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Abstract

An agent learning an option in hierarchical reinforcement learning must solve three
problems: identify the option’s subgoal (termination condition), learn a policy, and
learn where that policy will succeed (initiation set). The termination condition is
typically identified first, but the option policy and initiation set must be learned
simultaneously, which is challenging because the initiation set depends on the
option policy, which changes as the agent learns. Consequently, data obtained from
option execution becomes invalid over time, leading to an inaccurate initiation
set that subsequently harms downstream task performance. We highlight three
issues—data non-stationarity, temporal credit assignment, and pessimism—specific
to learning initiation sets, and propose to address them using tools from off-policy
value estimation and classification. We show that our method learns higher-quality
initiation sets faster than existing methods (in MINIGRID and MONTEZUMA’S
REVENGE), can automatically discover promising grasps for robot manipulation (in
ROBOSUITE), and improves the performance of a state-of-the-art option discovery
method in a challenging maze navigation task in MuJoCo.

1 Introduction

Temporal abstraction, which is crucial for scaling RL to long-horizon problems [Konidaris, 2019,
Sutton et al., 2022], is elegantly captured using the options framework [Sutton et al., 1999]. Unlike
primitive actions that only last for a single timestep, options execute a policy until some termination
condition is met. General purpose agents must possess many such options to solve a wide variety of
tasks [White, 2017], but increasing the size of the action set raises both the complexity of learning
and the branching factor of search [Littman et al., 1995]. This necessitates a mechanism for locally
pruning irrelevant options: most options do not apply in a given state and the agent can lower its
effective branching factor by ignoring them [Precup et al., 1998, Wen et al., 2020]. Fortunately, the
options framework includes the concept of initiation sets which captures the idea of local applicability:
an option can only be executed from states inside the initiation set.

It is natural to view an initiation set as the set of states from which option execution is likely
to succeed; in that case, learning it is straightforward when the option’s policy is fixed: run the
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option from different states, record the outcome, and learn a classifier that predicts whether option
execution will succeed at a given state [Konidaris and Barto, 2009, Kaelbling and Lozano-Pérez,
2017]. However, this is complicated by non-stationarity during learning: as the option policy changes,
previously recorded outcome labels become invalid. How should the initiation classifier change in
response? Another challenge is that initiation set learning suffers from a pessimistic bias: the option
policy mostly improves for states inside the initiation set because option execution only occurs from
such states. Therefore, if a state is excluded from the initiation set early during learning, it will likely
remain excluded even as the policy improves over time. This pessimistic bias causes initiation sets to
mostly shrink and rarely expand [Bagaria et al., 2021a], even in the face of policy improvement; this
is potentially catastrophic for learning since the agent prematurely gives up on options in favor of
primitive actions [Harb et al., 2018].

To address the issue of non-stationarity, we introduce the Initiation Value Function (IVF), a general
value function (GVF) [Sutton et al., 2011, White, 2015] that predicts the probability that option
execution will succeed from a given state. Since the IVF is purely predictive, it can be learned using
tools from off-policy policy evaluation (OPE) [Voloshin et al., 2021] and does not interfere with
the option’s main task of maximizing its internal reward function [Sutton et al., 2023]. Unlike the
classification approach described above, the IVF adapts to a changing policy: as the policy improves
over time, so does the IVF’s estimates of its probability of success. We show how the IVF can be
used as a direct estimate of the option’s initiation set or as input to a weighted classifier that accounts
for changes in the option policy.

To address the pessimistic bias of learning initiation sets, we expand the criterion for including a state
in the option’s initiation set: in addition to states from which option execution is likely to succeed, we
also include states for which the option policy is most likely to improve. By identifying and adding
these states to the initiation set, we mitigate the pessimistic bias and prevent initiation sets from
collapsing as the option is learned.

For evaluation, we first measure how accurately we can deduce an option’s initiation set in MINIGRID-
FOURROOMS and the first screen of MONTEZUMA’S REVENGE. Then, we demonstrate that our
proposed methods can effectively identify promising grasps in challenging robot manipulation
problems in ROBOSUITE. Finally, by integrating our method for learning initiation sets into an
existing option discovery algorithm, we solve a maze navigation problem in MuJoCo that baseline
agents are unable to.

2 Background and Related Work

As is standard in HRL [Barto and Mahadevan, 2003], we consider problems that can be modeled as
Semi Markov Decision Processes (SMDPs) M = (S,A,R, T , γ), where S is the state space, A is
the action space (which contains options and primitive actions), R is the reward function, T is the
transition function and γ is the discount factor. An option o ∈ O ⊆ A models temporally extended
behaviors; o = (Io, πo, βo), where Io, the initiation set of the option, describes the states from which
the option can be executed, βo is the termination or subgoal region and πo is the policy [Sutton et al.,
1999]. When using RL to learn the option policy, an internal option subgoal reward function Ro and
timescale γo completes the subtask description of the option and is used to train πo [Precup, 2000,
Barto and Mahadevan, 2003, White, 2017].

An important problem in HRL is that of option discovery, where algorithms focus on identifying
option termination conditions (subgoals) and usually assume that all options apply everywhere [Dayan
and Hinton, 1993, Bacon et al., 2017, Eysenbach et al., 2019, Machado et al., 2017]; as previously
discussed, this is not a scalable strategy for developing general-purpose agents. We hypothesize that
well-learned initiation sets will improve the quality of options, regardless of how they are discovered,
and will eventually lead to more performant hierarchical RL agents.

