
Under review as submission to TMLR

AdaCtrl: Towards Adaptive and Controllable Reasoning via
Difficulty-Aware Budgeting

Anonymous authors
Paper under double-blind review

Abstract

With the advent of test-time scaling, Large Reasoning Models have achieved remarkable
performance. However, the reinforcement learning process used to unlock these capabilities
often leads to uncontrolled generation length, resulting in substantial computational over-
head and unnecessary "overthinking" on simple tasks. Current methods either uniformly
minimize reasoning tokens, thereby neglecting the necessity for more intricate reasoning on
complex tasks, or employ precise token-level control, which often hinges on accurate difficulty
estimation and suffers from unreliable model interpretation for nuanced instructions. To
address these limitations, we introduce AdaCtrl, a novel framework that can dynamically
adjust its reasoning length based on the model’s self-assessed problem difficulty and also
allow human-in-the-loop control of the budget to prioritize either efficiency or effectiveness.
Specifically, we carefully develop a two-stage training pipeline: 1) Cold-start fine-tuning stage,
where we first design explicit difficulty-aware tags (e.g., “[Easy]” or “[Hard]”) to indicate
difficulty of problems, and train the model on a curated dataset to align its reasoning behav-
ior with these difficulty levels; and 2) Difficulty-aware reinforcement learning stage, which
further refines the model’s adaptive reasoning behavior and calibrates its self-assessment of
problem difficulty. In this way, AdaCtrl not only empowers the model to adaptively assess
the difficulty of problem and adjust reasoning budget allocation, but also enables the user
to explicitly control the desired reasoning mode by injecting the specific difficulty-aware
tag. Empirical results across four benchmarks show that, compared to different types of
baselines, AdaCtrl effectively balances performance and computational efficiency, leading to
performance improvements while dynamically reducing response lengths by up to 90%.1

0 5000 10000 15000 20000 25000
Average Reasoning Length (Tokens)

5

10

15

20

25

A
cc

ur
ac

y
(%

)

Easy

Adaptive
Hard

Qwen2.5-Instruct

R1-SFT-RL

S1.1

R1-SFT

Cold-Start-SFT

AdaCtrl Frontier Qwen2.5-Instruct R1-SFT-RL R1-SFT Cold-Start-SFT S1.1

Figure 1: Accuracy-Length Pareto Frontier on AIME 2025. AdaCtrl constructs a dominant frontier (blue
line) that sits to the upper-left of all baselines, indicating higher accuracy for a given token budget.

1Our code will be released publicly.

1

Under review as submission to TMLR

1 Introduction

With the emergence of test-time scaling (Snell et al., 2024; Muennighoff et al., 2025; Balachandran et al.,
2025; Zhang et al., 2025), large reasoning models such as Deepseek R1 (DeepSeek-AI et al., 2025) and OpenAI
o1 (OpenAI, 2024) have demonstrated superior performance across a variety of tasks by thoroughly exploring
various reasoning paths prior to generating final answers. However, this capability often comes at a cost:
the Reinforcement Learning (RL) optimization used to push reasoning boundaries inevitably leads to an
uncontrolled growth of generation length. Models tend to discover that generating longer and more redundant
reasoning paths can speculatively maximize accuracy rewards (DeepSeek-AI et al., 2025), even when such
depth is unnecessary. Consequently, they inevitably introduce significant inference overhead and lead to
unnecessary overthinking on simpler problems (Chen et al., 2025; Sui et al., 2025). For instance, even when
presented with easy and straightforward questions like “Evaluate log2(64)”, these models still tend to engage
in lengthy chain-of-thought (Wei et al., 2022), unnecessarily employing advanced meta-reasoning skills such
as planning, reflection, and verification (Ryan et al., 2016; Li et al., 2025; Wang et al., 2025a). Such reasoning
behavior, while beneficial for complex queries, incurs excessive latency and computational costs, negatively
affecting user experience (Wang et al., 2025c).

Recent efforts have explored several ways to improve the reasoning efficiency and mitigate overthinking
issue. Some approaches aim to minimize reasoning length across all questions, regardless of their actual
complexity (e.g., easy or hard), by enforcing conciseness through fine-tuning (Munkhbat et al., 2025; Ma
et al., 2025) or reinforcement learning (Arora & Zanette, 2025; Aggarwal & Welleck, 2025). However, this
universal compression strategy may sacrifice reasoning quality on truly complex tasks that require deeper
analysis. On the other hand, some methods attempt to precisely control the token budget for each question,
seeking a more efficient yet accurate reasoning process (Nayab et al., 2025; Muennighoff et al., 2025; Xu et al.,
2025). Nevertheless, such fine-grained control often relies on accurate difficulty assessments and exceptional
capabilities of underlying LLMs (e.g., precise instruction-following), which can be inflexible and brittle in
practice. It is inherently challenging to determine the optimal token budget beforehand, and models may
struggle to reliably interpret or execute fine-grained instructions. These limitations underscore the need for a
unified framework that is both adaptive and easily controllable based on task complexity.

To this end, we propose AdaCtrl, a novel framework to 1) allow the model to dynamically adjust their
reasoning effort based on self-assessed difficulty (i.e., adaptive reasoning mode); and 2) enable users to specify
reasoning mode according to difficulty of problem (i.e., controllable budget allocation). As shown in Figure 2,
given a query, AdaCtrl offers three reasoning modes. Two of these modes are manually specified to allow
users to control the reasoning budget: (i) Easy, which prioritizes efficiency and provides concise responses to
any question; (ii) Hard, which aims for higher effectiveness by elaborating the full reasoning process and
delivering detailed information. In addition, an adaptive mode automatically adjusts the reasoning effort
based on the complexity of the input query, achieving a balance between effectiveness and efficiency without
manual intervention. To achieve this, we start by curating a dataset that covers both easy and hard subsets
and insert corresponding indicator tags (i.e., “[Easy]” or “[Hard]”) prior to the model’s responses. Then we
utilize cold-start fine-tuning to empower the model with foundation capabilities to estimate the complexity of
a question and allocate reasoning budgets accordingly, rendering self-aware difficulty estimation. Moreover,
we adapt difficulty-aware reinforcement learning framework with carefully designed rewards to calibrate its
self-assessment of problem difficulty (i.e., difficulty estimation calibration reward) and to refine the model’s
adaptive reasoning behavior (i.e., difficulty-aware length reward).

Experimental results on four benchmarks demonstrate that AdaCtrl significantly improves the trade-off
between effectiveness and efficiency. It outperforms most baselines across four datasets while efficiently
managing the reasoning budget. Specifically, compared with the standard SFT + RL baselines, AdaCtrl
achieves accuracy improvements of up to 10.14%, while reducing response length by as much as 91.04%.
Further analysis demonstrates that AdaCtrl offers effective human-in-the-loop controllability via explicit
difficulty-aware tags, enables accurate difficulty estimation during reinforcement learning, and maintains
robust performance under hyperparameter variation. Overall, the contributions are as follows:

• We introduce AdaCtrl, a unified framework for adaptive and controllable reasoning that supports dynamic
trade-offs between efficiency and performance, allowing the model to estimate the difficulty of problem

2

Under review as submission to TMLR

Problem: Evaluate log2 64 .

Response (386 tokens):
[Easy] To evaluate log2 64 , we need to determine the
power to which the base 2 must be raised to obtain 64.
Let's break this down step by step.
1. Express 64 as a power of 2: We know that: 26 = 64.
This can be verified by calculating: 21 = 2 22 = 4 23 = 8
24 = 6 25 = 32 26 = 64
2. Use the property of logarithms: Since 26 = 64, we can
take the logarithm base 2 of both sides: log2 26 =
log2 64
3. Simplify the left-hand side using the power rule of
logarithms: The power rule states that logb 𝑎𝑐 =
𝑐 log𝑏 𝑎 . Applying this rule, we get: log2 26 =
6 log2(2)
4. Simplify further using the fact that log𝑏 𝑏 = 1: Since
log2 2 = 1, we have: 6 log2(2) = 6 ∙ 1 Therefore,
log2 64 = 6 . The final answer is: \boxed{6}

Response (252 tokens):
[Easy] To evaluate log2 64 , we need to determine the
power to which the base 2 must be raised to obtain 64.
Let's break this down step by step.
1. Identify the relationship: We need to find 𝑥 such that
2𝑥 = 64.
2. Express 64 as a power of 2: We know that: 21 = 2 22 =
4 23 = 8 24 = 6 25 = 32 26 = 64 3. Determine the
exponent: From the above calculations, we see that 26 =
64
4. Conclusion: Since 26 = 64, it follows that log2 64 =
6. Therefore, the final answer is \boxed{6}.

