
Neural approximation of Wasserstein distance via a
universal architecture for symmetric and factorwise

group invariant functions

Samantha Chen
Department of Computer Science Engineering

University of California - San Diego
sac003@ucsd.edu

Yusu Wang
Halıcıoğlu Data Science Institute

University of California - San Diego
yusuwang@ucsd.edu

Abstract

Learning distance functions between complex objects, such as the Wasserstein
distance to compare point sets, is a common goal in machine learning applications.
However, functions on such complex objects (e.g., point sets and graphs) are often
required to be invariant to a wide variety of group actions e.g. permutation or rigid
transformation. Therefore, continuous and symmetric product functions (such as
distance functions) on such complex objects must also be invariant to the product
of such group actions. We call these functions symmetric and factor-wise group
invariant functions (or SFGI functions in short). In this paper, we first present a
general neural network architecture for approximating SFGI functions. The main
contribution of this paper combines this general neural network with a sketching
idea to develop a specific and efficient neural network which can approximate the
p-th Wasserstein distance between point sets. Very importantly, the required model
complexity is independent of the sizes of input point sets. On the theoretical front,
to the best of our knowledge, this is the first result showing that there exists a neural
network with the capacity to approximate Wasserstein distance with bounded model
complexity. Our work provides an interesting integration of sketching ideas for
geometric problems with universal approximation of symmetric functions. On the
empirical front, we present a range of results showing that our newly proposed
neural network architecture performs comparatively or better than other models
(including a SOTA Siamese Autoencoder based approach). In particular, our
neural network generalizes significantly better and trains much faster than the
SOTA Siamese AE. Finally, this line of investigation could be useful in exploring
effective neural network design for solving a broad range of geometric optimization
problems (e.g., k-means in a metric space).

1 Introduction

Recently, significant interest in geometric deep learning has led to a focus on neural network
architectures which learn functions on complex objects such point clouds [34, 22] and graphs [23].
Advancements in the development of neural networks for complex objects has led to progress in a
variety of applications from 3D image segmentation [28] to drug discovery [3, 13]. One challenge
in learning functions over such complex objects is that the desired functions are often required to
be invariant to certain group actions. For instance, functions on point clouds are often permutation
invariant with respect to the ordering of individual points. Indeed, developing permutation invariant
or equivariant neural network architectures, as well as understanding their universal approximation
properties, has attracted significant attention in the past few years; see e.g., [22, 34, 19, 20, 25, 16,
33, 29, 30, 4]

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

However, in many geometric or graph optimization problems, our input goes beyond a single complex
object, but multiple complex objects. For example, the p-Wasserstein distance Wp(X,Y) between
two point sets X and Y sampled from some metric space (e.g., Rd) is a function over pairs of point
sets. To give another example, the 1-median of the collection of k point sets P1, . . . , Pk in Rd can be
viewed as a function over k point sets.

A natural way to model such functions is to use product space. In particular, let X denote the space
of finite point sets from a bounded region in Rd. Then the p-Wasserstein distance can be viewed as a
function Wp : X × X → R. Similarly, 1-median for k point sets can be modeled by a function from
the product of k copies of X to R. Such functions are not only invariant to permutations of the factors
of the product space (i.e. Wp(X,Y) = Wp(Y,X)) but are also invariant or equivariant with respect
to certain group actions for each factor. For p-Wasserstein distance, Wp is invariant to permutations
of the ordering of points within both X and Y . This motivates us to extend the setting of learning
continuous group invariant functions to learning continuous functions over product spaces which are
both invariant to some product of group actions and symmetric. More precisely, we consider a type
of function which we denote as an SFGI product functions.

Definition 1.1 (SFGI product function) Given compact metric spaces (Xi,dXi
) where i ∈ [k], we

define symmetric and factor-wise group invariant (SFGI) product functions as f : X1×X2×· · · Xk →
R where f is (1) symmetric over the k factors, and (2) invariant to the group action G1×G2×· · ·×Gk

for some group Gi acting on Xi, for each i ∈ [1, k].

Contributions. SFGI product functions can represent a wide array of geometric matching problems
including computing the Wasserstein or Hausdorff distance between point sets. In this paper, we first
provide a general framework for approximating SFGI product functions in Section 3.1. Our primary
contribution, described in Section 3.2, is the integration of this general framework with a sketching
idea in order to develop an efficient and specific SFGI neural network which can approximate the
p-Wasserstein distance between point sets (sampled from a compact set in a nice metric space, such
as the fixed-dimensional Euclidean space). Most importantly, the complexity of our neural network
(i.e., number of parameters needed) is independent of the maximum size of the input point sets, and
depends on only the additive approximation error. To the best of our knowledge, this is the first
architecture which provably achieves this property. This is in contrast to many existing universal
approximation results on graphs or sets (e.g., for DeepSet) where the network sizes depend on
the size of each graph or point set in order to achieve universality [20, 30, 4]. We also provide a
range of experimental results in Section 4 showing the utility of our neural network architecture
for approximating Wasserstein distances. We compare our network with both a SOTA Siamese
autoencoder [15], a natural Siamese DeepSets network, and the standard Sinkhorn approximation
of Wasserstein distance. Our results show that our universal neural network architecture produces
Wasserstein approximations which are better than the Siamese DeepSets network, comparable to the
SOTA Siamese autoencoder and generalize much better than both to input point sets of sizes which
are unseen at training time. Furthermore, we show that our approximation (at inference time) is
much faster than the standard Sinkhorn approximation of the p-Wasserstein distance at similar error
threshholds. Moreover, our neural network trains much faster than the SOTA Siamese autoencoder.
Overall, our network is able to achieve equally accurate or better Wasserstein approximations which
generalize better to point sets of unseen size as compared to SOTA while significantly reducing
training time. In Appendix B, we provide discussion of issues with other natural choices of neural
network architectures one might use for estimating Wasserstein distances, including one directly
based on Siamese networks, which are often used for metric learning.