General Value Functions. Value-based RL typically predicts and maximizes a single scalar reward,
but a value function can be generalized to predict (and sometimes control [Jaderberg et al., 2017]) the
discounted sum of any real-valued “cumulant” that can be computed from the agent’s observations
[Sutton et al., 2011, White, 2015]. Such Generalized Value Functions (GVFs) efficiently solve the
temporal prediction tasks and can represent rich knowledge about the world [Schaul and Ring, 2013].
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Initiation Sets in Robotics and Planning. Initiation sets are crucial in classical planning [Fikes
et al., 1972] as well as task and motion planning (where they are referred to as preconditions) [Garrett
et al., 2021], but they are usually designed by a domain expert [Kaelbling and Lozano-Pérez, 2017].
In robotics (affordances), they are usually programmed to avoid collisions [Xu et al., 2021] or to
correspond to relevant object attributes [Şahin et al., 2007, Huang et al., 2023]. In control theory
(regions of attraction), they denote states where policies are provably stable [Tedrake, 2009, Ames and
Konidaris, 2019]. While our proposed methods do not come with finite-time convergence guarantees,
they are arguably more general and scalable because they do not assume pre-programmed policies or
additional structure such as objects and robot dynamics.

Techniques for learning initiation sets fall into 3 categories: classification, value-based and end-to-end.

Classification approach. When initiation sets are learned, it is most often framed as binary
classification [Konidaris and Barto, 2009, Bagaria and Konidaris, 2020, Khetarpal et al., 2020,
Bagaria et al., 2021b]. This approach is sound when the option policy is fixed [Konidaris et al.,
2018] or when the affordances correspond to primitive actions [Khetarpal et al., 2020]. But, this
approach does not scale to the continual learning setting [Ring, 1995, Mcgovern, 2002] where new,
temporally extended options keep getting discovered and their policies and initiation sets must be
learned simultaneously.

Value function approach. SayCan grounds large language models using value functions of skills
trained using offline RL [Brohan et al., 2023]. Since the policies are pre-trained, they do not confront
the challenges of jointly learning policies and their initiation sets discussed in this paper. Nica et al.
[2022] learn affordances via Monte Carlo estimation (which is equivalent to binary classification
under a restrictive 0/1 reward function), but do not account for the pessimistic bias or the temporal
structure in the initiation set learning problem. Furthermore, both SayCan and Nica et al. [2022]
design the option reward function so that the resulting value function can be interpreted as an
affordance/initiation probability; this is a strong restriction because RL is famously sensitive to
reward design [Randløv and Alstrøm, 1998]. Our method allows the designer to pick the reward
function appropriate for their task and the initiation function is learned using the appropriate cumulant
using policy evaluation. Relay Networks [Kumar et al., 2018] learn initiation regions by thresholding
the critic, but have difficulty picking a threshold because it is not possible to interpret arbitrary value
functions as initiation probabilities.

End-to-end approaches. IoC [Khetarpal and Precup, 2019] learns initiation sets in the Option-
Critic (OC) framework; GrASP [Veeriah et al., 2022] learns affordances that are useful for Monte
Carlo Tree Search (MCTS). These are promising gradient-based approaches to learning affordances,
but are specific to OC and MCTS respectively. Furthermore, they both learn affordances that
maximize task reward, we instead focus on learning options that each represent their own subtask
[White, 2017] and could later be composed to solve many downstream tasks [Barreto et al., 2019].

3 Effectively Learning Initiation Sets

The problem of learning initiation sets can be naturally framed as training a classifier where states on
trajectories that achieve the subgoal are labeled as positive examples, and states on trajectories that
fail to achieve the subgoal are labeled as negative examples. A probabilistic classifier trained on this
data will predict the probability that an option will succeed from a given state, which is exactly the
desired semantics of an initiation set. However, when initiation sets and policies have to be learned
together, such a classifier is no longer a good estimator, for three reasons:

Data non-stationarity. The first reason is data non-stationarity, which refers to the phenomenon that
previously collected training examples become invalid during the course of learning, but continue to
impact classifier training. Consider a trajectory τ0 obtained by rolling out an option policy πt0

o at
time t0. If the policy is in the early stages of training, πt0

o will likely fail to reach the subgoal region
βo and τ0 will be labeled as a negative example (Y (s) = 0,∀s ∈ τ0). At some future time t1, the
policy might improve, but the states along τ0 will continue to have a negative label, which means
that they will continue to be outside the initiation set. As a result, we will fail to capture the growing
competence/reachability of πt>t0

o . A naïve solution to this problem would be to discard old training
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Figure 1: Learning an initiation set for an option targeting subgoal βo (star). (left) Temporal structure
in initiation set learning: even though τ1 (black) fails to reach the goal, states along it should get
credit because of the portion shared with the successful trajectory τ2 (red); this does not happen using
a simple classification approach. (middle) the initiation value function (IVF) Vo (Sec 3.1) is shown in
green: darker the shade, higher the value; classification examples should be re-weighted to account
for a changing policy. (right) Pessimistic bias causes initiation sets to shrink (blue → red) over time.

examples, but not only would that be sample-inefficient, it is also unclear at what point a training
example is “old enough” to be discarded.

Pessimistic bias. The second reason, pessimism, refers to the fact that once states are deemed to be
outside the initiation set, they are unlikely to switch labels because the option has low probability of
being executed from them, and so policy improvement from these states is unlikely (Figure 1 (right)).

Temporal Structure. The third reason is that classification (or equivalently, Monte Carlo learning
[Sutton and Barto, 2018]) does not exploit the temporal structure in the initiation set learning problem.
Figure 1 (left) shows two trajectories sampled from the same option’s policy: τ1 reaches the goal
and τ2 does not. Any form of Monte Carlo estimation using this data would assign an initiation
probability of 0 to most states in trajectory τ1. However, this does not assign enough credit to most of
the good decisions made along τ1—the only way to achieve that would be via temporal bootstrapping.
This form of generalization is not possible when using classification.

