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ABSTRACT

A central aim of interpretability tools applied to language models is to recover
meaningful concepts from model activations. Existing feature extraction methods
focus on single tokens regardless of the context, implicitly assuming independence
(and therefore stationarity). This leaves open whether they can capture the rich
temporal and context-sensitive structure in the activations of language models
(LMs). Adopting a Bayesian view, we demonstrate that standard Sparse Autoen-
coders (SAEs) impose priors that assume independence of concepts across time.
We then show that LM representations exhibit rich temporal dynamics, including
systematic growth in conceptual dimensionality, context-dependent correlations,
and pronounced non-stationarity, in direct conflict with the priors of SAEs. This
mismatch casts doubt on existing SAEs’ ability to reflect temporal structures of
interest in the data. We introduce a novel SAE architecture—Temporal SAE—with
a temporal inductive bias that decomposes representations at a given time into two
parts: a predictable component, which can be inferred from the context, and a
residual component, which captures novel information unexplained by the context.
Experiments on LLM activations with Temporal SAE demonstrate its ability to
correctly parse garden path sentences, identify event boundaries, and more broadly
delineate abstract, slow-moving information from novel, fast-moving information,
while existing SAEs show significant pitfalls in all the above tasks. Our results
underscore the need for inductive biases that match the data in designing robust
interpretability tools.

1 INTRODUCTION

Given the success of Language Models (LMs) (Bubeck et al., 2023; Deepmind, 2025), there is
growing interest in understanding how such models incrementally update over sequences of tokens to
exhibit complex behaviors (Murthy et al., 2025; Lindsey, 2025; Lindsey et al., 2025; Lepori et al.,
2025; Bigelow et al., 2025; Tuckute et al., 2024; Klindt et al., 2025). Interpretability research aims to
make such analyses tractable, offering tools for hypothesis design, testing, and intervention based on
evaluation of intermediate activations (Geiger et al., 2025; Sharkey et al., 2025; Bereska and Gavves,
2024). Often, such work builds on hypothesized computational models of how concepts are encoded
in a neural network’s representations, e.g., the linear representation hypothesis (LRH) (Elhage et al.,
2022; Arora et al., 2018), correspondingly motivating tools such as sparse autoencoders (SAEs) (Gao
et al., 2024; Cunningham et al., 2023) for unsupervised extraction of a dictionary of vectors that
(ideally) mediate human-interpretable concepts (Mueller et al., 2025).

A central challenge in “bottom-up” approaches to interpretability, like SAEs, is the mismatch between
the assumptions of their underlying implementational account and the precise behavior or computation
they intend to explain (Jonas and Kording, 2017; Geiger et al., 2025; Costa et al., 2025) (see Fig. 1).
For instance, since LRH posits that different concepts correspond to directions in activation space
that can be independently manipulated, it implicitly claims the data distribution can be factorized
into independently varying latent variables (Allen, 2024). This mismatch between the structure
of the data distribution and strong priors codified in LRH can lead to misleading or pathological
explanations when using SAEs to understand neural networks (Chanin et al., 2025; Bricken et al.,
2023; Hindupur et al., 2025). This raises a set of critical questions for using SAEs to interpret models
trained on sequential data like language. Specifically, since language exhibits rich temporal structure
at multiple scales (Marslen-Wilson and Tyler, 1980; Thompson, 1999)—e.g., sentences contain
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There stood a dark-haired boy, his Gryffindor scarf blazing red and gold against the night,

l < round glasses framing the scar that marked him forever, wand in hand - this was Harry Potter.
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Figure 1: The mismatch between SAE assumptions and temporal structure of language. An
illustrative sentence describing attributes of Harry Potter is shown. When passed into a language
model (LM), it leads to activations x; that include concepts within them (possibly entangled): note
the presence of large numbers of shared attributes over time, which manifest as correlations across
time of activations. Sparse Autoencoders (SAEs) implicitly have an independence (i.i.d.) prior across
time t over their latents and thereby over concepts, which clashes with the true structure of language.

dependencies that link words across time (Gibson et al., 2000; McElree et al., 2003), upcoming
words can be anticipated from context (Hale, 2001; Levy, 2008), and discourse imposes structure
over longer timescales through phenomena like event boundaries (Zacks et al., 2007; Baldassano
et al., 2017)—one can ask what assumptions about temporal structures do SAEs make? How do these
assumptions align with the actual temporal structure present in a LM’s activations?

This work. Building on the Bayesian interpretation of sparse coding (Olshausen and Field, 1996;
1997)—the framework that motivates SAEs—we rephrase the optimization objective of SAEs as a
MAP (maximum a posteriori) estimation problem. This allows us to make explicit prior assumptions
about temporal structure embedded in SAEs, showing they implicitly assume concepts are uncorre-
lated across time and the number of concepts necessary to explain an activation is time-invariant—that
is, the information present at each token position is independent of information at other positions
and uniformly distributed. As we empirically show, these assumptions stand in stark contrast to the
actual temporal structure present in language and language model representations, and can result in
empirically observed pathologies in SAEs, such as feature splitting (Bricken et al., 2023; Chanin
et al., 2025; Bussmann et al., 2025).

These results then motivate us to draw a broader parallel between SAEs and computational neuro-
science approaches for understanding neural data. Specifically, population-level analyses of neural
recordings have revealed that representations often lie on structured manifolds (Khona and Fiete,
2022; Nogueira et al., 2023; Sohn et al., 2019), challenging the reductionist assumption in sparse
coding that computations occur via independently firing, monosemantic features (Eichenbaum, 2018;
Saxena and Cunningham, 2019; Barack and Krakauer, 2021). This motivated a paradigm shift towards
more structured analysis protocols—methods designed around the generative process of the behavior
one aims to explain (Schneider et al., 2023; Chen et al., 2018). Motivated by this and similar findings
of intricate geometrical structure in neural network representations (Fel et al., 2025; Gurnee et al.,
2025; Modell et al., 2025), we propose Temporal SAEs, a new protocol for interpreting language
model activations that incorporates explicit inductive biases about temporal structure. Our approach
decomposes activations at each timestep into two orthogonal components: a predictable component,
obtained by projecting current representations onto past context using a learned attention mechanism,
and a novel component, representing residual information orthogonal to the predictable component.
That is, we assume the novel component—not the total representation—is uncorrelated over time.
This allows correlations between total codes and hence enables our method to capture the temporal
structure of LM activations. Overall, we argue interpretability methods should be driven by the
behavior one is trying to explain.

2 PRELIMINARIES

Notations. Let bold, lowercase letters represent vectors (e.g., z). Subscripts on vectors denote
different samples (e.g., z;), while superscripts denote the index within the vector, leading to a scalar
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Figure 2: Temporal structure of LLM activations reveals nonstationarity. We use Pile sam-
ples (Monology, 2021) to analyze temporal structure from activations of two pretrained LMs, com-
paring it to a surrogate signal that is stationary in nature (see App. J.3). (a, e) Intrinsic dimension
of model activations and stationary surrogate. (b, f) Autocorrelations A(x¢, x;—.) as a function of
sequence position (t) and lag (7). (¢, g) Autocorrelation of the stationary surrogate. (d, h) Variance
explained by projecting current representation x; onto past context window {xs_1, ..., @, } with
different sizes w, along with a baseline. Results consistently show representations getting ‘denser’
over time and being significantly more structured than a stationary surrogate.

(e.g., zF). We denote model activations by & € R", SAE latents (sparse code) by z € R, and the
dictionary by D € R™*M ()M is the dictionary size).

Sparse Coding. Sparse dictionary learning (Olshausen and Field, 1996; 1997) expresses data as a
sparse linear combination of dictionary elements, where both the weights and dictionary are learned
from data. Intuitively, the dictionary behaves as a data-adaptive overcomplete basis; i.e., it typically
has more elements that the dimension of ambient space. The optimization problem involved in
this framework is arg minp, , SN & — Dz + AR(2:), where R(-), typically chosen to be
the /1-norm, is a sparsity-inducing regularizer. Sparsity assists in picking the fewest most relevant
dictionary atoms to explain a given data point.

Sparse Autoencoders (SAEs). SAEs (Shu et al., 2025) aim to disentangle (Bengio et al., 2013;
Higgins et al., 2018; Olah, 2023) neural network activations into human-interpretable concepts (Cun-
ningham et al., 2023; Bricken et al., 2023). Specifically, SAEs transform their inputs (i.e., neural
network activations) into a latent representation which is encouraged to be sparse. As shown by
Hindupur et al. (2025), this is achieved by solving the sparse coding problem using a specific
parametric form for the sparse codes:

T
.1 -
ar%mln T E l|le; — Dzi||% + AMR(2z;), stz = fae(xr) VK, §(z1,...,27) =0, (1)
i=1

-

where R () is the regularizer (typically the Ly norm), fsse is the SAE encoder architecture, and
g(+) captures SAE-specific sparsity constraints on z. fg,g is typically a single hidden layer as in the
ReLU SAE (Bricken et al., 2023; Cunningham et al., 2023), TopK SAE (Gao et al., 2024; Makhzani
and Frey, 2013), JumpReL U SAE (Rajamanoharan et al., 2024) and BatchTopK SAE (Bussmann
et al., 2024), though recent work has also explored alternative architectures inspired by sparse coding
algorithms to capture specific structures, e.g., hierarchies (Muchane et al., 2025; Costa et al., 2025).