Response (1144 tokens):
[Hard] Okay, so I need to evaluate log2 64 . Hmm,
logarithms can sometimes be tricky, but I remember that
logarithms are about finding exponents. Let me recall... If I
have log𝑏 𝑎 = 𝑐, that means 𝑏𝑐 = 𝑎. So in this case,
log2 64 = 𝑐 would mean 2𝑐 = 64.
......
Wait, right! 26 = 64 . So that means 𝑐 = 6. Therefore,
log2 64 = 6.
But let me double-check to make sure I didn't skip a step.
Maybe I should write it out step by step.
......
Alternatively, if I didn't remember the powers of 2 off the
top of my head, maybe I could break it down. Let me see.
......
Another way to think about it is using logarithm properties.
But maybe that's overcomplicating.
Thus, the value of log2 64 = 6 is \boxed{6}.

Efficiency

Effectiveness

Answer: 6

User-Controllable
Difficulty-Aware Tags [Easy]

User-Controllable
Difficulty-Aware Tags [Hard]

Model-Adaptive
Difficulty-Aware Tags

Efficiency

Effectiveness

Efficiency

Effectiveness

[Easy] or
[Hard] ?

Figure 2: Given the same problem, AdaCtrl supports three reasoning modes: the easy mode offers concise
answers with less tokens; the hard mode delivers extensive responses with more tokens; and the adaptive
mode dynamically allocates reasoning budgets according to the problem complexity.

and adjust the reasoning mode itself, and also the user to specify the desired reasoning mode to meet
diverse needs in practice.

• We present a two-stage training paradigm that integrates cold-start fine-tuning and difficulty-aware
reinforcement learning together to foster self-awareness of problem difficulty and supports difficulty-aware
budget allocation, considering the differences and dynamics of model capabilities.

• Empirical results on four benchmark datasets demonstrate that AdaCtrl successfully enhance adaptivity
and controllability via explicit difficulty-aware tags. Further analysis reveals that AdaCtrl serves as an
effective difficulty estimator, and accurately enables difficulty-aware budget allocation.

2 Related Work

Reasoning Efficiency via Supervised Fine-Tuning. While LLMs achieve impressive performance on
complex tasks by generating elaborate multi-step reasoning chains (Dubey et al., 2024; Su et al., 2025), this
capability can lead to excessive verbosity and computational overhead for simpler queries. This “overthinking”
phenomenon has motivated research into improving reasoning efficiency (Qu et al., 2025a; Wang et al.,
2025c). One prominent strategy involves Supervised Fine-Tuning (SFT) to guide models towards more
concise reasoning. Some SFT works focus on training with inherently shorter reasoning paths. For example
models learn adherence to token budgets through specific prompting during data generation (Han et al.,
2024). Others distill concise paths from best-of-N sampling (Munkhbat et al., 2025) or fine-tune models to
omit intermediate steps for samples where the model is already confident (Yu et al., 2024). Another SFT
direction compresses existing reasoning chains. Kang et al. (2024) employ GPT-4 (Achiam et al., 2023) as a
compressor then fine-tune a model on these long-to-short CoT mappings. LMskip (Liu et al., 2024) induces
step-skipping behavior under step constraints. SPIRIT-FT (Cui et al., 2025) identifies critical reasoning
steps using perplexity as a guide for pruning. TokenSkip (Xia et al., 2025) analyzes token importance within
CoT outputs for controllable compression. These SFT methods reduce length but often enforce a general
conciseness ill-suited for complex problems and typically lack self-assessment of difficulty or user budget
control.

Reasoning Efficiency via Reinforcement Learning. RL offers another significant avenue for optimizing
reasoning efficiency, building upon its success in developing deep reasoning capabilities in models like DeepSeek-
Coder (Guo et al., 2025). Many RL approaches incorporate explicit length-based rewards to encourage
conciseness alongside accuracy. Some methods link generation length to task difficulty or directives within
the prompt: DAST (Shen et al., 2025) adapts CoT length to problem complexity via reward shaping, while
LCPO (Aggarwal & Welleck, 2025) controls length using prompt-specified targets. Other techniques normalize

3

Under review as submission to TMLR

Easy
Problems

Hard
Problems

Large Language Models
(e.g., Qwen2.5-7B-Instruct)

Large Reasoning Models
(e.g., Deepseek-R1)

Short
Solution

Long
Solution

SFT

[𝑞𝑖, 𝑡𝑖, p𝑖 , 𝑦𝑖]

[Easy]
[Hard]

𝑦1

𝑦2

𝑦𝑚

Answer

…

𝑝1

…
𝑝2

𝑝𝑚

…

Reasoning

𝑟𝑓
1

…
𝑟𝑓

2

𝑟𝑓
𝑚

𝑟𝑙
1

…
𝑟𝑙

2

𝑟𝑙
𝑚

𝑟𝑜
1

…
𝑟𝑜

2

𝑟𝑜
𝑚

Difficulty-aware
Length Reward

Outcome
Reward

Difficulty Estimation
Reward

+ 𝛼 + 𝛽

[Easy]

…
[Hard]

[Easy]

Tag

𝐄𝐚𝐬𝐲Estimated Difficulty:

𝐴1

…

Advantage

𝐴2

𝐴m

…

RL Optimization

Stage One: Cold-Start Fine-Tuning

Stage Two: Difficulty-Aware Reinforcement Learning

Figure 3: AdaCtrl comprises a two-stage training pipeline: the cold-start finetuning first utilizes both short
and long reasoning trajectories to establish basic budget awareness; then a difficulty-aware reinforcement
learning framework is utilized to calibrate problem difficulty estimation and develop adaptive reasoning
strategies.

length rewards against baselines, as seen in O1-Pruner (Luo et al., 2025), the per-prompt normalization
by Arora & Zanette (2025), and the Kimi 1.5 report (Team, 2025). Yeo et al. (2025) proposed a cosine
reward to manage length effectively, also highlighting the “length hacking” problem where models artificially
extend reasoning. Beyond explicit length rewards, alternative RL strategies include meta-RL for test-time
optimization (Qu et al., 2025b), utility maximization for budget awareness (Yu et al., 2025b), preference
optimization with heuristics (Chen et al., 2025), and mitigating GRPO’s bias towards longer trajectories (Liu
et al., 2025). However, these methods generally lack the explicit user control over reasoning depth offered by
AdaCtrl’s difficulty-aware tags and do not prioritize training for self-awareness of problem difficulty. Our
two-stage SFT-RL framework uniquely addresses these aspects, enabling both autonomous and user-influenced
reasoning budgets.

3 Method

In this section, we demonstrate the design of our proposed AdaCtrl, which includes: (1) Cold-start fine-tuning
that provides initialization for difficulty estimation and difficulty-aware budget adjustment; (2) Difficulty-
aware reinforcement learning framework that boosts model’s capabilities on response length control and
difficulty estimation. The entire framework is demonstrated in Figure 3.

3.1 Cold-Start Fine-Tuning

This stage primarily focuses on equipping models with the ability to adhere to output formats that include
difficulty-aware tags (e.g., "[Easy]” and "[Hard]”)2 and to control response length accordingly. To curate
suitable training data for this purpose, we directly select both easy and hard problems from the DeepMATH
dataset (He et al., 2025), which provides difficulty annotations for each problem. For easy problems
{qe

1, qe
2, ..., qe

n, }, we utilize the instruction model, M, to generate concise response, while for hard ones
{qh

1 , qh
2 , ..., qh

m, }, a strong large reasoning model R is employed to generate reasoning trace. Then we filter

2We do not consider more fine-grained category in order to maintain ease of control and ensure reliability.

4

Under review as submission to TMLR

the solutions based on answer correctness for both subsets:
De = {(qe

i , [pi, yi])|[pi, yi] = M(qe
i), I(yi, ŷi) = 1}, (1)

Dh = {(qh
i , [pi, yi])|[pi, yi] = R(qh

i), I(yi, ŷi) = 1}, (2)
where [ri, yi] is the model-generated response that includes reasoning process pi and the predicted answer yi,
ŷi is the ground truth answer of corresponding samples, and I(yi, ŷi) = 1 represents that the model response
[pi, yi] is correct with the verification of answer ŷi. Then by prepending the “[Easy]” tag for response in De

and “[Hard]” tag for those in Dh, we construct a dataset D = {(qi, [ti, pi, yi])} for cold-start training, where ti

is the difficulty-aware tag. After the cold-start finetuning, the model learns to adhere to the specified format
and to generate solutions based on its estimated difficulty of each problem, such as allocating more reasoning
tokens for hard problems to enable deeper and more diverse reasoning paths. Notably, this also provides
greater controllability for non-expert users, who can easily guide the model’s behavior by using simple tags
like “[Easy]” and “[Hard]”.

3.2 Difficulty-Aware Reinforcement Learning

After cold-start fine-tuning, we adapt Group Relative Policy Optimization (GRPO) (Shao et al., 2024) as the
reinforcement learning (RL) algorithm because it produces multiple rollouts that can be naturally utilized
to estimate difficulty of given question from the perspective of the trained model. Specifically, we carefully
design three types of rewards to guide the difficulty-aware reinforcement learning optimization:

Outcome Accuracy Reward. The rule-based outcome accuracy reward has been widely utilize in RL
training (Guo et al., 2025; Aggarwal & Welleck, 2025; Arora & Zanette, 2025; Yu et al., 2025a; Wang et al.,
2025b), which evaluates the correctness of a generated response:

ro(yi) =
{

1.0 I(yi, ŷi) = 1
−1.0 otherwise

(3)

To ensure more reliable verification, we explicitly require the model to present its final answers in a specified
format (i.e., within \boxed{}).

