
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PRIORS IN TIME: MISSING INDUCTIVE BIASES FOR
LANGUAGE MODEL INTERPRETABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

A central aim of interpretability tools applied to language models is to recover
meaningful concepts from model activations. Existing feature extraction methods
focus on single tokens regardless of the context, implicitly assuming independence
(and therefore stationarity). This leaves open whether they can capture the rich
temporal and context-sensitive structure in the activations of language models
(LMs). Adopting a Bayesian view, we demonstrate that standard Sparse Autoen-
coders (SAEs) impose priors that assume independence of concepts across time.
We then show that LM representations exhibit rich temporal dynamics, including
systematic growth in conceptual dimensionality, context-dependent correlations,
and pronounced non-stationarity, in direct conflict with the priors of SAEs. This
mismatch casts doubt on existing SAEs’ ability to reflect temporal structures of
interest in the data. We introduce a novel SAE architecture—Temporal SAE—with
a temporal inductive bias that decomposes representations at a given time into two
parts: a predictable component, which can be inferred from the context, and a
residual component, which captures novel information unexplained by the context.
Experiments on LLM activations with Temporal SAE demonstrate its ability to
correctly parse garden path sentences, identify event boundaries, and more broadly
delineate abstract, slow-moving information from novel, fast-moving information,
while existing SAEs show significant pitfalls in all the above tasks. Our results
underscore the need for inductive biases that match the data in designing robust
interpretability tools.

1 INTRODUCTION

Given the success of Language Models (LMs) (Bubeck et al., 2023; Deepmind, 2025), there is
growing interest in understanding how such models incrementally update over sequences of tokens to
exhibit complex behaviors (Murthy et al., 2025; Lindsey, 2025; Lindsey et al., 2025; Lepori et al.,
2025; Bigelow et al., 2025; Tuckute et al., 2024; Klindt et al., 2025). Interpretability research aims to
make such analyses tractable, offering tools for hypothesis design, testing, and intervention based on
evaluation of intermediate activations (Geiger et al., 2025; Sharkey et al., 2025; Bereska and Gavves,
2024). Often, such work builds on hypothesized computational models of how concepts are encoded
in a neural network’s representations, e.g., the linear representation hypothesis (LRH) (Elhage et al.,
2022; Arora et al., 2018), correspondingly motivating tools such as sparse autoencoders (SAEs) (Gao
et al., 2024; Cunningham et al., 2023) for unsupervised extraction of a dictionary of vectors that
(ideally) mediate human-interpretable concepts (Mueller et al., 2025).

A central challenge in “bottom-up” approaches to interpretability, like SAEs, is the mismatch between
the assumptions of their underlying implementational account and the precise behavior or computation
they intend to explain (Jonas and Kording, 2017; Geiger et al., 2025; Costa et al., 2025) (see Fig. 1).
For instance, since LRH posits that different concepts correspond to directions in activation space
that can be independently manipulated, it implicitly claims the data distribution can be factorized
into independently varying latent variables (Allen, 2024). This mismatch between the structure
of the data distribution and strong priors codified in LRH can lead to misleading or pathological
explanations when using SAEs to understand neural networks (Chanin et al., 2025; Bricken et al.,
2023; Hindupur et al., 2025). This raises a set of critical questions for using SAEs to interpret models
trained on sequential data like language. Specifically, since language exhibits rich temporal structure
at multiple scales (Marslen-Wilson and Tyler, 1980; Thompson, 1999)—e.g., sentences contain

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Independence 
Prior

Correlations

There stood a dark-haired boy, his Gryffindor scarf blazing red and gold against the night, 
round glasses framing the scar that marked him forever, wand in hand — this was Harry Potter.

𝑡

𝑡
𝐸  𝐷  MismatchLM Activations

SAE Latents

Figure 1: The mismatch between SAE assumptions and temporal structure of language. An
illustrative sentence describing attributes of Harry Potter is shown. When passed into a language
model (LM), it leads to activations xt that include concepts within them (possibly entangled): note
the presence of large numbers of shared attributes over time, which manifest as correlations across
time of activations. Sparse Autoencoders (SAEs) implicitly have an independence (i.i.d.) prior across
time t over their latents and thereby over concepts, which clashes with the true structure of language.

dependencies that link words across time (Gibson et al., 2000; McElree et al., 2003), upcoming
words can be anticipated from context (Hale, 2001; Levy, 2008), and discourse imposes structure
over longer timescales through phenomena like event boundaries (Zacks et al., 2007; Baldassano
et al., 2017)—one can ask what assumptions about temporal structures do SAEs make? How do these
assumptions align with the actual temporal structure present in a LM’s activations?

This work. Building on the Bayesian interpretation of sparse coding (Olshausen and Field, 1996;
1997)—the framework that motivates SAEs—we rephrase the optimization objective of SAEs as a
MAP (maximum a posteriori) estimation problem. This allows us to make explicit prior assumptions
about temporal structure embedded in SAEs, showing they implicitly assume concepts are uncorre-
lated across time and the number of concepts necessary to explain an activation is time-invariant—that
is, the information present at each token position is independent of information at other positions
and uniformly distributed. As we empirically show, these assumptions stand in stark contrast to the
actual temporal structure present in language and language model representations, and can result in
empirically observed pathologies in SAEs, such as feature splitting (Bricken et al., 2023; Chanin
et al., 2025; Bussmann et al., 2025).

These results then motivate us to draw a broader parallel between SAEs and computational neuro-
science approaches for understanding neural data. Specifically, population-level analyses of neural
recordings have revealed that representations often lie on structured manifolds (Khona and Fiete,
2022; Nogueira et al., 2023; Sohn et al., 2019), challenging the reductionist assumption in sparse
coding that computations occur via independently firing, monosemantic features (Eichenbaum, 2018;
Saxena and Cunningham, 2019; Barack and Krakauer, 2021). This motivated a paradigm shift towards
more structured analysis protocols—methods designed around the generative process of the behavior
one aims to explain (Schneider et al., 2023; Chen et al., 2018). Motivated by this and similar findings
of intricate geometrical structure in neural network representations (Fel et al., 2025; Gurnee et al.,
2025; Modell et al., 2025), we propose Temporal SAEs, a new protocol for interpreting language
model activations that incorporates explicit inductive biases about temporal structure. Our approach
decomposes activations at each timestep into two orthogonal components: a predictable component,
obtained by projecting current representations onto past context using a learned attention mechanism,
and a novel component, representing residual information orthogonal to the predictable component.
That is, we assume the novel component—not the total representation—is uncorrelated over time.
This allows correlations between total codes and hence enables our method to capture the temporal
structure of LM activations. Overall, we argue interpretability methods should be driven by the
behavior one is trying to explain.

2 PRELIMINARIES

Notations. Let bold, lowercase letters represent vectors (e.g., z). Subscripts on vectors denote
different samples (e.g., zi), while superscripts denote the index within the vector, leading to a scalar

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

500

0.80

0.55

   
Sequence Position

In
tr

in
sic

 D
im

en
sio

n

105

20 100 500
Sequence Position

50 250 450

-10

0.30

0 100
Sequence Position

1.0

0.0

Va
ria

nc
e 

Ex
pl

ai
ne

d

(e) (f) (g)

La
g 

to
 P

re
vi

ou
s 

Po
sit

io
n

0.5

(e)

90

120

   

In
tr

in
sic

 D
im

en
sio

n
400

20 100 500
Sequence Position

(a) (b)

300

500

-20

-30

Sequence Position
50 250 450

-10

-20

-30

0.31

0.25

Sequence Position
50 250 450

-10

0.24

(c)

La
g 

to
 P

re
vi

ou
s 

Po
sit

io
n

-20

-30

Sequence Position
50 250 450

-10

-20

-30
5000

Sequence Position

1.0

0.0

Va
ria

nc
e 

Ex
pl

ai
ne

d

(d)

0.5

LL
am

a-
3.
1-
8B

G
em

m
a-
2-
2B

(h)

Original
Surrogate

(x) = − 1.58x−0.17 + 1.31fit

100

w = 161

w = 9

w = 1

w = 40

w = 161

w = 9
w = 1

w = 40

(x) = − 1.52x−0.14 + 1.35fit
Random Directions Baseline
First Token Baseline

fit
Random Directions Baseline
First Token Baseline

Figure 2: Temporal structure of LLM activations reveals nonstationarity. We use Pile sam-
ples (Monology, 2021) to analyze temporal structure from activations of two pretrained LMs, com-
paring it to a surrogate signal that is stationary in nature (see App. J.3). (a, e) Intrinsic dimension
of model activations and stationary surrogate. (b, f) Autocorrelations A(xt,xt−τ ) as a function of
sequence position (t) and lag (τ ). (c, g) Autocorrelation of the stationary surrogate. (d, h) Variance
explained by projecting current representation xt onto past context window {xt−1, . . . ,xt−w} with
different sizes w, along with a baseline. Results consistently show representations getting ‘denser’
over time and being significantly more structured than a stationary surrogate.

(e.g., zk). We denote model activations by x ∈ Rn, SAE latents (sparse code) by z ∈ RM , and the
dictionary by D ∈ Rn×M (M is the dictionary size).

Sparse Coding. Sparse dictionary learning (Olshausen and Field, 1996; 1997) expresses data as a
sparse linear combination of dictionary elements, where both the weights and dictionary are learned
from data. Intuitively, the dictionary behaves as a data-adaptive overcomplete basis; i.e., it typically
has more elements that the dimension of ambient space. The optimization problem involved in
this framework is argminD,z

1
N

∑N
i=1 ∥xi −Dzi∥22 + λR(zi), where R(·), typically chosen to be

the ℓ1-norm, is a sparsity-inducing regularizer. Sparsity assists in picking the fewest most relevant
dictionary atoms to explain a given data point.

Sparse Autoencoders (SAEs). SAEs (Shu et al., 2025) aim to disentangle (Bengio et al., 2013;
Higgins et al., 2018; Olah, 2023) neural network activations into human-interpretable concepts (Cun-
ningham et al., 2023; Bricken et al., 2023). Specifically, SAEs transform their inputs (i.e., neural
network activations) into a latent representation which is encouraged to be sparse. As shown by
Hindupur et al. (2025), this is achieved by solving the sparse coding problem using a specific
parametric form for the sparse codes:

argmin
D,z

1

T

T∑
i=1

∥xi −Dzi∥22 + λR(zi), s.t. zk = fSAE(xk) ∀k, g̃(z1, . . . ,zT ) = 0, (1)

where R(·) is the regularizer (typically the L1 norm), fSAE is the SAE encoder architecture, and
g̃(·) captures SAE-specific sparsity constraints on z. fSAE is typically a single hidden layer as in the
ReLU SAE (Bricken et al., 2023; Cunningham et al., 2023), TopK SAE (Gao et al., 2024; Makhzani
and Frey, 2013), JumpReLU SAE (Rajamanoharan et al., 2024) and BatchTopK SAE (Bussmann
et al., 2024), though recent work has also explored alternative architectures inspired by sparse coding
algorithms to capture specific structures, e.g., hierarchies (Muchane et al., 2025; Costa et al., 2025).

3 TEMPORAL STRUCTURE IN LANGUAGE MODEL ACTIVATIONS

To contextualize the prior assumptions made by SAEs about temporal structure in LMs’ activa-
tions, we first perform an empirical characterization of such temporal structure in pretrained LMs.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Specifically, since LMs are trained to generate coherent text by learning the distribution of natural
language, one can expect their representations capture the rich phenomenology of its sequential
structure (Elman, 1990); indeed, recent work has in fact found LM representations to be predictive
of human neural recordings during language comprehension (Hosseini et al., 2024; Schrimpf et al.,
2021; Tuckute et al., 2024; Hong et al., 2024; Georgiou et al., 2023). Motivated by this, we perform
two experiments relevant to our discussion (see Fig. 2): (i) measuring intrinsic dimensionality—an
approximation of the number of concepts necessary to explain the data, which can be expected to
increase in a monotonic manner with time (Zhong et al., 2024; Can, 2025; Barak and Tsodyks, 2014;
Meister et al., 2021)—and (ii) signal nonstationarity—which assesses whether model activations
reflect the contextual relations between phrases of a passage (Zacks et al., 2007).

Increasing intrinsic dimensionality. Fig. 2 (a,e) show the dimensionality of the underlying mani-
fold structure (intrinsic dimension) in model activations. We estimate the intrinsic dimensionality at a
fixed position across a set of sequences with the U-statistic (App. Sec. J.2). For language model activa-
tions, this metric increases steadily with sequence position. On the other hand, a stationary surrogate
of the data (see App. Sec. J.3) shows nearly constant intrinsic dimension over time. This indicates
that model activations get ‘denser’, i.e., they possess more information over time. Correspondingly,
the number of concepts needed to explain them varies with context.

Non-stationarity: Context explains bulk of signal variance. Subplots (b), (f) show the auto-
correlation of model activations (App. Sec. J.1), which is noticeably different at different sequence
positions (x-axis), while the stationary surrogate, as expected, shows nearly position-invariant auto-
correlation values (subplots (c), (g)). This finding is a clear signature of time-dependent correlation
structure, and therefore of non-stationarity. We quantify the similarity of a representation with its
context in subplots (d), (h). Specifically, we project representations of token xt at a given time t
onto the subspace spanned by preceeding representations in the context {x<t}. These subplots show
that up to 80% variance of xt is explained by a context of 500 tokens, further highlighting strong
cross-temporal correlations. Significant variance in the representation at time t, xt, can be predicted
(expressed) using representations from the past context.

4 TEMPORAL PRIORS OF SPARSE AUTOENCODERS

We now state the prior assumptions made by existing SAEs regards sequential structure in an input,
contrasting these assumptions with the empirical results shown in Sec. 3. Specifically, building on
the arguments used by Olshausen and Field (1997) to formalize the problem of sparse coding, we
note that the SAE training objective (Eq. 1) can be interpreted from a Bayesian lens: minimize the
negative log posterior argmin{zt} − logP (z1, . . . ,zT | x1, . . . ,xT ) of the data, which, by Bayes’
rule, can be written as the sum of log likelihood (MSE) and log prior (the regularizer R). From this
lens, SAEs’ prior assumptions on sequential structure in LM activations can be described as follows.

Proposition 4.1 (Independence prior over time). Consider the SAE maximum aposteriori (MAP)
objective from Eq. 1. Since the sparsity constraints are additive over time, this objective has an
independent and identically distributed (i.i.d.) prior over time:

P (z1, . . . ,zT ) ∝
T∏

t=1

exp
(
−λR(zi)− λ̃g̃(zi)

)
=
∏
i

P (zi). (2)

A more precise version of the claim for specific SAE architectures is provided in Appendix I.1.
Intuitively, the claim above says that SAEs assume an independence of latents, and hence the
concepts underlying the generative process of language, over time. This directly conflicts with the
rich contextual structure of LM activations we empirically observed in Fig. 2b–d, f–h. Crucially, this
also implies that SAEs assume the sparsity of latent codes necessary to explain model activations to
be time-invariant, as stated formally in the corollary below.

Corollary 4.1.1 (Assumptions of time-invariant sparsity). As a consequence of the i.i.d. priors over
time from Prop. 4.1, standard SAEs assume that sparsity of representations emerges from a fixed
distribution independently over time (i.i.d.), i.e., P (∥z1∥0, . . . , ∥zT ∥0) =

∏
t P (∥zt∥0).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Schematic of Temporal SAEs. Temporal SAEs decompose activations xt into two
components: a predictable component, obtained by projecting xt onto a context direction (derived
from the past x<t using attention), and a sparse, novel component orthogonal to the predictable
component that captures new information seen at time t.

SAEs thus assume that sparsity—which, in their underlying generative model of activations corre-
sponds to the number of concepts necessary for explaining the data (Bricken et al., 2023; Elhage et al.,
2022)—remains approximately constant over time. This again does not align with the increasing
dimensionality of representations observed in LM activations (see Fig. 2a,e). Correspondingly, if
enough concepts aggregate over context such that a model’s activations become ‘denser’ than the
assumed sparsity budget, the assumption of time-invariant sparsity implies SAEs can fail to capture
the temporal structure inherent in language—as is arguably already observed empirically with phe-
nomena like feature splitting (Chanin et al., 2025; Bussmann et al., 2025; Bricken et al., 2023; Shu
et al., 2025). We empirically validate this claim in Sec. 6.