All missing proofs / details can be found in the Supplementary materials.

Related work. Efficient approximations of Wasserstein distance via neural networks are an active
area of research. One approach is to use input convex neural networks to approximate the 2-
Wasserstein distance[18, 27]. However, for this approach, training is done per pair of inputs and
is restricted to the 2-Wasserstein distance which makes it unsuitable for a general neural network
approximation of p-Wasserstein distances between discrete distributions. This neural approximation
method contrasts with our goal: a general neural network that can approximate the p-Wasserstein
distance between any two point sets in a compact metric space to within ϵ-accuracy. Siamese networks
are another approach for popular approach for learning Wasserstein distances. Typically, a Siamese
network is composed of a single neural network which maps two input instances to Euclidean space.

2

The output of the network is represented then by ℓp-norm between the output embeddings. In [5],
the authors utilize a Siamese autoencoder which takes two histograms (images) as input. For their
architecture, a single encoder network is utilized to map each histogram to an embedding in Euclidean
space, while a decoder network maps each Euclidean embedding back to an output histogram.
The Kullback-Liebler (KL) divergence between original histogram and the output histogram (i.e.
reconstruction loss) is used during training to regularize the embeddings and the final estimate of
2-Wasserstein distance is the ℓ2 norm between the embeddings. The idea of learning Wasserstein
distances via Siamese autoencoders was extended in [15] to point cloud data with the Wasserstein
point cloud embedding network (WPCE) where the original KL reconstruction loss was replaced
with a differentiable Wasserstein approximation between the original point set and a fixed-size output
point set from the decoder network. In our subsequent experiments, we show that our neural network
trains much more efficiently and generalizes much better than WPCE to point sets of unseen size.

Moreover, the concept of group invariant networks was previously investigated in several works,
including [34, 22, 19, 17, 9]. For instance, DeepSets [34] and PointNet [19] are two popular
permutation invariant neural network which were shown to be universal with respect to set functions.
In addition to group invariance, there have also been efforts to explore the notion of invariance with
respect to combinations of groups, such as invariance to both SE(3) and permutation group [11, 21]
or combining basis invariance with permutation invariance [17]. Our work differs from previous work
in that we address a universal neural network which is invariant with respect to a specific combination
of permutation groups that corresponds to an SFGI function on point sets. In general, we can view
this as a subgroup of the permutation group - encoding the invariance of each individual point set
with the symmetric requirement of the product function corresponds to a specific subgroup of the
permutation group. Thus, previous results regarding permutation invariant architectures such as
DeepSets, PointNet or combinations of group actions (such as [11]) do not address our setting of
SFGI functions or p-Wasserstein distances.

2 Preliminaries

We will begin with basic background on groups, universal approximation, and Wasserstein distances.

Groups and group actions A group G is an algebraic structure that consists of a set of elements
and a binary operation that satisfies a specific set of axioms: (1) the associative property, (2) the
existence of an identity element, and (3) existence of inverses for each element in the set. Given a
metric space (X ,dX), the action of the group G on X is a function α : G×X → X that transforms
the elements of X for each element π ∈ G. For each element π ∈ G, we will write π · x to denote
the action of a group element π on x instead of α(π, x). For example, if G is the permutation group
over [N] := {1, 2, . . . , N}, and X = RN , then for any π ∈ G, π · x represents the permutation of
elements in x ∈ RN via π i.e. given x = (x1, x2, . . . , xN), π · x = (xπ(1), xπ(2) . . . , xπ(N)). A
function f : X → Y is G-invariant if for any X ∈ X and any π ∈ G, we have that f(X) = f(π ·X).

Universal Approximation. Let C(X ,R) denote the set of continuous functions from a metric space
(X , dX) to R. Given two families of functions F1 and F2 where F1 ⊆ F2 and F1,F2 ⊆ C(X ,R),
we say that F1 universally approximates F2 if for any ϵ > 0 and any f ∈ F2, there is a g ∈ F1

such that ∥g − f∥∞ < ϵ. Different norms on the space of functions can be used, but we will use
L∞ norm in this paper, which intuitively leads to additive pointwise-error over the domain of these
functions. The classic universal approximation theorem for multilayer perceptrons (MLPs) [7] states
that a feedforward neural network with a single hidden layer, using certain activation functions, can
approximate any continuous function to within an arbitrary additive ϵ-error.

Permutation invariant neural networks for point cloud data One of the most popular permuta-
tion invariant neural network models is the DeepSets model defined in [34]. DeepSets is designed
to handle unordered input point sets by first applying a neural network to each individual element,
then using sum-pooling to generate an embedding for the input data set, and finally, applying a final
neural network architecture to the ouput embedding. Formally, suppose we are given a finite multiset
S = {x : x ∈ Rd} (meaning that an element can appear multiple times, and the number of times an

3

element occurs in S is called its multiplicity). The DeepSets model is defined as

NDeepSet(S) = gθ2

(∑
x∈S

hθ1(x)
)

where hθ1 and gθ2 are neural network architectures. DeepSets can handle input point sets of variable
sizes. It was also shown to be universal with respect to continuous multiset functions.

Theorem 2.1 ([34, 1, 12]) Assume the elements are from a compact set in Rk, and the input multiset
size is fixed as N . Let t = 2kN + 1. Then any continuous multiset function, represented as
f : Rk×N → R which is invariant with respect to permutations of the columns, can be approximated
arbitrarily close in the form of ρ

(∑
x∈X ϕ(x)

)
, for continuous transformations ϕ : Rk → Rt and

ρ : Rt → R.