Difficulty Estimation Calibration Reward. Accurately estimating problem difficulty is a fundamental
aspect of difficulty-aware budgeting. However, since the difficulty of a problem can vary significantly across
different models, and obtaining reliable, model-specific difficulty labels is also challenging. To address this,
we design a reward function that leverages GRPO’s multiple rollouts to estimate a golden difficulty during
online training in a natural and effective manner. Specifically, we calibrate the estimated difficulty of the
model using the frequency of rollouts that leads to a correct answer. We label a question as easy if the
frequency of accurate rollouts exceeds a pre-defined threshold δ, or it is labeled as hard. Moreover, during
the rollout process, the model is expected to generate a correct difficulty-aware tag at the beginning of the
entire response to match the its capability, so the reward function is designed based on the matches between
the generated difficulty-aware tag ti and estimated tag label t̂i that is determined by multiple rollouts:

rf (yi) =


1.0 I(ti, t̂i) = 1
0.0 I(ti, t̂i) = 0
−1.0 ti cannot be found in yi

(4)

Difficulty-aware Length Reward. Different from previous related works that encourage the model
to generate concise responses for all problems (Arora & Zanette, 2025; Aggarwal & Welleck, 2025), we
hope to encourage such behavior only for easy problems and maintain long thinking capabilities for better
tackling hard problems. This helps prevent over-optimization, where the model may fail to engage in deeper
thinking when necessary. To prevent unnecessary overthinking, we design a difficulty-aware length reward
that encourage concise responses when the generated difficulty-aware tag ti is “[Easy]”:

rl(yi) =
{

1.0 − 1−cos((lj
i
/Li)π)

2 ti = [Easy]
0.0 otherwise

(5)

5

Under review as submission to TMLR

where lj
i is the j-th rollout length for problem qi, and Li is the max length in the rollout group of problem qi.

We leverage the monotonicity of the cosine function within a specific domain (i.e., 0–π). This function is
easy to tune and provides smooth behavior, as evidenced by a recent study (Yeo et al., 2025). Therefore, the
difficulty-aware length reward assigns a lower score as the generated response length increases.

Overall Reward and Objective. To enhance the model’s adaptive reasoning capabilities and calibrate its
self-evaluation of problem difficulty during online training, the overall reward in the reinforcement learning
process is computed by integrating the three specifically designed rewards:

r(yi) = ro(yi) + α · rf (yi) + β · rl(yi) (6)

where α and β are hyper-parameters. During optimization, we sample a collection of problems that covers
both easy and hard problems from DeepMATH (He et al., 2025) to allow the model to learn dynamic strategies
for different types of problems. Following Yu et al. (2025a); He et al. (2025), the policy model πθ is optimized
through the following objective:

JGRPO(θ) = E(q,a)∼D,{oi}G
i=1∼πθold (·|q)

[
1
G

G∑
i=1

1
|oi|

|oi|∑
t=1

(
min

(πθ(oi,t | q, oi,<t)
πθold(oi,t | q, oi,<t)

(θ)Âi,t,

clip
(πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
(θ), 1 − ε, 1 + ε

)
Âi,t

)
− β′DKL(πθ||πref)

)]
,

(7)

where G is the group size, oi is the rollout response, Âi,t is the advantage of the i-th response calculated
by normalizing rewards in the group, and β′, ε are hyper-parameters. Through this reinforcement learning
process, models can more effectively assess problem difficulty relative to their own capabilities and develop
adaptive reasoning strategies accordingly.

4 Experiment

4.1 Experimental Setup

Model and Datasets. We adopt Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct (Qwen et al., 2025) as
the backbone model for training. During the cold-start fine-tuning phase, the training problems are drawn
from the DeepMATH dataset (He et al., 2025), which assigns each problem a difficulty level ranging from 1
to 9. We categorize problems with difficulty levels of 5 or below as easy, and those above 5 as hard. For easy
problems, the backbone model is employed to generate concise responses. In contrast, for hard problems,
we incorporate extensive long-form reasoning trajectories generated by Deepseek R1 (DeepSeek-AI et al.,
2025). After filtering these trajectories using ground-truth answers, we construct a cold-start SFT dataset
comprising 8K instances, which includes 4K with short and 4K with long reasoning chains. To support
difficulty-aware reinforcement learning, we further sample an additional 30K examples from DeepMATH that
comprise 10K easy and 20K hard problems and are distinct from those in the cold-start fine-tuning dataset.

Baselines. To assess the effectiveness of AdaCtrl, we compare it against several baselines that share the
same backbone model. These include: (1) Base Model: the unmodified base instruction-tuned model (i.e.
Qwen2.5-7B-Instruct, Qwen2.5-14B-Instruct); (2) S1.1: a reasoning-enhanced model obtained by further
training the base model on the S1-1.1K dataset (Muennighoff et al., 2025); (3) R1-SFT: a baseline model
fine-tuned base model on a curated dataset that includes problems sourced from the cold-start SFT dataset
along with all responses generated by Deepseek R1; (4) R1-SFT-RL: a reinforcement learning model that
trained (3) with outcome accuracy rewards on the aforementioned 30K RL dataset; (5) Cold-Start: a model
fine-tuned based model on the constructed cold-start SFT dataset; (6) Cold-Start-RL: a reinforcement learning
model based on (5), trained using outcome accuracy rewards on the same 30K RL dataset. (7) ARM (Wu
et al., 2025), a reasoning model capable of adaptively selecting appropriate reasoning formats based on the
task at hand.

6

Under review as submission to TMLR

Training Details. For cold-start fine-tuning, we employ the ms-swift framework (Zhao et al., 2024), using
a learning rate of 1e-5 and a batch size of 8. For difficulty-aware reinforcement learning, we adopt the
VeRL (Sheng et al., 2025) framework, with all RL experiments conducted under a unified setting. Specifically,
we follow DAPO (Yu et al., 2025a) to eliminate KL divergence. The policy model is optimized using the
AdamW optimizer with a learning rate of 1e-6, a batch size of 256, and a micro-batch size of 32. And we set
the value of α and β both as 0.5, and the value of δ as 0.625 during training. During the rollout phase, 16
responses are sampled per prompt, and the maximum generation length is set to 24K tokens. All experiments
are conducted on NVIDIA H800 GPUs.

Baseline Prompt

Please reason step by step to answer the following Math Problem, and put your final answer in the
format of \boxed{answer}.

Difficulty-Aware Prompt

Answer the following math problem, judge the difficulty (Easy/Hard) of given problem and start your
response with format: [difficulty here], and put your final answer in the format \boxed{answer}.

Evaluation Settings. We evaluate our method on four mathematical datasets that span both easy and
challenging problems: AIME2024 (Art of Problem Solving, n.d.), AIME2025 (Art of Problem Solving, n.d.),
MATH500 (Hendrycks et al., 2021), and GSM8K (Cobbe et al., 2021). The first two datasets consist of more
challenging Math Olympiad-style problems, whereas the latter two primarily contain simpler, grade-school
level problems, with GSM8K being the easiest among them. Since AIME2024 and AIME2025 each contain only
30 samples, we report the average performance over 8 independent runs for these two datasets. All evaluations
are conducted using consistent inference hyper-parameters set to a temperature of 0.7 and a top-p value of
0.8. In this paper, we use a baseline prompt to evaluate all baselines that do not incorporate difficulty-aware
reasoning. Furthermore, we design a simple difficulty-aware prompt, derived from the baseline prompt, to
support our proposed approach, as detailed in Box 1 for baseline prompt and Box 2 for difficulty-aware
prompt. To quantify the effectiveness and efficiency of models, we report two metrics: accuracy (Acc.) and
the number of tokens generated in the response (Len.).

4.2 Main Results

The main results are presented in Table 1. We can have the following observations:

AdaCtrl Effectively Balances Performance and Reasoning Budget. AdaCtrl demonstrates com-
petitive overall performance, outperforming most baselines across four datasets while efficiently managing
the reasoning budget. Specifically, compared to the RL baseline R1-SFT-RL based on Qwen2.5-7B-Instruct,
AdaCtrl-7B achieves comparable accuracy on AIME2024 and further improves accuracy by 1.67% on
AIME2025, 7.20% on MATH500, and 2.05% on GSM8K. At the same time, it substantially reduces response
lengths by 10.06%, 12.14%, 62.05%, and 91.04% on these datasets, respectively. Under the 14B setting,
AdaCtrl-14B increases accuracy by 10.41%, 2.5%, 8.6%, and 3.04% on AIME2024, AIME2025, MATH500, and
GSM8K, while compressing the reasoning budget by 18.20%, 20.92%, 49.83%, and 88.77% on the correspond-
ing datasets. Similar trends are also observed when comparing AdaCtrl to the S1.1-7B and S1.1-14B baselines.
Furthermore, AdaCtrl consistently surpasses the utility-based ARM baseline, particularly on complex tasks
(e.g., AIME2025), by effectively scaling up reasoning length to avoid the capability degradation observed in
ARM due to excessive length penalization. Overall, these results suggest that AdaCtrl can adaptively allocate
the reasoning budget according to problem difficulty, thereby effectively balancing reasoning efficiency and
effectiveness.