5 TEMPORAL SAES: EXPLICITLY MODELING TEMPORAL PRIORS

As stated in Sec. 2, sparse coding, a framework designed in computational neuroscience to understand
neural representations in biological brains (Olshausen and Field, 1996; 1997), inspired SAEs as a
framework for interpreting artificial neural networks (Bricken et al., 2023; Cunningham et al., 2023).
In fact, the parallels between these communities can be made deeper: motivated by observations
of intricate geometry of neural representations derived out of multi-dimensional population analy-
ses (Khona and Fiete, 2022; Nogueira et al., 2023; Sohn et al., 2019), there were calls in computational
neuroscience to discard the limiting reduction assumed in sparse coding that computations occur via
a set of independently firing, monosemantic features (Eichenbaum, 2018; Saxena and Cunningham,
2019; Barack and Krakauer, 2021; Seung, 1996; Chung and Abbott, 2021)—similar to our arguments
in Sec. 3, 4 (and results that follow in Sec. 6). Correspondingly, a need for more structured protocols
was suggested (Eichenbaum, 2018; Barack and Krakauer, 2021), leading to methods that were moti-
vated by the generative process of the behavior one is trying to explain (Schneider et al., 2023; Chen
et al., 2018; Chen, 2019; Wiskott and Sejnowski, 2002; Linderman et al., 2017). We argue a similar
paradigm shift is needed in language model interpretability: given that we train models to learn the
distribution of highly structured data, we ought to embrace the fact that neural network activations can
exhibit intricate geometrical organization. In what follows, as an attempt to qualify our arguments,
we propose one such approach that focuses on the temporal structure of LM activations.

Temporal SAEs. In computational neuroscience, when analyzing data from dynamical domains
(e.g., audio, language, or video), a commonly made assumption is that there is contextual infor-
mation present in the recent history that informs the next state—this part of the signal is deemed
predictable (Chen et al., 2025; Millidge et al., 2024), slow-changing (Berkes and Wiskott, 2005),
invariant (Olshausen and Cadieu, 2007), or dense (Tasissa et al., 2022). Meanwhile, the remaining
signal corresponds to new bits of information added by the observed state at the next timestep—this
part can be deemed novel / surprising, fast-changing, variant, or sparse with respect to the context.
We argue LM activations are amenable to a similar generative model. Specifically, our observations
in Sec. 3 show that activations xt at time t are strongly correlated with the context and can be

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

decomposed into two such parts. We thus propose the following generative model of LM activations:
xt = xp,t + xn,t, where xp,t = Dzp,t and xn,t = Dzn,t. (3)

In the above, xp,t denotes a predictable component of the signal that captures the correlations of xt

with past data {x<t}, while xn,t denotes a novel component that represents new information added
by the current token xt. To obtain zp,t, we project xt onto {x<t} to explain the predictable variance
in xt as a convex combination of past data. Specifically, we use a self-attention layer f on top of
a single ReLU layer, yielding zp,t = f( {x1, . . . ,xt−1},xt). Meanwhile, zn,t = f̃(xt, zp,t) =
σ(DT (xt −Dzp,t)) captures the residual component of the code, which is not correlated with the
past (note that σ is the nonlinearity). We use a standard SAE encoder (either TopK or BatchTopK)
to instantiate σ, applying it to xt −Dzp,t to derive zn,t. See Fig. 3 for an overall schematic of the
encoding process. The learning objective in Temporal SAEs follows.

argmin
D,z

1

T

T∑
i=1

∥xi −D(zp,i + zn,i)∥22 + λR(zn,i),

s.t. zp,k = fSAE({x<k},xk), zn,k = f̃SAE(xk, zp,k), zk = zp,k + zn,k ∀k.

(4)

Relating to Sec. 4, we note the prior assumption in Temporal SAEs is that the residual zn,t = zt−zp,t,
which captures the novel information in xt remaining after removing the projections onto the past
context, is i.i.d. over time. This prior allows temporal correlations between codes z, and thereby allows
correlations between concepts across time, instead of assuming them to be temporally independent.

Table 1: Temporal SAEs achieves NMSE similar
to standard SAEs across domains (Simple Stories,
Webtext, Code).

ReLU TopK BTopK Pred. Only Temporal

Story 0.20 0.155 0.152 0.34 0.139
Web 0.19 0.144 0.139 0.36 0.139
Code 0.20 0.154 0.149 0.38 0.152

Table 2: Temporal SAEs explains similar amount
of signal variance as standard SAEs.

ReLU TopK BTopK Pred. Only Temporal

Story 0.60 0.71 0.72 0.29 0.73
Web 0.69 0.78 0.79 0.40 0.79
Code 0.65 0.75 0.75 0.33 0.75

Table 3: predictive and novel codes explain differ-
ent parts of the input signal across domains.

Sim. % Norm NMSE Var. Expl.

Pred. Novel Pred. Novel Pred. Novel

Story -0.02 76.2 23.5 0.53 4.03 0.11 0.64
Web -0.02 80.5 19.5 0.49 4.28 0.17 0.66
Code -0.02 74.2 26.0 0.57 3.84 0.14 0.65

Sanity Checking Temporal SAEs. Before
analyzing how different approaches represent
the temporal structure of language, we demon-
strate that Temporal SAEs performs on par with
SAEs on standard metrics such as reconstruc-
tion error. Specifically, we train a Temporal
SAE and standard SAEs (ReLU, TopK, Batch-
TopK) on 1B token activations extracted from
Gemma-2-2B (Team et al., 2024) from the Pile-
Uncopyrighted dataset (Monology, 2021). We
also analyze a baseline of the prediction only
module from Temporal SAEs, reported as ‘Pred.
only’, which can be expected to underperform
since predicting the next-token representation is
likely to be more difficult than reconstructing
it. Results are provided in Tab. 1, 2 and show
competitive performance between all protocols,
except Pred. only. One can also assess which
part of a fully trained Temporal SAE is more
salient in defining its performance, i.e., does the
estimated predictive part x̂p,t contribute more to
the reconstruction x̂ or does the estimated novel
part x̂n,t. Results are reported in Tab. 3. We see
that the error vectors, i.e., x−x̂p and x−x̂n, are
approximately orthogonal, suggesting the mod-
ules capture separate bits of information from
the input—this is inline with results by Costa et al. (2025), who show optimizing to reconstruct
residuals (as we do with the novel code) can lead to orthogonal codes at different stages of an SAE.
Furthermore, we find that a bulk of the reconstructed signal x̂t (in the sense of norm) is captured
by the predictive code—in fact, the percentage contribution of the predictive code is ∼80%, in line
with numbers observed in Fig. 2d. However, analyzing the reconstruction performance, we see the
predictive component primarily contributes to achieving a good NMSE, while the novel component
is more responsible for explaining the input signal variance. These results align with the generative
model assumed in Temporal SAEs (Eq. 3). Specifically, NMSE captures the average reconstruction,
and hence a slower moving, contextual signal can expect to dominate its calculation. Meanwhile,
variance assesses changes per dimension and timestamp in the signal, which better matches the
inductive bias imposed on the novel part.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0
20
40
60

80

There was a baby who wanted to pick something special. He went to a shop and saw an ancient case. He picked it up and looked 
inside. It was full of unbelievably shiny gems and jewels. He couldn’t believe his eyes. He was so excited and he knew this case was 
perfect. He quickly picked it up and wrapped it up with a big red bow. He smiled and couldn’t wait to show his mum and dad.

Activations ReLU TopK BatchTopK Temporal (Novel) Temporal (Pred)
(τ = 76.9) (τ = 108.6) (τ = 86.9) (τ = 1069) (τ = 98.2) (τ = 2.8)

(b)

(a)

an
d 

(1
6)

an
d 

(2
6)

an
d 

(3
7)

an
d 

(5
2)

an
d 

(6
5)

an
d 

(7
7)

an
d 

(8
6)

Temporal (Pred)

BatchTopK

Figure 4: Temporal SAEs unroll stories, decomposing into events. We consider model activations
from a story and compute pairwise similarity of codes extracted from different interpretability
protocols. (a) We see predictive codes from Temporal SAE organizes in hierarchical block structures
that seem to align with (sub)event boundaries in the analyzed story, while the novel code primarily
emphasizes sudden changes in the narrative; meanwhile, standard SAEs show a mixture of the two
structures, with a stronger similarity to the structure exhibited by the novel codes. (b) We confirm
the alignment of predictive codes with event boundaries by running an off-the-shelf hierarchical
clustering algorithm, finding the token clusters indeed correspond to (sub)events occurring in the
story as the narrative proceeds. Running this process on SAEs, we find this process yields temporally
incoherent clusters that are primarily defined by lexical information.

6 CAPTURING TEMPORAL STRUCTURE WITH TEMPORAL SAE

We now evaluate the ability of different SAEs to capture temporal dynamics in language model
representations. We first analyze a narrative setting where, locally in time, one can expect a lot of
correlated structure as an event transpires, with strict event boundaries delineating events from each
other. As we show, TemporalSAEs yield a clear delineation of the slow-moving local information from
the fast-changing boundaries, while standard SAEs generally ignore the slow-moving information
to optimize for the faster changes. The narrative evaluation assesses how different SAE codes
represent local/global semantic information. We now investigate local/global syntactic information
by analyzing SAE codes extracted from garden path sentences. Here, we find that unlike other
SAEs, the use of a predictive module in TemporalSAEs yields codes that relate tokens from garden
path sentences in a manner that would align with the ultimately correct (rather than garden-path)
parses—an ability that language models are in fact known to possess, but that standard SAEs seem to
not explain (Li et al., 2024; Hanna and Mueller, 2024).

6.1 THE GEOMETRY OF STORIES: A NARRATIVE-DRIVEN DOMAIN

UMAP of Latent Codes Suggests Models Temporally Straighten Activations. We consider
the TinyStories datasets (Eldan and Li, 2023) for its relatively straightforward narrative structures,
and qualitatively analyze the geometry of latent codes extracted from model activations when
processing these stories. Visualizing the latent codes in a low-dimensional basis via a 3D UMAP
projection (McInnes et al., 2018), we see SAEs yield a highly irregular and unstructured geometry
(see Fig. 4a). Calculating Tortuosity (Bullitt et al., 2003), a measure of how aligned local arcs are

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Once upon a time, a little girl named Alice loved 
looking at the night sky.'I wish I could count all 
the stars!' Alice said to her best friend Maya. The 
two girls stood on a big grass field as the moon 
rose from the trees. Suddenly, Maya had a 
striking idea. She opened her laptop and started 
typing:\n```python\n array = []\n for i in range(1, 
6 ) : \n\ t s = in t ( input ( f ’num_stars : ’ ) ) \n\ t 
array.append(s)\n\t tot = sum(array)\n avg = tot / 
len(array)\n print(f'Avg / night: {avg:.1f}')

(a)

(c)

Preprint

SAEs, the use of a predictive module in TemporalSAEs yields codes that relate tokens from garden
path sentences in a manner that would align with the ultimately correct (rather than garden-path)
parses—an ability that language models are in fact known to possess, but that standard SAEs seem to
not explain (Li et al., 2024; Hanna and Mueller, 2024).

Table 3: Kernel similarity (CKA) between SAE
codes and model representations. Predictive codes
from Temporal SAEs show strong similarity to
slow-changing part of representations, while novel
codes and standard SAEs primarily capture the fast-
changing part.

Standard Temporal

ReLU TopK BatchTopK Pred Novel

Within 0.33 0.13 0.12 0.13 0.56
Across 0.19 0.02 0.01 -0.01 -0.04

Rank of Singular Value

M
ag

nit
ud

e

(a) Temporal SAE (b) Standard SAEs

Figure 6: Kernel spectrum for SAE codes and
model representations. Kernels defined using novel
code from Temporal SAEs and standard SAEs both
align well with the fast-changing part of model rep-
resentations; meanwhile, predictive codes from SAE
show strong similarity to slow changing for larger
singular values.

Qualitative Analysis on Stories. We con-
sider the TinyStories datasets for their rela-
tively straightforward, linear narrative struc-
tures. We first qualitatively analyze how codes
for different story tokens relate to each other
by plotting a cosine similarity map. Results
are shown in Fig. 7. We find predictive codes
organize in precise block structures, while
novel codes amplify outlier similarities seen
in the map derived from ground-truth model
activations. Interestingly, we also observe
predictive codes for punctuations show sim-
ilarity to codes for tokens across blocks re-
spectively to their left and right, even though
these blocks are not necessarily similar to
each other. This aligns with the intuition
that models summarize past contexts in punc-
tuations (Chauhan and Geiger, 2024). The
above results suggests that TemporalSAEs
are decomposing representations into a slow-
moving half that describes event structures
(which aligns with blocks in the predictive
code), while the novel code focuses on uncer-
tain, fast-moving changes in the text. This
structure is reflected in hierarchical clusters
extracted from the correlation plots using
an off-the-shelf algorithm (SciPy, 2025) (see
Fig. 7b): we see tokens cluster into relatively
precise events when the predictive codes are
used for computing them. By contrast, stan-
dard SAEs primarily show an aptitude for the sudden changes, but, at least qualitatively, do not seem
to capture the slow-moving structure in the representations.

Quantifying Similarity to Slow vs. Fast Moving Signals. We next quantify the above claims by
performing a Fourier transform of the model representations and dividing the frequency spectrum
into two halves at a critical frequency fc such that the energy (i.e., sum of squared value of phase
information) in the frequencies below fc equals that of the remaining ones. We call the first split “slow
part” of a sequence, and latter the “fast part”. We then compute the correlation matrix defined by the
slow and fast parts, compute their spectrum, and analyze how similar these spectrums are to the ones
defined using different SAEs’ codes. Results are shown in Fig. 6. We clearly see spectra extracted
from TemporalSAEs’ predictive codes matches that of the slow part of the representation, while
novel codes’ spectra is similar to that of the fast moving part. Meanwhile, spectra of standard SAEs
only exhibits similarity to the fast part, suggesting they do not capture longer range dependencies
necessary for interpreting narrative-driven texts like most language domains. To quantify this further,
we also measure kernel similarities (CKA) between the kernels respectively defined by the slow
moving and fast moving signal to the different SAE codes. Results clearly show Standard SAEs are
only similar to fast moving part of the representation.

Garden Path Sentences. Garden-path sentences—e.g., “The old man the road” and “The cotton
(that) clothing is made of grows in Mississippi”—initially cue an incorrect local parse before a
later token forces reanalysis. Language models have been shown to be able to correctly parse such
ambiguous sentences, offering in fact a predictive account of human per-token surprisals (Li et al.,
2024; Hanna and Mueller, 2024; Oh and Schuler, 2023). Interestingly, when using SAE codes to
assess whether LLM representations offer a valid parse of the sentence, we find clustering SAE codes

9

0.04 0.05

0.2

0.5

1.0

0.0 0.01 0.02 0.03

Va
r. 

Ex
pl

ai
ne

d
σ

ReLU
TopK
BatchTopK
Temporal

σ = 0.005 σ = 0.01 σ = 0.02 σ = 0.04

12080400 12080400 12080400 12080400

0

40

80

120

(d)

Novel ReLU

BatchTopKTopK

0.0

0.2

0.4

0.6

0.8

Temporal (Pred)(b)

Preprint

0
20
40
60

80

There was a baby who wanted to pick something special. He went to a shop and saw an ancient case. He picked it up and looked 
inside. It was full of unbelievably shiny gems and jewels. He couldn’t believe his eyes. He was so excited and he knew this case was 
perfect. He quickly picked it up and wrapped it up with a big red bow. He smiled and couldn’t wait to show his mum and dad.

Activations ReLU TopK BatchTopK Temporal (Novel) Temporal (Pred)
(τ = 76.9) (τ = 108.6) (τ = 86.9) (τ = 1069) (τ = 98.2) (τ = 2.8)

(b)

(a)

an
d 

(1
6)

an
d 

(2
6)

an
d 

(3
7)

an
d 

(5
2)

an
d 

(6
5)

an
d 

(7
7)

an
d 

(8
6)

Temporal (Pred)

BatchTopK

Figure 5: Temporal SAEs unroll stories, decomposing into events. We consider model represen-
tations from a story and compute pairwise similarity of codes extracted from different SAEs with
that of representations. (a) We see Temporal SAEs’ predictive codes organize in hierarchical block
structures that seem to align with (sub)event boundaries in the analyzed story, while the novel code
primarily emphasizes sudden changes in the narrative; meanwhile, standard SAEs show a mixture
of the two structures, with a stronger similarity to the structure exhibited by the novel codes. (b)
We confirm the alignment of predictive codes with event boundaries by running an off-the-shelf
hierarchical clustering algorithm, finding the block structures (shown here for two different stories)
indeed correspond to (sub)events occurring in the story as the narrative proceeds.

from the correlation plots using an off-the-shelf algorithm (SciPy, 2025) (see Fig. 7b): we see tokens
cluster into relatively precise events when the predictive codes are used for computing them. By
contrast, standard SAEs primarily show an aptitude for the sudden changes, but, at least qualitatively,
do not seem to capture the slow-moving structure in the representations.

Table 3: Kernel similarity (CKA) between
SAE codes and model representations. Pre-
dictive codes from Temporal SAEs show strong
similarity to slow-changing part of represen-
tations, while novel codes and standard SAEs
primarily capture the fast-changing part.