While universality for the case when k = 1 was shown using symmetric polynomials, the case for
k > 1 in fact is quite subtle and the proof in [34] misses key details. For completeness, we provide a
full proof in Appendix E.1 for when the output dimension of ϕ is t =

(
k+N
k

)
. It was recently shown

in [12, 1] that the output dimension of ϕ can be reduced to 2kN + 1, which is the dimension of t
which we use in Theorem 2.1 and subsequent theorems. In both the cases where the output dimension
of ϕ is t =

(
k+N
k

)
or t = 2kN + 1, Theorem 2.1 implies that if we want to achieve universality, the

required network size depends on input point cloud size.

Wasserstein distances and approximations. Here we will introduce Wasserstein distance for
discrete measures. Let (X,dX) be a metric space. For two weighted point sets P = {(xi, wi) : xi ∈
X,

∑
wi

= 1, i ∈ [n]} and Q = {(x′
i, w

′
i) : x

′
i ∈ X,

∑
wi

= 1, i ∈ [m]}, we define the Wasserstein
distance between P and Q as

Wp(P,Q) = min
Π∈Rn×m

+

{(
⟨Π, Dp⟩

)1/p

: Π1 = [w1, . . . , wn],Π
T1 = [w′

1, . . . , w
′
m]

}
where D ∈ Rn×m

+ is the distance matrix with Di,j = dX(xi, x
′
j). One can think of these weighted

point sets as discrete probability distributions in (X,dX). When p = 1, W1 is also commonly
known as the Earth Mover’s distance (EMD). Additionally, note that when p = ∞, Wp is the
same as the Hausdorff distance between points in P and Q with non-zero weight. Computing
Wasserstein distances amounts to solving a linear programming problem, which takes O(N3 logN)
(where N = max{n,m}) time. There have been a number of methods for fast approximations of
Wasserstein distances, including multi-scale and hierarchical solvers [24], and L1 embeddings via
quadtree algorithms [2, 14]. In particular, entropic regularization of Wasserstein distance [6], also
known as the Sinkhorn distance, is often used as the standard Wasserstein distance approximation for
learning tasks. Unlike Wasserstein distance, the Sinkhorn approximation is differentiable and can
be computed in approximately O(n2) time. The computation time is governed by a regularization
parameter ϵ. As ϵ approaches zero, the Sinkhorn distance approaches the true Wasserstein distance.

3 Learning functions between point sets

We will first present a general framework for approximating SFGI-functions and then show how this
framework along with geometric sketches of our input data enables us to define neural networks
which can approximate p-Wasserstein distances with complexity independent of input data size.

3.1 A general framework for functions on product spaces

One of the key ingredients in our approach is the introduction of what we call a sketch of input data
to an Euclidean space whose dimension is independent of the size of the input data.

Definition 3.1 (Sketch) Let δ > 0, a ∈ N+, and G be a group which acts on X . A (δ, a,G)-sketch
of a metric space (X ,dX) consists of a G-invariant continuous encoding function h : X → Ra and
a continuous decoding function g : Ra → X such that dX (g ◦ h(S), S) < δ.

4

Now let (X1,dX1), . . . , (Xm,dXm) be compact metric spaces. The product space X1 × · · · × Xm is
still a metric space equipped with the following natural metric induced from metrics of each factor:

dX1×···×Xm
((A1, . . . , Am), (A′

1, . . . , A
′
m)) = dX1

(A1, A
′
1) + · · ·+ dXm

(Am, A′
m).

Suppose Gi is a group acting on Xi, for each i ∈ [m]. In the following result, instead of SFGI product
functions, we first consider the more general case of factor-wise group invariant functions, namely
functions f : X1 × · · · × Xm → R such that f is uniformly continuous and invariant to the group
action G1 × · · · ×Gm.

Lemma 3.2 Suppose f : X1×· · ·×Xm → R is uniformly continuous and invariant to G1×· · ·×Gm.
Additionally, assume that for any δ > 0, (Xi,dXi

) has a (δ, ai, Gi)-sketch where ai may depend on
δ. Then for any ϵ > 0, there is a continuous Gi-invariant functions ϕi : Xi → Rai for all i ∈ [k] and
a continuous function ρ : Ra1 × · · · × Ram → R such that

|f(A1, A2, . . . , Am)− ρ(ϕ1(A1), ϕ2(A2), . . . , ϕk(Am))| < ϵ

for any (A1, . . . , Am) ∈ X1 × · · · × Xm. Furthermore, if X1 = . . .X2 = · · · = Xm, then we can
choose ϕ1 = ϕ2 = . . . ϕm.

Note that a recent result from [17] shows that a continuous factor-wise group invariant function
f : X1 × · · · Xm → R can be represented (not approximated) by the form f(v1, . . . , vm) =
ρ(ϕ1(v1), . . . , ϕk(vm)) if there exists a topological embedding from Xi/Gi to Euclidean space. The
condition that each quotient Xi/Gi has a topological embedding in fixed dimensional Euclidean
space is strong. A topological embedding requires injectivity, while in a sketch, one can collapse
input objects as long as after decoding, we obtain an approximated object which is close to the input.
Our result can be viewed as a relaxation of their result by allowing our space to have an approximate
fixed-dimensional embedding (i.e., our (δ, a,G)-sketch).