3 TEMPORAL STRUCTURE IN LANGUAGE MODEL ACTIVATIONS

To contextualize the prior assumptions made by SAEs about temporal structure in LMs’ activa-
tions, we first perform an empirical characterization of such temporal structure in pretrained LMs.
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Specifically, since LMs are trained to generate coherent text by learning the distribution of natural
language, one can expect their representations capture the rich phenomenology of its sequential
structure (Elman, 1990); indeed, recent work has in fact found LM representations to be predictive
of human neural recordings during language comprehension (Hosseini et al., 2024; Schrimpf et al.,
2021; Tuckute et al., 2024; Hong et al., 2024; Georgiou et al., 2023). Motivated by this, we perform
two experiments relevant to our discussion (see Fig. 2): (i) measuring intrinsic dimensionality—an
approximation of the number of concepts necessary to explain the data, which can be expected to
increase in a monotonic manner with time (Zhong et al., 2024; Can, 2025; Barak and Tsodyks, 2014;
Meister et al., 2021)—and (ii) signal nonstationarity—which assesses whether model activations
reflect the contextual relations between phrases of a passage (Zacks et al., 2007).

Increasing intrinsic dimensionality. Fig. 2 (a,e) show the dimensionality of the underlying mani-
fold structure (intrinsic dimension) in model activations. We estimate the intrinsic dimensionality at a
fixed position across a set of sequences with the U-statistic (App. Sec. J.2). For language model activa-
tions, this metric increases steadily with sequence position. On the other hand, a stationary surrogate
of the data (see App. Sec. J.3) shows nearly constant intrinsic dimension over time. This indicates
that model activations get ‘denser’, i.e., they possess more information over time. Correspondingly,
the number of concepts needed to explain them varies with context.

Non-stationarity: Context explains bulk of signal variance. Subplots (b), (f) show the auto-
correlation of model activations (App. Sec. J.1), which is noticeably different at different sequence
positions (x-axis), while the stationary surrogate, as expected, shows nearly position-invariant auto-
correlation values (subplots (c), (g)). This finding is a clear signature of time-dependent correlation
structure, and therefore of non-stationarity. We quantify the similarity of a representation with its
context in subplots (d), (h). Specifically, we project representations of token x; at a given time ¢
onto the subspace spanned by preceeding representations in the context {& <+ }. These subplots show
that up to 80% variance of x; is explained by a context of 500 tokens, further highlighting strong
cross-temporal correlations. Significant variance in the representation at time ¢, x, can be predicted
(expressed) using representations from the past context.

4 TEMPORAL PRIORS OF SPARSE AUTOENCODERS

We now state the prior assumptions made by existing SAEs regards sequential structure in an input,
contrasting these assumptions with the empirical results shown in Sec. 3. Specifically, building on
the arguments used by Olshausen and Field (1997) to formalize the problem of sparse coding, we
note that the SAE training objective (Eq. 1) can be interpreted from a Bayesian lens: minimize the
negative log posterior argming, , — log P(z1,...,zr | ®1,...,27) of the data, which, by Bayes’
rule, can be written as the sum of log likelihood (MSE) and log prior (the regularizer R). From this
lens, SAEs’ prior assumptions on sequential structure in LM activations can be described as follows.

Proposition 4.1 (Independence prior over time). Consider the SAE maximum aposteriori (MAP)
objective from Eq. 1. Since the sparsity constraints are additive over time, this objective has an
independent and identically distributed (i.i.d.) prior over time:

T
P(z1,...,27) X Hexp (—)\R(zi) - S\Q(zz)) = HP(zl) )

A more precise version of the claim for specific SAE architectures is provided in Appendix I.1.
Intuitively, the claim above says that SAEs assume an independence of latents, and hence the
concepts underlying the generative process of language, over time. This directly conflicts with the
rich contextual structure of LM activations we empirically observed in Fig. 2b—d, f-h. Crucially, this
also implies that SAEs assume the sparsity of latent codes necessary to explain model activations to
be time-invariant, as stated formally in the corollary below.

Corollary 4.1.1 (Assumptions of time-invariant sparsity). As a consequence of the i.i.d. priors over
time from Prop. 4.1, standard SAEs assume that sparsity of representations emerges from a fixed
distribution independently over time (i.i.d.), i.e., P(||z1]|o,- .., ||zr|lo) = [I; P(||zt]o)-
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Figure 3: Schematic of Temporal SAEs. Temporal SAEs decompose activations x; into two
components: a predictable component, obtained by projecting x; onto a context direction (derived
from the past . using attention), and a sparse, novel component orthogonal to the predictable
component that captures new information seen at time ¢.

SAEs thus assume that sparsity—which, in their underlying generative model of activations corre-
sponds to the number of concepts necessary for explaining the data (Bricken et al., 2023; Elhage et al.,
2022)—remains approximately constant over time. This again does not align with the increasing
dimensionality of representations observed in LM activations (see Fig. 2a,e). Correspondingly, if
enough concepts aggregate over context such that a model’s activations become ‘denser’ than the
assumed sparsity budget, the assumption of time-invariant sparsity implies SAEs can fail to capture
the temporal structure inherent in language—as is arguably already observed empirically with phe-
nomena like feature splitting (Chanin et al., 2025; Bussmann et al., 2025; Bricken et al., 2023; Shu
et al., 2025). We empirically validate this claim in Sec. 6.

5 TEMPORAL SAES: EXPLICITLY MODELING TEMPORAL PRIORS

As stated in Sec. 2, sparse coding, a framework designed in computational neuroscience to understand
neural representations in biological brains (Olshausen and Field, 1996; 1997), inspired SAEs as a
framework for interpreting artificial neural networks (Bricken et al., 2023; Cunningham et al., 2023).
In fact, the parallels between these communities can be made deeper: motivated by observations
of intricate geometry of neural representations derived out of multi-dimensional population analy-
ses (Khona and Fiete, 2022; Nogueira et al., 2023; Sohn et al., 2019), there were calls in computational
neuroscience to discard the limiting reduction assumed in sparse coding that computations occur via
a set of independently firing, monosemantic features (Eichenbaum, 2018; Saxena and Cunningham,
2019; Barack and Krakauer, 2021; Seung, 1996; Chung and Abbott, 2021)—similar to our arguments
in Sec. 3, 4 (and results that follow in Sec. 6). Correspondingly, a need for more structured protocols
was suggested (Eichenbaum, 2018; Barack and Krakauer, 2021), leading to methods that were moti-
vated by the generative process of the behavior one is trying to explain (Schneider et al., 2023; Chen
et al., 2018; Chen, 2019; Wiskott and Sejnowski, 2002; Linderman et al., 2017). We argue a similar
paradigm shift is needed in language model interpretability: given that we train models to learn the
distribution of highly structured data, we ought to embrace the fact that neural network activations can
exhibit intricate geometrical organization. In what follows, as an attempt to qualify our arguments,
we propose one such approach that focuses on the temporal structure of LM activations.

Temporal SAEs. In computational neuroscience, when analyzing data from dynamical domains
(e.g., audio, language, or video), a commonly made assumption is that there is contextual infor-
mation present in the recent history that informs the next state—this part of the signal is deemed
predictable (Chen et al., 2025; Millidge et al., 2024), slow-changing (Berkes and Wiskott, 2005),
invariant (Olshausen and Cadieu, 2007), or dense (Tasissa et al., 2022). Meanwhile, the remaining
signal corresponds to new bits of information added by the observed state at the next timestep—this
part can be deemed novel / surprising, fast-changing, variant, or sparse with respect to the context.
We argue LM activations are amenable to a similar generative model. Specifically, our observations
in Sec. 3 show that activations x; at time ¢ are strongly correlated with the context and can be
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decomposed into two such parts. We thus propose the following generative model of LM activations:
3
In the above, x,, ; denotes a predictable component of the signal that captures the correlations of x;
with past data {« <, }, while x,, ; denotes a novel component that represents new information added
by the current token ;. To obtain z,, ;, we project &, onto {x;} to explain the predictable variance
in x; as a convex combination of past data. Specifically, we use a self-attention layer f on top of
a single ReLU layer, yielding z,; = f( {®1,...,2i—1},x;). Meanwhile, z,,; = f(mt, Zpt) =
o(DT(x; — Dz, )) captures the residual component of the code, which is not correlated with the
past (note that o is the nonlinearity). We use a standard SAE encoder (either TopK or BatchTopK)

to instantiate o, applying it to ; — Dz, ¢ to derive z,, ;. See Fig. 3 for an overall schematic of the
encoding process. The learning objective in Temporal SAEs follows.

Ty = Tps+ Tnyt, Where x,; =Dz, and &y, = Dzy .

T
1
arg I;un T ; i — D(2pi + 2ni)l|3 + AR(2n.4), @

st. zpn = fae({Z<k ) k), Znk = foar(®hy Zpk), 2k = Zpk + Znk VE.

Relating to Sec. 4, we note the prior assumption in Temporal SAEs is that the residual z,, ; = z; — 2 ¢,
which captures the novel information in x,; remaining after removing the projections onto the past
context, is i.i.d. over time. This prior allows temporal correlations between codes z, and thereby allows
correlations between concepts across time, instead of assuming them to be temporally independent.

Sanity Checking Temporal SAEs. Before
analyzing how different approaches represent
the temporal structure of language, we demon-
strate that Temporal SAEs performs on par with
SAEs on standard metrics such as reconstruc-

Table 1: Temporal SAEs achieves NMSE similar
to standard SAEs across domains (Simple Stories,
Webtext, Code).

|ReLU TopK BTopK | Pred. Only | Temporal

tion error. Specifically, we train a Temporal

K Story | 0.20 0.155 0.152 0.34 0.139
SAE and standard SAE's (ReLU, TopK, Batch- Web | 0.19 0144 0139 0.36 0.139
TopK) on 1B token activations extracted from  code | 020 0.154 0.149 0.38 0.152

Gemma-2-2B (Team et al., 2024) from the Pile-

Uncopyrighted dataset (Monology, 2021). We
also analyze a baseline of the prediction only
module from Temporal SAEs, reported as ‘Pred.
only’, which can be expected to underperform

Table 2: Temporal SAEs explains similar amount
of signal variance as standard SAEs.