Standard Temporal

ReLU TopK BatchTopK Novel Pred

Within 0.29 0.13 0.12 0.56 0.13
Across 0.20 0.02 0.01 -0.04 -0.01

Temporal SAE Standard SAEs

Rank of Singular Value

M
ag

nit
ud

e

Figure 6: Kernel spectrum for SAE codes and
model representations. Kernels defined using
novel code from Temporal SAEs and standard
SAEs both align well with the fast-changing
part of model representations; meanwhile, pre-
dictive codes from SAE show strong similarity
to slow changing for larger singular values.

Noise Stability We consider the TinyStories
datasets for their relatively straightforward, linear
narrative structures. We first qualitatively analyze
how codes for different story tokens relate to each
other by plotting a cosine similarity map. Results
are shown in Fig. 7. We find predictive codes orga-
nize in precise block structures, while novel codes
amplify outlier similarities seen in the map derived
from ground-truth model activations. Interestingly,
we also observe predictive codes for punctuations
show similarity to codes for tokens across blocks
respectively to their left and right, even though
these blocks are not necessarily similar to each
other. This aligns with the intuition that models
summarize past contexts in punctuations (Chauhan
and Geiger, 2024). The above results suggests that
TemporalSAEs are decomposing representations
into a slow-moving half that describes event struc-
tures (which aligns with blocks in the predictive
code), while the novel code focuses on uncertain,
fast-moving changes in the text. This structure
is reflected in hierarchical clusters extracted from
the correlation plots using an off-the-shelf algo-

8

Preprint

0
20
40
60

80

There was a baby who wanted to pick something special. He went to a shop and saw an ancient case. He picked it up and looked 
inside. It was full of unbelievably shiny gems and jewels. He couldn’t believe his eyes. He was so excited and he knew this case was 
perfect. He quickly picked it up and wrapped it up with a big red bow. He smiled and couldn’t wait to show his mum and dad.

Activations ReLU TopK BatchTopK Temporal (Novel) Temporal (Pred)
(τ = 76.9) (τ = 108.6) (τ = 86.9) (τ = 1069) (τ = 98.2) (τ = 2.8)

(b)

(a)

an
d 

(1
6)

an
d 

(2
6)

an
d 

(3
7)

an
d 

(5
2)

an
d 

(6
5)

an
d 

(7
7)

an
d 

(8
6)

Temporal (Pred)

BatchTopK

Figure 5: Temporal SAEs unroll stories, decomposing into events. We consider model represen-
tations from a story and compute pairwise similarity of codes extracted from different SAEs with
that of representations. (a) We see Temporal SAEs’ predictive codes organize in hierarchical block
structures that seem to align with (sub)event boundaries in the analyzed story, while the novel code
primarily emphasizes sudden changes in the narrative; meanwhile, standard SAEs show a mixture
of the two structures, with a stronger similarity to the structure exhibited by the novel codes. (b)
We confirm the alignment of predictive codes with event boundaries by running an off-the-shelf
hierarchical clustering algorithm, finding the block structures (shown here for two different stories)
indeed correspond to (sub)events occurring in the story as the narrative proceeds.

from the correlation plots using an off-the-shelf algorithm (SciPy, 2025) (see Fig. 7b): we see tokens
cluster into relatively precise events when the predictive codes are used for computing them. By
contrast, standard SAEs primarily show an aptitude for the sudden changes, but, at least qualitatively,
do not seem to capture the slow-moving structure in the representations.

Table 3: Kernel similarity (CKA) between
SAE codes and model representations. Pre-
dictive codes from Temporal SAEs show strong
similarity to slow-changing part of represen-
tations, while novel codes and standard SAEs
primarily capture the fast-changing part.

SAEs Temporal

ReLU TopK BatchTopK Novel Pred

Slow 0.37 0.35 0.35 0.19 0.75
Fast 0.54 0.54 0.54 0.75 0.18

Temporal SAE Standard SAEs

Rank of Singular Value

M
ag

nit
ud

e

Figure 6: Kernel spectrum for SAE codes and
model representations. Kernels defined using
novel code from Temporal SAEs and standard
SAEs both align well with the fast-changing
part of model representations; meanwhile, pre-
dictive codes from SAE show strong similarity
to slow changing for larger singular values.

Noise Stability We consider the TinyStories
datasets for their relatively straightforward, linear
narrative structures. We first qualitatively analyze
how codes for different story tokens relate to each
other by plotting a cosine similarity map. Results
are shown in Fig. 7. We find predictive codes orga-
nize in precise block structures, while novel codes
amplify outlier similarities seen in the map derived
from ground-truth model activations. Interestingly,
we also observe predictive codes for punctuations
show similarity to codes for tokens across blocks
respectively to their left and right, even though
these blocks are not necessarily similar to each
other. This aligns with the intuition that models
summarize past contexts in punctuations (Chauhan
and Geiger, 2024). The above results suggests that
TemporalSAEs are decomposing representations
into a slow-moving half that describes event struc-
tures (which aligns with blocks in the predictive
code), while the novel code focuses on uncertain,
fast-moving changes in the text. This structure
is reflected in hierarchical clusters extracted from
the correlation plots using an off-the-shelf algo-

8

Figure 6: Predictive codes decompose stories into events. (a) We consider model representations
from a synthetic story with well-defined event boundaries. (b) Computing pairwise cosine similarity
of latent codes extracted using different protocols, we see the predictive code of Temporal SAE
organizes in hierarchical block structures that seem to align with (sub)event boundaries in the analyzed
story. (c) We confirm the alignment of predictive codes with event boundaries by computing average
pairwise similarity of token latent codes for tokens that span the same event (‘within’) versus not
(‘across’). Results clearly show high within-event similarity scores for the predictive code. (d) The
results above are further corroborated by running a noising process on the latent codes: we add
Gaussian noise of scale σ to the input before computing latent codes, defining the similarity maps
and computing explained variance of un-noised data. This process elicits coarser grained clusters
from the similarity maps for the predictive code, suggesting the multi-scale temporal structure of
stories is reflected in predictive codes.

with respect to the global structure of a curve, we see very high values emerge for SAEs’ latent codes
geometry, suggesting sudden changes in the local similarity as a story unravels. To further understand
the results above, we highlight a specific token (‘and’) from the story, the UMAP analysis shows
that standard SAEs generally just cluster tokens by lexical identity. This is further corroborated by
running a hierarchical clustering algorithm on the latent codes (SciPy, 2025), finding temporally
incoherent, but lexically related clusters (see Fig. 4b).

Table 4: Similarity between latent codes and
model activations. Predictive codes from Tem-
poral SAEs align better with slow-changing part
of activations; novel codes and standard SAEs’
codes align with fast-changing part.

SAEs Temporal

ReLU TopK BatchTopK Novel Pred

Slow 0.37 0.35 0.35 0.19 0.75
Fast 0.54 0.54 0.54 0.75 0.18

Temporal Feature Analysis SAEs

Rank of Singular Value

M
ag

ni
tu

de

Figure 5: Kernel spectrum for latent codes
and model representations. Kernels defined
using novel code from Temporal SAE and
standard SAEs both align well with the fast-
changing part of model representations; mean-
while, only the predictive code shows strong
similarity to the slow changing part.

Quantifying Similarity to Slow vs. Fast Moving
Signals. To further quantify the straightening claim,
we compute the Fourier transform of the model ac-
tivations and divide the frequency spectrum into
two halves at a critical frequency fc such that the
energy (i.e., sum of squared value of phase informa-
tion) in the frequencies below fc equals that of the
remaining ones. We call the first split “slow part”
of a sequence, and latter the “fast part”. We then
compute the correlation matrix defined by the slow
and fast parts, compute their spectrum, and analyze
how similar these spectrums are to the ones defined
using different SAEs’ codes. Results are shown in
Fig. 5. We clearly see the spectrum extracted from
the predictive component of Temporal SAE approx-
imates that of the slow part of the representation,
while the novel component’s spectrum is similar to
that of the fast moving part. Meanwhile, spectra
of SAEs only exhibits similarity to the fast part,
suggesting they do not capture longer range depen-
dencies necessary for interpreting narrative-driven
texts like most language domains. To quantify this
further, we also measure kernel similarities (CKA)
between the kernels respectively defined by the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

TopK BatchTopK Temporal (Novel) Temporal (Pred)

G
ar

de
n 

Pa
th

Co
nt

ro
l

The old man the boat The old man the boat The old man the boat The old man the boat The old man the boat

ReLU

The man theboatsailors The man theboatsailors The man theboatsailors The boat themansailors The boatthemansailors

(a)

(b) (c) Control

Preprint

0
20
40
60

80

There was a baby who wanted to pick something special. He went to a shop and saw an ancient case. He picked it up and looked 
inside. It was full of unbelievably shiny gems and jewels. He couldn’t believe his eyes. He was so excited and he knew this case was 
perfect. He quickly picked it up and wrapped it up with a big red bow. He smiled and couldn’t wait to show his mum and dad.

Activations ReLU TopK BatchTopK Temporal (Novel) Temporal (Pred)
(τ = 76.9) (τ = 108.6) (τ = 86.9) (τ = 1069) (τ = 98.2) (τ = 2.8)

(b)

(a)

an
d 

(1
6)

an
d 

(2
6)

an
d 

(3
7)

an
d 

(5
2)

an
d 

(6
5)

an
d 

(7
7)

an
d 

(8
6)

Temporal (Pred)

BatchTopK

Figure 5: Temporal SAEs unroll stories, decomposing into events. We consider model represen-
tations from a story and compute pairwise similarity of codes extracted from different SAEs with
that of representations. (a) We see Temporal SAEs’ predictive codes organize in hierarchical block
structures that seem to align with (sub)event boundaries in the analyzed story, while the novel code
primarily emphasizes sudden changes in the narrative; meanwhile, standard SAEs show a mixture
of the two structures, with a stronger similarity to the structure exhibited by the novel codes. (b)
We confirm the alignment of predictive codes with event boundaries by running an off-the-shelf
hierarchical clustering algorithm, finding the block structures (shown here for two different stories)
indeed correspond to (sub)events occurring in the story as the narrative proceeds.

from the correlation plots using an off-the-shelf algorithm (SciPy, 2025) (see Fig. 7b): we see tokens
cluster into relatively precise events when the predictive codes are used for computing them. By
contrast, standard SAEs primarily show an aptitude for the sudden changes, but, at least qualitatively,
do not seem to capture the slow-moving structure in the representations.

Table 3: Kernel similarity (CKA) between
SAE codes and model representations. Pre-
dictive codes from Temporal SAEs show strong
similarity to slow-changing part of represen-
tations, while novel codes and standard SAEs
primarily capture the fast-changing part.

Standard Temporal

ReLU TopK BatchTopK Novel Pred

V→SP 0.46 0.09 0.05 -0.06 0.47
V→OP 0.96 0.78 0.77 0.25 0.85
V→SP 0.26 0.38 0.44 0.29 0.44
V→OP 0.77 0.75 0.77 0.52 0.79

Temporal SAE Standard SAEs

Rank of Singular Value

M
ag

nit
ud

e

Figure 6: Kernel spectrum for SAE codes and
model representations. Kernels defined using
novel code from Temporal SAEs and standard
SAEs both align well with the fast-changing
part of model representations; meanwhile, pre-
dictive codes from SAE show strong similarity
to slow changing for larger singular values.

Noise Stability We consider the TinyStories
datasets for their relatively straightforward, linear
narrative structures. We first qualitatively analyze
how codes for different story tokens relate to each
other by plotting a cosine similarity map. Results
are shown in Fig. 7. We find predictive codes orga-
nize in precise block structures, while novel codes
amplify outlier similarities seen in the map derived
from ground-truth model activations. Interestingly,
we also observe predictive codes for punctuations
show similarity to codes for tokens across blocks
respectively to their left and right, even though
these blocks are not necessarily similar to each
other. This aligns with the intuition that models
summarize past contexts in punctuations (Chauhan
and Geiger, 2024). The above results suggests that
TemporalSAEs are decomposing representations
into a slow-moving half that describes event struc-
tures (which aligns with blocks in the predictive
code), while the novel code focuses on uncertain,
fast-moving changes in the text. This structure
is reflected in hierarchical clusters extracted from
the correlation plots using an off-the-shelf algo-

8

Preprint

0
20
40
60

80

There was a baby who wanted to pick something special. He went to a shop and saw an ancient case. He picked it up and looked 
inside. It was full of unbelievably shiny gems and jewels. He couldn’t believe his eyes. He was so excited and he knew this case was 
perfect. He quickly picked it up and wrapped it up with a big red bow. He smiled and couldn’t wait to show his mum and dad.

Activations ReLU TopK BatchTopK Temporal (Novel) Temporal (Pred)
(τ = 76.9) (τ = 108.6) (τ = 86.9) (τ = 1069) (τ = 98.2) (τ = 2.8)

(b)

(a)

an
d 

(1
6)

an
d 

(2
6)

an
d 

(3
7)

an
d 

(5
2)

an
d 

(6
5)

an
d 

(7
7)

an
d 

(8
6)

Temporal (Pred)

BatchTopK

Figure 5: Temporal SAEs unroll stories, decomposing into events. We consider model represen-
tations from a story and compute pairwise similarity of codes extracted from different SAEs with
that of representations. (a) We see Temporal SAEs’ predictive codes organize in hierarchical block
structures that seem to align with (sub)event boundaries in the analyzed story, while the novel code
primarily emphasizes sudden changes in the narrative; meanwhile, standard SAEs show a mixture
of the two structures, with a stronger similarity to the structure exhibited by the novel codes. (b)
We confirm the alignment of predictive codes with event boundaries by running an off-the-shelf
hierarchical clustering algorithm, finding the block structures (shown here for two different stories)
indeed correspond to (sub)events occurring in the story as the narrative proceeds.

from the correlation plots using an off-the-shelf algorithm (SciPy, 2025) (see Fig. 7b): we see tokens
cluster into relatively precise events when the predictive codes are used for computing them. By
contrast, standard SAEs primarily show an aptitude for the sudden changes, but, at least qualitatively,
do not seem to capture the slow-moving structure in the representations.

Table 3: Kernel similarity (CKA) between
SAE codes and model representations. Pre-
dictive codes from Temporal SAEs show strong
similarity to slow-changing part of represen-
tations, while novel codes and standard SAEs
primarily capture the fast-changing part.

SAEs Temporal

ReLU TopK BatchTopK Novel Pred

Slow 0.37 0.35 0.35 0.19 0.75
Fast 0.54 0.54 0.54 0.75 0.18

Temporal SAE Standard SAEs

Rank of Singular Value

M
ag

nit
ud

e

Figure 6: Kernel spectrum for SAE codes and
model representations. Kernels defined using
novel code from Temporal SAEs and standard
SAEs both align well with the fast-changing
part of model representations; meanwhile, pre-
dictive codes from SAE show strong similarity
to slow changing for larger singular values.

Noise Stability We consider the TinyStories
datasets for their relatively straightforward, linear
narrative structures. We first qualitatively analyze
how codes for different story tokens relate to each
other by plotting a cosine similarity map. Results
are shown in Fig. 7. We find predictive codes orga-
nize in precise block structures, while novel codes
amplify outlier similarities seen in the map derived
from ground-truth model activations. Interestingly,
we also observe predictive codes for punctuations
show similarity to codes for tokens across blocks
respectively to their left and right, even though
these blocks are not necessarily similar to each
other. This aligns with the intuition that models
summarize past contexts in punctuations (Chauhan
and Geiger, 2024). The above results suggests that
TemporalSAEs are decomposing representations
into a slow-moving half that describes event struc-
tures (which aligns with blocks in the predictive
code), while the novel code focuses on uncertain,
fast-moving changes in the text. This structure
is reflected in hierarchical clusters extracted from
the correlation plots using an off-the-shelf algo-

8

Garden

Preprint

0
20
40
60

80

There was a baby who wanted to pick something special. He went to a shop and saw an ancient case. He picked it up and looked 
inside. It was full of unbelievably shiny gems and jewels. He couldn’t believe his eyes. He was so excited and he knew this case was 
perfect. He quickly picked it up and wrapped it up with a big red bow. He smiled and couldn’t wait to show his mum and dad.

Activations ReLU TopK BatchTopK Temporal (Novel) Temporal (Pred)
(τ = 76.9) (τ = 108.6) (τ = 86.9) (τ = 1069) (τ = 98.2) (τ = 2.8)

(b)

(a)

an
d 

(1
6)

an
d 

(2
6)

an
d 

(3
7)

an
d 

(5
2)

an
d 

(6
5)

an
d 

(7
7)

an
d 

(8
6)

Temporal (Pred)

BatchTopK

Figure 4: Temporal SAEs unroll stories, decomposing into events. We consider model represen-
tations from a story and compute pairwise similarity of codes extracted from different SAEs with
that of representations. (a) We see Temporal SAEs’ predictive codes organize in hierarchical block
structures that seem to align with (sub)event boundaries in the analyzed story, while the novel code
primarily emphasizes sudden changes in the narrative; meanwhile, standard SAEs show a mixture
of the two structures, with a stronger similarity to the structure exhibited by the novel codes. (b)
We confirm the alignment of predictive codes with event boundaries by running an off-the-shelf
hierarchical clustering algorithm, finding the block structures (shown here for two different stories)
indeed correspond to (sub)events occurring in the story as the narrative proceeds.