To address non-stationarity and to exploit temporal structure, we formulate a new general value
function, the Initiation Value Function (IVF; Section 3.1), learned using temporal difference (TD)
methods [Sutton, 1988]. To address pessimism, we augment the initiation set with states from which
the option policy is most likely to improve (Section 3.3).

3.1 Initiation Value Function (IVF)

An option o’s initiation set Io is the set of states from which the option policy πo can succeed with
high probability: Io = {s : P(s′ ∈ βo|S = s,A = o) > T} (T is a predefined threshold). Treating
the success condition of the option as a cumulant co : s→ {0, 1} and setting the timescale γco := 1,
the corresponding GVF

Vπo(st) = Eπo

[ t=Ho∑
t=0

co(st+1)|st+1 ∼ T (st, πo(st))
]
= P(co = 1|S = st, O = o)

represents the initiation probability at state st (Ho is the option horizon). Note that Vπo is different
from Vo, the value function used by the option policy for control; this is because πo maximizes an
arbitrary reward function Ro and so the resulting value function Vo, which approximates the value of
the optimal option policy V π∗

o , cannot be interpreted as an initiation probability.

Using the IVF as an initiation set. To directly use the IVF as the initiation set, we need to pick a
threshold T above which a state is deemed to be in the option’s initiation set. Previous work [Kumar
et al., 2018] reused the option value function Vo as the IVF, but had to develop heuristic schemes to
pick a threshold. But since Vπo

ϕ outputs an interpretable number between 0 and 1 (we use a sigmoid
layer at the end of ϕ to enforce this), it is easy to threshold, regardless of Ro.

Learning the IVF. Computing the probability of success of a given policy πt
o is equivalent to the

problem of off-policy policy evaluation. Our approach to policy evaluation must be sample-efficient—
if it is not, the option policy will change before we are able to sufficiently evaluate it [Sutton et al.,
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2007]. Furthermore, the initiation cumulant co is a sparse binary function, which makes learning
with the Monte Carlo estimator high variance and sample inefficient. This once again underscores
the importance of exploiting temporal structure of the problem using TD-learning (we use TD(0))
to estimate Vπo

ϕ , which unlike a classifier, is able to propagate value from partial trajectories (as
illustrated in Figure 1 (left)). In this view, using a classifier is equivalent to using a Monte Carlo
estimate of the IVF: high-variance, sample inefficient, and unable to bootstrap.

3.2 Combining Classification and the Initiation Value Function (IVF)

In Section 3.1 we connected the initiation set to a GVF, which allows us to use all the tools of
value-based RL [Sutton and Barto, 2018] to learn the initiation set. However, the classification
approach mentioned earlier has some attractive qualities: specifically, classification is easier than
regression [Bishop and Nasrabadi, 2006] and the supervised learning community has developed
powerful tools for learning classifiers using neural networks and cross-entropy loss [Goodfellow
et al., 2016]. To get the best of both worlds, we propose an additional method that combines value
estimation and classification.

Recall that binary classification can be described as the process of finding parameters θ that minimize
the cross-entropy loss L(θ) in the training data D = {(si, Yi)}|D|

i=0 where si are the inputs (states in
our case) and Yi are the classification labels (whether option execution was successful from s). To deal
with non-stationarity, we instead use the weighted binary cross-entropy loss Lw(θ) which minimizes
loss over a dataset D = {si, Yi, wt(si)} where wt(si), a state-dependent weight, represents the
desired contribution of the training example to the classification loss [Natarajan et al., 2013].

How should we set the weights wt(s) of a training example (si, Yi) in a way that reflects the evolving
competence of the option policy? Since the IVF evaluates the success probability of the current
option policy πt

o, we can heuristically use it as a reflection of our certainty in the training example
(si, Yi)—positively (negatively) labeled states contribute more to Lw when the IVF prediction is high
(low). Specifically, the weighting function is defined via the following simple equation:

wt(s) = YsV(s) + (1− Ys)(1− V(s)). (1)

As the IVF estimates that the option policy is becoming more competent at state s, the classifier’s
uncertainty about a negative example at s will increase, thereby causing that negative example to
contribute less to the classifier’s decision boundary. Similarly, if the policy degrades at s, then the
contribution of a positive label at s to Lw will go down. By weighing training examples in this way, a
binary classifier is able to adapt to data non-stationarity that results from a changing option policy.

At the end of every option execution, we therefore recompute weights using Equation 1 and re-train
option initiation classifiers using a weighted cross-entropy loss Lw.

Policy Improvement Prior. We can use the fact that policies in RL usually improve over time to
guide classifier training. To do this, we set the weight of positive examples wt(s) as 1 throughout
training. The underlying idea is that a state which leads to success once is likely to do so again with
an even better policy. The weights of negative examples are allowed to vary with the IVF as in Eq 1.

3.3 Overcoming Pessimistic Bias

Unsuccessful option trajectories cause the initiation set to shrink. When a state is outside the initiation
set, the option can no longer be executed from there. So even if the option could succeed from that
state in the future, it remains outside the initiation set and the option ends up with a smaller region of
competence than it needs to. This issue, which we call the pessimistic bias of learning initiation sets,
can prevent the learning of useful options and lowers the effectiveness of hierarchical RL agents3.

To mitigate this pessimistic bias, we expand the initiation set to also include states from which policy
improvement is most likely:

Io = {s : Vo(s) + B(s) > T, s ∈ S}.
Effectively identifying such states in high-dimensional spaces is the topic of bonus-based exploration
in deep RL [Taïga et al., 2019]. We propose two simple approaches:

3This issue is analogous to non-stationary dynamics in flat MDPs; see Section B in the Appendix.