We often consider the case where X = X1 = · · · = Xm i.e. f : X × · · · X → R where G is a group
acting on the factor X . Oftentimes, we require the function to not only be invariant to the actions of a
group G on each individual X but also symmetric with respect to the ordering of the input. By this,
we mean f(A1, . . . , Am) = f(Aπ(1), . . . , Aπ(m)) where π is a permutation on [m]. In other words,
we now consider the SFGI product function f as introduced in Definition 1.1. The extra symmetry
requirement adds more constraints to the form of f . We show that the set of uniformly continuous
SFGI product function can be universally approximated by product function with an even simpler
form than Lemma 3.2 as stated in the theorem below.

Lemma 3.3 Assume the same setup as Lemma 3.2 with X = X1 = · · · = Xm and G = G1 =
· · · = Gm. Assume that X has a (δ, a,G)-sketch. Additionally, suppose f is symmetric; hence f is a
SFGI function. Let t = 2am + 1. Then for any ϵ > 0, there is a continuous G-invariant function
ϕ : X → Rt and a continuous function ρ : Rt → R such that

|f(A1, . . . , Am)− ρ
(m∑

i=1

ϕ(Ai)
)
| < ϵ

Now suppose we want approximate an SFGI product function, f , with a neural network. Lemma 3.3
implies that we can approximate ϕ with any universal G-invariant neural network which embeds our
original space X to some Euclidean space Ra. Then the outer architecture ρ can be any universal
architecture (e.g. MLP). Finding a universal G-invariant neural network to realize ϕ over a single
factor space X is in general much easier than finding a SFGI neural network, and as we discussed at
the end of Section 1, we already know how to achieve this for several settings. We will show how
this idea is at work for approximating SFGI functions between point sets in the next subsection.

3.2 Universal neural networks for functions between point sets

We are interested in learning symmetric functions between point sets (i.e. any p-Wasserstein distance)
which are factor-wise permutation invariant. In this section, we will show that we can find a (δ, a,G)-
sketch for the space of weighted point sets. This allows us to combine Lemma 3.3 with DeepSets
to define a set of neural networks which can approximate p-th Wasserstein distances to arbitrary
accuracy. Furthermore, the encoding and decoding functions can be approximated with neural
networks where their model complexity is independent of input point set size. Thus, the resulting
neural network used to approximate Wasserstein distance also has bounded model complexity.

5

Set up. Given some metric space (Ω,dΩ), let X be the set of weighted point sets with at most N
elements. In other words, each S ∈ X has the form S = {(xi, wi) : wi ∈ R+,

∑
i wi = 1, xi ∈ Ω}

and |S| ≤ N . One can also consider X to be the set of weighted Dirac measures over Ω. For
simplicity, we also sometimes use S to refer to just the set of points {xi} contained within it. We will
consider the metric over X to be the p-th Wasserstein distance, Wp. We refer to the metric space of
weighted point sets over Ω as (X ,Wp).

First, we will show that given a δ, there is a (δ, a,G)-sketch of X with respect to Wp. The embedding
dimension a depends on the so-called covering number of the metric space (Ω,dΩ) from which
points are sampled. Given a compact metric space (Ω,dΩ), the covering number νΩ(r) w.r.t. radius
r is the minimal number of radius r balls needed to cover Ω. As a simple example, consider
Ω = [−∆,∆] ⊆ R. Given any r, we can cover X with 2∆

r intervals so νΩ(r) ≤ 2∆
r . The collection

of the center of a set of r-balls that cover Ω an r-net of Ω. For a compact set Ω ⊂ Rd with diameter
D, its covering number νΩ(r) is a constant depending on D, r and d only.

Theorem 3.4 Set dX to be Wp for 1 ≤ p < ∞. Let G be the permutation group. For any δ > 0,
let δ0 = 1

2
p
√
δ/2 and a = νΩ(δ0) be the covering number w.r.t. radius δ0. Then there is a (δ, a,G)-

sketch of X with respect to Wp. Furthermore, the encoding function h : X → Ra can be expressed
as the following where h : Ω → Ra is continuous:

h(S) =
∑
x∈S

h(x). (1)

Proof: Let δ > 0 and let S ∈ X be S = {(xi, wi) :
∑

wi = 1, xi ∈ Ω} and |S| ≤ N . Given
δ0 = 1

2
p
√
δ/2 and a = νΩ(δ0), we know Ω has a δ0-net, C, and we denote the elements of C as

{y1, . . . , ya}. In other words, for any x ∈ Ω, there is a yi ∈ Cd such that dΩ(x, yi) < δ0.

First, we will define an encoding function ρ : X → Ra. For each yi, we will use a soft indicator
function e−bdΩ(x,Bδ0

(yi)) and set the constant b so that e−bdΩ(x,Bδ0
(yi)) is "sufficiently" small if

dΩ(x,Bδ0(yi)) > δ0. More formally, we know that limb→∞ e−bδ0 = 0 so there is β ∈ R such that
for all b > β, e−bδ0 <

δp0
dp
max·a . Set b0 to be such that b0 > β. Let hi(x) = e−b0dΩ(x,Bδ0

(yi)) for each
i ∈ [a]. For a given x ∈ Ω, we compute h : Ω → Ra as

h(x) = [h1(x), . . . , ha(x)]

Then we define the encoding function h : X → Ra as

h(S) =

n∑
i=1

wi
h(xi)

∥h(xi)∥1

Note that ∥h(S)∥1 = 1 and h is continuous since Wasserstein distances metrize weak convergence.
Additionally, since dΩ(x,Bδ0(yi)) is the distance from x to the δ0-ball around yi, we are guaranteed
to have one j where hj(xi) = 1 so ∥h(xi)∥1 > 1.