Table 3: Kernel similarity (CKA) between
SAE codes and model representations. Pre-
dictive codes from Temporal SAEs show strong
similarity to slow-changing part of represen-
tations, while novel codes and standard SAEs
primarily capture the fast-changing part.

Standard Temporal

ReLU TopK BatchTopK Novel Pred

V→SP 0.44 0.09 0.05 -0.06 0.47
V→OP 0.96 0.78 0.77 0.25 0.85

Temporal SAE Standard SAEs

Rank of Singular Value

M
ag

nit
ud

e

Figure 5: Kernel spectrum for SAE codes and
model representations. Kernels defined using
novel code from Temporal SAEs and standard
SAEs both align well with the fast-changing
part of model representations; meanwhile, pre-
dictive codes from SAE show strong similarity
to slow changing for larger singular values.

Noise Stability We consider the TinyStories
datasets for their relatively straightforward, linear
narrative structures. We first qualitatively analyze
how codes for different story tokens relate to each
other by plotting a cosine similarity map. Results
are shown in Fig. 6. We find predictive codes orga-
nize in precise block structures, while novel codes
amplify outlier similarities seen in the map derived
from ground-truth model activations. Interestingly,
we also observe predictive codes for punctuations
show similarity to codes for tokens across blocks
respectively to their left and right, even though
these blocks are not necessarily similar to each
other. This aligns with the intuition that models
summarize past contexts in punctuations (Chauhan
and Geiger, 2024). The above results suggests that
TemporalSAEs are decomposing representations
into a slow-moving half that describes event struc-
tures (which aligns with blocks in the predictive
code), while the novel code focuses on uncertain,
fast-moving changes in the text. This structure
is reflected in hierarchical clusters extracted from
the correlation plots using an off-the-shelf algo-
rithm (SciPy, 2025) (see Fig. 6b): we see tokens
cluster into relatively precise events when the pre-
dictive codes are used for computing them. By
contrast, standard SAEs primarily show an aptitude
for the sudden changes, but, at least qualitatively, do not seem to capture the slow-moving structure.

8

Preprint

0
20
40
60

80

There was a baby who wanted to pick something special. He went to a shop and saw an ancient case. He picked it up and looked 
inside. It was full of unbelievably shiny gems and jewels. He couldn’t believe his eyes. He was so excited and he knew this case was 
perfect. He quickly picked it up and wrapped it up with a big red bow. He smiled and couldn’t wait to show his mum and dad.

Activations ReLU TopK BatchTopK Temporal (Novel) Temporal (Pred)
(τ = 76.9) (τ = 108.6) (τ = 86.9) (τ = 1069) (τ = 98.2) (τ = 2.8)

(b)

(a)

an
d 

(1
6)

an
d 

(2
6)

an
d 

(3
7)

an
d 

(5
2)

an
d 

(6
5)

an
d 

(7
7)

an
d 

(8
6)

Temporal (Pred)

BatchTopK

Figure 5: Temporal SAEs unroll stories, decomposing into events. We consider model represen-
tations from a story and compute pairwise similarity of codes extracted from different SAEs with
that of representations. (a) We see Temporal SAEs’ predictive codes organize in hierarchical block
structures that seem to align with (sub)event boundaries in the analyzed story, while the novel code
primarily emphasizes sudden changes in the narrative; meanwhile, standard SAEs show a mixture
of the two structures, with a stronger similarity to the structure exhibited by the novel codes. (b)
We confirm the alignment of predictive codes with event boundaries by running an off-the-shelf
hierarchical clustering algorithm, finding the block structures (shown here for two different stories)
indeed correspond to (sub)events occurring in the story as the narrative proceeds.

from the correlation plots using an off-the-shelf algorithm (SciPy, 2025) (see Fig. 7b): we see tokens
cluster into relatively precise events when the predictive codes are used for computing them. By
contrast, standard SAEs primarily show an aptitude for the sudden changes, but, at least qualitatively,
do not seem to capture the slow-moving structure in the representations.

Table 3: Kernel similarity (CKA) between
SAE codes and model representations. Pre-
dictive codes from Temporal SAEs show strong
similarity to slow-changing part of represen-
tations, while novel codes and standard SAEs
primarily capture the fast-changing part.

Standard Temporal

ReLU TopK BatchTopK Novel Pred

V→SP 0.46 0.09 0.05 -0.06 0.47
V→OP 0.96 0.78 0.77 0.25 0.85
V→SP 0.26 0.38 0.44 0.29 0.44
V→OP 0.77 0.75 0.77 0.52 0.79

Temporal SAE Standard SAEs

Rank of Singular Value

M
ag

nit
ud

e

Figure 6: Kernel spectrum for SAE codes and
model representations. Kernels defined using
novel code from Temporal SAEs and standard
SAEs both align well with the fast-changing
part of model representations; meanwhile, pre-
dictive codes from SAE show strong similarity
to slow changing for larger singular values.

Noise Stability We consider the TinyStories
datasets for their relatively straightforward, linear
narrative structures. We first qualitatively analyze
how codes for different story tokens relate to each
other by plotting a cosine similarity map. Results
are shown in Fig. 7. We find predictive codes orga-
nize in precise block structures, while novel codes
amplify outlier similarities seen in the map derived
from ground-truth model activations. Interestingly,
we also observe predictive codes for punctuations
show similarity to codes for tokens across blocks
respectively to their left and right, even though
these blocks are not necessarily similar to each
other. This aligns with the intuition that models
summarize past contexts in punctuations (Chauhan
and Geiger, 2024). The above results suggests that
TemporalSAEs are decomposing representations
into a slow-moving half that describes event struc-
tures (which aligns with blocks in the predictive
code), while the novel code focuses on uncertain,
fast-moving changes in the text. This structure
is reflected in hierarchical clusters extracted from
the correlation plots using an off-the-shelf algo-

8

Preprint

0
20
40
60

80

There was a baby who wanted to pick something special. He went to a shop and saw an ancient case. He picked it up and looked 
inside. It was full of unbelievably shiny gems and jewels. He couldn’t believe his eyes. He was so excited and he knew this case was 
perfect. He quickly picked it up and wrapped it up with a big red bow. He smiled and couldn’t wait to show his mum and dad.

Activations ReLU TopK BatchTopK Temporal (Novel) Temporal (Pred)
(τ = 76.9) (τ = 108.6) (τ = 86.9) (τ = 1069) (τ = 98.2) (τ = 2.8)

(b)

(a)

an
d 

(1
6)

an
d 

(2
6)

an
d 

(3
7)

an
d 

(5
2)

an
d 

(6
5)

an
d 

(7
7)

an
d 

(8
6)

Temporal (Pred)

BatchTopK

Figure 5: Temporal SAEs unroll stories, decomposing into events. We consider model represen-
tations from a story and compute pairwise similarity of codes extracted from different SAEs with
that of representations. (a) We see Temporal SAEs’ predictive codes organize in hierarchical block
structures that seem to align with (sub)event boundaries in the analyzed story, while the novel code
primarily emphasizes sudden changes in the narrative; meanwhile, standard SAEs show a mixture
of the two structures, with a stronger similarity to the structure exhibited by the novel codes. (b)
We confirm the alignment of predictive codes with event boundaries by running an off-the-shelf
hierarchical clustering algorithm, finding the block structures (shown here for two different stories)
indeed correspond to (sub)events occurring in the story as the narrative proceeds.

from the correlation plots using an off-the-shelf algorithm (SciPy, 2025) (see Fig. 7b): we see tokens
cluster into relatively precise events when the predictive codes are used for computing them. By
contrast, standard SAEs primarily show an aptitude for the sudden changes, but, at least qualitatively,
do not seem to capture the slow-moving structure in the representations.

Table 3: Kernel similarity (CKA) between
SAE codes and model representations. Pre-
dictive codes from Temporal SAEs show strong
similarity to slow-changing part of represen-
tations, while novel codes and standard SAEs
primarily capture the fast-changing part.

SAEs Temporal

ReLU TopK BatchTopK Novel Pred

Slow 0.37 0.35 0.35 0.19 0.75
Fast 0.54 0.54 0.54 0.75 0.18

Temporal SAE Standard SAEs

Rank of Singular Value

M
ag

nit
ud

e

Figure 6: Kernel spectrum for SAE codes and
model representations. Kernels defined using
novel code from Temporal SAEs and standard
SAEs both align well with the fast-changing
part of model representations; meanwhile, pre-
dictive codes from SAE show strong similarity
to slow changing for larger singular values.

Noise Stability We consider the TinyStories
datasets for their relatively straightforward, linear
narrative structures. We first qualitatively analyze
how codes for different story tokens relate to each
other by plotting a cosine similarity map. Results
are shown in Fig. 7. We find predictive codes orga-
nize in precise block structures, while novel codes
amplify outlier similarities seen in the map derived
from ground-truth model activations. Interestingly,
we also observe predictive codes for punctuations
show similarity to codes for tokens across blocks
respectively to their left and right, even though
these blocks are not necessarily similar to each
other. This aligns with the intuition that models
summarize past contexts in punctuations (Chauhan
and Geiger, 2024). The above results suggests that
TemporalSAEs are decomposing representations
into a slow-moving half that describes event struc-
tures (which aligns with blocks in the predictive
code), while the novel code focuses on uncertain,
fast-moving changes in the text. This structure
is reflected in hierarchical clusters extracted from
the correlation plots using an off-the-shelf algo-

8

Figure 7: Hierarchically clustering SAE codes for garden path sentences. (a) Pairwise similarity
maps of the predictive code from Temporal SAE link long-distance heads and dependents that
define the ultimately correct parse in garden path sentences, while standard SAEs (e.g., BatchTopK)
emphasize only local, transient relations, falling for the misleading cues. (b, c) Comparing the cosine
similarity of average latent code extracted from the subject phrase (SP), verb phrase (V), and object
phrase (OP), we see across ambiguous garden path sentences and unambiguous control variants
thereof, only the predictive component of Temporal Features Analyzers shows consistent similarity
scores (as expected if the SP and V ambiguity is reflect in the latent codes).

slow moving and fast moving signal to the different SAE codes. Results clearly show Standard SAEs
are primarily similar to the fast moving signal.

Predictive Component Captures Local Event Boundaries. The results above demonstrate Tempo-
ral SAEs’ predictive component qualitatively align with event boundaries in a story. To investigate this
result more quantitatively, we use GPT-5 to create a synthetic dataset of 50 stories with well-defined
event boundaries (see Fig. 6a for an example). We extract latent codes for these stories’ tokens, center
them by subtracting the mean to remove any globally shared information, and compute the cosine
similarity of token to token latent codes. If the latent codes reflect local event structure of a story,
the cosine similarity (on average) will be high between token pairs that come from the same event
and low (if not zero) between pairs sampled across events; see Fig. 6b for an example similarity map
corresponding to the story shown in Fig. 6a. Results are shown in Fig. 6 (c) and corroborate our
qualitative findings: we see predictive components from Temporal SAE show substantially higher
similarity of codes if tokens are sampled from within an event, while the novel component and
SAEs generally show low similarity between two tokens. These results are further supported by the
robustness of Temporal SAEs to noise. Specifically, we see that when we add noise to the input data,
which, on average, will lead to turning off of latents with small magnitudes (due to the encoding
nonlinearity), the temporal structure of the data, if it is present, will be amplified. We see precisely
this effect in Fig. 6d: the predictive components’ cosine similarity map under Gaussian noised input
maps elicits coarser block structures with increasing noise scale; this is reminiscent of percolation
or heat diffusion perspectives on graph clustering, wherein noise diffuses only within a connected
component and hence community structure is elicited (Von Luxburg, 2007). Correspondingly, we see
Temporal SAEs respond most gracefully to noise: variance explained reduces slower than SAEs’,
which in fact drops to ∼0 at some scale.

6.2 GARDEN PATH SENTENCES: AMBIGUITIES RESOLVED VIA TEMPORAL STRUCTURE

Garden-path sentences—e.g., The old man the boat—initially cue an incorrect local parse
before a later token forces reanalysis. Language models have been shown to be able to correctly parse
such ambiguous sentences, offering in fact a predictive account of human per-token surprisals (Li

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

et al., 2024; Hanna and Mueller, 2024; Oh and Schuler, 2023). Interestingly, when using SAE codes to
assess whether LLM representations offer a valid parse of the sentence, we find hierarchical clustering
of SAE codes yields a parse that is suggestive of the misleading cue; meanwhile, Temporal SAE
recovers the correct parse by separating the predictable, slow-moving component of the representation
from the novel, fast-changing residual. Specifically, in Fig. 7, we see the predictive codes link long-
distance heads and dependents that reflect the correct parse (e.g., man as verb), producing coherent
similarity structure over the full span, whereas standard SAEs emphasize only transient, local changes
and miss these cross-temporal constraints. These results suggest Temporal SAEs encode syntactic
structure that unfolds over time when evidence to collapse the correct constituent parse emerges.
To make these results more quantitative in nature, we use GPT-5 to synthetically generate a set
of 50 garden path sentences where the subject is ambiguous. We create 50 control variants of
these sentences such that the controls do not possess ambiguity with respect to typical parse of the
sentence constituents: e.g., changing the subject in the sentence The old man the boat from
old to sailors, yielding The sailors man the boat. We then divide all sentences into
their respective subject phrase (SP), verb phrase (V), and object phrase (OP): e.g., The old (SP),
man (V), and the road (OP). We compute the average latent code for tokens from these three
constituent phrases, under the hypothesis that if the sentence ambiguity is reflected in the latent code,
then until the OP shows up, the correct parse of prior words cannot be identified. Correspondingly, all
valid parses must be stored in the same representation. This suggests the cosine similarity of latent
codes of V and SP tokens should be of a similar order in both the garden path and control sentences;
meanwhile, the similarity between V and OP should be much higher than V and SP. Results are
reported in Fig. 7 (b,c). We clearly see extreme sensitivity in similarity values of SAE latent codes
and the novel component of Temporal SAE, but the predictive component is essentially invariant
across sentence type, suggesting it captures the temporal dynamics likely relevant for a LM to parse
garden path sentences.

7 DISCUSSION

Our findings reinforce the broader lesson that interpretability tools must align their inductive biases
with the statistical structure of the data they are applied to. We showed that standard SAEs impose
independence priors across time, which are fundamentally misaligned with the nonstationary and
context-dependent structure of language model activations. This mismatch explains why existing
SAEs tend to underrepresent temporal dependencies, despite capturing other kinds of structure. By
contrast, Temporal SAE incorporates empirically observed correlations across time as an inductive
bias. Its decomposition of activations into predictable (slow-moving) and novel (fast-changing)
components enables the recovery of temporal structure that standard SAEs fail to expose. In particular,
we demonstrated that predictable codes align with stable, high-level information, while novel codes
isolate transient or surprising information, allowing Temporal SAE to highlight event boundaries
and syntactic reanalyses in garden-path sentences. Taken together, these results emphasize a general
principle: interpretability methods should not be viewed as neutral feature extractors but as models
with their own structural assumptions. When these assumptions mismatch the true data distribution,
important aspects of representation may be obscured. Incorporating empirically motivated temporal
priors offers one way to close this gap, suggesting that future progress in interpretability will require
tailoring methods to the dynamics of the representations under study.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Carl Allen. Unpicking data at the seams: Understanding disentanglement in vaes. arXiv preprint
arXiv:2410.22559, 2024.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Linear algebraic structure
of word senses, with applications to polysemy. Transactions of the Association for Computational
Linguistics, 6:483–495, 2018.

Christopher Baldassano, Janice Chen, Asieh Zadbood, Jonathan W Pillow, Uri Hasson, and Kenneth A
Norman. Discovering event structure in continuous narrative perception and memory. Neuron, 95
(3):709–721, 2017.

David L Barack and John W Krakauer. Two views on the cognitive brain. Nature Reviews Neuro-
science, 22(6):359–371, 2021.

Omri Barak and Misha Tsodyks. Working models of working memory. Current opinion in neurobiol-
ogy, 25:20–24, 2014.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

Leonard Bereska and Efstratios Gavves. Mechanistic interpretability for ai safety–a review. arXiv
preprint arXiv:2404.14082, 2024.

Pietro Berkes and Laurenz Wiskott. Slow feature analysis yields a rich repertoire of complex cell
properties. Journal of vision, 5(6):9–9, 2005.

Eric Bigelow, Daniel Wurgaft, YingQiao Wang, Noah Goodman, Tomer Ullman, Hidenori Tanaka,
and Ekdeep Singh Lubana. Belief dynamics reveal the dual nature of in-context learning and
activation steering. arXiv preprint arXiv:2511.00617, 2025.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
learning. Transformer Circuits Thread, 2023. https://transformer-circuits.pub/2023/monosemantic-
features.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Elizabeth Bullitt, Guido Gerig, Stephen M Pizer, Weili Lin, and Stephen R Aylward. Measuring
tortuosity of the intracerebral vasculature from mra images. IEEE transactions on medical imaging,
22(9):1163–1171, 2003.