Cold-start Fine-tuning Provides an Effective Foundation for Adaptive Budgeting. Unlike R1-
SFT, which is trained solely on long-form reasoning traces from Deepseek R1, our cold-start fine-tuning

7

Under review as submission to TMLR

Table 1: Main results of AdaCtrl’s adaptive mode. We compute two metrics: Acc.(%) is average accuracy
and Len. is the average generated tokens.

Model AIME2024 AIME2025 MATH500 GSM8K
Acc.(%)↑ Len. ↓ Acc.(%) ↑ Len. ↓ Acc.(%) ↑ Len. ↓ Acc.(%) ↑ Len. ↓

Qwen2.5-7B-Instruct
Qwen2.5-7B-Instruct 11.25 1805.60 7.08 1174.06 73.00 628.91 91.58 272.93
S1.1-7B 16.67 19022.60 18.33 18302.72 68.80 5824.47 91.89 1838.12
R1-SFT-7B 12.08 20767.36 13.33 20184.36 62.00 8103.41 87.34 3336.81
Cold-Start-SFT-7B 11.25 5553.00 7.92 6237.49 71.00 805.78 90.22 345.44
ARM-7B – – 16.70 3253.00 73.90 889.00 89.20 305.00
R1-SFT-RL-7B 21.25 18778.92 17.50 17924.35 66.80 8421.57 88.93 3896.76
Cold-Start-RL-7B 18.33 16911.63 14.58 15941.76 73.00 3797.60 90.67 369.94
AdaCtrl-7B 21.25 16889.50 19.17 15749.08 74.00 3195.69 90.98 349.34

Qwen2.5-14B-Instruct
Qwen2.5-14B-Instruct 11.67 1043.20 10.42 1136.26 73.60 568.28 93.86 215.42
S1.1-14B 32.92 17278.03 29.58 16167.50 76.00 4393.17 95.15 1460.26
R1-SFT-14B 19.58 20485.99 20.42 18447.68 65.80 6473.98 90.67 2883.76
Cold-Start-SFT-14B 12.92 4734.60 12.50 6431.17 76.20 929.48 93.63 287.72
ARM-14B – – 20.00 3871.00 79.10 903.00 92.50 294.00
R1-SFT-RL-14B 24.17 18549.26 23.33 18294.04 70.60 6397.75 91.05 2814.69
Cold-Start-RL-14B 27.50 17722.25 24.17 17088.44 75.60 4657.38 94.01 378.39
AdaCtrl-14B 34.58 15173.21 25.83 14476.93 79.20 3209.84 94.09 316.12

strategy (i.e., Cold-Start-SFT) incorporates a combination of both concise and extended reasoning trajectories.
This diverse training regimen enables the model to acquire more efficient reasoning strategies, resulting in
substantial reductions in response length by 73.26%, 69.10%, 90.06%, and 89.65% for AIME2024, AIME2025,
MATH500, and GSM8K, respectively, on the 7B model, and by 76.88%, 54.14%, 85.64%, and 90.02% on
the 14B model. Furthermore, when models initialized from the cold-start checkpoint undergo additional
reinforcement learning (i.e., Cold-Start-RL), they demonstrate superior budget control compared to those
initialized from R1-SFT (i.e.,R1-SFT-RL), yielding additional reductions in response length of 9.94%, 11.06%,
54.91%, and 91.04% across the same datasets on the 7B model, and 4.46%, 6.61%, 27.20%, and 86.56% on
the 14B model. These results underscore the critical role of the cold-start fine-tuning phase in establishing a
robust foundation for effective adaptive budgeting in downstream tasks.

Our Reward Design Enhance Both Reasoning Effectiveness and Efficiency. Building upon the
cold-start fine-tuning model, AdaCtrl outperforms Cold-Start-RL, which applies reinforcement learning based
solely on outcome accuracy by achieving notable accuracy improvements of 2.92%, 4.59%, 1.00%, and 0.31%
on AIME2024, AIME2025, MATH500, and GSM8K, based on with the 7B model, and improvements of
7.08%, 1.66%, 3.6%, and 0.08% with the 14B model with much less token consumption. These accuracy gains
are attributable to our reward function design, which incorporates both difficulty estimation calibration and
difficulty-aware length adjustments. By introducing these additional reward signals, our approach enables
the model to more accurately assess problem complexity and allocate computational resources accordingly,
thereby achieving a more refined balance between reasoning effectiveness and efficiency.

Human-in-the-Loop Controllability of AdaCtrl. AdaCtrl introduces difficulty-aware tags that serve as
prerequisite tokens during generation, offering explicit control over response length. To assess the controllability
of this mechanism, we emulate user intent by specifying either the “[Easy]” or “[Hard]” tag, which correspond
to simplified and complex reasoning modes, respectively. As presented in Table 2, the experimental results
demonstrate that our approach affords effective control over the reasoning budget. Compared to the adaptive
reasoning mode, where the model autonomously determines the problem’s difficulty, enforcing the “[Easy]”
mode consistently leads to reduced performance across all four datasets. However, it also achieves a substantial
decrease in response length by 90.22% and 94.31% on the more challenging AIME2024 and AIME2025 datasets
for the 7B model, and by 90.81% and 93.19% for the 14B model, respectively. Conversely, the “[Hard]” mode

8

Under review as submission to TMLR

Table 2: Comparison of adaptive and controlled reasoning modes in AdaCtrl. The easy mode reduces
reasoning tokens but at the cost of lower performance, making it suitable for fast-response scenarios. Hard
mode uses more tokens and yields better results. The adaptive mode automatically estimates problem
difficulty to balance effectiveness and efficiency.

Model AIME2024 AIME2025 MATH500 GSM8K
Acc.(%)↑ Len. ↓ Acc.(%) ↑ Len. ↓ Acc.(%) ↑ Len. ↓ Acc.(%) ↑ Len. ↓

AdaCtrl-7B (Adaptive) 21.25 16889.50 19.17 15749.08 74.00 3195.69 90.98 349.34
AdaCtrl-7B (Easy) 14.58 1652.42 10.00 896.14 70.80 652.76 90.75 314.49
AdaCtrl-7B (Hard) 21.67 17562.94 22.08 16114.87 71.20 5960.15 92.57 2058.13
AdaCtrl-14B (Adaptive) 34.58 15173.21 25.83 14476.93 79.20 3209.84 94.09 316.12
AdaCtrl-14B (Easy) 15.83 1394.78 11.25 985.35 75.40 578.37 94.31 284.83
AdaCtrl-14B (Hard) 36.25 15004.55 26.25 14564.21 74.40 5321.25 93.33 2598.28

Table 3: Hyper-parameter Analysis.α controls the reward weight for difficulty-estimation calibration, while
β corresponds to the reward weight for the difficulty-aware length objective. The parameter δ serves as a
predefined threshold for distinguishing between easy and hard samples.

AdaCtrl-7B AIME2024 AIME2025 MATH500 GSM8K
Acc.(%)↑ Len. ↓ Acc.(%) ↑ Len. ↓ Acc.(%) ↑ Len. ↓ Acc.(%) ↑ Len. ↓

α = 0.5, β = 0.5, δ = 0.625 21.25 16889.50 19.17 15749.08 74.00 3195.69 90.98 349.34
α = 1.0, β = 1.0, δ = 0.625 23.75 14762.78 20.00 13986.64 73.80 3134.37 90.30 325.04
α = 0.5, β = 1.0, δ = 0.625 22.08 15616.19 18.75 16116.17 73.80 2836.52 91.13 324.10
α = 1.0, β = 0.5, δ = 0.625 21.67 17843.66 22.08 16684.28 73.40 3727.77 91.66 365.03
α = 0.5, β = 0.5, δ = 0.5 22.92 13790.53 20.42 14040.20 74.00 2888.39 90.60 388.10
α = 0.5, β = 0.5, δ = 0.375 20.00 13385.01 20.00 13689.74 74.60 2181.96 90.60 323.27

enhances performance on most datasets and markedly increases response length, with gains of 86.51% and
489.15% on the simpler MATH500 and GSM8K datasets under the 7B setting, and increases of 65.78% and
721.93% under the 14B setting. These findings indicate that AdaCtrl enables precise, human-in-the-loop
control over reasoning budgets.