‘ ReLU TopK BTopK ‘ Pred. Only ‘ Temporal

since predicting the next-token representationis  Siory | 0.60 0.71  0.72 0.29 0.73
likely to be more difficult than reconstructing  web | 0.69 0.78 0.79 0.40 0.79
it. Results are provided in Tab. 1, 2 and show Code | 0.65 0.75 0.75 0.33 0.75

competitive performance between all protocols,
except Pred. only. One can also assess which
part of a fully trained Temporal SAE is more
salient in defining its performance, i.e., does the
estimated predictive part &, ; contribute more to
the reconstruction & or does the estimated novel \
part &,, ;. Results are reported in Tab. 3. We see

Table 3: predictive and novel codes explain differ-
ent parts of the input signal across domains.

|Sim.| % Norm | NMSE | Var. Expl.
|Pred. Novel | Pred. Novel|Pred. Novel

i . A Story|-0.02| 762 23.5 [0.53 4.03 [0.11 0.64
that the error vectors, 1.e., &=, and &=, A \ei' | 0,021 805 19.5 | 049 4.28 |0.17 0.66
approximately orthogonal, suggesting the mod- o40 | 0,02 742 26.0 | 057 3.84 [0.14 0.65

ules capture separate bits of information from
the input—this is inline with results by Costa et al. (2025), who show optimizing to reconstruct
residuals (as we do with the novel code) can lead to orthogonal codes at different stages of an SAE.
Furthermore, we find that a bulk of the reconstructed signal &; (in the sense of norm) is captured
by the predictive code—in fact, the percentage contribution of the predictive code is ~80%, in line
with numbers observed in Fig. 2d. However, analyzing the reconstruction performance, we see the
predictive component primarily contributes to achieving a good NMSE, while the novel component
is more responsible for explaining the input signal variance. These results align with the generative
model assumed in Temporal SAEs (Eq. 3). Specifically, NMSE captures the average reconstruction,
and hence a slower moving, contextual signal can expect to dominate its calculation. Meanwhile,
variance assesses changes per dimension and timestamp in the signal, which better matches the
inductive bias imposed on the novel part.
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inside. It was full of unbelievably shiny gems| jewels. He couldn't believe his eyes. He was so excited| he knew this case was
perfect. He quickly picked it uplandjwrapped it up with a big red bow. He smiled ouldn’t wait to show his mumad.

(b) Temporal (Pred)

There was a baby who wanted to pick something special. He went to a shopsaw an ancient case. He picked it up\ooked

Figure 4: Temporal SAEs unroll stories, decomposing into events. We consider model activations
from a story and compute pairwise similarity of codes extracted from different interpretability
protocols. (a) We see predictive codes from Temporal SAE organizes in hierarchical block structures
that seem to align with (sub)event boundaries in the analyzed story, while the novel code primarily
emphasizes sudden changes in the narrative; meanwhile, standard SAEs show a mixture of the two
structures, with a stronger similarity to the structure exhibited by the novel codes. (b) We confirm
the alignment of predictive codes with event boundaries by running an off-the-shelf hierarchical
clustering algorithm, finding the token clusters indeed correspond to (sub)events occurring in the
story as the narrative proceeds. Running this process on SAEs, we find this process yields temporally
incoherent clusters that are primarily defined by lexical information.

6 CAPTURING TEMPORAL STRUCTURE WITH TEMPORAL SAE

We now evaluate the ability of different SAEs to capture temporal dynamics in language model
representations. We first analyze a narrative setting where, locally in time, one can expect a lot of
correlated structure as an event transpires, with strict event boundaries delineating events from each
other. As we show, TemporalSAEs yield a clear delineation of the slow-moving local information from
the fast-changing boundaries, while standard SAEs generally ignore the slow-moving information
to optimize for the faster changes. The narrative evaluation assesses how different SAE codes
represent local/global semantic information. We now investigate local/global syntactic information
by analyzing SAE codes extracted from garden path sentences. Here, we find that unlike other
SAEs, the use of a predictive module in TemporalSAESs yields codes that relate tokens from garden
path sentences in a manner that would align with the ultimately correct (rather than garden-path)
parses—an ability that language models are in fact known to possess, but that standard SAEs seem to
not explain (Li et al., 2024; Hanna and Mueller, 2024).

6.1 THE GEOMETRY OF STORIES: A NARRATIVE-DRIVEN DOMAIN

UMAP of Latent Codes Suggests Models Temporally Straighten Activations. We consider
the TinyStories datasets (Eldan and Li, 2023) for its relatively straightforward narrative structures,
and qualitatively analyze the geometry of latent codes extracted from model activations when
processing these stories. Visualizing the latent codes in a low-dimensional basis via a 3D UMAP
projection (Mclnnes et al., 2018), we see SAEs yield a highly irregular and unstructured geometry
(see Fig. 4a). Calculating Tortuosity (Bullitt et al., 2003), a measure of how aligned local arcs are
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(@) onee upon a time, a little girl named Alice loved (b) Temporal (Pred) Novel RelU
looking at the night sky.'l wish | could count all
the stars!' Alice said to her best friend Maya. The
two girls stood on a big grass field as the moon
rose from the trees. Suddenly, Maya had a
striking idea. She opened her laptop and started
typing:\n""python\n array = [\n for i in range(1,
6):\n\t s = int(input(f'num_stars:"))\n\t
array.append(s)\n\t tot = sum(array)\n avg = tot /

len(array)\n print(f'Avg / night: {avg:.1f}')

TopK BatchTopK
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Figure 6: Predictive codes decompose stories into events. (a) We consider model representations
from a synthetic story with well-defined event boundaries. (b) Computing pairwise cosine similarity
of latent codes extracted using different protocols, we see the predictive code of Temporal SAE
organizes in hierarchical block structures that seem to align with (sub)event boundaries in the analyzed
story. (c) We confirm the alignment of predictive codes with event boundaries by computing average
pairwise similarity of token latent codes for tokens that span the same event (‘within’) versus not
(‘across’). Results clearly show high within-event similarity scores for the predictive code. (d) The
results above are further corroborated by running a noising process on the latent codes: we add
Gaussian noise of scale o to the input before computing latent codes, defining the similarity maps
and computing explained variance of un-noised data. This process elicits coarser grained clusters
from the similarity maps for the predictive code, suggesting the multi-scale temporal structure of
stories is reflected in predictive codes.

with respect to the global structure of a curve, we see very high values emerge for SAEs’ latent codes
geometry, suggesting sudden changes in the local similarity as a story unravels. To further understand
the results above, we highlight a specific token (‘and’) from the story, the UMAP analysis shows
that standard SAEs generally just cluster tokens by lexical identity. This is further corroborated by
running a hierarchical clustering algorithm on the latent codes (SciPy, 2025), finding temporally
incoherent, but lexically related clusters (see Fig. 4b).

Table 4: Similarity between latent codes and
model activations. Predictive codes from Tem-
poral SAE:s align better with slow-changing part
of activations; novel codes and standard SAEs’
codes align with fast-changing part.

Quantifying Similarity to Slow vs. Fast Moving
Signals. To further quantify the straightening claim,
we compute the Fourier transform of the model ac-
tivations and divide the frequency spectrum into
two halves at a critical frequency f. such that the

energy (i.e., sum of squared value of phase informa- SAEs Temporal

tion) 1n the frequencies below f,. equa.lls that of the ReLU TopK BatchTopK Novel Pred

remaining ones. We call the first split “slow part”

of a sequence, and latter the “fast part”. We then Slow 037 0.35 0.35 0.19 075
Fast 054 0.54 0.54 0.75 0.18

compute the correlation matrix defined by the slow
and fast parts, compute their spectrum, and analyze
how similar these spectrums are to the ones defined
using different SAEs’ codes. Results are shown in
Fig. 5. We clearly see the spectrum extracted from
the predictive component of Temporal SAE approx-
imates that of the slow part of the representation,

Magnitude

o2 100 10! 107

while the novel component’s spectrum is similar to
that of the fast moving part. Meanwhile, spectra
of SAEs only exhibits similarity to the fast part,
suggesting they do not capture longer range depen-
dencies necessary for interpreting narrative-driven
texts like most language domains. To quantify this
further, we also measure kernel similarities (CKA)
between the kernels respectively defined by the

Rank of Singular Value
Figure 5: Kernel spectrum for latent codes

and model representations. Kernels defined
using novel code from Temporal SAE and
standard SAEs both align well with the fast-
changing part of model representations; mean-
while, only the predictive code shows strong
similarity to the slow changing part.
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Figure 7: Hierarchically clustering SAE codes for garden path sentences. (a) Pairwise similarity
maps of the predictive code from Temporal SAE link long-distance heads and dependents that
define the ultimately correct parse in garden path sentences, while standard SAEs (e.g., BatchTopK)
emphasize only local, transient relations, falling for the misleading cues. (b, ¢) Comparing the cosine
similarity of average latent code extracted from the subject phrase (SP), verb phrase (V), and object
phrase (OP), we see across ambiguous garden path sentences and unambiguous control variants
thereof, only the predictive component of Temporal Features Analyzers shows consistent similarity
scores (as expected if the SP and V ambiguity is reflect in the latent codes).

slow moving and fast moving signal to the different SAE codes. Results clearly show Standard SAEs
are primarily similar to the fast moving signal.