Bart Bussmann, Patrick Leask, and Neel Nanda. Batchtopk sparse autoencoders, 2024. URL
https://arxiv.org/abs/2412.06410.

Bart Bussmann, Noa Nabeshima, Adam Karvonen, and Neel Nanda. Learning multi-level features
with matryoshka sparse autoencoders. arXiv preprint arXiv:2503.17547, 2025.

Tankut Can. Statistical mechanics of semantic compression. arXiv preprint arXiv:2503.00612, 2025.

David Chanin, James Wilken-Smith, Tomas Dulka, Hardik Bhatnagar, Satvik Golechha, and Joseph
Bloom. A is for absorption: Studying feature splitting and absorption in sparse autoencoders, 2025.
URL https://arxiv.org/abs/2409.14507.

Yibei Chen, Zaid Zada, Samuel A Nastase, F Gregory Ashby, and Satrajit S Ghosh. Context modulates
brain state dynamics and behavioral responses during narrative comprehension. bioRxiv, pages
2025–04, 2025.

11

https://arxiv.org/abs/2412.06410
https://arxiv.org/abs/2409.14507


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yubei Chen. The Sparse Manifold Transform and Unsupervised Learning for Signal Representation.
PhD thesis, University of California, Berkeley, 2019.

Yubei Chen, Dylan Paiton, and Bruno Olshausen. The sparse manifold transform. Advances in neural
information processing systems, 31, 2018.

SueYeon Chung and Larry F Abbott. Neural population geometry: An approach for understanding
biological and artificial neural networks. Current opinion in neurobiology, 70:137–144, 2021.

Valérie Costa, Thomas Fel, Ekdeep Singh Lubana, Bahareh Tolooshams, and Demba Ba. From
flat to hierarchical: Extracting sparse representations with matching pursuit. arXiv preprint
arXiv:2506.03093, 2025.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,
2023.

Google Deepmind. Advanced version of gemini with deep think of-
ficially achieves gold-medal standard at the international mathemat-
ical olympiad. https://deepmind.google/discover/blog/
advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/,
2025.

Howard Eichenbaum. Barlow versus hebb: When is it time to abandon the notion of feature detectors
and adopt the cell assembly as the unit of cognition? Neuroscience letters, 680:88–93, 2018.

Michael Elad. Sparse and redundant representations: from theory to applications in signal and image
processing. Springer Science & Business Media, 2010.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak coherent
english? arXiv preprint arXiv:2305.07759, 2023.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCan-
dlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of
superposition. Transformer Circuits Thread, 2022.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Thomas Fel, Binxu Wang, Michael A Lepori, Matthew Kowal, Andrew Lee, Randall Balestriero,
Sonia Joseph, Ekdeep S Lubana, Talia Konkle, Demba Ba, et al. Into the rabbit hull: From
task-relevant concepts in dino to minkowski geometry. arXiv preprint arXiv:2510.08638, 2025.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv preprint
arXiv:2406.04093, 2024.

Atticus Geiger, Duligur Ibeling, Amir Zur, Maheep Chaudhary, Sonakshi Chauhan, Jing Huang,
Aryaman Arora, Zhengxuan Wu, Noah Goodman, Christopher Potts, and Thomas Icard. Causal
abstraction: A theoretical foundation for mechanistic interpretability. Journal of Machine Learning
Research, 26(83):1–64, 2025. URL http://jmlr.org/papers/v26/23-0058.html.

Antonios Georgiou, Tankut Can, Mikhail Katkov, and Misha Tsodyks. Using large language models
to study human memory for meaningful narratives. arXiv preprint arXiv:2311.04742, 2023.

Edward Gibson et al. The dependency locality theory: A distance-based theory of linguistic complex-
ity. Image, language, brain, 2000:95–126, 2000.

Wes Gurnee, Emmanuel Ameisen, Isaac Kauvar, Julius Tarng, Adam Pearce, Chris Olah, and
Joshua Batson. When models manipulate manifolds: The geometry of a counting task. Trans-
former Circuits Thread, 2025. URL https://transformer-circuits.pub/2025/
linebreaks/index.html.

12

https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
http://jmlr.org/papers/v26/23-0058.html
https://transformer-circuits.pub/2025/linebreaks/index.html
https://transformer-circuits.pub/2025/linebreaks/index.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

John Hale. A probabilistic earley parser as a psycholinguistic model. In Second meeting of the north
american chapter of the association for computational linguistics, 2001.

Michael Hanna and Aaron Mueller. Incremental sentence processing mechanisms in autoregressive
transformer language models. arXiv preprint arXiv:2412.05353, 2024.

Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo Rezende,
and Alexander Lerchner. Towards a definition of disentangled representations. arXiv preprint
arXiv:1812.02230, 2018.

Sai Sumedh R Hindupur, Ekdeep Singh Lubana, Thomas Fel, and Demba Ba. Projecting assumptions:
The duality between sparse autoencoders and concept geometry. arXiv preprint arXiv:2503.01822,
2025.

Zhuoqiao Hong, Haocheng Wang, Zaid Zada, Harshvardhan Gazula, David Turner, Bobbi Aubrey,
Leonard Niekerken, Werner Doyle, Sasha Devore, Patricia Dugan, et al. Scale matters: Large lan-
guage models with billions (rather than millions) of parameters better match neural representations
of natural language. bioRxiv, 2024.

Eghbal Hosseini, Colton Casto, Noga Zaslavsky, Colin Conwell, Mark Richardson, and Evelina
Fedorenko. Universality of representation in biological and artificial neural networks. bioRxiv,
2024.

Eric Jonas and Konrad Paul Kording. Could a neuroscientist understand a microprocessor? PLoS
computational biology, 13(1):e1005268, 2017.

Mikail Khona and Ila R Fiete. Attractor and integrator networks in the brain. Nature Reviews
Neuroscience, 23(12):744–766, 2022.

Connor Kissane, Robert Krzyzanowski, Arthur Conmy, and Neel
Nanda. Saes (usually) transfer between base and chat models, 2024.
https://www.alignmentforum.org/posts/fmwk6qxrpW8d4jvbd/
saes-usually-transfer-between-base-and-chat-models.

David Klindt, Charles O’Neill, Patrik Reizinger, Harald Maurer, and Nina Miolane. From su-
perposition to sparse codes: interpretable representations in neural networks. arXiv preprint
arXiv:2503.01824, 2025.

Mikhail V Koroteev. Bert: a review of applications in natural language processing and understanding.
arXiv preprint arXiv:2103.11943, 2021.

Michael A Lepori, Jennifer Hu, Ishita Dasgupta, Roma Patel, Thomas Serre, and Ellie Pavlick. Is this
just fantasy? language model representations reflect human judgments of event plausibility. arXiv
preprint arXiv:2507.12553, 2025.

Roger Levy. Expectation-based syntactic comprehension. Cognition, 106(3):1126–1177, 2008.

Andrew Li, Xianle Feng, Siddhant Narang, Austin Peng, Tianle Cai, Raj Sanjay Shah, and Sashank
Varma. Incremental comprehension of garden-path sentences by large language models: Semantic
interpretation, syntactic re-analysis, and attention. arXiv preprint arXiv:2405.16042, 2024.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2. arXiv preprint arXiv:2408.05147, 2024.

Scott Linderman, Matthew Johnson, Andrew Miller, Ryan Adams, David Blei, and Liam Paninski.
Bayesian learning and inference in recurrent switching linear dynamical systems. In Artificial
intelligence and statistics, pages 914–922. PMLR, 2017.

Jack Lindsey. Emergent introspective awareness in large language models. Trans-
former Circuits Thread, 2025. URL https://transformer-circuits.pub/2025/
introspection/index.html.

13

https://www.alignmentforum.org/posts/fmwk6qxrpW8d4jvbd/saes-usually-transfer-between-base-and-chat-models
https://www.alignmentforum.org/posts/fmwk6qxrpW8d4jvbd/saes-usually-transfer-between-base-and-chat-models
https://transformer-circuits.pub/2025/introspection/index.html
https://transformer-circuits.pub/2025/introspection/index.html


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly
Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam
Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley
Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large language
model. Transformer Circuits Thread, 2025. URL https://transformer-circuits.
pub/2025/attribution-graphs/biology.html.

Alireza Makhzani and Brendan Frey. K-sparse autoencoders. arXiv preprint arXiv:1312.5663, 2013.

William Marslen-Wilson and Lorraine Komisarjevsky Tyler. The temporal structure of spoken
language understanding. Cognition, 8(1):1–71, 1980. ISSN 0010-0277. doi: https://doi.org/
10.1016/0010-0277(80)90015-3. URL https://www.sciencedirect.com/science/
article/pii/0010027780900153.

Brian McElree, Stephani Foraker, and Lisbeth Dyer. Memory structures that subserve sentence
comprehension. Journal of memory and language, 48(1):67–91, 2003.

L. McInnes and J. Healy. Umap: Uniform manifold approximation and projection for dimension
reduction, 2025. URL https://umap-learn.readthedocs.io/en/latest/.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Clara Meister, Tiago Pimentel, Patrick Haller, Lena Jäger, Ryan Cotterell, and Roger Levy. Revisiting
the uniform information density hypothesis. arXiv preprint arXiv:2109.11635, 2021.

Beren Millidge, Mufeng Tang, Mahyar Osanlouy, Nicol S Harper, and Rafal Bogacz. Predictive
coding networks for temporal prediction. PLOS Computational Biology, 20(4):e1011183, 2024.

Alexander Modell, Patrick Rubin-Delanchy, and Nick Whiteley. The origins of representation
manifolds in large language models. arXiv preprint arXiv:2505.18235, 2025.

Monology. The pile: Uncopyrighted subset. https://huggingface.co/datasets/
monology/pile-uncopyrighted, 2021. Based on the original Pile dataset by Gao et
al.

Mark Muchane, Sean Richardson, Kiho Park, and Victor Veitch. Incorporating hierarchical semantics
in sparse autoencoder architectures, 2025. URL https://arxiv.org/abs/2506.01197.

Aaron Mueller, Jannik Brinkmann, Millicent Li, Samuel Marks, Koyena Pal, Nikhil Prakash, Can
Rager, Aruna Sankaranarayanan, Arnab Sen Sharma, Jiuding Sun, Eric Todd, David Bau, and
Yonatan Belinkov. The quest for the right mediator: Surveying mechanistic interpretability through
the lens of causal mediation analysis, 2025. URL https://arxiv.org/abs/2408.01416.

Sonia K Murthy, Rosie Zhao, Jennifer Hu, Sham Kakade, Markus Wulfmeier, Peng Qian, and Tomer
Ullman. Inside you are many wolves: Using cognitive models to interpret value trade-offs in llms.
arXiv preprint arXiv:2506.20666, 2025.

Ramon Nogueira, Chris C Rodgers, Randy M Bruno, and Stefano Fusi. The geometry of cortical
representations of touch in rodents. Nature Neuroscience, 26(2):239–250, 2023.

Byung-Doh Oh and William Schuler. Transformer-based language model surprisal predicts human
reading times best with about two billion training tokens. arXiv preprint arXiv:2304.11389, 2023.

Chris Olah. Distributed Representations: Composition & Superposition, 2023. https:
//transformer-circuits.pub/2023/superposition-composition/index.
html.

Bruno Olshausen and Charles Cadieu. Learning invariant and variant components of time-varying
natural images. Journal of Vision, 7(9):964–964, 2007.

Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties by learning
a sparse code for natural images. Nature, 381(6583):607–609, 1996.

14

https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://www.sciencedirect.com/science/article/pii/0010027780900153
https://www.sciencedirect.com/science/article/pii/0010027780900153
https://umap-learn.readthedocs.io/en/latest/
https://huggingface.co/datasets/monology/pile-uncopyrighted
https://huggingface.co/datasets/monology/pile-uncopyrighted
https://arxiv.org/abs/2506.01197
https://arxiv.org/abs/2408.01416
https://transformer-circuits.pub/2023/superposition-composition/index.html
https://transformer-circuits.pub/2023/superposition-composition/index.html
https://transformer-circuits.pub/2023/superposition-composition/index.html


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision research, 37(23):3311–3325, 1997.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
autoencoders, 2024. URL https://arxiv.org/abs/2407.14435.

Shreya Saxena and John P Cunningham. Towards the neural population doctrine. Current opinion in
neurobiology, 55:103–111, 2019.

Steffen Schneider, Jin Hwa Lee, and Mackenzie Weygandt Mathis. Learnable latent embeddings for
joint behavioural and neural analysis. Nature, 617(7960):360–368, 2023.

Martin Schrimpf, Idan Asher Blank, Greta Tuckute, Carina Kauf, Eghbal A Hosseini, Nancy Kan-
wisher, Joshua B Tenenbaum, and Evelina Fedorenko. The neural architecture of language:
Integrative modeling converges on predictive processing. Proceedings of the National Academy of
Sciences, 118(45):e2105646118, 2021.

SciPy. Dendrogram, hierarchical clustering, scipy, 2025. URL https://docs.scipy.org/
doc/scipy/reference/generated/scipy.cluster.hierarchy.dendrogram.
html.

H Sebastian Seung. How the brain keeps the eyes still. Proceedings of the National Academy of
Sciences, 93(23):13339–13344, 1996.

Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas
Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, et al. Open problems in
mechanistic interpretability. arXiv preprint arXiv:2501.16496, 2025.

Dong Shu, Xuansheng Wu, Haiyan Zhao, Daking Rai, Ziyu Yao, Ninghao Liu, and Mengnan Du. A
survey on sparse autoencoders: Interpreting the internal mechanisms of large language models.
arXiv preprint arXiv:2503.05613, 2025.

Hansem Sohn, Devika Narain, Nicolas Meirhaeghe, and Mehrdad Jazayeri. Bayesian computation
through cortical latent dynamics. Neuron, 103(5):934–947, 2019.

Abiy Tasissa, Emmanouil Theodosis, Bahareh Tolooshams, and Demba Ba. Towards improving
discriminative reconstruction via simultaneous dense and sparse coding, 2022. URL https:
//arxiv.org/abs/2006.09534.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Ellen Thompson. The temporal structure of discourse: the syntax and semantics of temporal then.
Natural Language & Linguistic Theory, 17(1):123–160, 1999.

Greta Tuckute, Aalok Sathe, Shashank Srikant, Maya Taliaferro, Mingye Wang, Martin Schrimpf,
Kendrick Kay, and Evelina Fedorenko. Driving and suppressing the human language network
using large language models. Nature Human Behaviour, 8(3):544–561, 2024.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416,
2007.

Laurenz Wiskott and Terrence J Sejnowski. Slow feature analysis: Unsupervised learning of
invariances. Neural computation, 14(4):715–770, 2002.

Jeffrey M Zacks, Nicole K Speer, Khena M Swallow, Todd S Braver, and Jeremy R Reynolds. Event
perception: a mind-brain perspective. Psychological bulletin, 133(2):273, 2007.

Weishun Zhong, Tankut Can, Antonis Georgiou, Ilya Shnayderman, Mikhail Katkov, and Misha
Tsodyks. Random tree model of meaningful memory. bioRxiv, pages 2024–12, 2024.

15

https://arxiv.org/abs/2407.14435
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.dendrogram.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.dendrogram.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.dendrogram.html
https://arxiv.org/abs/2006.09534
https://arxiv.org/abs/2006.09534


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL DETAILS

Below, we discuss broad details of the experimental setup, training protocol, and measures used for
evaluations.

A.1 TRAINING, HARVESTING, AND INFERENCE FOR SAES

Compute. All experiments were performed using 1 H100, both for extracting representations,
analyzing them, and training Temporal and standard SAEs. To save training costs, we precache
activations on a local server and train in an “online manner”, i.e., sampling a new batch of activations
every training iteration.

SAEs’ training. All analyzed SAEs were trained from scratch on 1B precached activations from
the Pile-Uncopyrighted dataset (Monology, 2021). While we did try to use existing, off-the-shelf
SAEs, we found the results to be wildly inconsistent depending on where we borrowed the SAE
from. To enable a consistent and fair evaluation, we thus preferred to train all SAEs from scratch.
For Gemma models, activations were extracted from Layer 12; for Llama models, from layer 15 (all
0-indexed).

Training procedure. We use Adam optimizer with standard hyperparameters. We initialize training
with a warmup of 200 steps to a learning rate of 10−3, following from thereon to a minimum of
9× 10−4, i.e., the learning rate remains essentially constant throughout training.

Activations normalization. Following best practices, we normalize activations to unit expected
norm (Bricken et al., 2023; Costa et al., 2025). This helps put different SAEs on the same training
scale, and especially for ReLU SAEs, makes training substantially easier by reducing the need for
tuning regularization strength. On a related note, we emphasize our ReLU SAEs have a slightly
higher L0, i.e., are less sparse, than almost all other SAEs analyzed in this work.