5



1. Competence progress attempts to capture regions where a policy is either improving or
regressing [Şimşek and Barto, 2006, Stout and Barto, 2010, Baranes and Oudeyer, 2013].
This can be computed as changes in the IVF over time: B1(s) =

∣∣∣Vt
o(s)− Vt−K

o (s)
∣∣∣, where

Vt
o is the current IVF and Vt−K

o is the IVF estimate K timesteps ago (obtained using the
target network).

2. Count-based bonus approach keeps track of the number of times N(s, o) option o
has been executed from state s. This is then converted into an uncertainty measure:
B2(s) = c/

√
N(s, o), where c is a scalar hyperparameter [Strehl and Littman, 2008].

We use count-based bonuses in problems where tabular counts are readily available; otherwise, we
use competence progress.

4 Experiments

We aim to evaluate whether our methods can improve hierarchical RL. First, we evaluate whether they
result in better, more efficiently learned initiation sets. Second, we test if better initiation set learning
improves option learning as a whole. Finally, we incorporate our changes into a state-of-the-art skill
discovery method and check if resulting agent is able to outperform the baseline in a sparse-reward
continuous control problem.

Implementation Details. Option policies are learned using Rainbow [Hessel et al., 2018] when the
action-space is discrete and TD3 [Fujimoto et al., 2018] when it is continuous. Following Bagaria
et al. [2021a], all options share the same UVFA [Schaul et al., 2015] but condition it using their
own subgoals. The IVF is learned using Fitted Q-Evaluation [Le et al., 2019], prioritized experience
replay [Schaul et al., 2016] and target networks [Mnih et al., 2015]. The IVF Q-function and
initiation classifier are parameterized using neural networks that have the same architecture as the
Rainbow/TD3. Each option has a “gestation period” of 5 [Konidaris and Barto, 2009], which means
that before the option sees 5 successful trajectories, its initiation set is optimistically initialized to be
true everywhere. Since the training data for classification can be severely imbalanced, we use the
standard technique of upweighting the minority class [Japkowicz and Stephen, 2002].

4.1 Measuring the Quality of Initiation Sets

Before comparing different methods based on task performance, we specifically test the quality of
initiation sets learned in MINIGRID-FOURROOMS [Chevalier-Boisvert et al., 2018] and the first
screen of MONTEZUMA’S REVENGE [Bellemare et al., 2013]. In both domains, observations are
84× 84 images and the action-space is discrete. For this experiment, we design start states S0 in each
domain—in MINIGRID-FOURROOMS, S0 is the set of all states (since this is a small tabular domain)
and in MONTEZUMA’S REVENGE, S0 is a series of 100 states scattered across the first screen (more
details in the appendix). For the purpose of evaluating our initiation set learning algorithms, at every
episode, we sweep through states s ∈ S0 and reset the simulator to s. Option termination conditions
are also hand-defined: in FourRooms, we create options that target the center of each room; in
Montezuma’s Revenge, we define five options: those that navigate the player to each of the two doors,
one that navigates the player to the bottom-right and one to the bottom-left of the first screen and
finally an option that attempts to get the key.

Initiation Set Accuracy. At each state s ∈ S0, we record the initiation decision made by the
learning algorithm as Îo(s; θ) ∈ {0, 1}. We then execute the option policy πo from that state and
record whether or not the agent reached the option’s subgoal as Ys ∈ {0, 1}. Accuracy at state s, for
option o is then given by 1(Îo(s; θ) = Ys). This process is repeated several times for all options
o ∈ O and start states s ∈ S0. To be faithful to how options are learned in the online RL setting, we
only use the trajectory obtained by running the option for updating the initiation classifier and the
option policy if the learned classifier returned true at the start state, i.e, Îo(s; θ) = 1 (in which case
πo is updated using Rainbow [Hessel et al., 2018]; pseudocode in Appendix C.1).

Initiation Set Size. Although accuracy is a natural evaluation metric, it does not fully capture the
quality of the learned initiation set. For example, if the predicted initiation function returns false
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Figure 2: Measuring the quality of initiation sets in MiniGrid-FourRooms (left) and the first screen
of Montezuma’s Revenge (right). Solid lines denote mean accuracy and initiation set size, shaded
regions denote standard error. All curves are averaged over all state-option pairs and 5 random seeds.

everywhere (i.e, if Io(s; θ) = 0,∀s ∈ S0), then the option policy would not get new data to improve.
If the policy never improves, its true initiation set could also collapse; while such an initiation learner
would register high accuracy, the option would not be useful. As a result, we additionally measure
the normalized size of the “true” initiation set |Ys|: this is the fraction of start states S0 from which
Monte Carlo rollouts of the policy succeeds. A well-learned initiation set is not only accurate, it is
also as large as possible,4 reflecting a large region of option policy competence.

Competing methods. We compare the accuracy and size of the initiation sets learned by:

• Baseline binary. Binary classifier used to learn the initiation set. This is what is used in
essentially all prior work and is the only baseline method in this experiment.

• IVF. Threshold the Initiation Value Function as discussed in Section 3.1.

• Weighted. This is a weighted binary classifier discussed in Section 3.2.

Both the IVF and Weighted approaches use the competence progress exploration bonus described in
Section 3.3, its impact is ablated in Appendix E.