Now, we define a decoding function g : Ra → X as g(v) = {(yi, vi
∥v∥1

) : i ∈ [a]}. In order to show
that g and h yields a valid (δ, a,G)-sketch of X , we must show that g ◦ h(S) is sufficiently close to
S under the Wp distance. First, we know that

Wp
p(g ◦ h(S), S) ≤

n∑
i=1

a∑
j=1

w1
hj(xi)

∥h(xi)∥1
d(xi, yj)

p.

Let dmax be the diameter of Ω. For a given xi, we can partition {h1(xi), . . . , ha(xi)} into
those where hj(xi) ≥ δp0

dp
max·a and those where hj(xi) <

δp0
dp
max·a i.e. {hj1(xi), . . . , hjk(xi)} and

{hjk+1
(xi), . . . , hja(xi)} respectively. If hj(x) ≥ δp0

dp
max·a , then

e−b0dΩ(x,Bδ0
(yi)) ≥ δp0

dpmax · a
> e−b0δ0

6

so dΩ(x,Bδ0(yi)) < δ0. Then

Wp
p(g ◦ h(S), S) ≤

n∑
i=1

m∑
j=1

wi
hj(xi)

∥h(xi)∥1
dΩ(xi, yj)

p.

<

n∑
i=1

wi

(k∑
ℓ=1

hjℓ(xi)

∥h(xi)∥1
(2δ0)

p +

a∑
ℓ=k+1

δp0
dpmax · a

dpmax

)
since dΩ(xi, yj) ≤ dmax

≤
n∑

i=1

wi(2
pδp0 + δp0) ≤ 2p

(
p
√

δ/2 · 1
2

)p

+
1

2p
· δ
2
<

δ

2
+

δ

2
= δ

Thus, the encoding function h and the decoding function g make up a (δ, a,G)-sketch.

Note that the sketch outlined in Theorem 3.4 is a smooth version of a one-hot encoding. With
Theorem 3.4 and Lemma 3.3, we will now give an explicit formulation of an ϵ-approximation of f
via sum-pooling of continuous functions.

Corollary 3.5 Let ϵ > 0, (Ω, dΩ) be a compact metric space and let X be the space of weighted
point sets equipped with the p-Wasserstein, Wp. Suppose for any δ, (Ω, dΩ) has covering number
a(δ). Then given a function f : X × X → R that is uniformly continuous and permutation invariant,
there is continuous functions h : Ω → Ra(δ), ϕ : Ra(δ) → Ra′

, and ρ : Ra′ → R, such that for any
A,B ∈ X ∣∣∣∣∣f(A,B)− ρ

(
ϕ
(∑

(x,wx)∈A

wxh(x)
)
+ ϕ

(∑
(x,wx)∈B

wxh(x)
))∣∣∣∣∣ < ϵ

where h, ϕ and ρ are all continuous and a′ = 4 · a(δ) + 1.

Due to Eqn. (1), instead of considering the function h which takes a set of points S ∈ X as input, we
now only need to model the function h : Ω → Ra, which takes a single point x ∈ S as input. For
simplicity, assume that the input metric space (Ω, dΩ) is a compact set in some Euclidean space Rd.
Note that in contrast to Lemma 3.3, each h, ϕ and ρ is simply a continuous function, and there is no
further group invariance requirement. Furthermore, all the dimensions of the domain and range of
these functions are bounded values that depend only on the covering number of Ω, the target additive
error ϵ, and independent to the maximum size N of input points. We can use multilayer perceptrons
(MLPs) hθ1 , ϕθ2 , and ρθ3 in place of h, ϕ and ρ to approximate the desired function. Formally, we
define the following family of neural networks:

NProductNet(A,B) = ρθ3

(
ϕθ2

(∑
(x,wx)∈A

wxhθ1(x)
)
+ ϕθ2

(∑
(x,wx)∈B

wxhθ1(x)
))

. (2)

In practice, we consider the input to the the neural network hθ1 to be a point x ∈ Ω along with
its weight wx. As per the discussions above, functions represented by NProductNet can universally
approximate SFGI product functions on the space of point sets. See Figure 1 for an illustration of our
universal architecture for approximating product functions on point sets. As p-Wasserstein distances,
Wp : X ×X → R, are uniformly continuous with respect to the underlying metric Wp, we can apply
our framework for the problem of approximating p-Wasserstein.

Importantly, the number of parameters in NProductNet does not depend on the maximum size of the
point set but rather only on the ϵ additive error and by extension, the covering number of the original
metric space. This is because the encoding function for our sketch is defined as the summation of
single points into Ra where a is independent of the size of the input set. Contrast this result with
latent dimension in the universality statement of DeepSets (cf. Theorem 2.1), which is dependent
on the input point set size. Note that in general, the model complexities of the MLPs ρθ3 , ϕθ2 , and
hθ1 depend on the dimensions of the domain and co-domain of each function they approximate (ρ,
ϕ and h) and the desired approximation error ϵ. We assume that MLPs are Lipschitz continuous.
In our case, ϕθ2 operates on the sum of hθ1(x)s for all N number of input points in A (or in B).
In general, the error made in hs may accumulate N times, which causes the precision we must
achieve for each individual hθ1(x) (compared to h(x)) to be Θ(ϵ/N). This would have caused
the model complexity of hθ1 to depend on N . Fortunately, this is not the case for our encoding

7

Siamese
network on

set elements
Final sum-pooling and MLP

Euclidean
embeddings from
sum pooling over

set elements

Siamese
network on

embeddings

Figure 1: Visually representing a neural network which can universally approximate uniformly continuous
SFGI product functions over pairs of point sets.

function h. In particular, because our encoding function can be written in the specific form of a
normalized sum of individual points in the set S; i.e, ϕθ2 operates on

∑
(x,wx)∈S wxhθ1(x) with∑

x wx = 1, the error accumulated by the normalized sum will be less than the maximum error
from any single point h(x) for x ∈ S. Thus, as both the error for each MLP and the dimension of
the domain and co-domain of each approximated function (ρ, ϕ, h) do not depend on the size of
the input point set N , we get that ρθ3 , ϕθ2 and hθ1 each have model complexity independent of the
size of the input point set. In short, because the encoding and decoding functions of our sketch can
be approximated with neural networks with model complexity independent of input point set size,
we are able to achieve a low model complexity neural network which can approximate Wasserstein
distance arbitrarily well. Note that in general, we are not guaranteed to be able to find a sketch which
can be approximated by neural networks which are independent of input size. Finally, this neural
network architecture can also be applied to approximating Hausdorff distance. More details regarding
Hausdorff distance approximation are available in Appendix A. We summarize the above results in
the following corollary.