A.2 EXPERIMENTS WITH LLM REPRESENTATIONS: AUTOCORRELATION AND U-STATISTIC

We primarily analyze Gemma-2-2B and Llama-3.1-8B models in this paper. Specifically, we precache
10K activations for the analyzed datasets for our experiments on dynamics on language model
representations.

A.2.1 AUTOCORRELATION

We compute autocorrelation by selecting evenly spaced tokens across the sequence and measuring the
cosine similarity between each token and tokens at various lags in the past. Specifically, for tokens at
position t, we compute similarities to tokens at t−w where lag w ranges from 5 to 20. This creates a
heatmap where rows represent lag offsets and columns represent token positions.

For a stationary process, we expect the autocorrelation pattern to remain consistent across time—that
is, the relationship between a token and its historical context should be similar regardless of position
in the sequence. This would manifest as similar autocorrelation patterns repeating horizontally across
token positions. In contrast, for a non-stationary process where representations evolve over time, we
expect the autocorrelation patterns to vary systematically across positions, with columns showing
different temporal dependency structures as the sequence progresses.

A.2.2 U-STATISTIC

We measure the effective dimensionality of LLM representations using a U-statistic (an unbiased
estimator) based on pairwise cosine similarities. Let Xt = [x

(1)
t , . . . ,x

(M)
t ] be M samples of

normalized activations at time t (from different timeseries). Gt = XT
t Xt is the Gram matrix. Using

the above, a U-statistic of intrinsic dimension which we employ is defined below:

U-stat(t) =
M2 −M

∥Gt∥2F −M
(5)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where ∥Gt∥2F is the squared Frobenius norm of the Gram matrix. This quantity estimates the effective
rank 1/tr(C2

t ), where Ct = E[xtx
T
t ] is the second moment matrix and xt is the activation vector at

time t. Under stationarity, U-stat remains constant. When representations evolve over time, U-stat
increases systematically as more orthogonal directions become active.

A.2.3 PROJECTION ANALYSIS

This analysis quantifies how much of the representation xt ∈ RD at token position t can be
reconstructed from its preceding context {xi}i∈W , where the context window W = [t− w, t− 1]
contains the previous w tokens.

For a population of B sentence samples, we compute the projection of each target representation onto
the subspace spanned by its context. Let X(b)

W = [x
(b)
t−w, . . . ,x

(b)
t−1]

T ∈ Rw×D denote the matrix of
context representations for sample b, where each row is a context vector. Prior to projection, we
center all representations by subtracting the mean computed over the target positions across samples.
The projection of x(b)

t onto the span of the context is:

c
(b)
t,w = span(X(b)

W ) · x(b)
t (6)

where span(X(b)
W ) is the row space of X(b)

W , that can be computed via SVD. The variance explained
by the context is:

expvar(t, w) =
∑D

d=1 var(ct,w,d)∑D
d=1 var(xt,d)

(7)

where var(ct,w,d) and var(xt,d) denote the variance of the d-th dimension across the B samples. This
ratio measures the fraction of total representational variance that can be linearly reconstructed from
the preceding context. Values approaching 1 indicate high predictability from context; values near 0
indicate representations largely orthogonal to their context subspace.

A.2.4 SURROGATE

For the U-statistic and Autocorrelation metrics, we compare LLM activations to surrogate distribu-
tions that preserve certain statistical properties while removing temporal structure. We operate on
representation vectors X ∈ RB×T×d, where B denotes batch size, T denotes sequence length, and d
denotes the model dimension.

U-statistic surrogate (Fig. 2 a, e): For each sequence i ∈ {1, . . . , B}, we construct the surrogate
X̃i by applying a random permutation πi : {1, . . . , T} → {1, . . . , T} to the temporal positions:

X̃i,t,: = Xi,πi(t),: ∀t ∈ {1, . . . , T}

This preserves the marginal distribution of activations within each sequence while destroying temporal
dependencies.

Autocorrelation surrogate (Fig. 2 c, g): Given the similarity matrix S ∈ RT×T where Sij =

sim(X·,i,·,X·,j,·), we construct the surrogate similarity matrix S̃ by replacing each diagonal with its
mean:

S̃ij = S̄k where k = |i− j|, S̄k =
1

T − k

T−k∑
t=1

St,t+k

This preserves the average correlation structure at each lag while removing position-specific temporal
patterns.

A.3 ANALYSIS OF STORIES: UMAP PROJECTIONS, DENDROGRAMS, SIMILARITY HEATMAPS,
AND EVENT BOUNDARY DETECTION

Data. For experiments in Sec. 6.1, we used either stories sampled from the TinyStories dataset (El-
dan and Li, 2023) (for Fig. 4, 5) or synthetically sampled stories using GPT-5 (for Fig. 6). For the
former, we sampled stories that were up to a 100 tokens long, allowing us to characterize compute

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

UMAP for both Gemma and Llama models without hitting memory bottlenecks. For consistency, we
then used these stories for all experiments. For synthetically defined stories, we defined 3 in-context
examples (one of which is shown in Fig. 6a) and prompted GPT-5 to produce 50 stories with similar
such suddenly changing events. Stories varied in size, but were generally less than 150 tokens long.
Following Georgiou et al. (2023), the generated stories’ events were labeled using GPT-5. These
labels served as the ‘ground truth’ event boundaries. We qualitatively analyzed and confirmed the
event boundaries overlap with our intuitively expected event structure in the stories.

Analysis Details. To isolate the low-dimensional geometry of latent codes, we perform a 3D UMAP
analysis using the open-source package (McInnes and Healy, 2025). Similarly, Dendrograms in
Fig. 4 are computed using the hierarchical clustering package in SciPy SciPy (2025). Branches are
colored based on proximity, which in our case was between 0–1 (since we use cosine similarity as
the clustering measure). We put a proximity bound of 0.2 as the distance under which branches are
colored within a cluster. For Fourier Analysis, as mentioned in Sec. 6.1, we performed a Fourier
transform of the model activations for a given story, isolated its lower frequency components—defined
as 0.1× the Nyquist rate, which turns out to possess ∼50% of the signal norm—and compute the
cosine similarity kernel of the low / high frequency spectra. These kernels are then compared to
kernels of latent codes derived using Temporal or standard SAEs.

A.4 ANALYZING GARDEN PATH SENTENCES: DENDROGRAMS AND PHRASE SIMILARITY

Data. We used GPT-5 to sample 50 garden path sentences and control variants thereof (1 corre-
sponding to each sentence). Sentences were 20–40 tokens long and had a structure such that the
observation of the object phrase resolved ambiguity. The precise ambiguity structure was were varied
in type, i.e., the ambiguity could be resolved by altering the subject (e.g., old→ sailors in The
old man the road) or by other mechanisms such as adding punctuations to elicit a pause (e.g.,
adding a comma, such as The old train the young fight→ The old train, the
young fight). Control variants had a mixture of such resolutions applied.

Analysis. For assessing whether tokens in verb phrase relate more with the subject phrase, as
would be expect by the typical parse in our used garden path sentences, or with the object phrase, as
would be necessary for the correct parse, we computed Dendrograms using the hierarchical clustering
package in SciPy (SciPy, 2025). The similarity between subject phrase (SP), verb phrase (V), and
object phrase (OP) was computed by taking the set of tokens TP that belong to a phrase P ∈ {SP, V,
OP}, and computing the average latent code: c̄(P ) = 1

|P |
∑

t∈TP
ct, where ct denotes the latent code

extracted for token t using either SAEs or the predictive or novel component of Temporal SAEs. This
protocol is similar to popularly used strategies for computing sentence embeddings (see, e.g., work
using BERT embeddings (Koroteev, 2021)). Cosine similarity between these phrase-averaged garden
path / control sentences yields the tables shown in Fig. 7.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B FURTHER EVALUATION RESULTS

B.1 U-STATISTIC ACROSS DOMAINS FOR GEMMA-2-2B

100
Sequence Position

90

95

100

105

110

115

120

us
ta

t

Webtext
Original 
Surrogate 

100
Sequence Position

65

70

75

80

us
ta

t

SimpleStories
Original 
Surrogate 

100
Sequence Position

50

60

70

80

90

100

us
ta

t

Code
Original 
Surrogate 

Figure 8: U-Statistic across domains for LLM activations, surrogate

Figure 9: U-Statistic across domains for SAE reconstructions

Figure 10: U-Statistic across domains for SAE codes

B.2 AUTOCORRELATION ACROSS DOMAINS FOR GEMMA-2-2B

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 11: Autocorrelation of language model activations and a stationary surrogate across webtext,
simple stories and code domains.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 12: Autocorrelation of SAE latent activations across webtext, simple stories and code domains.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C RECONSTRUCTION PERFORMANCE OF SAES

100 101 102

Sequence Position

160

180

200

220

240

260
W

eb
te

xt

L0 over sequence position

100 101 102

Sequence Position

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Normalized MSE over sequence position

100 101 102

Sequence Position

0.92

0.94

0.96

0.98

1.00

Cosine similarity over sequence position

Codes Metrics
batchtopk/codes
temporal/novel_codes
Recons Metrics

batchtopk/recons
temporal/total_recons

Figure 13: Attn SAE vs BatchTopK

100 101 102

Position

50

100

150

200

250

L0

top_k
batch_top_k
relu
jump_relu

100 101 102

Position

0.200

0.225

0.250

0.275

0.300

0.325

0.350
No

rm
al

ize
d 

M
se

100 101 102

Position

0.84

0.86

0.88

0.90

0.92

Co
sin

e 
Si

m
ila

rit
y

Figure 14: Reconstruction performance of LLama-3.1-8B resid post Layer 16 (1/2 forward pass)
SAEs on webtext.

100 101 102

Position

20

30

40

50

60

70

80

L0

top_k
batch_top_k
relu
jump_relu

100 101 102

Position

400

600

800

1000

L1

100 101 102

Position

0.20

0.25

0.30

0.35

0.40

No
rm

al
ize

d 
M

se

100 101 102

Position

0.88

0.90

0.92

0.94

0.96

0.98

1.00
Co

sin
e 

Si
m

ila
rit

y

Figure 15: Reconstruction performance of Gemma-2-2B resid post Layer 12 (1/2 forward pass) SAEs
on webtext.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D CONSTANT SPARSITY ARGUMENT: RANK AND U-STATISTIC

100
Sequence Position

0

50

100

150

200

250
us

ta
t

activations
surrogate
batchtopk / recons
temporal / novel_codes
temporal / novel_recons
temporal / pred_codes
temporal / pred_recons
temporal / total_recons

Figure 16: Gemma-2-2b: LLM activations vs Attention SAEs vs BatchTopK

D.1 LLAMA-3.1-8B

101 102

Token Position

10

20

30

40

50

60

70

U-
St

at
ist

ic

101 102

Token Position

100

200

300

400

500

600

700

Ef
fe

ct
iv

e 
Ra

nk

Layer 8 Original
Layer 8 Surrogate
Layer 16 Original
Layer 16 Surrogate
Layer 24 Original
Layer 24 Surrogate

Constant Sparsity Argument: Multiple Layers
Llama-3.1-8B | pile-uncopyrighted

Figure 17: Rank and U-statistic, Llama-3.1-8B llm activations and surrogate, Multiple Layers

101 102

Token Position

10

20

30

40

50

U-
St

at
ist

ic

101 102

Token Position

200

300

400

500

600

700

Ef
fe

ct
iv

e 
Ra

nk

LLM Original
LLM Surrogate
SAE relu
SAE jump_relu
SAE top_k
SAE batch_top_k

Constant Sparsity Argument: U-Statistic vs Effective Rank
Llama-3.1-8B Layer 16 | pile-uncopyrighted

Figure 18: Rank vs U-statistic, Llama-3.1-8B, webtext

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

101 102

Token Position

4

5

6

7

8

9

10

11
U-

St
at

ist
ic

101 102

Token Position

200

250

300

350

400

450

500

550

Ef
fe

ct
iv

e 
Ra

nk

LLM Original
LLM Surrogate
SAE relu
SAE jump_relu
SAE top_k
SAE batch_top_k

Constant Sparsity Argument: U-Statistic vs Effective Rank
Llama-3.1-8B Layer 16 | SimpleStories

Figure 19: Rank vs U-statistic, llama-3.1-8B, simple stories

101 102

Token Position

5

10

15

20

25

30

35

40

45

U-
St

at
ist

ic

101 102

Token Position

200

250

300

350

400

450

500

550

600

Ef
fe

ct
iv

e 
Ra

nk

LLM Original
LLM Surrogate
SAE relu
SAE jump_relu
SAE top_k
SAE batch_top_k

Constant Sparsity Argument: U-Statistic vs Effective Rank
Llama-3.1-8B Layer 16 | code-10k

Figure 20: Rank vs U-statistic, llama-3.1-8B, Code

D.2 GEMMA-2-2B

101 102

Token Position

6

7

8

9

10

U-
St

at
ist

ic

101 102

Token Position

400

425

450

475

500

525

550

575

Ef
fe

ct
iv

e 
Ra

nk

Layer 8 Original
Layer 8 Surrogate
Layer 12 Original
Layer 12 Surrogate
Layer 16 Original
Layer 16 Surrogate

Constant Sparsity Argument: Multiple Layers
gemma-2-2b | pile-uncopyrighted

Figure 21: Rank and U-statistic, Gemma-2-2b llm activations and surrogate, Multiple Layers

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

101 102

Token Position

4

5

6

7

8

9

U-
St

at
ist

ic

101 102

Token Position

200

250

300

350

400

450

500

550

Ef
fe

ct
iv

e 
Ra

nk

LLM Original
LLM Surrogate
SAE relu
SAE jump_relu
SAE top_k
SAE batch_top_k

Constant Sparsity Argument: U-Statistic vs Effective Rank
gemma-2-2b Layer 12 | pile-uncopyrighted

Figure 22: Rank vs U-statistic, Gemma-2-2b, webtext

101 102

Token Position

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

U-
St

at
ist

ic

101 102

Token Position

100

200

300

400

500

Ef
fe

ct
iv

e 
Ra

nk

LLM Original
LLM Surrogate
SAE relu
SAE jump_relu
SAE top_k
SAE batch_top_k

Constant Sparsity Argument: U-Statistic vs Effective Rank
gemma-2-2b Layer 12 | SimpleStories

Figure 23: Rank vs U-statistic, Gemma-2-2b, simplestories

101 102

Token Position

4

5

6

7

8

9

10

11

U-
St

at
ist

ic

101 102

Token Position

100

200

300

400

500

Ef
fe

ct
iv

e 
Ra

nk

LLM Original
LLM Surrogate
SAE relu
SAE jump_relu
SAE top_k
SAE batch_top_k

Constant Sparsity Argument: U-Statistic vs Effective Rank
gemma-2-2b Layer 12 | code-10k

Figure 24: Rank vs U-statistic, Gemma-2-2b, code

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

E FURTHER INVESTIGATION OF TEMPORAL SAES

In the results above, we showed across three domains that Temporal SAEs elicits intricate in-context
geometry inline with our expectations based on experiments with LM activations in Sec. 3. Next, to
make a case for following such more structured approaches for interpretability, we add to the results
above to show that Temporal SAEs (i) offers a new way of interpreting temporally structured domains
(e.g., user–model chats) via the context-dependent predictive component, and (ii) information that
can be identified via SAEs continues to remain available within the novel component of Temporal
SAEs.

E.1 GEOMETRY OF LATENT CODES IN AN OOD DIALOGUE DOMAIN

Temporal (Pred)

τ = 24.8 τ = 32.2 τ = 29.1 τ = 26.5 τ = 30.0 τ = 2.0

Activations ReLU

Assistant Position0 350User

TopK BatchTopK Temporal (Novel)

Figure 25: Population and trajectory geometry in OOD dialogue. UMAPs of raw activations and
SAE codes on Ultrachat (first 350 tokens per conversation). Top: population embeddings colored
by sequence position (gray→color) and marked by role (user=◦, assistant=×); only the predictive
code cleanly separates speaker roles while preserving a smooth temporal gradient. Bottom: a single
conversation overlaid on the same UMAP; the predictive code follows a smooth near-geodesic with
low tortuosity τ , in contrast to jagged paths from standard SAEs/novel codes.

We analyze a multi-turn chat domain to test whether Temporal SAEs continues to reveal slow-moving
structure. We emphasize the activations in this experiment are sampled from a Gemma-2-2B-IT
model, although all analyzed interpretability protocols were trained on the base (non-instruction
tuned) model. Thus, in a sense, the experiments in this section also gauge the ability of different
protocols to generalize out-of-distribution (OOD)—a property SAEs have been argued to partially
possess when transferring between base and the corresponding instruction-tuned models (Kissane
et al., 2024). Specifically, we use the Ultrachat dataset, where we take the first 350 tokens from 1,000
conversations (mostly single-turn within this window, with up to four turns). For each token, we
compute a shared 2D UMAP embedding from (i) raw model activations and (ii) latent codes from
ReLU, TopK, and BatchTopK SAEs, as well as the novel and predictive components of the Temporal
SAE. To visualize population structure clearly, we display only 100 conversations at a time to avoid
clutter (Fig. 25), though fitting is applied to all 1,000.