Discussion of results. Figure 2 shows that our proposed methods significantly outperform the
baseline binary classification approach, which learns classifiers that are less accurate and smaller than
those learned using other techniques. Furthermore, the accuracy of the baseline binary classifier falls
over time; this is because even though the policy improves (and hence the size of the true initiation
set increases), the learned initiation set remains small and unable to adapt to an improving policy.
By modifying the binary classifier using the weighting scheme described in Section 3.2, we are able
to learn more accurate initiation sets that reflect highly competent option policies. Interestingly, the
optimistic version of the IVF is necessary to learn good initiation sets in Montezuma’s Revenge,
but it underperforms compared to the plain IVF in FourRooms; we hypothesize that this is because
FourRooms is a small and simple enough domain that an exploration bonus is not strictly necessary.

4.2 Robot Manipulation: Identifying Promising Grasps

In the previous section, we showed that our methods can lead to higher quality initiation sets; now we
evaluate whether that can in turn improve option learning as a whole. We adopt robot manipulation as
a testbed because it is a natural problem setting for evaluating initiation set learning algorithms—for
example, consider a robot manipulating a hammer: not only should it choose a feasible, stable grasp
on the hammer, but it should also choose one that would allow it to subsequently drive a nail. This
problem, referred to as task-specific grasping in robotics, and has been studied extensively for a fixed
policy [Kokic et al., 2020, Fang et al., 2020, Zhao et al., 2021, Wen et al., 2022, Schiavi et al., 2022];
here we use RL to deduce which grasps are most likely to afford success while simultaneously learning
the skill policies. Furthermore, dense reward functions are often necessary to train RL policies in

4This is similar to the considerations of precision/recall in supervised learning.
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Figure 3: Task success rate for manipulation domains aggregated over 4 random seeds.

robot manipulation domains [Gu et al., 2017]; this section highlights that initiation probabilities can
be learned even when the reward function used to train πo is not sparse like the initiation cumulant.

We use three constrained manipulation tasks in ROBOSUITE [Zhu et al., 2020]: opening a door,
flipping a lever, and manipulating a sliding mechanism. Each task is modeled as a single option and
the policy and initiation set are learned simultaneously. Each environment has 250 possible start
states S0. At the start of each episode, a configuration is sampled from the initiation set learner:

s0 ∼ Io(s)∑
s′∈S0

Io(s′)
,∀s ∈ S0;

the manipulator is then reset to s0. The continuous observation space is 52-dimensional, the continu-
ous action space is 13-dimensional; we use TD3 for policy learning [Fujimoto et al., 2018].

Our algorithms are compared against two baselines: Random, which selects an arm configuration
at random at the start of each episode5, and Binary which treats initiation learning as vanilla binary
classification. Our algorithms, IVF and Weighted, employ the optimistic bias discussed in Section 3.3
by adding a count-based bonus to the predicted initiation probability.

Task success rates are shown in Figure 3. The DOOR task is the simplest: most of the grasp candidates
afford task success. As a result, the Random and Binary baselines are competitive with our algorithms.
The LEVER and SLIDE tasks are more challenging as the number of promising grasps is significantly
lower. In these domains, only the Weighted variant is able to consistently recover a policy with
success rate above 50%.

Figure 4 shows that our methods can identify good grasp poses without task-specific engineering
or human demonstrations. This is impressive given that human data [Mandikal and Grauman,
2021, 2022] or heuristics like image segmentation [Kokic et al., 2017, Rosen et al., 2022] are
typically required to learn these affordances efficiently, even in the case of a fixed policy. Additional
visualizations and ablations can be found in Appendix D and E.

4.3 Improving Option Discovery

Finally, to evaluate whether better option learning can improve option discovery, we integrate our
approach into an existing state-of-the-art algorithm: deep skill chaining (DSC) [Konidaris and Barto,
2009, Bagaria and Konidaris, 2020]. DSC learns a collection of options so that the subgoal region
βoi of an option oi is the initiation region Ioj of another option oj ; by learning options that funnel
into each other’s initiation sets, DSC learns how to sequentially compose options to reliably achieve
a goal. It does so by first learning an option that reaches the task goal, then another option that targets
the first option’s initiation set and so on, until the start-state is inside the initiation set of some option;
for more details, please refer to Appendix C.3 and the original papers [Konidaris and Barto, 2009,
Bagaria and Konidaris, 2020]. We chose to integrate our techniques with DSC because of its focus
on learning initiation sets jointly with options in an online and incremental reinforcement learning
setting and because the quality of initiation sets is crucial to its performance and stability [Bagaria
et al., 2021a].

5This baseline is equivalent to an initiation set that is uniformly true everywhere.
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Figure 4: Examples of promising grasp poses (top row) in DOOR (left), LEVER (middle) and SLIDE
(right): these are high probability samples from our initiation function; contrasted with bad grasp
poses (bottom row), which are low probability samples and are ruled out by the initiation function.

Figure 5: (left) Comparing the performance of baseline DSC [Bagaria et al., 2021a] to versions of
DSC with our initiation learning techniques. Solid lines denote average success rate over 5 random
seeds, shaded regions denote standard error. (right) A visualization of initiation sets learned in ANT
MEDIUM-MAZE, where the ant robot has to navigate from the bottom-right to the top-left. Each
color denotes the initiation set of a different option; although the plot only shows the location of the
ant in the maze, the initiation set is learned using the full 30-dimensional state.
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Experimental setup. We compare baseline DSC to versions that modify the way in which option
initiation sets are learned. We use the ANT MEDIUM MAZE environment where the agent gets a
sparse terminating reward of 0 for reaching the goal and −1 every other step; each episode lasts a
maximum of 1000 steps [Fu et al., 2020, Todorov et al., 2012]. This is a challenging problem that
cannot be solved with flat RL algorithms in a reasonable amount of time. Baseline DSC was able to
solve this problem by learning initiation sets defined over a subset of the state (x, y location of the ant)
[Bagaria et al., 2021a], but here, we do not assume access to such privileged information—all methods
learn initiation sets using a dense neural network that maps the full 30-dimensional continuous state
to an initiation probability.

