coefficient 100 – –
Latent Dimensions 16 – –

Pretrain VAE

Learning Rate 0.0003 – –
Number of Epochs 5000 – –
Latent Dimensions 32 – –

Policy Learning Hyperparameters

Learning Rate (Policy) 0.0005 0.0005 0.0005
Learning Rate (VAE) 0.0003 – –
Minibatch Size 2048 2048 2048
Number of Epochs (PPO) 8 8 8
Entropy coefficient 0.01 0.01 0.01
Recurrence 1 16 16
Number of Frames Per Update 8192 8192 8192

18

Learning Belief Representations for Partially Observable Deep RL

D. Reflections on Societal Impact
Our work has focused on improving the performance of reinforcement learning in partially observable environments. In
general, reinforcement learning poses multiple risks, including that RL agents may cause damage during exploration, or that
the reward function will be misspecified and so even an optimal policy will have undesirable effects (Amodei et al., 2016).
Partially observable environments often require especially long periods of exploration, and the RL agent may not even able
to observe what aspects of the environment it is disrupting.

We did not specifically aim to make progress on general safety concerns with this work. However, the approach of training
under full observability, which we (like some others) have used, may afford opportunities for avoiding some hazards during
training. Also, we have seen that our approach can in some cases generate somewhat interpretable belief representations
(Figure 7), which might help users to use it more safely.

19