At the population level, the predictive component of Temporal SAEs is the only representation that
cleanly organizes the data along two interpretable axes: (1) a speaker-role separation, with user and
assistant tokens forming distinct yet smoothly adjoining manifolds, and (2) a temporal gradient, with
positions flowing continuously from early to late tokens along the manifold. By contrast, standard
SAEs and the novel code show diffuse clouds with weaker role separability and no coherent positional
gradient (Fig. 10, top row). To assess within-sequence geometry, we overlay a single conversation’s
trajectory onto the population embedding (Fig. 10, bottom row). Predictive codes trace a smooth
trajectory that remains locally coherent within each role segment and transitions gracefully at speaker
switches. In contrast, standard SAEs and the novel code produce jagged, zig–zagging paths. We again
quantify this with tortuosity τ (Bullitt et al., 2003) (lower is straighter): predictive codes achieve
τ ≈ 2.0, whereas SAEs and the novel code yield τ ≈ 25–30, indicating substantially more local

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

turning (Fig. 10, panel headers). This straightening mirrors the story-domain results (Sec. 6.1), now
in an OOD conversational chat regime.

E.2 AUTOMATIC INTERPRETABILITY OF NOVEL CODES
G

em
m

aS
co

pe
Te

m
po

ra
l (

N
ov

el
)

University SlangManipulationOptimism

Figure 26: Interpretability of novel codes. We qualitatively compare the interpretability of novel
codes extracted using Temporal SAEs with latent codes extracted using GemmaScope SAEs across
four diverse categories. Example feature cards are shown across four categories, produced with
the same activation-triggered examples plus direct logit attribution workflow used for standard
SAEs (Lieberum et al., 2024).

A central benefit of SAEs is that their latents admit automatic interpretability pipelines (“autointerp”)
that attach human-readable semantics to features via activation-triggered examples, token/phrase
saliency, and lightweight dashboards (e.g., GemmaScope / Neuronpedia). Our Temporal SAE
adds a new, temporally aware predictive axis, but crucially it does not sacrifice these established
interpretability affordances: the novel code remains compatible with standard SAE autointerp
workflows. In other words, Temporal SAEs augment the toolbox rather than replacing it.

To support this point, we apply a conventional autointerp loop to the novel codes: (i) collect high-
activation snippets and nearest-neighbor contexts for each latent; (ii) compute direct logit attribution
to inspect which vocabulary items a latent tends to support or suppress; and (iii) render compact,
browsable “feature cards” that aggregate examples and scores (as in GemmaScope / Neuronpedia).
While we do not perform an exhaustive causal-intervention study here, nothing in the pipeline is
specific to standard SAEs; the same probes and dashboards operate unchanged on the novel codes,
and we leave a systematic intervention suite to future work. Qualitative inspection confirms that the
novel codes recover the kinds of monosemantic, language-level features typically reported for SAEs.
Figure 11 (p. 13) shows representative examples across diverse categories—Optimism, Manipulation,
University, and Slang—where the novel latents consistently activate on intuitively relevant cue phrases
and contexts, and where their attribution profiles align with the expected lexical sets.

Overall, when standard SAEs produce readable feature cards, the Temporal SAE’s novel stream does
as well. This complements our earlier results: the predictive stream captures slow, contextual structure
(events, roles, long-range constraints), whereas the novel stream concentrates the fast, stimulus-driven
information that matches inferences possible via existing SAEs, including autointerp pipelines.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

F EMERGENT SEPARATION OF PREDICTIVE AND NOVEL PARTS

0.9

Aggregated 
Density

0.1

0.9

0.1

0.9

0.1
0.9

0.1

Aggregated 
Density

0.9

0.1

0.9

0.1

Figure 27: Separation of Predictive and Novel Dictionaries. Predictive and novel codes for
sequences drawn from three datasets—SimpleStories (top), Webtext (middle), and Code (bottom)—
are binarized to zero (black) and non-zero (white). The dictionary elements are sorted by the sum
of non-zero activations in the predictive code across the sequence. The ordering obtained from the
predictive code is also applied to the novel code. The red dashed line marks the separation of 90% of
non-zero activation counts; only 10% are overlapping into the other subset. Additionally, the effective
rank of the predictive codes is two orders of magnitudes lower than the average number of non-zero
dictionary elements (Mean L0).

The Temporal SAEs studied in the main paper share a dictionary for both predictive and novel codes.
We now investigate if there is any shared structure in the two dictionaries. In particular, given the
predictive and novel codes play a different role, it is plausible the SAE learns to approximately split
the dictionary into two parts: one responsible for computing the predictive code and the other for
novel one. Specifically, we investigate a Temporal SAE trained on Gemma-2-2B Layer 12 residual
stream activations. Results are shown in Fig. 27 and show a separation of dictionary elements for
sequences drawn from three datasets: SimpleStories, Webtext, and Code. Specifically, we find ∼2K
dictionary elements participate in defining the predictive code, while the remaining ∼8K primarily
participate in defining the novel code. However, the absolute count is merely indicative of the
L0 sparsity of a code, which may not reflect how many directions are actually used to define the
code—estimating latter requires computing the rank of the code (in fact, we note that rank-sparsity is
a well-known alternative to L0 sparsity in dictionary learning literature (Elad, 2010)). As we show

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

in Fig. 27, the effective rank of the predictive codes (∼20–30) is substantially lower than both the
effective rank (∼390–410) and absolute L0 sparsity of novel codes.

Overall, the posthoc analysis above shows that predictive and novel codes largely use separate
subsets of dictionary elements. This emergent disentanglement of the two components motivates
one to preemptively split the dictionary into two components—one responsible for the predictive
code and other for novel one. Our preliminary experiments show a Temporal SAE trained with
this split-dictionary architecture is similarly performant as the tied dictionary one, resulting in
predictive / novel codes with effective ranks ∼20–30 / ∼390–420, and a slightly better overall
loss. It is possible optimizing hyperparameters (e.g., having different expansion factors for the two
components) can make this architecture more performant than the tied dictionary one, but we leave a
further characterization to future work.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

G THE GEOMETRY OF STORIES: A NARRATIVE-DRIVEN DOMAIN

G.1 HIERARCHICAL CLUSTERING OF CODES FROM STORY TOKENS

G.1.1 STORY 1

Figure 28: Geometry. Repeating results of Fig. 4, we again find smooth trajectories in UMAP
projections for Temporal SAEs.

Figure 29: Dendrograms of Predictive and Novel Components from Temporal SAEs. Reproduc-
tion of the results from Fig. 4b, but including the novel component’s dendrogram as well.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 30: Dendrograms of Standard SAEs’ Latents Codes. Reproduction of the results from
Fig. 4b, but for latent codes extracted using standard SAEs.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

G.1.2 STORY 2

Figure 31: Geometry. Repeating results of Fig. 4 on a different story, we again find smooth
trajectories in UMAP projections for Temporal SAEs.

Figure 32: Dendrograms of Predictive and Novel Components from Temporal SAEs. Repro-
duction of the results from Fig. 4b, but on a different story and with both the predictive and novel
component.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 33: Dendrograms of Standard SAEs’ Latents Codes. Reproduction of the results from
Fig. 4b, but for latent codes extracted using standard SAEs on a different story.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

G.1.3 STORY 3

Figure 34: Geometry. Repeating results of Fig. 4 on a different story, we again find smooth
trajectories in UMAP projections for Temporal SAEs.

Figure 35: Dendrograms of Predictive and Novel Components from Temporal SAEs. Repro-
duction of the results from Fig. 4b, but on a different story and with both the predictive and novel
component.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Figure 36: Dendrograms of Standard SAEs’ Latents Codes. Reproduction of the results from
Fig. 4b, but for latent codes extracted using standard SAEs on a different story.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

G.2 CODE: ANALYZING ANOTHER DOMAIN

Figure 37: Code. Reproducing the results of Fig. 4, but on a different domain, i.e., code. We again see
a temporally disentangled, smoothly running trajectory for latent codes extracted using the predictive
component of Temporal SAEs.

Figure 38: Dendrograms of Predictive and Novel Components from Temporal SAEs. Reproduc-
tion of the results from Fig. 4b, but on a different domain shows similar results as with narrative-driven
text (stories) for both the predictive and novel component.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Figure 39: Dendrograms of Standard SAE Latent Codes. Reproduction of the results from Fig. 4b,
but on a different domain shows similar results as with narrative-driven text (stories) for standard
SAEs.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

G.3 FURTHER RESULTS: SIMILARITY MAPS ON STORIES

Figure 40: Temporal (Pred) Similarity Maps Elicit Multi-Scale Structure with Noise. Repeating
the analysis shown in Fig. 6, we find the coarsening of temporal blocks is a robust result that continues
to hold for different inputs.

Figure 41: Temporal (Novel) Similarity Maps under Noise. Repeating the analysis shown in Fig. 6,
we find the novel component is only able to capture minimal local similarities, which when analyzed
via dendrograms, show clustering based on lexical information.

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Figure 42: ReLU Codes’ Similarity Maps under Noise. Repeating the analysis shown in Fig. 6 on
ReLU SAEs, we find the ReLU latent code has high similarity across the board, suggesting lack of
meaningful temporal information. This similarity is entirely removed when noise scale increases too
much, which, as shown in Fig. 6c, corresponds to the point that variance explained by ReLU SAEs
drops to ∼0.

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Figure 43: TopK Codes’ Similarity Maps under Noise. Repeating the analysis shown in Fig. 6,
we find TopK SAE’s latent codes are only able to capture minimal local similarities, which when
analyzed via dendrograms, show clustering based on lexical information. Akin to ReLU SAEs, we
see this similarity map approximately turns into an identity matrix when the noise scale increases too
much, which, as shown in Fig. 6c, corresponds to the point that variance explained by TopK SAEs
drops to ∼0.

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Figure 44: BatchTopK Codes’ Similarity Maps under Noise. Repeating the analysis shown in
Fig. 6, we find BatchTopK SAE’s latent codes are only able to capture minimal local similarities,
which when analyzed via dendrograms, show clustering based on lexical information. Akin to ReLU
SAEs, we see this similarity map approximately turns into an identity matrix when the noise scale
increases too much, which, as shown in Fig. 6c, corresponds to the point that variance explained by
BatchTopK SAEs drops to ∼0.

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

G.4 FURTHER RESULTS: DENDROGRAMS AND EVALUATIONS ON GARDEN PATH SENTENCES

G.4.1 DENDROGRAMS

Figure 45: Example Sentence 1. Repeating the results of Fig. 7a on a different garden path sentence.

Figure 46: Example Sentence 2. Repeating the results of Fig. 7a on a different garden path sentence.

Figure 47: Example Sentence 3. Repeating the results of Fig. 7a on a different garden path sentence.

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

H FURTHER RESULTS: TEMPORAL SAES ON LLAMA-3.1-8B

We replicate a subset of the experiments evaluating Temporal SAEs on Llama-3.1-8B. The training
protocol remains the same as that of Gemma-2-2B model: train on 1B token activations with similar
normalization schema, but activations are harvested now from Layer 15 (i.e., at ∼50% of model
depth). We note that the trained SAEs are not finished training, and hence the following results are
solely meant to be an impression of whether the qualitative trends observed with Gemma models
generalize to another model class.

H.1 GEOMETRY, DENDROGRAMS, AND SPECTRA

H.1.1 STORY 1

Figure 48: Geometry. Repeating results of Fig. 4, we again find smooth trajectories in UMAP
projections for Temporal SAEs.

Figure 49: Dendrograms of Predictive and Novel Components from Temporal SAEs. Reproduc-
tion of the results from Fig. 4b, but including the novel component’s dendrogram as well.

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Figure 50: Dendrograms of Standard SAEs’ Latents Codes. Reproduction of the results from
Fig. 4b, but for latent codes extracted using standard SAEs.

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

H.1.2 STORY 2

Figure 51: Geometry. Repeating results of Fig. 4, we again find smooth trajectories in UMAP
projections for Temporal SAEs.

Figure 52: Dendrograms of Predictive and Novel Components from Temporal SAEs. Reproduc-
tion of the results from Fig. 4b, but including the novel component’s dendrogram as well.

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Figure 53: Dendrograms of Standard SAEs’ Latents Codes. Reproduction of the results from
Fig. 4b, but for latent codes extracted using standard SAEs.

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

H.1.3 STORY 3

Figure 54: Geometry. Repeating results of Fig. 4, we again find smooth trajectories in UMAP
projections for Temporal SAEs.

Figure 55: Dendrograms of Predictive and Novel Components from Temporal SAEs. Reproduc-
tion of the results from Fig. 4b, but including the novel component’s dendrogram as well.

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Figure 56: Dendrograms of Standard SAEs’ Latents Codes. Reproduction of the results from
Fig. 4b, but for latent codes extracted using standard SAEs.

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

H.1.4 COMPARING EIGENSPECTRUM WITH SLOW VS. FAST FEATURES

Figure 57: Kernel spectrum for latent codes and model representations. Kernels defined using
novel code from Temporal SAEs and standard SAEs both align well with the fast-changing part
of model representations; meanwhile, only the predictive code shows strong similarity to the slow
changing part.

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

H.2 EVENT BOUNDARIES AND NOISE STABILITY

H.2.1 EVENT BOUNDARIES

Figure 58: Analysis of Event Boundaries. Reproducing results from Fig. 6 on Llama-3.1-8B, we
see similar behavior as the Gemma analysis done previously.

Figure 59: Temporal (Pred) Similarity Maps Elicit Multi-Scale Structure with Noise. Repeating
the analysis shown in Fig. 6, we find the coarsening of temporal blocks is a robust result that continues
to hold for different inputs.

50



2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

σ = 0.005 σ = 0.01 σ = 0.02 σ = 0.04σ = 0.0

Story 1

Story 2

Story 3

Temporal (Novel)

Figure 60: Temporal (Novel) Similarity Maps under Noise. Repeating the analysis shown in Fig. 6,
we find the novel component is only able to capture minimal local similarities, which when analyzed
via dendrograms, show clustering based on lexical information.

Figure 61: ReLU Codes’ Similarity Maps under Noise. Repeating the analysis shown in Fig. 6 on
ReLU SAEs, we find the ReLU latent code has high similarity across the board, suggesting lack of
meaningful temporal information.

51



2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

Figure 62: TopK Codes’ Similarity Maps under Noise. Repeating the analysis shown in Fig. 6,
we find TopK SAE’s latent codes are only able to capture minimal local similarities, which when
analyzed via dendrograms, show clustering based on lexical information.

Figure 63: BatchTopK Codes’ Similarity Maps under Noise. Repeating the analysis shown in
Fig. 6, we find BatchTopK SAE’s latent codes are only able to capture minimal local similarities,
which when analyzed via dendrograms, show clustering based on lexical information.

52



2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

I FURTHER THEORY RESULTS

I.1 PRIORS ON THE SPARSE CODE FOR VARIOUS SAES

We restate and prove the proposition on independence priors of SAEs over time (Proposition 4.1)
below.
Proposition I.1 (Independence priors over time). Consider the SAE maximum aposteriori (MAP)
objective for ReLU, JumpReLU, TopK and BatchTopK SAEs. The sparsity constraints for these SAEs
are additive over time, resulting in:

argmin
D,z

1

T

T∑
i=1

∥xi −Dzi∥22 + λR(zi),

s.t. zk = fSAE(xk) ∀k, g̃(z1, . . . ,zT ) =
∑
i

g̃(zi) = 0.

(8)

This MAP objective has an independent and identically distributed (i.i.d.) prior over time i.e.,

P (z1, . . . ,zT ) ∝
T∏

t=1

exp
(
−λR(zi)− λ̃g̃(zi)

)
=
∏
i

P (zi),

Proof. The sparsity constraints and sparsity-promoting regularizers for the SAEs under study are
specified in the table below.

SAE Regularizer
R(zi)

Sparsity Constraint
g̃(z1, . . . ,zT ) = 0

ReLU ∥zi∥1 0
JumpReLU ∥zi∥0 0

TopK 0
∑T

i=1(∥zi∥0 −K)2

BatchTopK 0 1
T

∑T
i=1 ∥zi∥0 −K

Table 5: Sparsity constraints and regularizers for SAEs

Note that TopK imposes a pointwise hard sparsity constraint, which has been restated using sum-of-
squares above for convenience. While BatchTopK imposes the fixed mean sparsity for each mini
batch, we take the batch to capture the entire timeseries in the above formulation. The above table
shows us that the sparsity constraint is additive over time in all cases:

g̃(z1, . . . ,zT ) =

T∑
i=1

g̃(zi) = 0, (9)

where g̃(zi) =


(∥zi∥0 −K)2 TopK
1
T (∥zi∥0 −K) BatchTopK
0 ReLU, JumpReLU

(10)

Recall that SAEs solve the following constrained optimization problem (restated from Eq. 1).

argmin
D,z

1

N

T∑
i=1

∥xi −Dzi∥22 + λR(zi),

s.t. zk = fSAE(xk) ∀k, g̃(z1, . . . ,zT ) = 0 .