We used the author implementation [Bagaria et al., 2021a] where option policies are parameterized
using goal-conditioned value functions [Schaul et al., 2015]. When using the IVF directly as the
initiation set, we mimic the structure of main agent and use a goal-conditioned value function to
represent the IVF; the final initiation set is defined as

Io =
{
s : max

g∈βo

Vθ(s, g) > T, ∀s ∈ S
}
.

More details about the task and implementation details can be found in Appendix A and C.3.

Figure 5 (left) shows that baseline DSC is unable to solve Medium Ant-Maze; but by changing the
way options learn their initiation sets, we are able to solve the problem quickly and reliably. The
weighted classifier slightly underperforms the pure IVF approach in terms of mean return, but it has
lower variance across runs. Figure 5 (right) visualizes the initiation sets learned by the weighted
classification approach; the figure makes it clear that different learned options specialize in different
parts of the maze.

5 Conclusion

Learning initiation sets is a critical component of skill discovery, but treating it as binary classification
misses key characteristics of the problem. Specifically, it does not address the non-stationarity that
results from a continually changing policy, the pessimistic bias of learning initiation sets online,
or the temporal structure in the problem. To address these challenges, we proposed the Initiation
Value Function (IVF), a general value function tailored specifically to learning initiation sets. We
used the IVF directly via thresholding and also via a weighted binary classifier which adapts to
changing option policies. Through our experiments, we showed that our proposals lead to higher
quality initiation sets, can lead to faster learning of a single option and boost the performance of an
existing skill discovery algorithm.

A limitation of the IVF cumulant proposed in Section 3.1 is that only applies for goal-reaching
options, which although is quite general, it is not universal. For example, if the option’s task is to
maximize the velocity of a robot and there is no specific target velocity, then we could not write down
a 0/1 cumulant that faithfully describes that subtask. Designing cumulants that result in initiation
probabilities for general option subtasks is an important avenue for future work.
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Figure 6: Domains used for our experiments in Section 4. Enumerating left to right from the top-left:
first screen of Montezuma’s Revenge, MiniGrid FourRooms, Ant Medium Maze, Robosuite Door,
Robosuite Lever, and Robosuite Slide.

A Task Descriptions

Four Rooms. This task, which is part of the MINIGRID suite [Chevalier-Boisvert et al., 2018], is
an adaptation of the four rooms problem presented in the paper introducing the Options framework
[Sutton et al., 1999]. Observations are 84× 84 images of the fully-observable underlying state-space,
which contains approximately 19× 19 grid locations and 4 possible orientations of the player. We
defined 4 options whose termination conditions (subgoals) were to navigate to the center of the 4
rooms. S0 was the set of all empty grid locations.

Montezuma’s Revenge. As is standard in ALE [Bellemare et al., 2013], observations are 84× 84
images, action space is a set of 18 discrete actions [Machado et al., 2018]. We defined start states
scattered across the first room where the player was on the ground (not jumping or falling), was not
too close to the skull and did not already have the key in its possession. We also defined 5 options
whose termination conditions are reaching the left door, right door, bottom-right of the first screen,
bottom-left of the first screen and getting the key.

Robosuite manipulation tasks. Three constrained manipulation tasks were used to study the task-
oriented grasping performance of our initiation set learning algorithms: opening a door, flipping a
lever, and sliding a knob. The door task was originally implemented in ROBOSUITE [Zhu et al., 2020];
the others were implemented and described in the work of Rosen et al. [2022]. All three are 1-DoF
articulated objects which require making and sustaining contact to manipulate. The 52-dimensional
observation space consists of the robot’s proprioceptive state (joint position, joint velocity, end-
effector position, gripper state, tactile data) as well as the object state (object pose, joint position,
handle position). The action space employed is operational space control with variable impedance
[Martín-Martín et al., 2019]: the agent controls the 6-DoF change in position and orientation of the
end-effector, the 6-DoF change in stiffness, and 1-DoF gripper state. Episodes have a maximum
length of 250 steps. In each task, S0 was a set of arm configurations establishing contact with the
object; see Section C.2.

Ant Medium Maze. The goal location is small region around (20, 20). A state is considered to
satisfy a goal if the two have a euclidean distance of 0.5 units or less R(s, g) = ||s − g||2 < 0.5.
The agent is evaluated by rolling out the learned policy once every 10 episodes; during evaluation,
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Figure 7: Illustration of the pessimistic bias in a tabular MDP. Action ot has non-stationary effects,
just like an option in HRL. As ot executed more, the probability of landing in s3 increases, otherwise
it leaves the agent in s1.

the agent starts from a small region around (0, 0), during training it starts at a location randomly
sampled from the open locations in the maze. The task reward function is −1 for non-goal transitions
and a terminating reward of 0 for reaching the goal. Episodes last a maximum of 1000 steps. The
training and evaluation protocol is identical to Bagaria et al. [2021a], except for the fact that we learn
initiation sets over the full state.

B Pessimistic Bias: Connections to Non-Hierarchical MDPs

MDPs with actions that have non-stationary effects mirror hierarchical MDPs in which the option
policies are being learned online. Figure 7 shows such an MDP—there are three states: s1, s2, s3,
two actions a and ot, and discount factor γ < 1. Action a takes the agent one state to the right, state
s3 yields a terminating reward of 1, reseting the state to s1. Action ot has a non-stationary effect: it
either leaves the agent at state s1, or takes the agent to s3. The probability with which ot takes the
agent to s3 evolves over time—the more it is executed, the more consistently it takes the agent to s3,
similar to an option in HRL whose policy improves with execution.