4.3 Analysis

Generalizability across Model Families To demonstrate the generalizability of AdaCtrl beyond the
Qwen architecture, we extended our evaluation to the Llama-3.1-8B-Instruct model. The results, summarized
in Table 4, confirm that our proposed two-stage training pipeline effectively transfers to different model
families. As shown in Table 4, AdaCtrl consistently maintains its adaptive length control advantages on
the Llama architecture. Compared to the R1-SFT-RL baseline, AdaCtrl achieves higher accuracy (e.g.,
9.17% vs 7.08% on AIME2024) while significantly reducing token consumption on simpler tasks (e.g., 881.69
vs 4371.49 on GSM8K). Although the absolute performance is constrained by the differing mathematical
capabilities of the base model compared to Qwen, these results confirm that our framework effectively enables
difficulty-awareness and budget control across different model architectures.

Hyper-parameter Analysis. To assess the robustness of our proposed method, we conduct two groups
of hyperparameter analyses, as summarized in Table 3. Specifically, we examine: (1) the weights α and
β, which correspond to the difficulty-estimation calibration reward and the difficulty-aware length reward,
respectively; and (2) the difficulty threshold δ. For reward weights analysis, we investigate the effect of
varying the reward weights across different combinations {1 : 0.5 : 0.5, 1 : 1 : 1, 1 : 0.5 : 1, 1 : 1 : 0.5}. We
observe that accuracy remains largely stable while output length exhibits slight variations. For example, on
AIME2024, accuracy stays within 21–23% as the response length ranges from 14K to 17K tokens. Similarly,
on GSM8K, accuracy consistently falls between 90–91%, while the response length varies from 325–365 tokens.
For difficulty threshold analysis, we further sweep the difficulty threshold δ over {0.625, , 0.5, , 0.375}. A

9

Under review as submission to TMLR

Table 4: Performance comparison on Llama-3.1-8B-Instruct. AdaCtrl consistently demonstrates adaptive
length control advantages, achieving higher accuracy than baselines while significantly reducing token
consumption on simpler tasks, proving the method’s strong generalizability.

Model AIME2024 AIME2025 MATH500 GSM8K
Acc.(%)↑ Len. ↓ Acc.(%) ↑ Len. ↓ Acc.(%) ↑ Len. ↓ Acc.(%) ↑ Len. ↓

Llama-3.1-8B-Instruct 3.58 10901.07 2.08 10383.25 46.80 4203.35 85.14 1319.00
+ R1-SFT 3.33 19595.04 3.33 19040.31 48.40 8792.70 83.78 3387.50
+ Cold-Start-SFT 2.92 15811.69 2.08 17247.47 43.20 5327.22 83.02 641.50
+ R1-SFT-RL 7.08 19377.87 5.83 18026.00 53.20 11140.40 83.09 4371.49
+ AdaCtrl 9.17 16630.41 6.25 16364.67 55.60 6397.70 87.49 881.69

Table 5: Ablation study based on 7B model. rf is the difficulty-estimation calibration reward and rl is the
difficulty-aware length reward.

Acc.(%) AIME2024 AIME2025 MATH500 GSM8K
AdaCtrl-7B 21.25 19.17 74.00 90.98
w/o rf 17.08 (-4.17%) 16.25 (-2.92%) 72.20 (-1.80%) 89.92 (1.06%)
w/o rl 15.42 (-5.83%) 16.67 (-2.50%) 68.60 (-5.4%) 90.60 (-0.38%)

smaller value of δ categorizes more samples as Easy, leading to shorter outputs while maintaining comparable
accuracy. For instance, on MATH500, the response length decreases from 3195.69 to 2888.39 and then to
2181.96 tokens, while accuracy remains around 74%. These results collectively demonstrate the robustness of
our proposed approach under different hyperparameter settings.

Ablation Study. To further assess the effectiveness of the proposed reward functions, we conducted ablation
studies by individually removing the difficulty estimation calibration reward rf and the difficulty-aware length
reward rl. As shown in Table 5, the removal of either reward leads to a noticeable decline in performance
across all four datasets. These results demonstrate that the combined use of all designed rewards is essential
for achieving better optimization.

AdaCtrl Serves as Good Difficulty Estimator. To better assess the difficulty estimation capability of
AdaCtrl, we analysis the proportion of difficulty-aware tags generated by AdaCtrl-7B across four datasets
during reinforcement learning (RL). As illustrated in Figure 4, we first observe that, at the initial stage,
the model tends to classify most samples in all datasets as easy. This is likely because the cold-start SFT
primarily teach the model to explicitly generate self-aware difficulty tags in the expected format, rather than to
accurately assess problem difficulty from its own perspective. However, following our designed difficulty-aware
RL, AdaCtrl predominantly classifies the majority of problems in the AIME2024 and AIME2025 datasets as
hard. These datasets consist of challenging math Olympiad-level problems. In contrast, in the MATH500
dataset, which contains a mixture of easy and difficult problems (the majority of which are relatively solvable
by current large language models), the model identifies 76.2% of problems as easy. For GSM8K, the simplest
dataset among the four, over 99% of problems are categorized as easy, which also accounts for the superior
performance of AdaCtrl-14B (Easy) on GSM8K as reported in Table 2. These results align with the actual
difficulty levels of the datasets and demonstrate that AdaCtrl develops a robust capability to estimate problem
difficulty through RL.

AdaCtrl Facilitates Accurate Difficulty-Aware Budgeting. To further investigate the adaptive
difficulty-aware budgeting capabilities of AdaCtrl, we analyze AdaCtrl-7B’s responses on the MATH500
dataset, which provides difficulty level annotations for each problem. As illustrated in Figure 5 (a), AdaCtrl
generates progressively longer and more elaborate responses as the difficulty level increases from 1 to 5,
ranging from approximately 0.3K to 6K tokens. This trend indicates that AdaCtrl can accurately regulate its

10

Under review as submission to TMLR

0%

20%

40%

60%

80%

100%

0 80 16
0

24
0

32
0

40
0

48
0

56
0

64
0

Easy Hard

99.5%

99.6%

99.7%

99.8%

99.9%

100.0%

0 80 16
0

24
0

32
0

40
0

48
0

56
0

64
0

Easy Hard

0%

20%

40%

60%

80%

100%
0 80 16
0

24
0

32
0

40
0

48
0

56
0

64
0

Easy Hard

(a) AIME2024

0%

20%

40%

60%

80%

100%

0 80 16
0

24
0

32
0

40
0

48
0

56
0

64
0

Easy Hard

(b) AIME2025 (c) MATH500 (d) GSM8K

Easy: 81.67%
Hard: 18.33%

Easy: 1.25%
Hard: 98.75%

Easy: 75.42%
Hard: 24.58%

Easy: 1.67%
Hard: 98.33%

Easy: 99.20%
Hard: 0.80%

Easy: 76.20%
Hard: 23.80%

Easy: 99.20%
Hard: 0.80%

Easy: 99.85%
Hard: 0.15%

steps steps steps steps

Figure 4: The proportion dynamics of difficulty-aware tags across different datasets during reinforcement
learning.

362.88
1117.71

1838.06

3517.54

6256.77

0

1000

2000

3000

4000

5000

6000

7000

8000

Level 1 Level 2 Level 3 Level 4 Level 5

100

400

1600

6400

AIME2024 AIME2025 MATH500 GSM8K

Le
n.

S1.1-7B S1.1-7B-PE Adactrl-7B Adactrl-7B(Easy)

S1.1-7B 19022.60 18302.72 5824.47 1838.12
S1.1-7B-PE 18026.17 16662.39 5360.42 1608.80
Adactrl-7B 16889.50 15749.08 3195.69 349.34
Adactrl-7B(Easy) 1652.42 896.14 652.76 314.49

(a) Length Distribution (b) Controllability comparison

Figure 5: (a) The length of response in different difficulty levels of problems in MATH500, where higher
levels indicate more challenging problems; (b) Controllability comparison of AdaCtrl and prompting-based
approach.

reasoning budget based on its self-assessed estimation of problem difficulty, thereby enabling automatic and
adaptive allocation of computational resources.

Qualitative Analysis of Reasoning Patterns A notable observation from Table 1 is that AdaCtrl
(Hard) generates response lengths approximately 20% shorter than the R1-SFT-RL baseline, despite both
being trained on similar long-form reasoning trajectories. This raises the question of whether this reduction
comes at the cost of missing critical reasoning steps. Our empirical results negate this concern: on MATH500,
AdaCtrl (Hard) outperforms R1-SFT-RL (71.20% vs. 66.80%) while using significantly fewer tokens (5,960 vs.
8,421). We attribute this efficiency to a "conciseness transfer" effect introduced by our mixed-data cold-start
strategy, which regularizes the model against non-functional verbosity.

To further investigate the quality of the generated logic, we conducted a fine-grained analysis of reasoning
primitives on 100 sampled traces using Gemini-3-Pro. As visualized in Figure 6, AdaCtrl exhibits a richer
diversity of reasoning patterns (28 distinct types) compared to the baseline (22 types). While AdaCtrl retains
foundational steps like "Decomposition" and "Reflection", it demonstrates emergent capabilities such as
"Algorithmic Thinking", "Heuristic Reasoning", and "Self-Correction" that are less prominent in the baseline.
This indicates that AdaCtrl produces denser, higher-quality reasoning chains, effectively "purifying" the logic
by eliminating redundant loops while preserving and even enhancing the depth of reasoning.