Corollary 3.6 There is a network in the form of NProductNet which can approximate the p-
Wasserstein distance between point sets to within an additive ϵ-error. The number of parameters in
this network depends on ϵ and the covering number of Ω and not on the size of each point set.

Additionally, if we replace the sum-pooling with max in NProductNet, there is a network of such a
form where we can also approximate Hausdorff distance between point sets to additive ϵ accuracy.

Exponential dependence on dimension Although the model complexity of NProductNet is inde-
pendent of the size of the input point set, it depends on the covering number of Ω which, in turn,
can have an exponential dependence on the dimension of Ω. In short, this means that the model
complexity of NProductNet has an exponential dependence on the dimension of Ω. However, in
practice, many machine learning tasks (e.g. 3D point processing) involve large point sets sampled
from low-dimensional space (d = 3). Furthermore, in general, the covering number of Ω will depend
on the intrinsic dimension of Ω rather than the ambient dimension. For instance, if the input point
sets are sampled from a hidden manifold of dimension d′ (where d′ which is much lower than the
ambient dimension d), then the covering number would depend only on d′ and the curvature bound
of the manifold. In many modern machine learning applications, it is often assumed that the data
is sampled from a hidden space of low dimension (the manifold hypothesis) although the ambient
dimension might be very high.

Using max-pooling instead of sum-pooling. Observe that in the final step of combining the
Euclidean outputs for two point sets A,B ∈ X ,

∑
(x,wx)∈A wxhθ1(x) +

∑
(x,wx)∈B wxhθ1(x), we

use the sum of these two components (as in a DeepSet architecture) :
∑

(x,wx)∈A wxhθ1(x) and∑
(x,wx)∈B wxhθ1(x), to ensure the symmetric condition of SFGI product functions. One could

replace this final sum with a final max such as in PointNet. However, to show that PointNets are able
to universally approximate continuous functions F : K → R where K ⊆ Ra×2 is compact, we need

8

Table 1: Mean relative error between approximations and ground truth Wasserstein distance between
point sets. The top row for each dataset shows the approximation quality for point sets with input
sizes that were seen at training time; while he bottom row shows the approximation quality for point
sets with input sizes that were not seen at training time. Note that NProductNetis our model.

Dataset Input size NProductNet WPCE NSDeepSets Sinkhorn

noisy-sphere-3 [100, 300] 0.046 ± 0.043 0.341 ± 0.202 0.362 ± 0.241 0.187 ± 0.232
[300, 500] 0.158 ± 0.198 0.356 ± 0.286 0.608 ± 0.431 0.241 ± 0.325

noisy-sphere-6 [100, 300] 0.015 ± 0.014 0.269 ± 0.285 0.291 ± 0.316 0.137 ± 0.122
[300, 500] 0.049 ± 0.054 0.423 ± 0.408 0.508 ± 0.473 0.198 ± 0.181

uniform 256 0.097 ± 0.073 0.120 ± 0.103 0.123 ± 0.092 0.073 ± 0.009
[200, 300] 0.131 ± 0.096 1.712 ± 0.869 0.917 ± 0.869 0.064 ± 0.008

ModelNet-small [20, 200] 0.084 ± 0.077 0.077 ± 0.075 0.105 ± 0.096 0.101 ± 0.032
[300, 500] 0.111 ± 0.086 0.241 ± 0.198 0.261 ± 0.245 0.193 ± 0.155

ModelNet-large 2048 0.140 ± 0.206 0.159 ± 0.141 0.166 ± 0.129 0.148 ± 0.048
[1800, 2000] 0.162 ± 0.228 0.392 ± 0.378 0.470 ± 0.628 0.188 ± 0.088

RNAseq [20, 200] 0.012 ± 0.010 0.477 ± 0.281 0.482 ± 0.291 0.040 ± 0.009
[300, 500] 0.292 ± 0.041 0.583 ± 0.309 0.575 ± 0.302 0.048 ± 0.006

Table 2: Training time and number of epochs needed for convergence for best model
Dataset NProductNet WPCE NSDeepSets

noisy-sphere-3 Time 6min 1hr 46min 9min
Epochs 20 100 100

noisy-sphere-6 Time 12min 4hr 6min 1hr 38min
Epochs 20 100 100

uniform Time 7min 3hr 36min 1hr 27min
Epochs 23 100 100

ModelNet-small Time 7min 1hr 23min 12 min
Epochs 20 100 100

ModelNet-large Time 8min 3hr 5min 40min
Epochs 20 100 100

RNAseq(2k) Time 15min 14hr 26min 3hr 01min
Epochs 73 100 100

to use a δ-net for K which will also serve as the intermediate dimension for ϕ. As K ⊆ [0, N]a×2

in our case (where N is the maximum cardinality for a point set), the intermediate dimension for a
max-pooling invariant architecture at the end (i.e. PointNet) now depends on the maximum size of
input point sets.