Predictive Component Captures Local Event Boundaries. The results above demonstrate Tempo-
ral SAEs’ predictive component qualitatively align with event boundaries in a story. To investigate this
result more quantitatively, we use GPT-5 to create a synthetic dataset of 50 stories with well-defined
event boundaries (see Fig. 6a for an example). We extract latent codes for these stories’ tokens, center
them by subtracting the mean to remove any globally shared information, and compute the cosine
similarity of token to token latent codes. If the latent codes reflect local event structure of a story,
the cosine similarity (on average) will be high between token pairs that come from the same event
and low (if not zero) between pairs sampled across events; see Fig. 6b for an example similarity map
corresponding to the story shown in Fig. 6a. Results are shown in Fig. 6 (¢) and corroborate our
qualitative findings: we see predictive components from Temporal SAE show substantially higher
similarity of codes if tokens are sampled from within an event, while the novel component and
SAEs generally show low similarity between two tokens. These results are further supported by the
robustness of Temporal SAEs to noise. Specifically, we see that when we add noise to the input data,
which, on average, will lead to turning off of latents with small magnitudes (due to the encoding
nonlinearity), the temporal structure of the data, if it is present, will be amplified. We see precisely
this effect in Fig. 6d: the predictive components’ cosine similarity map under Gaussian noised input
maps elicits coarser block structures with increasing noise scale; this is reminiscent of percolation
or heat diffusion perspectives on graph clustering, wherein noise diffuses only within a connected
component and hence community structure is elicited (Von Luxburg, 2007). Correspondingly, we see
Temporal SAEs respond most gracefully to noise: variance explained reduces slower than SAEs’,
which in fact drops to ~0 at some scale.

6.2 GARDEN PATH SENTENCES: AMBIGUITIES RESOLVED VIA TEMPORAL STRUCTURE

Garden-path sentences—e.g., The old man the boat—initially cue an incorrect local parse
before a later token forces reanalysis. Language models have been shown to be able to correctly parse
such ambiguous sentences, offering in fact a predictive account of human per-token surprisals (Li
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et al., 2024; Hanna and Mueller, 2024; Oh and Schuler, 2023). Interestingly, when using SAE codes to
assess whether LLM representations offer a valid parse of the sentence, we find hierarchical clustering
of SAE codes yields a parse that is suggestive of the misleading cue; meanwhile, Temporal SAE
recovers the correct parse by separating the predictable, slow-moving component of the representation
from the novel, fast-changing residual. Specifically, in Fig. 7, we see the predictive codes link long-
distance heads and dependents that reflect the correct parse (e.g., man as verb), producing coherent
similarity structure over the full span, whereas standard SAEs emphasize only transient, local changes
and miss these cross-temporal constraints. These results suggest Temporal SAEs encode syntactic
structure that unfolds over time when evidence to collapse the correct constituent parse emerges.
To make these results more quantitative in nature, we use GPT-5 to synthetically generate a set
of 50 garden path sentences where the subject is ambiguous. We create 50 control variants of
these sentences such that the controls do not possess ambiguity with respect to typical parse of the
sentence constituents: e.g., changing the subject in the sentence The old man the boat from
oldto sailors,yielding The sailors man the boat. We then divide all sentences into
their respective subject phrase (SP), verb phrase (V), and object phrase (OP): e.g., The o01d (SP),
man (V), and the road (OP). We compute the average latent code for tokens from these three
constituent phrases, under the hypothesis that if the sentence ambiguity is reflected in the latent code,
then until the OP shows up, the correct parse of prior words cannot be identified. Correspondingly, all
valid parses must be stored in the same representation. This suggests the cosine similarity of latent
codes of V and SP tokens should be of a similar order in both the garden path and control sentences;
meanwhile, the similarity between V and OP should be much higher than V and SP. Results are
reported in Fig. 7 (b,c). We clearly see extreme sensitivity in similarity values of SAE latent codes
and the novel component of Temporal SAE, but the predictive component is essentially invariant
across sentence type, suggesting it captures the temporal dynamics likely relevant for a LM to parse
garden path sentences.

7 DISCUSSION

Our findings reinforce the broader lesson that interpretability tools must align their inductive biases
with the statistical structure of the data they are applied to. We showed that standard SAEs impose
independence priors across time, which are fundamentally misaligned with the nonstationary and
context-dependent structure of language model activations. This mismatch explains why existing
SAEs tend to underrepresent temporal dependencies, despite capturing other kinds of structure. By
contrast, Temporal SAE incorporates empirically observed correlations across time as an inductive
bias. Its decomposition of activations into predictable (slow-moving) and novel (fast-changing)
components enables the recovery of temporal structure that standard SAEs fail to expose. In particular,
we demonstrated that predictable codes align with stable, high-level information, while novel codes
isolate transient or surprising information, allowing Temporal SAE to highlight event boundaries
and syntactic reanalyses in garden-path sentences. Taken together, these results emphasize a general
principle: interpretability methods should not be viewed as neutral feature extractors but as models
with their own structural assumptions. When these assumptions mismatch the true data distribution,
important aspects of representation may be obscured. Incorporating empirically motivated temporal
priors offers one way to close this gap, suggesting that future progress in interpretability will require
tailoring methods to the dynamics of the representations under study.
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A EXPERIMENTAL DETAILS

Below, we discuss broad details of the experimental setup, training protocol, and measures used for
evaluations.

A.1 TRAINING, HARVESTING, AND INFERENCE FOR SAES

Compute. All experiments were performed using 1 H100, both for extracting representations,
analyzing them, and training Temporal and standard SAEs. To save training costs, we precache
activations on a local server and train in an “online manner”, i.e., sampling a new batch of activations
every training iteration.

SAEs’ training. All analyzed SAEs were trained from scratch on 1B precached activations from
the Pile-Uncopyrighted dataset (Monology, 2021). While we did try to use existing, off-the-shelf
SAEs, we found the results to be wildly inconsistent depending on where we borrowed the SAE
from. To enable a consistent and fair evaluation, we thus preferred to train all SAEs from scratch.
For Gemma models, activations were extracted from Layer 12; for Llama models, from layer 15 (all
0-indexed).

Training procedure. We use Adam optimizer with standard hyperparameters. We initialize training
with a warmup of 200 steps to a learning rate of 103, following from thereon to a minimum of
9 x 1074, i.e., the learning rate remains essentially constant throughout training.

Activations normalization. Following best practices, we normalize activations to unit expected
norm (Bricken et al., 2023; Costa et al., 2025). This helps put different SAEs on the same training
scale, and especially for ReLU SAEs, makes training substantially easier by reducing the need for
tuning regularization strength. On a related note, we emphasize our ReLU SAEs have a slightly
higher Ly, i.e., are less sparse, than almost all other SAEs analyzed in this work.

A.2 EXPERIMENTS WITH LLM REPRESENTATIONS: AUTOCORRELATION AND U-STATISTIC

We primarily analyze Gemma-2-2B and Llama-3.1-8B models in this paper. Specifically, we precache
10K activations for the analyzed datasets for our experiments on dynamics on language model
representations.

A.2.1 AUTOCORRELATION

We compute autocorrelation by selecting evenly spaced tokens across the sequence and measuring the
cosine similarity between each token and tokens at various lags in the past. Specifically, for tokens at
position ¢, we compute similarities to tokens at £ — w where lag w ranges from 5 to 20. This creates a
heatmap where rows represent lag offsets and columns represent token positions.

For a stationary process, we expect the autocorrelation pattern to remain consistent across time—that
is, the relationship between a token and its historical context should be similar regardless of position
in the sequence. This would manifest as similar autocorrelation patterns repeating horizontally across
token positions. In contrast, for a non-stationary process where representations evolve over time, we
expect the autocorrelation patterns to vary systematically across positions, with columns showing
different temporal dependency structures as the sequence progresses.

A.2.2 U-STATISTIC

We measure the effective dimensionality of LLM representations using a U-statistic (an unbiased
estimator) based on pairwise cosine similarities. Let X; = [ZL’EI), cey :cEM)] be M samples of
normalized activations at time ¢ (from different timeseries). G; = XtTXt is the Gram matrix. Using

the above, a U-statistic of intrinsic dimension which we employ is defined below:

M? - M

U-stat(t) = ————
O TN P

&)
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where ||G¢||% is the squared Frobenius norm of the Gram matrix. This quantity estimates the effective
rank 1/u(c?), where C; = E[x;x]] is the second moment matrix and x; is the activation vector at
time ¢. Under stationarity, U-stat remains constant. When representations evolve over time, U-stat
increases systematically as more orthogonal directions become active.

A.2.3 PROJECTION ANALYSIS

This analysis quantifies how much of the representation x; € R at token position ¢ can be
reconstructed from its preceding context {x; };cw, where the context window W = [t — w, ¢ — 1]
contains the previous w tokens.

For a population of B sentence samples, we compute the projection of each target representation onto

the subspace spanned by its context. Let Xg;,) = [mgb,)w, ce :ngb_)l]T € R¥XP denote the matrix of
context representations for sample b, where each row is a context vector. Prior to projection, we
center all representations by subtracting the mean computed over the target positions across samples.

The projection of wgb) onto the span of the context is:

ci = span(Xyy)) - ;" (©)

where span(XE,f,) ) is the row space of Xg[’,) , that can be computed via SVD. The variance explained
by the context is:

D
expvar(t,w) = =1 Var(Cr,w,d) o

D
D ey var(xy q)

where var(c; 4, ¢) and var(x; 4) denote the variance of the d-th dimension across the B samples. This
ratio measures the fraction of total representational variance that can be linearly reconstructed from
the preceding context. Values approaching 1 indicate high predictability from context; values near 0
indicate representations largely orthogonal to their context subspace.

A.2.4 SURROGATE

For the U-statistic and Autocorrelation metrics, we compare LLM activations to surrogate distribu-
tions that preserve certain statistical properties while removing temporal structure. We operate on
representation vectors X € REXTxd where B denotes batch size, T denotes sequence length, and d
denotes the model dimension.

U-statistic surrogate (Fig. 2 a, e): For each sequence i € {1, ..., B}, we construct the surrogate
X; by applying a random permutation 7; : {1,...,T} — {1,...,T} to the temporal positions:
Xip: =Xim, Vte{l,....,T}

This preserves the marginal distribution of activations within each sequence while destroying temporal
dependencies.