11

Under review as submission to TMLR

Figure 6: Reasoning Pattern Diversity Analysis. Comparison of reasoning primitives extracted from R1-SFT-
RL (Left) and AdaCtrl-Hard (Right).

Controllability Analysis. Previous approaches often rely on vanilla prompting methods to achieve
token-level control over reasoning budgets. To assess the controllability of AdaCtrl, we compare it with a
prompting-based baseline that uses the S1.1-7B model as the backbone and follows Nayab et al. (2025) to
augment user prompts with the instruction: "Limit the length of the answer to 500 tokens." The response
lengths generated by AdaCtrl in both easy and adaptive modes, as well as those produced by S1.1-7B and
its prompting-based budget control variant, are reported in Figure 5 (b). We can observe that, through
the prompting-based method (i.e., S1.1-7B-PE) explicitly restricting outputs to 500 tokens, it only yields
reductions in response length of only 5.25%, 8.96%, 7.97%, and 12.48% on the AIME2024, AIME2025,
MATH500, and GSM8K datasets, respectively, falling significantly short of the targeted 500-token limit. We
also observed similar trends when the length constraint was set to 1000 tokens. These results suggest that
achieving precise, fine-grained control over output length is challenging due to highly dependent on model’s
instruction-following capabilities, and that current models may struggle to reliably interpret and execute
such granular prompts. In contrast, the easy mode of AdaCtrl achieves substantially greater compression
of reasoning budgets, reducing response lengths by 90.22%, 94.32%, 79.57%, and 9.98% across the same
datasets. This demonstrates superior controllability, which can be primarily attributed to AdaCtrl’s mixed
fine-tuning strategy and its design of a difficulty-aware length reward. For a more comprehensive evaluation,
we further provide a detailed accuracy-efficiency trade-off comparison between AdaCtrl and prompt-based
baselines in Appendix D.

0 5000 10000 15000 20000 25000
Tokens

100

101

102

103

Sa
m

pl
e

C
ou

nt
s

Easy
Hard

Figure 7: The length distribution of response generated
by AdaCtrl-7B.

Length Distribution of Generated Responses.
To further demonstrate the budget allocation capa-
bility of AdaCtrl, we analyze the response length
distribution of AdaCtrl-7B across all inference re-
sults from the evaluated benchmarks. Specifically,
we compute the distributions separately for samples
categorized as easy and hard by the model predicted
tags. As shown in Figure 7, AdaCtrl clearly differen-
tiates between easy and hard problems. Notably, the
response lengths for easy problems are concentrated
within a relatively narrow range. These findings
indicate that our approach achieves effective and
accurate budget control guided by the self-assessed
difficulty-aware tags.

Training Dynamics During RL. To further in-
vestigate how the model learns to allocate adaptive
reasoning budgets, we analyze both performance
trends and budget dynamics of AdaCtrl-7B through-
out the reinforcement learning (RL) training process.
As illustrated in Figure 8, the model exhibits upward trends in performance across all four datasets, suggesting
a progressive enhancement in reasoning capabilities. Regarding budget dynamics, we observe distinct patterns
across datasets. On AIME2024, AIME2025, and MATH500, the average response length initially increases
rapidly during early training steps, then gradually decreases and stabilizes at a level longer than that before

12

Under review as submission to TMLR

11.25

21.25

8
10
12
14
16
18
20
22
24

0 10 20 30 40 50 60 70 80

A
cc

. (
%

)

Steps

(a) AIME2024

7.92

19.17

6
8

10
12
14
16
18
20
22

0 10 20 30 40 50 60 70 80

A
cc

. (
%

)

Steps

71

74

69

70

71

72

73

74

75

0 10 20 30 40 50 60 70 80

A
cc

. (
%

)

Steps

90.22

90.98

89

89.5

90

90.5

91

91.5

92

0 10 20 30 40 50 60 70 80

A
cc

. (
%

)

Steps

5553

16889.5

4000
6000
8000

10000
12000
14000
16000
18000
20000

0 10 20 30 40 50 60 70 80

Le
n.

Steps

6237.49

15749.08

5000
7000
9000

11000
13000
15000
17000
19000

0 10 20 30 40 50 60 70 80

Le
n.

Steps

805.78

3195.69

500
1000
1500
2000
2500
3000
3500
4000

0 10 20 30 40 50 60 70 80

Le
n.

Steps

345.44 349.34

200

250

300

350

400

450

500

0 10 20 30 40 50 60 70 80

Le
n.

Steps

(b) AIME2025 (c) MATH500 (d) GSM8K

Figure 8: Training dynamics of accuracy and response length across different datasets during reinforcement
learning.

RL training. While for GSM8K, the response length remains relatively stable and close to that observed
before RL training.

These findings suggest that the reasoning budget allocation learned during cold-start fine-tuning is insufficient
for more complex problems, such as those in AIME2024, AIME2025, and MATH500. Consequently, the
model adjusts its budget dynamically in response to actual problem difficulty during RL phase. In contrast,
for the comparatively simpler GSM8K dataset, the model is already capable of effectively allocating minimal
budgets after cold-start fine-tuning, indicating its ability to distinguish and handle easier problems without
requiring significant adjustment.

5 Conclusion

In this work, we propose an adaptive and controllable reasoning framework designed to mitigate the problem
of overthinking while granting users explicit control over computational resources. To this end, we introduce
AdaCtrl that supports both dynamic reasoning budget allocation and user-directed budget adjustments. Our
approach utilizes a two-stage training pipeline that combines cold-start fine-tuning with difficulty-aware
reinforcement learning. Experiments conducted on four benchmark datasets demonstrate that AdaCtrl
effectively allocates reasoning budgets based on self-assessed problem difficulty, leading to performance
improvements while dynamically reducing response lengths by 10%–90%. This enables flexible trade-offs
between efficiency and performance. Furthermore, AdaCtrl unlocks the potential of human-in-the-loop control
towards reasoning budgets according to tailored needs.

Broader Impact Statement

AdaCtrl enables adaptive and user-controllable allocation of reasoning budgets in large language models,
aiming to mitigate unnecessary overthinking while preserving performance on harder queries. By reducing
response length when extensive reasoning is not needed, it can lower inference cost and latency, which
may also reduce the environmental footprint of large-scale deployment. The difficulty-aware tags provide a
lightweight human-in-the-loop mechanism to steer efficiency–effectiveness trade-offs in practical applications.
As with most LLM research, there is a general dual-use risk; however, since this work primarily changes

13

Under review as submission to TMLR

how computational effort is allocated rather than enabling new capabilities, we expect the incremental risk
introduced by this method to be limited.

Limitations and Future Work

Several limitations of our study should be noted. First, to keep the control interface lightweight and reliable,
AdaCtrl currently uses a binary difficulty schema (i.e., [Easy] vs. [Hard]), which may be less expressive for
intermediate cases. Second, our human-in-the-loop mechanism is instantiated as tag-based control, which
provides simple steering but does not yet capture richer user intent such as preferences over verbosity, latency,
or explanation style. Third, although we introduce explicit calibration to improve self-assessed difficulty, the
estimated difficulty can still be imperfect in some cases, which may lead to occasional over- or under-allocation
of reasoning effort.

Future work will explore finer-grained and hierarchical control signals beyond binary tags to enable smoother
and more flexible budget allocation while preserving robustness. We will also extend human-in-the-loop
control beyond tag-only steering by incorporating richer feedback signals (e.g., preference- or correction-based
guidance) to better align budgeting behavior with user intent. Additionally, we plan to further improve
difficulty estimation calibration (e.g., by leveraging more informative uncertainty signals from rollouts and
training dynamics), strengthening the consistency between self-assessed difficulty and actual solvability.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo

Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with reinforcement
learning, 2025. URL https://arxiv.org/abs/2503.04697.

Daman Arora and Andrea Zanette. Training language models to reason efficiently, 2025. URL https:
//arxiv.org/abs/2502.04463.

Art of Problem Solving. Aime problems and solutions. https://artofproblemsolving.com/wiki/index.
php/AIME_Problems_and_Solutions, n.d. Accessed: 2025-05-22.

Vidhisha Balachandran, Jingya Chen, Lingjiao Chen, Shivam Garg, Neel Joshi, Yash Lara, John Langford,
Besmira Nushi, Vibhav Vineet, Yue Wu, and Safoora Yousefi. Inference-time scaling for complex tasks:
Where we stand and what lies ahead, 2025. URL https://arxiv.org/abs/2504.00294.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu, Mengfei
Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do not think that much for
2+3=? on the overthinking of o1-like llms, 2025. URL https://arxiv.org/abs/2412.21187.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training
verifiers to solve math word problems, 2021. URL https://arxiv.org/abs/2110.14168.