4 Experimental results

We evaluate the accuracy of the 1-Wasserstein distance approximations of our proposed neural network
architecture, NProductNet, against two different baseline architectures: (1) a Siamese autoencoder
known as the Wasserstein Point Cloud Embedding network (WPCE) [15] (previously introduced
at the end of Section 1 and is a SOTA method of neural approximation of Wasserstein distance)
and (2) a Siamese DeepSets, denoted as NSDeepSets, which is a single DeepSets model which maps
both point sets to a Euclidean space and approximates the 1-Wasserstein distance as the ℓ2 norm
between output of each point set. As Siamese networks are widely employed for metric learning,
NSDeepSets model is a natural baseline for comparison again NProductNet. We additionally test our
neural network approximations against the Sinkhorn distance where the regularization parameter was
set to ϵ = 0.1. For each model, we record results for the best model according to a hyperparameter

9

search with respect to the parameters of each model. Finally, we use the ModelNet40 [31] dataset
which consists of point clouds in R3 and a gene expression dataset (RNAseq) which consists of
4360 cells each represented by 2000 genes (i.e. 4360 points in R2000) as well as three synthetic
datasets: (1) uniform, where point sets are in R2, (2) noisy-sphere-3, where point sets are in R3, (3)
noisy-sphere-6, where point sets are in R6. The RNAseq dataset is publicly available courtesy of the
Allen institute [32]. Additional details and experiments approximating the 2-Wasserstein distance are
available in Appendix D.

Approximating Wasserstein distances. Our results comparing 1-Wasserstein distance approxima-
tions are summarized in Table 1. Additionally, see Table 3 for a summary of time needed for training.
For most datasets, NProductNet produces more accurate approximations of Wasserstein distances for
both input point sets seen at training time and for input point sets unseen at training time. For the high
dimensional RNAseq dataset, our approximation remains accurate in comparison with other methods,
including the standard Sinkhorn approximation for input point sets seen at training time. The only
exception is ModelNet-small, where the NProductNet approximation error is slightly larger than
WPCE for input point set sizes using during training (top row for each dataset in Table 1). However,
for point sets where the input sizes were not used during training (bottom row for each dataset in
Table 1), NProductNet showed siginificantly lower error than all other methods including WPCE.
These results along with a more detailed plot in Figure 2 in Appendix D indicate that NProductNet

generalizes better than WPCE to point sets of input sizes unseen at training time. Also, see Appendix
D for additional discussion about generalization. Furthermore, one major advantage of NProductNet

over WPCE is the dramatically reduced time needed for training (cf. Table 2). This substantial
difference in training time is due to WPCE’s usage of the Sinkhorn reconstruction loss as the O(n2)
computation time for the Sinkhorn distance can be prohibitively expensive as input point set sizes
grow. Thus, our results indicate that, compared to WPCE, NProductNet can reduce training time
while still achieving comparable or better quality approximations of Wasserstein distance. Using our
NProductNet, we can produce high quality approximations of 1-Wasserstein distance while avoiding
the extra cost associated with using an autoencoder architecture and Sinkhorn regularization. Finally,
all models produce much faster approximations than the Sinkhorn distance (see Tables 3 and 6 in
Appendix D). In summary, as compared to WPCE, our model is more accurate in approximating both
1-Wasserstein distance, generalizes better to larger input point set sizes, and is more efficient in terms
of training time.

5 Concluding Remarks

Our work presents a general neural network framework for approximating SFGI functions which
can be combined with geometric sketching ideas into a specific and efficient neural network for
approximating p-Wasserstein distances. We intend to utilize NProductNet as an accurate, efficient,
and differentiable approximation for Wasserstein distance in downstream machine learning tasks
where Wasserstein distance is employed, such as loss functions for aligning single cell multi-omics
data [8] or compressing energy profiles in high energy particle colliders [10, 26]. Beyond Wasserstein
distance, we will look to apply our framework to a wide array of geometric problems that can be
considered SFGI functions and are desireable to approximate via neural networks. For instance,
consider the problems of computing the optimal Wasserstein distance under rigid transformation or
the Gromov-Wasserstein distance, which both can be represented as an SFGI function where the
factor-wise group invariances include both permutation and rigid transformations. Then our sketch
must be invariant to both permutations and orthogonal group actions on the left. It remains to be seen
if there is a neural network architecture which can approximate such an SFGI function to within an
arbitrary additive ϵ-error where the complexity does not depend on the maximum size of the input set.

6 Acknowledgements

The authors thank anonymous reviewers for their helpful comments. Furthermore, the authors thank
Rohan Gala and the Allen Institute for generously providing the RNAseq dataset. Finally, Samantha
Chen would like to thank Puoya Tabaghi for many helpful discussions about permutation invariant
neural networks and Tristan Brugère for his implementation of the Sinkhorn algorithm. This research
is supported by National Science Foundation (NSF) grants CCF-2112665 and CCF-2217058 and
National Institutes of Health (NIH) grant RF1 MH125317.

10

References
[1] T. Amir, S. J. Gortler, I. Avni, R. Ravina, and N. Dym. Neural injective functions for multisets,

measures and graphs via a finite witness theorem. arXiv preprint arXiv:2306.06529, 2023.

[2] A. Backurs, Y. Dong, P. Indyk, I. Razenshteyn, and T. Wagner. Scalable nearest neighbor search
for optimal transport. In International Conference on machine learning, pages 497–506. PMLR,
2020.

[3] P. Bongini, M. Bianchini, and F. Scarselli. Molecular generative graph neural networks for drug
discovery. Neurocomputing, 450:242–252, 2021.