Autocorrelation surrogate (Fig. 2 ¢, g): Given the similarity matrix S € R7*7" where S,; =

sim(X. ; ., X. ;.), we construct the surrogate similarity matrix S by replacing each diagonal with its
mean:

T—-k
. o 1
Sij = Sk where k = |Z 7]|, Sk = m t_zl St,t—l—k'

This preserves the average correlation structure at each lag while removing position-specific temporal
patterns.

A.3 ANALYSIS OF STORIES: UMAP PROJECTIONS, DENDROGRAMS, SIMILARITY HEATMAPS,
AND EVENT BOUNDARY DETECTION

Data. For experiments in Sec. 6.1, we used either stories sampled from the TinyStories dataset (El-

dan and Li, 2023) (for Fig. 4, 5) or synthetically sampled stories using GPT-5 (for Fig. 6). For the
former, we sampled stories that were up to a 100 tokens long, allowing us to characterize compute
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UMAP for both Gemma and Llama models without hitting memory bottlenecks. For consistency, we
then used these stories for all experiments. For synthetically defined stories, we defined 3 in-context
examples (one of which is shown in Fig. 6a) and prompted GPT-5 to produce 50 stories with similar
such suddenly changing events. Stories varied in size, but were generally less than 150 tokens long.
Following Georgiou et al. (2023), the generated stories’ events were labeled using GPT-5. These
labels served as the ‘ground truth’ event boundaries. We qualitatively analyzed and confirmed the
event boundaries overlap with our intuitively expected event structure in the stories.

Analysis Details. To isolate the low-dimensional geometry of latent codes, we perform a 3D UMAP
analysis using the open-source package (Mclnnes and Healy, 2025). Similarly, Dendrograms in
Fig. 4 are computed using the hierarchical clustering package in SciPy SciPy (2025). Branches are
colored based on proximity, which in our case was between 0—1 (since we use cosine similarity as
the clustering measure). We put a proximity bound of 0.2 as the distance under which branches are
colored within a cluster. For Fourier Analysis, as mentioned in Sec. 6.1, we performed a Fourier
transform of the model activations for a given story, isolated its lower frequency components—defined
as 0.1x the Nyquist rate, which turns out to possess ~50% of the signal norm—and compute the
cosine similarity kernel of the low / high frequency spectra. These kernels are then compared to
kernels of latent codes derived using Temporal or standard SAE:s.

A.4 ANALYZING GARDEN PATH SENTENCES: DENDROGRAMS AND PHRASE SIMILARITY

Data. We used GPT-5 to sample 50 garden path sentences and control variants thereof (1 corre-
sponding to each sentence). Sentences were 20—40 tokens long and had a structure such that the
observation of the object phrase resolved ambiguity. The precise ambiguity structure was were varied
in type, i.e., the ambiguity could be resolved by altering the subject (e.g., 01d — sailors in The
old man the road) or by other mechanisms such as adding punctuations to elicit a pause (e.g.,
adding a comma, such as The old train the young fight — The old train, the
young fight). Control variants had a mixture of such resolutions applied.

Analysis. For assessing whether tokens in verb phrase relate more with the subject phrase, as
would be expect by the typical parse in our used garden path sentences, or with the object phrase, as
would be necessary for the correct parse, we computed Dendrograms using the hierarchical clustering
package in SciPy (SciPy, 2025). The similarity between subject phrase (SP), verb phrase (V), and
object phrase (OP) was computed by taking the set of tokens T'» that belong to a phrase P € {SP, V,
OP}, and computing the average latent code: ¢(P) = ﬁ > e, Ct» Where ¢, denotes the latent code
extracted for token ¢ using either SAEs or the predictive or novel component of Temporal SAEs. This
protocol is similar to popularly used strategies for computing sentence embeddings (see, e.g., work
using BERT embeddings (Koroteev, 2021)). Cosine similarity between these phrase-averaged garden
path / control sentences yields the tables shown in Fig. 7.
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B FURTHER EVALUATION RESULTS

B.1 U-STATISTIC ACROSS DOMAINS FOR GEMMA-2-2B
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Figure 10: U-Statistic across domains for SAE codes

B.2 AUTOCORRELATION ACROSS DOMAINS FOR GEMMA-2-2B
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C RECONSTRUCTION PERFORMANCE OF SAES
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D CONSTANT SPARSITY ARGUMENT: RANK AND U-STATISTIC
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E FURTHER INVESTIGATION OF TEMPORAL SAES

In the results above, we showed across three domains that Temporal SAEs elicits intricate in-context
geometry inline with our expectations based on experiments with LM activations in Sec. 3. Next, to
make a case for following such more structured approaches for interpretability, we add to the results
above to show that Temporal SAEs (i) offers a new way of interpreting temporally structured domains
(e.g., user—model chats) via the context-dependent predictive component, and (ii) information that
can be identified via SAEs continues to remain available within the novel component of Temporal
SAEs.

E.1 GEOMETRY OF LATENT CODES IN AN OOD DIALOGUE DOMAIN

Activations RelLU TopK BatchTopK  Temporal (Novel) Temporal (Pred)
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Figure 25: Population and trajectory geometry in OOD dialogue. UMAPs of raw activations and
SAE codes on Ultrachat (first 350 tokens per conversation). Top: population embeddings colored
by sequence position (gray—color) and marked by role (user=o, assistant=x); only the predictive
code cleanly separates speaker roles while preserving a smooth temporal gradient. Bottom: a single
conversation overlaid on the same UMAP; the predictive code follows a smooth near-geodesic with
low tortuosity 7, in contrast to jagged paths from standard SAEs/novel codes.

We analyze a multi-turn chat domain to test whether Temporal SAEs continues to reveal slow-moving
structure. We emphasize the activations in this experiment are sampled from a Gemma-2-2B-IT
model, although all analyzed interpretability protocols were trained on the base (non-instruction
tuned) model. Thus, in a sense, the experiments in this section also gauge the ability of different
protocols to generalize out-of-distribution (OOD)—a property SAEs have been argued to partially
possess when transferring between base and the corresponding instruction-tuned models (Kissane
et al., 2024). Specifically, we use the Ultrachat dataset, where we take the first 350 tokens from 1,000
conversations (mostly single-turn within this window, with up to four turns). For each token, we
compute a shared 2D UMAP embedding from (i) raw model activations and (ii) latent codes from
ReLU, TopK, and BatchTopK SAEs, as well as the novel and predictive components of the Temporal
SAE. To visualize population structure clearly, we display only 100 conversations at a time to avoid
clutter (Fig. 25), though fitting is applied to all 1,000.

At the population level, the predictive component of Temporal SAEs is the only representation that
cleanly organizes the data along two interpretable axes: (1) a speaker-role separation, with user and
assistant tokens forming distinct yet smoothly adjoining manifolds, and (2) a temporal gradient, with
positions flowing continuously from early to late tokens along the manifold. By contrast, standard
SAEs and the novel code show diffuse clouds with weaker role separability and no coherent positional
gradient (Fig. 10, top row). To assess within-sequence geometry, we overlay a single conversation’s
trajectory onto the population embedding (Fig. 10, bottom row). Predictive codes trace a smooth
trajectory that remains locally coherent within each role segment and transitions gracefully at speaker
switches. In contrast, standard SAEs and the novel code produce jagged, zig—zagging paths. We again
quantify this with rortuosity T (Bullitt et al., 2003) (lower is straighter): predictive codes achieve
T = 2.0, whereas SAEs and the novel code yield 7 ~ 25-30, indicating substantially more local
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turning (Fig. 10, panel headers). This straightening mirrors the story-domain results (Sec. 6.1), now

in an OOD conversational chat regime.

E.2 AUTOMATIC INTERPRETABILITY OF NOVEL CODES
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Figure 26: Interpretability of novel codes. We qualitatively compare the interpretability of novel
codes extracted using Temporal SAEs with latent codes extracted using GemmaScope SAEs across
four diverse categories. Example feature cards are shown across four categories, produced with

the same activation-triggered examples plus direct logit attribution workflow used for standard
SAEs (Lieberum et al., 2024).

A central benefit of SAEs is that their latents admit automatic interpretability pipelines (“autointerp™)
that attach human-readable semantics to features via activation-triggered examples, token/phrase
saliency, and lightweight dashboards (e.g., GemmaScope / Neuronpedia). Our Temporal SAE
adds a new, temporally aware predictive axis, but crucially it does not sacrifice these established
interpretability affordances: the novel code remains compatible with standard SAE autointerp
workflows. In other words, Temporal SAEs augment the toolbox rather than replacing it.

To support this point, we apply a conventional autointerp loop to the novel codes: (i) collect high-
activation snippets and nearest-neighbor contexts for each latent; (ii) compute direct logit attribution
to inspect which vocabulary items a latent tends to support or suppress; and (iii) render compact,
browsable “feature cards” that aggregate examples and scores (as in GemmaScope / Neuronpedia).
While we do not perform an exhaustive causal-intervention study here, nothing in the pipeline is
specific to standard SAEs; the same probes and dashboards operate unchanged on the novel codes,
and we leave a systematic intervention suite to future work. Qualitative inspection confirms that the
novel codes recover the kinds of monosemantic, language-level features typically reported for SAEs.
Figure 11 (p. 13) shows representative examples across diverse categories—Optimism, Manipulation,
University, and Slang—where the novel latents consistently activate on intuitively relevant cue phrases
and contexts, and where their attribution profiles align with the expected lexical sets.