(11)

We rewrite the above problem using Lagrange multipliers on the sparsity constraints, and further
simplify using the above result on constraints being additive over time, as:

argmin
D,z

1

N

T∑
i=1

∥xi −Dzi∥22 + λR(zi) + λ̃g̃(∥zi∥0),

s.t. zk = fSAE(xk) ∀k.

(12)

Note that we don’t use Lagrange multipliers on the SAE architecture constraint z = fSAE(x) since
we only care about z-specific constraints (which don’t include the data x) for the prior.

53



2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

Bayesian Interpretation. The objective function above (sans the SAE architecture constraint) can
be thought of as minimizing the negative log posterior, which is proportional to log prior added to log
likelihood:

− logP (z1, . . . ,zT | x1, . . . ,xT ) ∝
1

N

T∑
i=1

∥xi −Dzi∥22︸ ︷︷ ︸
− logP (x1,...,xT |z1,...,zT )

+
1

N

T∑
i=1

λR(zi) + λ̃g̃(∥zi∥0)︸ ︷︷ ︸
− logP (z1,...,zT )

(13)

The prior over latents z is:

logP (z1, . . . ,zT ) = − 1

N

T∑
i=1

λR(zi) + λ̃g̃(∥zi∥0), (14)

=⇒ P (z1, . . . ,zT ) =

T∏
i=1

exp
(
−λR(zi) + λ̃g̃(∥zi∥0)

)
=
∏
i

P (zi). (15)

Therefore, the prior is multiplicative over time, implying independence, and the distribution at each
time t has the same form, implying that the prior is independent and identically distributed (i.i.d.).
This completes the proof.

2

I.2 PRIORS OVER CONCEPTS AND GENERATIVE PRIORS OVER TIME

We can further think of the priors of each SAE over concepts as well as over time in a generative
fashion. In some cases, this mainfests as a hierarchical latent variable model n → S → z, where
n = ∥z∥0 is the sparsity, S = supp(z) = {k : zk > 0} is the support, and z is the SAE latent code.
Proposition I.2 (SAE Priors on Sparse Code). Let St = supp(zt) = {k : zkt > 0} be the set of
active latents in the sparse code z at time t, and nt = |St| be the cardinality of St (the number of
active latents). Each SAE imposes a prior distribution on the sparse code z, arising from its sparsity
penalty R(z) or implicit conditions imposed on the sparse code. These conditions are highlighted in
Table 6.

Table 6: Priors over concept interactions and dynamics for various SAEs

fSAE,R(z) Across-Concept Prior (interaction) Across-time Prior (dynamics)

ReLU,
L1-norm z1t , . . . , z

M
t

i.i.d.∼ Laplace(0, ·) z1, . . . , zt
i.i.d.∼ Pz

TopK zi1t , . . . , ziKt | St
i.i.d.∼ U(0, ·) ∀i· ∈ St,

St ∼ U([M ]K)

(z1, S1), . . . , (zt, St)
i.i.d.∼ PSPz|S ,

S1, . . . , St
i.i.d.∼ U([M ]K)

JumpReLU,
L0-norm

zi1t , . . . , z
int
t | St

i.i.d.∼ U(0, ·) ∀i· ∈ St,
St | nt ∼ U([M ]nt)

(z1, S1, n1), . . . , (zt, St, nt)
i.i.d.∼ PnPS|nP (z | S),

n1, . . . , nt
i.i.d.∼ Pn

BatchTopK zi1t , . . . , z
int
t | St

i.i.d.∼ U(0, ·) ∀i· ∈ St,
St | nt ∼ U([M ]nt)

(z1, S1, n1), . . . , (zt, St, nt)
i.i.d.∼ PnPS|nP (z | S),

n1, · · · , nt
i.i.d.∼ Pn, E[nt] = K

I.2.1 RELU SAE

The vanilla ReLU SAE (Bricken et al. (2023), Cunningham et al. (2023)) is trained with the L1-norm
penalty:

R(z) = ∥z∥1. (16)
The prior over z for the above case is:

logP (z1, . . . ,zN ) ∝ −
N∑
i=1

M∑
k=1

|zki |, (17)

=⇒ P (z1, . . . ,zN ) ∝
N∏
i=1

(
M∏
k=1

exp−ν|zki |

)
. (18)

54



2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

This joint distribution implies that for each sample i, different indices k are sampled i.i.d. from the
same distribution:

z1i , . . . , z
M
i

i.i.d.∼ Laplace(0, 1/ν), (19)

and different samples are all independently sampled from the same product Laplace distribution:

z1, . . . zN
i.i.d.∼ LaplaceM (0, 1/ν). (20)

This concludes the proof for priors of ReLU SAE trained with L1 norm sparsity penalty. □

I.2.2 TOPK SAE

The TopK SAE (Makhzani and Frey (2013), Gao et al. (2024)) directly controls the sparsity of the
representation z by fixing it at ∥z∥0 = K, instead of imposing an explicit sparsity penalty R(z) in
the loss function. The objective function for TopK SAE is:

argmin
D,z

N∑
i=1

1

N
∥xi −Dzi∥22, (21)

s.t. ∀j,zj = fTopK(xj), ∥zj∥0 = K. (22)

Since the fixed sparsity is a hard constraint that depends on z alone (and not the data x), it can
further be simplified as a sum-of-squares constraint:

∑
j(∥zj∥0 −K)2 = 0. We can use Lagrange

multipliers to reformulate it as an effective prior:

argmin
D,z,{λi}

N∑
i=1

1

N

(
∥xi −Dzi∥22 + λ

(∣∣∥zi∥0 −K
∣∣)2), (23)

s.t. ∀j,zj = fTopK(xj). (24)

The prior over z for the above (effective) regularizer is:

logP (z1, . . . ,zN ) ∝ −
N∑
i=1

λ
((

∥zi∥0 −K
)2)

(25)

=⇒ P (z1, . . . ,zN ) ∝
N∏
i=1

exp
(
− λ

(
∥zi∥0 −K

)2)
(26)

Note that the above prior is finite for finite values of λ, but the overall objective optimizes over λ,
resulting in a hard prior peaked at ∥zi∥0 = K for each sample i.

The factorization over samples i implies mutual independence of z1, . . . ,zn: P (z1, . . . ,zn) =∏N
i=1 P (zi).

As defined in Theorem I.2 (and restated here for convenience), let Si = supp(zi) = {k : zki >
0}, ni = |Si| = ∥zi∥0 denote the active indices and their number (sparsity) respectively.

For individual samples zi, if we condition on the set of active indices Si, the sparsity gets fixed since
∥zi∥0 = |Si| = ni, and the distribution becomes constant:

P (zi | Si) = C (27)

=⇒ zµi | Si ∼
{
U(0, κ) µ ∈ Si

δ0 µ /∈ Si
, and (28)

zµ1

i , . . . , z
µ|Si|
i | Si

i.i.d.∼ U(0, κ) for µ· ∈ Si (29)

where C, κ are appropriate constants.

Since {zi}is are mutually independent, any measurable function of each is also independent. The
indices of nonzero entries of zj , i.e., Sj is a measurable function since it is a map S : RM

+ → 2M

55



2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

which is discrete valued, and pre images of each value—a set of nonzero indices—are measurable
since they equal the cartesian products of the measurable sets {z = 0}, {z > 0} over all indices.
Hence, S1, . . . , Sn are also independent.

Since Si = g(zi) and the distribution of zi depends only on ni = ∥zi∥0 (Eq. 25), the distribution of
Si will also depend only on ni, becoming uniform when conditioned on ni. In TopK SAE, ni = K
is a constant. Therefore, each Si ∼ U([M ]K), and together with independence argued above,

S1, . . . , SN
i.i.d.∼ U([M ]K) (30)

This completes the proof for the priors of TopK SAE. □

I.2.3 BATCHTOPK SAE

BatchTopK SAE (Bussmann et al. (2024)) is a modification of the TopK SAE. Instead of fixing
sparsity like TopK, BatchTopK allows variable sparsity per input while fixing the mean sparsity over
a batch at K. The objective function for BatchTopK SAE can equivalently be written as:

argmin
D,z

N∑
i=1

1

N
∥xi −Dzi∥22, (31)

s.t. ∀j,zj = fTopK(xj),
1

N

N∑
j=1

∥zj∥0 = K. (32)

While BatchTopK imposes a mean sparsity per batch, for simplicity, we use the batch size to match the
size of the entire dataset (WLOG). Smaller batch sizes can easily be incorporated by adding separate
constraints, each over the entire batch (only leads to a change in constants—lagrange multipliers—in
the analysis).

Following similar analysis as for TopK SAE (App. I.2.2), we can derive an equivalent prior over z
for BatchTopK SAE:

P (z1, . . . ,zN ) ∝
N∏
i=1

exp
(
− λ

∣∣∥zi∥0 −K
∣∣) (33)

The sparse codes for different samples {zi}i are thus sampled i.i.d. from a distribution that only
depends on the sparsity penalty. While this prior looks very similar to the prior of TopK SAE, the
difference is that in TopK, the fixed sparsity constraint is imposed per sample, leading to a different
Lagrange multiplier λi per sample to optimize over, while in BatchTopK, we have a common
multiplier λ over all examples in a batch (with multiple batches, we will have one multiplier per
batch), which is then optimized over to ensure that average sparsity per batch constraint is met.

Similar to the analysis for the TopK SAE, we get the following prior over different latents per sample:

zµi | Si ∼
{
U(0, κ) µ ∈ Si

δ0 µ /∈ Si
, and (34)

zµ1

i , . . . , z
µ|Si|
i | Si

i.i.d.∼ U(0, κ) for µ· ∈ Si (35)

The active indices Si are sampled uniformly conditioned on the number of active indices ni:

Si | ni ∼ U([M ]ni) (36)

The number of active latents ni are themselves sampled i.i.d. (since ni = g̃(zi) and {zi}i are i.i.d.)
from a distribution whose mean is fixed:

n1, . . . , nN
i.i.d.∼ P, s.t. E[n·] = K (37)

This completes the derivation for the BatchTopK prior. □

56



3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

I.2.4 JUMPRELU SAE

JumpReLU SAE (Rajamanoharan et al. (2024)) is trained with the L0 (pseudo-)norm regularizer.
This leads to the following optimization problem:

argmin
D,z

N∑
i=1

1

N

(
∥xi −Dzi∥22 + λ∥zi∥0

)
s.t. ∀k,zk = fJumpReLU (xk)

This objective is equivalent to the following prior over z:

P (z1, . . . ,zN ) ∝
N∏
i=1

exp
(
− η∥zi∥0

)
(38)

Noting the similarity with the TopK/ BatchTopK cases, we use the same analysis to derive the
following conditions:

zµi | Si ∼
{
U(0, κ) µ ∈ Si

δ0 µ /∈ Si
, and (39)

zµ1

i , . . . , z
µ|Si|
i | Si

i.i.d.∼ U(0, κ) for µ· ∈ Si (40)
Si | ni ∼ U([M ]ni) (41)

The number of active latents ni are again i.i.d., but there is no constraint on the mean of the distribution
(unlike BatchTopK which constrained the mean of ni to equal K):

n1, . . . , nN
i.i.d.∼ P, (42)

which completes the analysis for JumpReLU SAE. □

J STATIONARITY MEASURES

LLM activations are empirically non-stationary across the sequence. We quantify the non-stationary
nature by measuring autocorrelations and the U-statistic.

J.1 AUTOCORRELATION

We compute autocorrelation by selecting evenly spaced tokens across the sequence and measuring the
cosine similarity between each token and tokens at various lags in the past. Specifically, for tokens at
position t, we compute similarities to tokens at t−w where lag w ranges from 5 to 20. This creates a
heatmap where rows represent lag offsets and columns represent token positions.

For a stationary process, we expect the autocorrelation pattern to remain consistent across time—that
is, the relationship between a token and its historical context should be similar regardless of position
in the sequence. This would manifest as similar autocorrelation patterns repeating horizontally across
token positions. In contrast, for a non-stationary process where representations evolve over time, we
expect the autocorrelation patterns to vary systematically across positions, with columns showing
different temporal dependency structures as the sequence progresses.

J.2 U-STATISTIC

We measure the effective dimensionality of LLM representations using a U-statistic based on pairwise
cosine similarities.

U-stat(t) =
M2 −M

∥Gt∥2F −M
(43)

where ∥Gt∥2F is the squared Frobenius norm of the Gram matrix. This quantity estimates the
effective rank 1/tr(C2

t ), where Ct = E[x̂tx̂
T
t ] is the second moment matrix and x̂t is the normalized

activation vector at time t. Under stationarity, U-stat remains constant. When representations evolve
over time, U-stat increases systematically as more orthogonal directions become active.

57



3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

J.3 SURROGATE

For the U-statistic and Autocorrelation metrics, we compare LLM activations to surrogate distribu-
tions that preserve certain statistical properties while removing temporal structure. We operate on
representation vectors X ∈ RB×T×d, where B denotes batch size, T denotes sequence length, and d
denotes the model dimension.

U-statistic surrogate (Fig. 2 a, e): For each sequence i ∈ {1, . . . , B}, we construct the surrogate
X̃i by applying a random permutation πi : {1, . . . , T} → {1, . . . , T} to the temporal positions:

X̃i,t,: = Xi,πi(t),: ∀t ∈ {1, . . . , T}

This preserves the marginal distribution of activations within each sequence while destroying temporal
dependencies.

Autocorrelation surrogate (Fig. 2 c, g): Given the similarity matrix S ∈ RT×T where Sij =

sim(X·,i,·,X·,j,·), we construct the surrogate similarity matrix S̃ by replacing each diagonal with its
mean:

S̃ij = S̄k where k = |i− j|, S̄k =
1

T − k

T−k∑
t=1

St,t+k

This preserves the average correlation structure at each lag while removing position-specific temporal
patterns.

58



3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

K USE OF LARGE LANGUAGE MODELS

LLMs were used in this work for the following:

• Polish writing: Although major parts of the writing were done by the authors themselves, LLMs
(ChatGPT) were used to critique and iteratively improve the writing.

• Research ideation: In the initial stages of the project, conversations with LLMs (ChatGPT, Gemini)
aided in refining the overall storyline of the project, as well as to get feedback on theory sections.
In all cases, LLM outputs were only used by the authors to refine their ideas.

59


	Introduction
	Preliminaries
	Temporal Structure in Language Model Activations
	Temporal Priors of Sparse Autoencoders
	Temporal SAEs: Explicitly Modeling Temporal Priors
	Capturing temporal structure with Temporal SAE
	The Geometry of Stories: A Narrative-Driven Domain
	Garden Path Sentences: Ambiguities Resolved via Temporal Structure

	Discussion
	Experimental details
	Training, Harvesting, and Inference for SAEs
	Experiments with LLM Representations: Autocorrelation and U-Statistic
	Autocorrelation
	U-statistic
	Projection Analysis
	Surrogate

	Analysis of Stories: UMAP Projections, Dendrograms, Similarity Heatmaps, and Event Boundary Detection
	Analyzing Garden Path Sentences: Dendrograms and Phrase Similarity

	Further Evaluation Results
	U-Statistic across domains for Gemma-2-2B
	Autocorrelation across domains for Gemma-2-2B

	Reconstruction performance of SAEs
	Constant sparsity argument: Rank and U-Statistic
	Llama-3.1-8B
	Gemma-2-2b

	Further Investigation of Temporal SAEs
	Geometry of latent codes in an OOD dialogue domain
	Automatic Interpretability of Novel Codes

	Emergent Separation of Predictive and Novel Parts
	The Geometry of Stories: A Narrative-Driven Domain
	Hierarchical clustering of codes from story tokens
	Story 1
	Story 2
	Story 3

	Code: Analyzing Another Domain
	Further Results: Similarity Maps on Stories
	Further Results: Dendrograms and Evaluations on Garden Path Sentences
	Dendrograms


	Further Results: Temporal SAEs on LLama-3.1-8B
	Geometry, Dendrograms, and Spectra
	Story 1
	Story 2
	Story 3
	Comparing Eigenspectrum with Slow vs. Fast Features

	Event Boundaries and Noise Stability
	Event Boundaries


	Further Theory Results
	Priors on the Sparse Code for various SAEs
	Priors over concepts and generative priors over time
	ReLU SAE
	TopK SAE
	BatchTopK SAE
	JumpReLU SAE


	Stationarity measures
	Autocorrelation
	U-statistic
	Surrogate

	Use of Large Language Models