[4] C. Bueno and A. Hylton. On the representation power of set pooling networks. Advances in
Neural Information Processing Systems, 34:17170–17182, 2021.

[5] N. Courty, R. Flamary, and M. Ducoffe. Learning wasserstein embeddings. arXiv preprint
arXiv:1710.07457, 2017.

[6] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in
neural information processing systems, 26, 2013.

[7] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

[8] P. Demetci, R. Santorella, B. Sandstede, W. S. Noble, and R. Singh. Gromov-wasserstein
optimal transport to align single-cell multi-omics data. BioRxiv, pages 2020–04, 2020.

[9] C. Deng, O. Litany, Y. Duan, A. Poulenard, A. Tagliasacchi, and L. J. Guibas. Vector neu-
rons: A general framework for so (3)-equivariant networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 12200–12209, 2021.

[10] G. Di Guglielmo, F. Fahim, C. Herwig, M. B. Valentin, J. Duarte, C. Gingu, P. Harris,
J. Hirschauer, M. Kwok, V. Loncar, et al. A reconfigurable neural network asic for detector front-
end data compression at the hl-lhc. IEEE Transactions on Nuclear Science, 68(8):2179–2186,
2021.

[11] W. Du, H. Zhang, Y. Du, Q. Meng, W. Chen, N. Zheng, B. Shao, and T.-Y. Liu. Se (3) equivariant
graph neural networks with complete local frames. In International Conference on Machine
Learning, pages 5583–5608. PMLR, 2022.

[12] N. Dym and S. J. Gortler. Low dimensional invariant embeddings for universal geometric
learning. arXiv preprint arXiv:2205.02956, 2022.

[13] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing
for quantum chemistry. In International conference on machine learning, pages 1263–1272.
PMLR, 2017.

[14] P. Indyk and N. Thaper. Fast image retrieval via embeddings. In 3rd international workshop on
statistical and computational theories of vision, volume 2, page 5, 2003.

[15] K. Kawano, S. Koide, and T. Kutsuna. Learning wasserstein isometric embedding for point
clouds. In 2020 International Conference on 3D Vision (3DV), pages 473–482. IEEE, 2020.

[16] N. Keriven and G. Peyré. Universal invariant and equivariant graph neural networks. Advances
in Neural Information Processing Systems, 32, 2019.

[17] D. Lim, J. Robinson, L. Zhao, T. Smidt, S. Sra, H. Maron, and S. Jegelka. Sign and basis
invariant networks for spectral graph representation learning. arXiv preprint arXiv:2202.13013,
2022.

[18] A. Makkuva, A. Taghvaei, S. Oh, and J. Lee. Optimal transport mapping via input convex
neural networks. In International Conference on Machine Learning, pages 6672–6681. PMLR,
2020.

11

[19] H. Maron, H. Ben-Hamu, N. Shamir, and Y. Lipman. Invariant and equivariant graph networks.
arXiv preprint arXiv:1812.09902, 2018.

[20] H. Maron, E. Fetaya, N. Segol, and Y. Lipman. On the universality of invariant networks. In
International conference on machine learning, pages 4363–4371. PMLR, 2019.

[21] H. Maron, O. Litany, G. Chechik, and E. Fetaya. On learning sets of symmetric elements. In
International conference on machine learning, pages 6734–6744. PMLR, 2020.

[22] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 652–660, 2017.

[23] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural
network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

[24] B. Schmitzer. A sparse multiscale algorithm for dense optimal transport. Journal of Mathemati-
cal Imaging and Vision, 56(2):238–259, 2016.

[25] N. Segol and Y. Lipman. On universal equivariant set networks. arXiv preprint
arXiv:1910.02421, 2019.

[26] R. Shenoy and The CMS Collaboration Team. EMD Neural Network for HGCAL Data
Compression Encoder ASIC. In APS April Meeting Abstracts, volume 2022 of APS Meeting
Abstracts, page Q09.008, Jan. 2022.

[27] A. Taghvaei and A. Jalali. 2-wasserstein approximation via restricted convex potentials with
application to improved training for gans. arXiv preprint arXiv:1902.07197, 2019.

[28] M. A. Uy, Q.-H. Pham, B.-S. Hua, T. Nguyen, and S.-K. Yeung. Revisiting point cloud
classification: A new benchmark dataset and classification model on real-world data. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 1588–1597,
2019.

[29] E. Wagstaff, F. Fuchs, M. Engelcke, I. Posner, and M. A. Osborne. On the limitations of
representing functions on sets. In International Conference on Machine Learning, pages
6487–6494. PMLR, 2019.

[30] E. Wagstaff, F. B. Fuchs, M. Engelcke, M. A. Osborne, and I. Posner. Universal approximation
of functions on sets. Journal of Machine Learning Research, 23(151):1–56, 2022.

[31] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3d shapenets: A deep
representation for volumetric shapes. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1912–1920, 2015.

[32] Z. Yao, C. T. van Velthoven, T. N. Nguyen, J. Goldy, A. E. Sedeno-Cortes, F. Baftizadeh,
D. Bertagnolli, T. Casper, M. Chiang, K. Crichton, et al. A taxonomy of transcriptomic cell
types across the isocortex and hippocampal formation. Cell, 184(12):3222–3241, 2021.

[33] D. Yarotsky. Universal approximations of invariant maps by neural networks. Constructive
Approximation, 55(1):407–474, 2022.

[34] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola. Deep
sets. Advances in neural information processing systems, 30, 2017.

12

	Introduction
	Preliminaries
	Learning functions between point sets
	A general framework for functions on product spaces
	Universal neural networks for functions between point sets

	Experimental results
	Concluding Remarks
	Acknowledgements