Overall, when standard SAEs produce readable feature cards, the Temporal SAE’s novel stream does
as well. This complements our earlier results: the predictive stream captures slow, contextual structure
(events, roles, long-range constraints), whereas the novel stream concentrates the fast, stimulus-driven
information that matches inferences possible via existing SAEs, including autointerp pipelines.
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F EMERGENT SEPARATION OF PREDICTIVE AND NOVEL PARTS
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Figure 27: Separation of Predictive and Novel Dictionaries. Predictive and novel codes for
sequences drawn from three datasets—SimpleStories (top), Webtext (middle), and Code (bottom)—
are binarized to zero (black) and non-zero (white). The dictionary elements are sorted by the sum
of non-zero activations in the predictive code across the sequence. The ordering obtained from the
predictive code is also applied to the novel code. The red dashed line marks the separation of 90% of
non-zero activation counts; only 10% are overlapping into the other subset. Additionally, the effective
rank of the predictive codes is two orders of magnitudes lower than the average number of non-zero
dictionary elements (Mean LO).

The Temporal SAEs studied in the main paper share a dictionary for both predictive and novel codes.
We now investigate if there is any shared structure in the two dictionaries. In particular, given the
predictive and novel codes play a different role, it is plausible the SAE learns to approximately split
the dictionary into two parts: one responsible for computing the predictive code and the other for
novel one. Specifically, we investigate a Temporal SAE trained on Gemma-2-2B Layer 12 residual
stream activations. Results are shown in Fig. 27 and show a separation of dictionary elements for
sequences drawn from three datasets: SimpleStories, Webtext, and Code. Specifically, we find ~2K
dictionary elements participate in defining the predictive code, while the remaining ~8K primarily
participate in defining the novel code. However, the absolute count is merely indicative of the
LO sparsity of a code, which may not reflect how many directions are actually used to define the
code—estimating latter requires computing the rank of the code (in fact, we note that rank-sparsity is
a well-known alternative to LO sparsity in dictionary learning literature (Elad, 2010)). As we show
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in Fig. 27, the effective rank of the predictive codes (~20-30) is substantially lower than both the
effective rank (~390-410) and absolute LO sparsity of novel codes.

Overall, the posthoc analysis above shows that predictive and novel codes largely use separate
subsets of dictionary elements. This emergent disentanglement of the two components motivates
one to preemptively split the dictionary into two components—one responsible for the predictive
code and other for novel one. Our preliminary experiments show a Temporal SAE trained with
this split-dictionary architecture is similarly performant as the tied dictionary one, resulting in
predictive / novel codes with effective ranks ~20-30 / ~390-420, and a slightly better overall
loss. It is possible optimizing hyperparameters (e.g., having different expansion factors for the two
components) can make this architecture more performant than the tied dictionary one, but we leave a
further characterization to future work.
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G THE GEOMETRY OF STORIES: A NARRATIVE-DRIVEN DOMAIN

G.1 HIERARCHICAL CLUSTERING OF CODES FROM STORY TOKENS

G.1.1 STORY 1

Activations RelU TopK BatchTopK Temporal (Novel) Temporal (Pred)
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inside. It was full of unbelievably shiny gems|and]jewels. He couldn’t believe his eyes. He was so excited he knew this case was

0
There was a baby who wanted to pick something special. He went to a shopaw an ancient case. He picked it uplooked
P' *
perfect. He quickly picked it up[andjwrapped it up with a big red bow. He smiled[and}couldn’t wait to show his mumad.

Figure 28: Geometry. Repeating results of Fig. 4, we again find smooth trajectories in UMAP
projections for Temporal SAEs.
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Figure 29: Dendrograms of Predictive and Novel Components from Temporal SAEs. Reproduc-
tion of the results from Fig. 4b, but including the novel component’s dendrogram as well.
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Figure 30: Dendrograms of Standard SAEs’ Latents Codes. Reproduction of the results from
31

Fig. 4b, but for latent codes extracted using standard SAEs.
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G.1.2 STORY 2
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There was a kitty who liked tgplay with a special brush. Each day, [the]kitty would \endbrush to a friend in the park. Every day,
k'\tty was so careless with brush that it got lost. \n\n One day, kitty was playing inpark when it saw its special brush
with a rabbit.kitty asked[the]rabbit if he could \endbrush. \n\n abbit said, " If you wantbrush back

Figure 31: Geometry. Repeating results of Fig. 4 on a different story, we again find smooth
trajectories in UMAP projections for Temporal SAEs.
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Figure 32: Dendrograms of Predictive and Novel Components from Temporal SAEs. Repro-
duction of the results from Fig. 4b, but on a different story and with both the predictive and novel

component.
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Figure 33: Dendrograms of Standard SAEs’ Latents Codes. Reproduction of the results from

Fig. 4b, but for latent codes extracted using standard SAEs on a different story.

1762

2]
o5) »ed
2] wied

1763
1764
1765
1766

1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

33



Under review as a conference paper at ICLR 2026

G.1.3 STORY 3
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Once the[g was a girl.ad a garage. Inside the garagek pt her toys. One day, the girl noticed something was wrong with
her tent in the garage and saw that they had broken. decidee would repair them and make them as good as

new. [SheJmade sure to wash them all so they were nice and healthy. Then took some glue and fixed all the toys until they
looked perfect.

Figure 34: Geometry. Repeating results of Fig. 4 on a different story, we again find smooth
trajectories in UMAP projections for Temporal SAEs.
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Figure 35: Dendrograms of Predictive and Novel Components from Temporal SAEs. Repro-
duction of the results from Fig. 4b, but on a different story and with both the predictive and novel
component.
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Figure 36: Dendrograms of Standard SAEs’ Latents Codes. Reproduction of the results from

Fig. 4b, but for latent codes extracted using standard SAEs on a different story.
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G.2 CODE: ANALYZING ANOTHER DOMAIN
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Figure 37: Code. Reproducing the results of Fig. 4, but on a different domain, i.e., code. We again see
a temporally disentangled, smoothly running trajectory for latent codes extracted using the predictive
component of Temporal SAEs.
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inited (53)
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Figure 38: Dendrograms of Predictive and Novel Components from Temporal SAEs. Reproduc-
tion of the results from Fig. 4b, but on a different domain shows similar results as with narrative-driven
text (stories) for both the predictive and novel component.
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Figure 39: Dendrograms of Standard SAE Latent Codes. Reproduction of the results from Fig. 4b,
but on a different domain shows similar results as with narrative-driven text (stories) for standard
SAEs.
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G.3 FURTHER RESULTS: SIMILARITY MAPS ON STORIES
Temporal (Pred)
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Figure 40: Temporal (Pred) Similarity Maps Elicit Multi-Scale Structure with Noise. Repeating
the analysis shown in Fig. 6, we find the coarsening of temporal blocks is a robust result that continues
to hold for different inputs.
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Figure 41: Temporal (Novel) Similarity Maps under Noise. Repeating the analysis shown in Fig. 6,
we find the novel component is only able to capture minimal local similarities, which when analyzed
via dendrograms, show clustering based on lexical information.
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Figure 42: ReLU Codes’ Similarity Maps under Noise. Repeating the analysis shown in Fig. 6 on
ReLU SAEs, we find the ReLU latent code has high similarity across the board, suggesting lack of
meaningful temporal information. This similarity is entirely removed when noise scale increases too
much, which, as shown in Fig. 6¢, corresponds to the point that variance explained by ReLU SAEs

drops to ~O0.
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Figure 43: TopK Codes’ Similarity Maps under Noise. Repeating the analysis shown in Fig. 6,
we find TopK SAE’s latent codes are only able to capture minimal local similarities, which when
analyzed via dendrograms, show clustering based on lexical information. Akin to ReLU SAEs, we
see this similarity map approximately turns into an identity matrix when the noise scale increases too
much, which, as shown in Fig. 6c, corresponds to the point that variance explained by TopK SAEs
drops to ~O0.
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Figure 44: BatchTopK Codes’ Similarity Maps under Noise. Repeating the analysis shown in
Fig. 6, we find BatchTopK SAE’s latent codes are only able to capture minimal local similarities,
which when analyzed via dendrograms, show clustering based on lexical information. Akin to ReLU
SAEs, we see this similarity map approximately turns into an identity matrix when the noise scale
increases too much, which, as shown in Fig. 6¢c, corresponds to the point that variance explained by
BatchTopK SAEs drops to ~0.
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G.4 FURTHER RESULTS: DENDROGRAMS AND EVALUATIONS ON GARDEN PATH SENTENCES

DENDROGRAMS
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Figure 45: Example Sentence 1. Repeating the results of Fig. 7a on a different garden path sentence.
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Figure 46: Example Sentence 2. Repeating the results of Fig. 7a on a different garden path sentence.
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Figure 47: Example Sentence 3. Repeating the results of Fig. 7a on a different garden path sentence.
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H FURTHER RESULTS: TEMPORAL SAES ON LLAMA-3.1-8B

We replicate a subset of the experiments evaluating Temporal SAEs on Llama-3.1-8B. The training
protocol remains the same as that of Gemma-2-2B model: train on 1B token activations with similar
normalization schema, but activations are harvested now from Layer 15 (i.e., at ~50% of model
depth). We note that the trained SAEs are not finished training, and hence the following results are
solely meant to be an impression of whether the qualitative trends observed with Gemma models
generalize to another model class.