Yingqian Cui, Pengfei He, Jingying Zeng, Hui Liu, Xianfeng Tang, Zhenwei Dai, Yan Han, Chen Luo, Jing
Huang, Zhen Li, et al. Stepwise perplexity-guided refinement for efficient chain-of-thought reasoning in
large language models. arXiv preprint arXiv:2502.13260, 2025.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang
Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao,
Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo,
Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian

14

https://arxiv.org/abs/2503.04697
https://arxiv.org/abs/2502.04463
https://arxiv.org/abs/2502.04463
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://arxiv.org/abs/2504.00294
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2110.14168

Under review as submission to TMLR

Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong
Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng
Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin,
Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu,
Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei,
Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,
Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin
Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li,
Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou,
Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao,
Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng
Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting
Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing
reasoning capability in llms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Tingxu Han, Chunrong Fang, Shiyu Zhao, Shiqing Ma, Zhenyu Chen, and Zhenting Wang. Token-budget-aware
llm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian Yu, Zhenwen
Liang, Wenxuan Wang, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Deepmath-
103k: A large-scale, challenging, decontaminated, and verifiable mathematical dataset for advancing
reasoning, 2025. URL https://arxiv.org/abs/2504.11456.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021. URL
https://arxiv.org/abs/2103.03874.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought without
compromising effectiveness. arXiv preprint arXiv:2412.11664, 2024.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian Xu,
Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, Yingying Zhang, Fei Yin, Jiahua Dong, Zhiwei Li, Bao-Long Bi,
Ling-Rui Mei, Junfeng Fang, Zhijiang Guo, Le Song, and Cheng-Lin Liu. From system 1 to system 2: A
survey of reasoning large language models, 2025. URL https://arxiv.org/abs/2502.17419.

Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Jiayang, Yue Zhang, Xipeng Qiu, and Zheng Zhang. Can
language models learn to skip steps? arXiv preprint arXiv:2411.01855, 2024.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. https://github.com/sail-sg/
understand-r1-zero, 2025.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao, and
Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning. arXiv preprint
arXiv:2501.12570, 2025.

15

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2504.11456
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2502.17419
https://github.com/sail-sg/understand-r1-zero
https://github.com/sail-sg/understand-r1-zero

Under review as submission to TMLR

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-compressible
chain-of-thought tuning, 2025. URL https://arxiv.org/abs/2502.09601.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer,
Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time scaling, 2025. URL
https://arxiv.org/abs/2501.19393.

Tergel Munkhbat, Namgyu Ho, Seohyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. Self-training
elicits concise reasoning in large language models, 2025. URL https://arxiv.org/abs/2502.20122.

Sania Nayab, Giulio Rossolini, Marco Simoni, Andrea Saracino, Giorgio Buttazzo, Nicolamaria Manes, and
Fabrizio Giacomelli. Concise thoughts: Impact of output length on llm reasoning and cost, 2025. URL
https://arxiv.org/abs/2407.19825.

OpenAI. Introducing openai o1, September 2024. URL https://openai.com/o1/. Accessed: 2025-05-21.

Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao Yan, Dongrui Liu, Ganqu Cui, Daizong Liu, Shuxian
Liang, Junxian He, et al. A survey of efficient reasoning for large reasoning models: Language, multimodality,
and beyond. arXiv preprint arXiv:2503.21614, 2025a.

Yuxiao Qu, Matthew Y. R. Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching, Ruslan
Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement fine-tuning,
2025b. URL https://arxiv.org/abs/2503.07572.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
and Zihan Qiu. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.

Tony Ryan, Shu Wen Tay, P. D. Ryan, and C. Anthony Ryan. Systems 1 and 2 thinking processes and
cognitive reflection testing in medical students. Canadian Medical Education Journal, 7:e97 – e103, 2016.
URL https://api.semanticscholar.org/CorpusID:11436274.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models, 2024. URL https://arxiv.org/abs/2402.03300.

Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai Wang,
and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reasoning models, 2025. URL https:
//arxiv.org/abs/2503.04472.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin
Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings of the Twentieth
European Conference on Computer Systems, EuroSys ’25, pp. 1279–1297. ACM, March 2025. doi: 10.1145/
3689031.3696075. URL http://dx.doi.org/10.1145/3689031.3696075.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally can be
more effective than scaling model parameters, 2024. URL https://arxiv.org/abs/2408.03314.

Zhaochen Su, Linjie Li, Mingyang Song, Yunzhuo Hao, Zhengyuan Yang, Jun Zhang, Guanjie Chen, Jiawei
Gu, Juntao Li, Xiaoye Qu, et al. Openthinkimg: Learning to think with images via visual tool reinforcement
learning. arXiv preprint arXiv:2505.08617, 2025.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, Andrew
Wen, Shaochen Zhong, Hanjie Chen, and Xia Hu. Stop overthinking: A survey on efficient reasoning for
large language models, 2025. URL https://arxiv.org/abs/2503.16419.

16

https://arxiv.org/abs/2502.09601
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2502.20122
https://arxiv.org/abs/2407.19825
https://openai.com/o1/
https://arxiv.org/abs/2503.07572
https://arxiv.org/abs/2412.15115
https://api.semanticscholar.org/CorpusID:11436274
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2503.04472
https://arxiv.org/abs/2503.04472
http://dx.doi.org/10.1145/3689031.3696075
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2503.16419

Under review as submission to TMLR

Kimi Team. Kimi k1.5: Scaling reinforcement learning with llms, 2025. URL https://arxiv.org/abs/2501.
12599.

Hongru Wang, Deng Cai, Wanjun Zhong, Shijue Huang, Jeff Z. Pan, Zeming Liu, and Kam-Fai Wong. Self-
reasoning language models: Unfold hidden reasoning chains with few reasoning catalyst. In Wanxiang Che,
Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Association for
Computational Linguistics: ACL 2025, pp. 5578–5596, Vienna, Austria, July 2025a. Association for Computa-
tional Linguistics. ISBN 979-8-89176-256-5. URL https://aclanthology.org/2025.findings-acl.291/.

Hongru Wang, Cheng Qian, Wanjun Zhong, Xiusi Chen, Jiahao Qiu, Shijue Huang, Bowen Jin, Mengdi
Wang, Kam-Fai Wong, and Heng Ji. Acting less is reasoning more! teaching model to act efficiently, 2025b.
URL https://arxiv.org/abs/2504.14870.

Rui Wang, Hongru Wang, Boyang Xue, Jianhui Pang, Shudong Liu, Yi Chen, Jiahao Qiu, Derek Fai Wong,
Heng Ji, and Kam-Fai Wong. Harnessing the reasoning economy: A survey of efficient reasoning for large
language models. arXiv preprint arXiv:2503.24377, 2025c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824–24837, 2022.

Siye Wu, Jian Xie, Yikai Zhang, Aili Chen, Kai Zhang, Yu Su, and Yanghua Xiao. ARM: Adaptive reasoning
model. In NeurIPS 2025 Workshop on Efficient Reasoning, 2025. URL https://openreview.net/forum?
id=FCcQ7o0WdS.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Controllable chain-of-
thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing less,
2025. URL https://arxiv.org/abs/2502.18600.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-of-thought
reasoning in llms, 2025. URL https://arxiv.org/abs/2502.03373.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1, 2024. URL https:
//arxiv.org/abs/2407.06023.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian Fan,
Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi Wang,
Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan,
Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An open-source llm reinforcement learning system at
scale, 2025a. URL https://arxiv.org/abs/2503.14476.

Zishun Yu, Tengyu Xu, Di Jin, Karthik Abinav Sankararaman, Yun He, Wenxuan Zhou, Zhouhao Zeng, Eryk
Helenowski, Chen Zhu, Sinong Wang, et al. Think smarter not harder: Adaptive reasoning with inference
aware optimization. arXiv preprint arXiv:2501.17974, 2025b.

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan Guo,
Yufei Wang, Niklas Muennighoff, Irwin King, Xue Liu, and Chen Ma. A survey on test-time scaling in large
language models: What, how, where, and how well?, 2025. URL https://arxiv.org/abs/2503.24235.

Yuze Zhao, Jintao Huang, Jinghan Hu, Xingjun Wang, Yunlin Mao, Daoze Zhang, Zeyinzi Jiang, Zhikai Wu,
Baole Ai, Ang Wang, Wenmeng Zhou, and Yingda Chen. Swift:a scalable lightweight infrastructure for
fine-tuning, 2024. URL https://arxiv.org/abs/2408.05517.

17

https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://aclanthology.org/2025.findings-acl.291/
https://arxiv.org/abs/2504.14870
https://openreview.net/forum?id=FCcQ7o0WdS
https://openreview.net/forum?id=FCcQ7o0WdS
https://arxiv.org/abs/2502.18600
https://arxiv.org/abs/2502.03373
https://arxiv.org/abs/2407.06023
https://arxiv.org/abs/2407.06023
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2408.05517

Under review as submission to TMLR

Appendix

A Analysis of Difficulty Estimation Capability

To further quantify the reliability of this difficulty estimation and address concerns regarding potential
false negatives (i.e., identifying hard problems as easy), we evaluated the tagging accuracy of AdaCtrl.
Ground-truth difficulty was determined by the pass rate of 16 parallel rollouts (problems solved > 10 times
were labeled Easy). As shown in Table 6, AdaCtrl achieves remarkable precision (> 92% on AIME and
> 96% on GSM8K) across both sizes. This indicates that the difficulty estimation calibration reward (rf)
effectively aligns the model’s self-assessment with its actual capabilities, making "first-token commitment" a
robust decision mechanism rather than a brittle constraint.