A Q-learning agent quickly learns Q(s1, a) = γ and Q(s1, ot) < γ leading to greedy policy π(s1) =
a. But if the agent executes ot enough times, it will get higher return Q(s1, ot) = 1 > Q(s1, a) = γ
leading to the greedy policy π(s1) = ot. Vanilla Q-learning alone would not discover the higher
value solution because it does not account for non-stationary effect of ot; some form of exploration is
needed for that.

C Details about Learning Algorithm

C.1 Accuracy Experiment

Algorithm 1 is the pseudocode used for the experiments described in Section 4.1. Every episode,
every option is executed from every start state in S0. The result of that execution is recorded as
ground-truth Ys,o(t) and stored to later compute the size of the true initiation set |Y | =

∑
s,o,t Ys,o(t)

|Ys,o(t)| .
If the start was predicted to be inside the initiation set by the learning algorithm, then the trajectory
generated by rolling out the option policy is used to update the policy and the initiation learner (e.g,
IVF, classifier). We report the agreement between the predicted initiations and the ground-truth as an
accuracy measurement for that state-option pair. The fraction of start states in S0 that lead to success
is reported as a measurement of the size of the true initiation set.

C.2 Robot Manipulation

The task-specific grasping problem is typically phrased as identifying grasp poses g ∈ SE(3) that
afford task success. In practice, the difficulty of this problem is compounded by the fact that,
for redundant manipulators, each grasp pose g yields an infinite number of corresponding arm
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Algorithm 1 Accuracy/Size Experiment Procedure
Inputs: Option termination conditions βo,∀o ∈ O, start states S0, number of episodes n_episodes.
Outputs: Accuracy table A and Initiation Size table S; both map state-option pairs to a list of
booleans.

Initialize goal-conditioned policy πθ : S × G → a ∈ A.
Initialize Initiation Value Function (IVF) Vϕ : S × G → R.
Initialize binary classifier for each option Io(s;ψ) → {0, 1}.
Initialize replay buffers for Rainbow BR and IVF BI .
Initialize buffers to store positive and negative examples for each option’s initiation classifier.
Initialize tables A and S as mapping each state-option pair to an empty list.
for episode ∈ range(n_episodes) do

for start state s0 ∈ S0 do
for option o ∈ O do

Reset simulator to s0.
Record option o’s initiation decision X = Io(s0;ψ).
Rollout option policy πo(s0, g ∼ βo) to get trajectory τ and next state s′.
Record whether the option policy reached the goal Y = s′ ∈ βo.
Record accuracy A[s0][o].append(1(X = Y )).
Update ground-truth size table S[s0][o].append(Y ).
if predicted initiation X = 1 then

Add trajectory τ to policy’s replay BR.
Relabel trajectory τ with initiation cumulant c0 : S → {0, 1}.
Add relabeled trajectory to IVF’s replay BI .
Add trajectory τ to o’s positive/negative example buffer.

end if
end for

end for
Sample minibatch and update πo using Rainbow.
Sample minibatch and update Vϕ using TD(0).
for option o ∈ O do

Compute weights w(s) for all training examples using Equation 1.
Update o’s initiation classifier by minimizing weighted cross-entropy loss.

end for
end for

configurations (solutions to the inverse kinematics problem). Explicitly, this relation is governed by
the manipulator’s forward kinematics f : C → SE(3) which maps (typically) 7-DoF configurations of
the arm q ∈ C to poses in Cartesian space. In practice, only a subset of these configurations for a given
grasp pose enable successful manipulation [Schiavi et al., 2022]. As a result, we task the initiation
set learning algorithm with choosing start states directly from the space of arm configurations C.

We generate collision-free grasp poses on each object using off-the-shelf grasp generation method
GPG [Ten Pas et al., 2017] and corresponding arm poses using IKFLOW[Ames et al., 2022]. We
chose to generate 50 grasp poses with 5 random inverse kinematics solutions each yielding a total of
250 starting configurations for each task.

Reward function. The reward functions are implemented as progress toward 1-DoF object joint
position goals. The agent receives reward when the current joint position exceeds its previous
maximum in a given episode.

Parameterization. As described in Section A, the agent receives proprioceptive and object-state
observations and controls the manipulator’s end-effector pose and impedance. The learning algorithm
employed is TD3 [Fujimoto et al., 2018]. Goal-conditioning is omitted in these experiments as they
have a single goal and a single option.
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C.3 Deep Skill Chaining

Deep skill chaining (DSC) [Konidaris and Barto, 2009, Bagaria and Konidaris, 2020] proceeds
recursively backward from the goal: the termination region of the first option is the task goal (Line 2,
Algorithm 3); the agent first learns an option policy and initiation set for that option. Then, it learns
another option whose termination region is the initiation set of the first option; this process continues
until there is some option whose initiation set covers the start state. The result is a collection of
options that can be sequenced to reliably reach the goal.

Since the initiation sets of options are the subgoals for other options, the entire process is sensitive to
the way in which the initiation sets are learned: poorly estimated initiation sets can lead to subgoals
that do not improve the agent’s abilty to reach the task goal.

Details about line 12 of Algorithm 2 differ based on the method used to learn the initiation set. When
using the pure IVF approach, we perform as many minibatch gradient updates as the length of the
option rollout; when using weighted classification, we recompute weights using Eq 1 for all training
examples and then proceed to minimize weighted cross-entropy loss (3 epochs, batch size 128).
When using classification (weighted or unweighted), we boost the contribution of the minority class
by the ratio of the size of the majority class to that of the minority class.