H.1 GEOMETRY, DENDROGRAMS, AND SPECTRA

H.1.1 STORY 1

Activations RelLU TopK BatchTopK Temporal (Novel) Temporal (Pred)
(r=552) (t=95.9) (r = 68.6) (r = 651.5) (r =79.55) (t=112)
80
_* [ °
. . ° % . . & = e 60
o - . . - el . 0
3 » . w = ° o 20

There was a baby who wanted to pick something special. He went to a shopaw an ancient case. He picked it up ooked inside. It was full of
unbelievably shiny gemsjewe\s He couldn’t believe his eyes. He was so excited [andJhe knew this case was perfect. He quickly picked it up
wrapped it up with a big red bow. He smi\edou\dn'l wait to show his muma,

Figure 48: Geometry. Repeating results of Fig. 4, we again find smooth trajectories in UMAP
projections for Temporal SAEs.
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to(8)

wanted (5]
shop (15}
ancient (19]
case (20)
looked (27)

and (86)

Figure 49: Dendrograms of Predictive and Novel Components from Temporal SAEs. Reproduc-
tion of the results from Fig. 4b, but including the novel component’s dendrogram as well.
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Fig. 4b, but for latent codes extracted using standard SAEs.
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H.1.2 STORY 2

Activations RelU TopK BatchTopK Temporal (Novel) Temporal (Pred)
(r=552) (r=95.9) (z = 68.6) (z = 651.5) (z =79.55) (r=11.2)
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One day,[the] he kitty was pla ng in the Joark when it saw its special bru:

There was a kitty who liked to play with a special brt Each day, [the} Jkitty d lend(theJbrush to a friend mark Every day{the]kitty was so
careless withbrus it got |ost sh with a rabbit. ﬁb y asked
rabbit if he could lend fthe Brush. \n\n he abbit said, " If you want{tl [theJorush back

Figure 51: Geometry. Repeating results of Fig. 4, we again find smooth trajectories in UMAP
projections for Temporal SAEs.
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Figure 52: Dendrograms of Predictive and Novel Components from Temporal SAEs. Reproduc-
tion of the results from Fig. 4b, but including the novel component’s dendrogram as well.
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Fig. 4b, but for latent codes extracted using standard SAEs.
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H.1.3 STORY 3
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Once there was a girl. Ehelhad a garage. Inside the garage Ehe)kept her toys. One day, the girl noticed something was wrong with her toys. Ghd went
in the garage and saw that they had broken. Ehd decidedEhglwould repair them and make them as good as new. Bhd made sure to wash them all so
they were nice and healthy. ThenBhgltook some glue and fixed all the toys until they looked perfect.

Figure 54: Geometry. Repeating results of Fig. 4, we again find smooth trajectories in UMAP
projections for Temporal SAEs.
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Figure 55: Dendrograms of Predictive and Novel Components from Temporal SAEs. Reproduc-
tion of the results from Fig. 4b, but including the novel component’s dendrogram as well.
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H.1.4 COMPARING EIGENSPECTRUM WITH SLOW VS. FAST FEATURES
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Figure 57: Kernel spectrum for latent codes and model representations. Kernels defined using
novel code from Temporal SAEs and standard SAEs both align well with the fast-changing part
of model representations; meanwhile, only the predictive code shows strong similarity to the slow
changing part.
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H.2 EVENT BOUNDARIES AND NOISE STABILITY

H.2.1 EVENT BOUNDARIES

(a) Once upon a time, a little girl named Alice loved (b) Temporal (Pred) Novel
looking at the night sky.'l wish | could count all [ ‘
the stars!' Alice said to her best friend Maya. The
two girls stood on a big grass field as the moon 08
rose from the trees. Suddenly, Maya had a 06
striking idea. She opened her laptop and started TopK
typing:\n~python\n array = [\n for i in range(1, 04
6):\n\t s = int(input(f'num_stars:"))\n\t \\ 02
array.append(s)\n\t tot = sum(array)\n avg = tot / \
len(array)\n print(f'Avg / night: {avg:.11}') & 0.0
(© (d)
° 0p2=0005 o=001 o=002 o =004
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Within 055 028 025 013 062 U |
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Figure 58: Analysis of Event Boundaries. Reproducing results from Fig. 6 on Llama-3.1-8B, we
see similar behavior as the Gemma analysis done previously.
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Story 1 .

Story 2 SRR R ]
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Figure 59: Temporal (Pred) Similarity Maps Elicit Multi-Scale Structure with Noise. Repeating
the analysis shown in Fig. 6, we find the coarsening of temporal blocks is a robust result that continues
to hold for different inputs.
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Temporal (Novel)
6=00 & = 0.005 6=001 6= 0.02 6 =004

Story 1

Story 2

Story 3

Figure 60: Temporal (Novel) Similarity Maps under Noise. Repeating the analysis shown in Fig. 6,
we find the novel component is only able to capture minimal local similarities, which when analyzed
via dendrograms, show clustering based on lexical information.

o =0.04

Figure 61: ReLU Codes’ Similarity Maps under Noise. Repeating the analysis shown in Fig. 6 on
ReLU SAEs, we find the ReLU latent code has high similarity across the board, suggesting lack of
meaningful temporal information.
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Figure 62: TopK Codes’ Similarity Maps under Noise. Repeating the analysis shown in Fig. 6,
we find TopK SAE’s latent codes are only able to capture minimal local similarities, which when
analyzed via dendrograms, show clustering based on lexical information.
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Figure 63: BatchTopK Codes’ Similarity Maps under Noise. Repeating the analysis shown in
Fig. 6, we find BatchTopK SAE’s latent codes are only able to capture minimal local similarities,
which when analyzed via dendrograms, show clustering based on lexical information.

52



Under review as a conference paper at ICLR 2026

I FURTHER THEORY RESULTS

I.1 PRIORS ON THE SPARSE CODE FOR VARIOUS SAES

We restate and prove the proposition on independence priors of SAEs over time (Proposition 4.1)
below.

Proposition 1.1 (Independence priors over time). Consider the SAE maximum aposteriori (MAP)
objective for ReLU, JumpReLU, TopK and BatchTopK SAEs. The sparsity constraints for these SAEs
are additive over time, resulting in:

T
1
arg min > @i — Dzl + AR(2:),
D,z i—1 (8)

s.t. z = fae(xr) VK, §(21,...,27) = Zg(zi) =0.

This MAP objective has an independent and identically distributed (i.i.d.) prior over time i.e.,

T
P(z1,...,27) x Hexp (—)\R(zi) - S\Q(zl)) = HP(zi),

Proof. The sparsity constraints and sparsity-promoting regularizers for the SAEs under study are
specified in the table below.

Regularizer ~ Sparsity Constraint

SAE ~
R(z;) g(z1,...,27) =0
ReLLU [EA 0
JumpReLU Iz: o 0
TopK 0 S (lzillo — K)?
BatchTopK 0 T Z¢T21 [zillo — K

Table 5: Sparsity constraints and regularizers for SAEs

Note that TopK imposes a pointwise hard sparsity constraint, which has been restated using sum-of-
squares above for convenience. While BatchTopK imposes the fixed mean sparsity for each mini
batch, we take the batch to capture the entire timeseries in the above formulation. The above table
shows us that the sparsity constraint is additive over time in all cases:

T
g(z1,..zr) =Y §(zi) =0, ©)
i=1
(Izillo — K)*  TopK
where §(z;) = #(]|zillo — K) BatchTopK (10)
0 ReLU, JumpReLU
Recall that SAEs solve the following constrained optimization problem (restated from Eq. 1).

T

1
ar min—g x;, — Dz||? + \R(2),
gD,z N =1 ” ”2 ( ) (11)

S.t. 2, = fSAE(wk) Vk, g(zl, ey ZT) =0.

We rewrite the above problem using Lagrange multipliers on the sparsity constraints, and further
simplify using the above result on constraints being additive over time, as:

T
1 9 <
arngIzlln N ; l2; — Dzill5 + AR(z:) + Ag(||zillo),

s.t. 2, = fSAE(mk) Vk.

Note that we don’t use Lagrange multipliers on the SAE architecture constraint z = fsg(x) since
we only care about z-specific constraints (which don’t include the data x) for the prior.

(12)
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Bayesian Interpretation. The objective function above (sans the SAE architecture constraint) can
be thought of as minimizing the negative log posterior, which is proportional to log prior added to log
likelihood:

T
1
—IOgP(Zh...,ZT|.’E17...,.’ET)O( N;Hml_Dzl”g ZAR +>\g ||ZIH )
—log P(x1,....,x7|21,...,27) —log P(21,...,27)
(13)
The prior over latents z is:
1 & <
mpuhuzﬂ:—ﬁzyn@mmmm%% (14)
i=1
— P(z1,...,2r II&p(ARzJ+M7kMO> IIPzL (15)

Therefore, the prior is multiplicative over time, implying independence, and the distribution at each
time ¢ has the same form, implying that the prior is independent and identically distributed (i.i.d.).
This completes the proof.

d

1.2 PRIORS OVER CONCEPTS AND GENERATIVE PRIORS OVER TIME

We can further think of the priors of each SAE over concepts as well as over time in a generative
fashion. In some cases, this mainfests as a hierarchical latent variable model n — S — z, where
n = |||l is the sparsity, S = supp(z) = {k : z¥ > 0} is the support, and z is the SAE latent code.