Table 6: Difficulty Tagging Accuracy (%) of AdaCtrl across benchmarks. High accuracy indicates robustness
against mode collapse and false negatives.

Model AIME2024 AIME2025 MATH500 GSM8K
AdaCtrl-7B 93.33 94.58 87.82 96.58
AdaCtrl-14B 92.08 95.42 89.47 96.40

B Detailed Analysis of Performance Trade-offs in Forced Modes

In the main text, we observed that on mixed-difficulty datasets like MATH500, the forced Hard mode (71.20%)
yields slightly lower accuracy than the Adaptive mode (74.00%). To investigate the underlying causes, we
conducted a fine-grained error analysis tracking samples where correctness "flipped" between the Adaptive
mode (specifically when it autonomously selected the Easy tag) and the forced Hard mode. As summarized
in Table 7, forcing the Hard mode introduces specific trade-offs:

Table 7: Error analysis of forcing Hard mode on MATH500. "Gain" denotes samples corrected by switching
from Easy to Hard, while "Loss" denotes samples that were correct in Easy mode but failed in Hard mode.

Model Gain (Easy × → Hard ✓) Loss (Easy ✓ → Hard ×) Overthinking Analysis within "Loss"
AdaCtrl-7B 27 samples 47 samples 32/47 cases initially derived the correct answer

but drifted into error due to forced verbosity.
AdaCtrl-14B 18 samples 38 samples 27/38 cases failed due to similar redundancy-

induced errors.

As illustrated in Table 7, the forced Hard mode indeed demonstrates the potential to raise the performance
ceiling, evidenced by the 27 ’Gain’ samples where extended reasoning successfully solved complex problems
that failed in the concise mode. However, this benefit is currently outweighed by the 47 ’Loss’ cases. Crucially,
our error analysis reveals that these failures do not stem from a lack of capability. Taking AdaCtrl-7B as
an example, human validation confirms that in 32 out of the 47 ’Loss’ cases (approx. 68%), the model had
initially derived the correct answer but was compelled to drift into incorrect revisions due to "forced verbosity."
This indicates that the "intrinsic capability" of the Hard mode is actually higher than its final accuracy
suggests, but it is compromised by "thinking noise" such as unnecessary self-doubt or hallucinatory verification
on simpler queries. While this noise is detrimental on mixed datasets, the dynamic shifts entirely on genuinely
challenging benchmarks like AIME, where deep reasoning is indispensable and leads to significant gains (e.g.,
boosting 7B accuracy to 22.08%). This contrast underscores the critical value of AdaCtrl’s Adaptive mode: by
autonomously identifying problem difficulty, it intelligently navigates this trade-off, successfully filtering out

18

Under review as submission to TMLR

the overthinking noise on simpler tasks while preserving the capacity to deploy extensive reasoning budgets
when truly needed.

Regarding the comparison between the Easy mode and the vanilla model, we emphasize that our method
maintains comparable efficiency and performance on simple tasks while delivering superior robustness on
challenging ones. On GSM8K, the response length is remarkably similar (314 vs 273 tokens) with competitive
accuracy (90.75% vs 91.58%). However, on complex benchmarks where vanilla models typically struggle,
our Easy mode actually outperforms the vanilla baseline: for instance, on AIME 2024, it achieves 14.58%
accuracy compared to Vanilla’s 11.25%, and on AIME 2025, it reaches 10.00% vs 7.08%. This highlights the
core value of our framework: it offers the flexibility to secure competitive results with merely 1/10th of the
standard reasoning budget (via Easy mode), while retaining the capacity to dynamically expand reasoning
length by 10x to unlock maximum performance. This wide dynamic range allows AdaCtrl to navigate the
performance-cost trade-off more effectively than any static baseline.

C Analysis of Baseline Prompting Fairness

To ensure a rigorous comparison and decouple the effects of prompt engineering from our training methodology,
we conducted an additional experiment to assess the fairness of using different prompts for baselines and
AdaCtrl. The "Baseline Prompt" used in our main evaluation was modeled after the official system prompt
recommended for the Qwen-Math series, ensuring optimal native performance for the baselines.

We applied the "Difficulty-Aware Prompt" (used in AdaCtrl) to the vanilla Qwen2.5-Instruct baseline to
determine if performance gains were attributable to the prompt structure itself. As shown in Table 8, replacing
the official baseline prompt with the difficulty-aware prompt leads to a noticeable drop in accuracy across
most benchmarks. For instance, the 14B model’s accuracy on AIME2024 falls from 11.67% to 4.58%. We
attribute this degradation to semantic interference, as the vanilla model lacks the internalized alignment
to map difficulty tags to appropriate reasoning budgets. Consequently, the extra instructions function as
out-of-distribution noise rather than valid control signals. This outcome confirms that the standard "Baseline
Prompt" represents the most robust and favorable configuration for the vanilla model, validating the fairness
of our original experimental setup.

Table 8: Comparison of Baseline Prompt vs. Difficulty-Aware Prompt on vanilla Qwen2.5-Instruct models.
Applying the difficulty-aware prompt to the baseline results in performance degradation, confirming that the
baseline prompt is the fairer and stronger setting for comparison.

Model AIME2024 AIME2025 MATH500 GSM8K
Acc.(%)↑ Len. ↓ Acc.(%) ↑ Len. ↓ Acc.(%) ↑ Len. ↓ Acc.(%) ↑ Len. ↓

Qwen2.5-7B-Ins (Baseline Prompt) 11.25 1805.60 7.08 1174.06 73.00 628.91 91.58 272.93
Qwen2.5-7B-Ins (Diff-Aware Prompt) 10.42 1715.62 5.83 1402.52 67.60 538.29 87.34 237.83
Qwen2.5-14B-Ins (Baseline Prompt) 11.67 1043.20 10.42 1136.26 73.60 568.28 93.86 215.42
Qwen2.5-14B-Ins (Diff-Aware Prompt) 4.58 830.68 5.00 686.01 73.00 409.86 85.75 188.47

D Efficiency-Accuracy Trade-off in Prompt-based Controllability

In Section 4.3, we demonstrated that prompt-based baselines (e.g., S1.1-7B-PE with instructions to "limit
length") fail to achieve effective token reduction. To further assess the trade-off between controllability and
effectiveness, we supplemented the accuracy data for this baseline and compared it directly with AdaCtrl’s
Easy and Adaptive modes.

As shown in Table 9, relying solely on prompting not only fails in length control but also yields an inferior
efficiency-accuracy ratio. For instance, on GSM8K, while S1.1-7B-PE achieves 90.83% accuracy, it consumes
∼1,608 tokens. In contrast, AdaCtrl (Easy) matches this accuracy (90.75%) with only 314 tokens, achieving
a 5× efficiency improvement. On challenging tasks like AIME 2024, although S1.1-7B-PE shows higher
accuracy than the Easy mode, its length balloons to over 18,000 tokens, indicating a total failure of budget

19

Under review as submission to TMLR

control. Meanwhile, AdaCtrl (Adaptive) significantly outperforms the prompt baseline (21.25% vs. 17.50%)
with reduced token usage, demonstrating a superior Pareto frontier.

Table 9: Comparison of accuracy and length between Prompt-based Control (S1.1-7B-PE) and AdaCtrl. The
prompt-based method fails to achieve genuine budget control (e.g., >18k tokens on AIME) and underperforms
AdaCtrl in efficiency-accuracy ratio.

Model AIME2024 AIME2025 MATH500 GSM8K
Acc.(%)↑ Len. ↓ Acc.(%) ↑ Len. ↓ Acc.(%) ↑ Len. ↓ Acc.(%) ↑ Len. ↓

S1.1-7B-PE 17.50 18026.17 16.67 16662.39 70.80 5360.42 90.83 1608.80
AdaCtrl-7B (Easy) 14.58 1652.42 10.00 896.14 70.80 652.76 90.75 314.49
AdaCtrl-7B (Adaptive) 21.25 16889.50 19.17 15749.08 74.00 3195.69 90.98 349.34

20

	Introduction
	Related Work
	Method
	Cold-Start Fine-Tuning
	Difficulty-Aware Reinforcement Learning

	Experiment
	Experimental Setup
	Main Results
	Analysis

	Conclusion
	Analysis of Difficulty Estimation Capability
	Detailed Analysis of Performance Trade-offs in Forced Modes
	Analysis of Baseline Prompting Fairness
	Efficiency-Accuracy Trade-off in Prompt-based Controllability