Algorithm 2 Robust DSC Rollout
Inputs. Skill Chain O
Hyperparameters. Option horizon H

1: Initialize empty trajectory buffer B
2: for each timestep t do
3: Select option o using policy over options πO(st)
4: Sample a goal for selected option: g ∼ βo
5: Execute option policy πo(·|g) in the environment
6: Add trajectory τ =

⋃H−1
i=0 (si, o, ai, si+1, g) to B

7: if final state sH reached goal g then
8: Add τ to o’s list of positive examples
9: else

10: Add τ to o’s list of negative examples
11: end if
12: Refit option o’s initiation classifier
13: Add τ to replay buffer and update πo using TD3
14: end for
15: return B =

⋃
t (st, ot, at, st+1, gt)

Algorithm 3 Robust DSC Algorithm
Inputs. Start state s0, Goal region g.

1: Initialize global option oG such that IoG(·) = 1
2: Initialize goal option og such that βog = g
3: Initialize skill chain O with {og}
4: for each episode do
5: transitions = ROLLOUT(O)
6: if s0 /∈ Io,∀o ∈ O then
7: Create new option ω
8: Add ω to skill chain O
9: end if

10: end for

Picking a goal for option execution. Line 4 of Algorithm 2 samples a goal from the option’s
termination region. To implement this sampling procedure, we consider the option’s parent ω in
the chain (the parent option is the one whose initiation set is being targeted by the current option o).
We enumerate the positive examples used to train Iω and pick the goal with the highest initiation
probability under the current option. This process is done iteratively backward from the goal: the first
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goal is the task goal, the next one is the positive example closest (in terms of highest IVF value) to
the task goal and so on.

D Additional Manipulation Experiments

Initiation set accuracy and true size are computed during training by performing an analogous
procedure to Algorithm 1. Periodically, the manipulator was reset to each candidate start state and
the initiation prediction was compared with the outcome of a policy rollout. Initiation set accuracy is
visualized in Figure 8a. The methods generally converge to similar accuracy. True initiation set size
is plotted in Figure 8b; size increases with optimism and correlates with success rates.

(a) Initiation set accuracy for manipulation domains.

(b) Initiation set size for manipulation domains (out of 250 start states).

Figure 8: (a) Accuracy of the learned initiation sets in the robot manipulation domains. (b) The size
of the “true” initiation sets measured by performing Monte Carlo rollouts of the option policy.

E Ablation: Optimism

We ablate role of optimism in initiation set learning in the manipulation experiments of Section 4.2;
the results are visualized in Figure 10. Count-based bonuses are computed as described in Section 3.3.
The optimistic bias is critical for the success of the Weighted algorithm in the SLIDE task, in which
only a small fraction of potential grasps are amenable to task success. For the Binary classification
baseline, optimism dramatically deteriorates performance in the DOOR task, but yields a large
improvement in the LEVER domain.

Figure 9 shows that the optimistic bonus slightly hurts in FOURROOMS, but is beneficial in MON-
TEZUMA’S REVENGE. This is likely because FourRooms is a much simpler problem with a smaller
state-space, thereby not demanding an exploration bonus.

20



Figure 9: Optimism ablation in MINIGRID-FOURROOMS and MONTEZUMASREVENGE. All curves
are averaged over all state-option pairs and 5 random seeds.

Figure 10: Optimism ablation in ROBOSUITE. Solid line represents mean success rate aggregated
over four seeds; shaded region shows standard error.

F Initiation Sets In Four Rooms

Figure 11 shows the initiation set and IVF of the option targeting the center of the top-right room in
MINIGRID-FOURROOMS. These figures show that the initiation set of the option expands over time
to reflect the growing competence of the option policy.

G Hyperparameters

Rainbow was used for policy learning in Section 4.1, TD3 was used in the other experiments. Their
hyperparameters (Tables 2 and 5) were not tuned and are either identical to the original paper
implementation or borrowed from Bagaria et al. [2021a]. The bonus scale c (described in Sec 3.3)
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Figure 11: Initiation set (left) and Initiation Value Function (IVF) (right) of the option targeting the
center of the top-right room (subgoal position is (14, 14)). Plots in the top row visualize the initiation
set after the 1st episode of training, those in the bottom row are after 200 episodes of training.

Env Horizon Ho

FourRooms 50
Montezumas Revenge 200
Robosuite 250
Ant-Maze 200

Table 1: Option Horizon Ho for each environment.

was tuned over the set {0.05, 0.1, 0.25, 0.5, 1.0}, the best performing hyperparameters are listed in
Table 3.

G.1 Option Horizon

Options operate over a fixed time horizon Ho (see Section 3.1). These values (Table 1) were picked
based on overall time limit (max_steps per episode) for each domain and we did not tune them.
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Parameter Value

Replay buffer size 106

Critic Learning rate 3 · 10−4

Actor Learning rate 3 · 10−4

Optimizer Adam
Target Update Rate 5 · 10−3

Batch size 256
Iterations per time step 1
Discount Factor 0.99
Output Normalization False
Policy Improvement Prior False in ROBOSUITE; True otherwise

Table 2: TD3 Hyperparameters for ROBOSUITE and DSC Experiments

Method Bonus Scale
Optimistic Binary 0.1
Optimistic GVF 0.5
Optimistic Weighted 0.5

Table 3: Exploration Hyperparameters for Robosuite Experiments.

Parameter Value

Replay buffer size 3 · 105
Replay start size 1024
Learning rate 10−4

Table 4: Rainbow Hyperparameters for Accuracy Experiments

Parameter Value

Learning rate 10−4

Optimizer Adam
Replay buffer size 105

Batch size 32
Threshold 0.5
Target network update rate 5 · 10−3

Table 5: IVF Hyperparamters
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