Proposition 1.2 (SAE Priors on Sparse Code). Let S; = supp(z;) = {k : zF > 0} be the set of
active latents in the sparse code z at time t, and ny = |S;| be the cardinality of S; (the number of
active latents). Each SAE imposes a prior distribution on the sparse code z, arising from its sparsity
penalty R(z) or implicit conditions imposed on the sparse code. These conditions are highlighted in

Table 6.
Table 6: Priors over concept interactions and dynamics for various SAEs

foue, R(2) Across-Concept Prior (interaction) Across-time Prior (dynamics)

RCLU, i

L-norm ztl, e, z{” i) Laplace(0, -) 21, ..., 2t S p,

TopK AL iid. ( ,) Vi. € Sy, (zl,Sl),...,(zfi,St) "X PsPys,

&~W[]) 1,0 8 WU (M)

JumpRCLU, Z:l,... Ztiﬂt | St Ifl\sj U(O )Vl GSt, (Zlyslynl)v---a(ztystvnt”l"l\lsl‘ PnPS\nP(z | S)7

Lo-norm Se [ ne ~ U([M]™) n,. g R P
BatchTopK PRI zz” | St ry U, Vi. € Sy, (21,81,m1),..., (Zt’fg’m) =P, PsjnP(z | 5),

Se [ ne ~U([M]™) ni, - ,ng ~ Pn, Eng = K

[.2.1 RELU SAE

The vanilla ReLU SAE (Bricken et al. (2023), Cunningham et al. (2023)) is trained with the L;-norm
penalty:
R(z) = (16)

= [Iz]x-
The prior over z for the above case is:
N M
log P(z1,...,2x) o< — 3 Y |2F] (17)
i=1 k=1
N
= P(z1,...,2 o<H <Hexp 1/|zk|> (18)
i=1 \ k=1
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This joint distribution implies that for each sample ¢, different indices k are sampled i.i.d. from the
same distribution:

zi, ., 2M e~y Laplace(0,1/v), (19)
and different samples are all independently sampled from the same product Laplace distribution:

z1,...zn % Laplace (0,1/v). (20)
This concludes the proof for priors of ReLU SAE trained with L; norm sparsity penalty. ]

1.2.2 TorK SAE

The TopK SAE (Makhzani and Frey (2013), Gao et al. (2024)) directly controls the sparsity of the
representation z by fixing it at ||z||o = K, instead of imposing an explicit sparsity penalty R(z) in
the loss function. The objective function for TopK SAE is:

N
1
i E —|lz; — D=3, 21
argDTrznni:1N||w zil|5 21

S.t. V_L Zj = fTopK(mj)a ||ZjH0 =K. (22)

Since the fixed sparsity is a hard constraint that depends on z alone (and not the data x), it can
further be simplified as a sum-of-squares constraint: » j(sz lo — K)? = 0. We can use Lagrange
multipliers to reformulate it as an effective prior:

N
axg min ; % (w — Dz|3+ A (|l=llo - K)° ) 7 (23)
s.t. V5,25 = fropr (). (24)
The prior over z for the above (effective) regularizer is:
N
logP(zl,...,zN)oc—Z)\((HziHo—K)z) (25)
Nz:l
= P(z1,...,2x5) o [Jexp (= A(llzillo — K)?) (26)
i=1

Note that the above prior is finite for finite values of A, but the overall objective optimizes over A,
resulting in a hard prior peaked at || z;||o = K for each sample i.

The factorization over samples ¢ implies mutual independence of 21,...,2,: P(z1,...,2,) =
Hﬁil P(z;).

As defined in Theorem 1.2 (and restated here for convenience), let S; = supp(z;) = {k : 2F >
0},n; = |S;| = ||z:|lo denote the active indices and their number (sparsity) respectively.

For individual samples z;, if we condition on the set of active indices .5;, the sparsity gets fixed since
|z:llo = |Si] = m, and the distribution becomes constant:

P(z | S;)=C 27)
U(0,k) pesS;
= 2I'|S;~ ,and 28
i | { do wE S 2o
22, U0, k) for p. € S (29)

where C, k are appropriate constants.

Since {z;};s are mutually independent, any measurable function of each is also independent. The
indices of nonzero entries of z;, i.e., S; is a measurable function since it is a map S : R} — 2M
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which is discrete valued, and pre images of each value—a set of nonzero indices—are measurable
since they equal the cartesian products of the measurable sets {z = 0}, {z > 0} over all indices.
Hence, Sy, ..., 5, are also independent.

Since S; = g(z;) and the distribution of z; depends only on n; = ||z;||o (Eq. 25), the distribution of
S; will also depend only on 7n;, becoming uniform when conditioned on n;. In TopK SAE, n; = K
is a constant. Therefore, each S; ~ U([M]%), and together with independence argued above,

iid.

Siye S R U([MF) (30)
This completes the proof for the priors of TopK SAE. ]

1.2.3 BATCHTOPK SAE

BatchTopK SAE (Bussmann et al. (2024)) is a modification of the TopK SAE. Instead of fixing
sparsity like TopK, BatchTopK allows variable sparsity per input while fixing the mean sparsity over
a batch at K. The objective function for BatchTopK SAE can equivalently be written as:

N
. 1 2
arg min —||x; — Dz;||5, (31
i3 | 13
N
s.t. V7, Zj = fTopK 1:7 Z ||Zj ||0 = (32)

While BatchTopK imposes a mean sparsity per batch, for simplicity, we use the batch size to match the
size of the entire dataset (WLOG). Smaller batch sizes can easily be incorporated by adding separate
constraints, each over the entire batch (only leads to a change in constants—Ilagrange multipliers—in
the analysis).

Following similar analysis as for TopK SAE (App. 1.2.2), we can derive an equivalent prior over z
for BatchTopK SAE:

N
P(z1,...,zn) o [ exp (= Alllzillo — K]) (33)

The sparse codes for different samples {z;}; are thus sampled i.i.d. from a distribution that only
depends on the sparsity penalty. While this prior looks very similar to the prior of TopK SAE, the
difference is that in TopK, the fixed sparsity constraint is imposed per sample, leading to a different
Lagrange multiplier A; per sample to optimize over, while in BatchTopK, we have a common
multiplier A over all examples in a batch (with multiple batches, we will have one multiplier per
batch), which is then optimized over to ensure that average sparsity per batch constraint is met.

Similar to the analysis for the TopK SAE, we get the following prior over different latents per sample:

U,k) pes;

BIS, ~ ’ 4
2] S, {60 M¢Si’and (34)
P ATl A U0, k) for . € S; (35)

The active indices S; are sampled uniformly conditioned on the number of active indices n;:
Si | ng ~ U([M]™) (36)

The number of active latents n; are themselves sampled i.i.d. (since n; = §(z;) and {z;}; are i.i.d.)
from a distribution whose mean is fixed:
ii.d.

ni,...,ny ~ P, st En]=K (37)

This completes the derivation for the BatchTopK prior. (]

56



Under review as a conference paper at ICLR 2026

1.2.4 JumMPRELU SAE

JumpReLU SAE (Rajamanoharan et al. (2024)) is trained with the L (pseudo-)norm regularizer.
This leads to the following optimization problem:

N
. 1 9
arg min — (||le; — Dz;l|5 + M|z
gmin3_ (I~ a3 + Al lo)

s.t. Vk, 2z = frumprerv (k)

This objective is equivalent to the following prior over z:
N
P(zl,...,zN)ocHexp(—nHzng) (38)
i=1

Noting the similarity with the TopK/ BatchTopK cases, we use the same analysis to derive the
following conditions:

U0,k) pes;
s N{ : ,and 39
i | do ¢ Si 7
A AN 8 U0, k) for . € S (40)

The number of active latents n; are again i.i.d., but there is no constraint on the mean of the distribution
(unlike BatchTopK which constrained the mean of n; to equal K):
iid.
’n]_,...,’l’LNNP, (42)

which completes the analysis for JumpReLU SAE. ([

J  STATIONARITY MEASURES

LLM activations are empirically non-stationary across the sequence. We quantify the non-stationary
nature by measuring autocorrelations and the U-statistic.

J.1 AUTOCORRELATION

We compute autocorrelation by selecting evenly spaced tokens across the sequence and measuring the
cosine similarity between each token and tokens at various lags in the past. Specifically, for tokens at
position ¢, we compute similarities to tokens at £ — w where lag w ranges from 5 to 20. This creates a
heatmap where rows represent lag offsets and columns represent token positions.

For a stationary process, we expect the autocorrelation pattern to remain consistent across time—that
is, the relationship between a token and its historical context should be similar regardless of position
in the sequence. This would manifest as similar autocorrelation patterns repeating horizontally across
token positions. In contrast, for a non-stationary process where representations evolve over time, we
expect the autocorrelation patterns to vary systematically across positions, with columns showing
different temporal dependency structures as the sequence progresses.

J.2  U-STATISTIC

We measure the effective dimensionality of LLM representations using a U-statistic based on pairwise
cosine similarities.

. M2-M
N2 — A
Gl — M
where ||G;||% is the squared Frobenius norm of the Gram matrix. This quantity estimates the
effective rank 1/tr(C?), where C; = E[#;4] | is the second moment matrix and &; is the normalized

activation vector at time ¢. Under stationarity, U-stat remains constant. When representations evolve
over time, U-stat increases systematically as more orthogonal directions become active.

U-stat(t) (43)
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J.3 SURROGATE

For the U-statistic and Autocorrelation metrics, we compare LLM activations to surrogate distribu-
tions that preserve certain statistical properties while removing temporal structure. We operate on
representation vectors X € REXTXd wwhere B denotes batch size, T denotes sequence length, and d
denotes the model dimension.

U-statistic surrogate (Fig. 2 a, e): For each sequence i € {1, ..., B}, we construct the surrogate
X; by applying a random permutation 7; : {1,...,T} — {1,...,T} to the temporal positions:

Xip: = Ximn, Vte{l,....,T}

This preserves the marginal distribution of activations within each sequence while destroying temporal
dependencies.

Autocorrelation surrogate (Fig. 2 ¢, g): Given the similarity matrix S € R7*” where Sij =

sim(X. ; ., X. ;.), we construct the surrogate similarity matrix S by replacing each diagonal with its

mean:
T—k

o o 1
Sij =S, where k =i — j, Skzmgst,wk

This preserves the average correlation structure at each lag while removing position-specific temporal
patterns.
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K USE OF LARGE LANGUAGE MODELS

LLMs were used in this work for the following:

* Polish writing: Although major parts of the writing were done by the authors themselves, LLMs
(ChatGPT) were used to critique and iteratively improve the writing.

* Research ideation: In the initial stages of the project, conversations with LLMs (ChatGPT, Gemini)
aided in refining the overall storyline of the project, as well as to get feedback on theory sections.
In all cases, LLLM outputs were only used by the authors to refine their ideas.
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